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Consumption and Equilibrium Interest Rates in
Stochastic Production Economies

M. SUNDARESAN*

ABSTRACT

In this paper, we analyze the behavior of equilibrium real interest rates in an identical
consumer economy in which the preferences are represented by time additive logarithmic
utility functions and production technologies are Cobb-Douglas with stochastic constant
returns to scale. The following main results are established.

(i) When there is no relative price uncertainty, it is shown that the equilibrium
interest rate exhibits a mean reverting tendency. A nontrivial steady state distribution
is found to exist for the equilibrium interest rate. The properties of the equilibrium
interest rate are also derived and discussed.

(ii) In a multigood economy, even with additive preferences across goods, the equilib-
rium interest rates depend explicitly on relative prices. The substitution possibilities in
production technologies induce this result. This is in contrast to the findings of Richard
and Sundaresan [11] who show that the analytical general equilibrium term structure
of interest rates formula of Cox, Ingersoll, and Ross [5] is unaffected by the introduction
of relative price uncertainty when the technologies are linear and hence involve no
substitution.

Furthermore, we relate our results to those of Cox, Ingersoll, and Ross [5], Breeden
[3], and Richard and Sundaresan [11] with special emphasis on stochastic production
and realtive price uncertainty.

THE PURPOSE OF THIS PAPER is to present and discuss some new results on the
determinants of equilibrium interest rates in stochastic production economies.
The seminal contribution of Cox, Ingersoll, and Ross [5] provides the basic
setting and serves as a frame of reference. This paper also analyzes the interre-
lation between equilibrium real interest rates and consumption behavior as
examined by Breeden [3] and Cox and Ross [6]. Some of the key insights that
these and other papers provide may be summarized as follows:! instantaneous
interest rates and the time rate of preference are linked through the expected
marginal rate of substitution for time additive preferences. Furthermore, the
distributional properties of the consumption path chosen by individuals are

* Graduate School of Business, Columbia University. I thank Jean Pierre Danthine, John Donald-
son, David Modest, Krishna Ramaswamy, and Mark Rubinstein for their comments. Special thanks
go to Doug Breeden, George Constantinides, Philip Dybvig, Jon Ingersoll, and Scott Richard for their
suggestions. The comments and suggestions made by two anonymous referees were most helpful.
Responsibility for errors remaining in this paper is mine. Faculty Research Fellowship from the
Graduate School of Business, Columbia University partially supported this research.

! Papers by Barta [1], Cox, Ingersoll, and Ross [4], Radner [10], and Rubinstein [14], [15] have
also addressed related questions. The relation between time rate of preference and interest rate has
been recognized in the economic growth literature as well. Rubinstein [15] examines some of the
issues addressed in this paper in a discrete time setting.
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irrevocably linked to the equilibrium path taken by interest rates. In this context
the studies of Breeden [3] and Cox and Ross [6] explicitly address the term
structure implications of the distributional properties of the consumption path.
One of the messages we glean from these studies is that models which deliver a
rich yet potentially refutable optimal consumption behavior are likely to be good
candidates for the study of equilibrium interest rates and their term structure.
Many researchers have attempted to deliver empirically testable relationships
between equilibrium interest rates and their determinants by making strong
assumptions about preferences, technology, probability beliefs, and other related
factors. The general equilibrium single good model of Cox, Ingersoll, and Ross
[5], for instance, specifies identical consumers, logarithmic utility, linear tech-
nology, and a mean reverting productivity shock to obtain a rich analytical
characterization of consumption function and term structure. In the same paper,
they also consider many interesting partial equilibrium models of the term
structure. Papers by Rubinstein [13] and Kraus and Litzenberger [8] explicitly
obtain specifications for equilibrium interest rates in a world where preferences
are represented by logarithmic utility functions. Such equilibrium models which
simultaneously determine the consumption function (or savings function) and
interest rates provide insight about their determinants and evolution. This study
which shares the spirit of analysis embodied in the papers cited above is a
contribution to this growing literature with special emphasis on the stochastic
nature of production technology and the role of relative price uncertainty. Following
the insights of Cox, Ingersoll, and Ross [5] and Merton [9], we examine the
properties of equilibrium interest rates in stochastic Cobb-Douglas production
economies.?? Throughout the paper it is assumed that all investors are identical
and that the preferences can be represented by time additive logarithmic utility
functions.? Models of economy with one and multiple consumption goods are
considered. The results indicate that the instantaneous rate of interest has a
tendency to revert to a mean in a single consumption good setting. This finding is
consistent with the process used by Cox, Ingersoll, and Ross [5].° The existence of
a steady state distribution for the equilibrium interest rate is shown in a single
consumption good setting under uncertainty. The properties of the interest rates
are also discussed. The analysis is then extended to an economy with multiple
consumption goods, wherein the production of a given consumption good not

2 Merton [9] in his paper points out: “In addition, these analyses often provide “throw-offs” useful
in other areas of research. For example, it is usually necessary to postulate some process for the
short-rate over time. Using the model of this section, we can derive an analytical description for the
interest rate process ...” (emphasis mine). Merton [9], however, assumed an exogenous savings
function.

3 Cox, Ingersoll, and Ross [5] note (see their footnote 3): “We consider a pure capital growth model
by assuming that labor is unnecessary in production (or that there is a permanent labor surplus
state). This provides a more streamlined setting for issues which we wish to stress. There is no
essential difficulty in expanding the analysis to include labor inputs and nonlinear technologies.” We
pursue this direction in our paper.

* These assumptions were made by Cox, Ingersoll, and Ross [5] in deriving their analytical results.

5 The mean reverting behavior exhibited by the instantaneously riskless rate in Cox, Ingersoll, and
Ross [5] is attributable to their technology assumptions and in particular to the exogenous mean
reverting behavior postulated for the productivity shock.
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only requires that consumption good but also a common input, called the capital
good.® In this setting with endogenous relative price uncertainty, the equilibrium
interest rates are directly affected by relative prices. This conclusion is discussed
in the context of the multiple good, linear technology analysis of Richard and
Sundaresan [11], wherein it is shown that, under some assumptions, the analyt-
ical term structure results of Cox, Ingersoll, and Ross [5] are unaffected by the
introduction of endogenous relative price uncertainty.

This paper is organized as follows. We describe a general identical consumer
multiple good economy in the next section. Then in Section II we specialize to a
partial equilibrium single consumption good model with a stochastic Cobb-
Douglas technology. This technology requires a capital good (in addition to
consumption good) for producing the consumption good. Under a simplifying
assumption about the supply of the capital good, we derive and discuss the
optimal consumption function and equilibrium interest rates. Section III extends
the stochastic Cobb-Douglas technology analysis to a multiple consumption goods
environment. The impact of relative price uncertainty on the equilibrium interest
rate is explicitly identified. In Section IV we compare our results in the multiple
goods framework to those of Richard and Sundaresan [11] and conclude.’

In order to focus on the results, all technical arguments and detailed proofs
are relegated to the Appendix. Also, to simplify the exposition multiple goods
analysis is carried out in a two goods world.

I. Description of the Economy

We consider an economy with a large number, N, of identical, infinitely-lived
consumers. Each consumer seeks to maximize his or her lifetime expected utility

E[J; e~*u(c(t), ca(t)) dt], (1)

where c;(t) is the stochastic process representing the time ¢ rate of consumption
of good i, p is the rate of impatience, u(-) is an instantaneous utility function,
and E[-] is an expectation operator. Each consumer is identically endowed. Let
Q:(0) denote the aggregate stock of consumption good i at time 0 in the economy.
Then at time 0 each consumer has an endowment of ¢;(0) = (1/N)Q:(0) good .
The market value of endowments is denoted by w(0). Throughout the paper we
will assume that the preferences can be represented by the utility function

u(cl, (,'2) = Al In ¢ + X2 In Co. (2)

Whenever we consider a single consumption good economy we will set A\, = 0
and without loss of generality A\; = 1.2 Each consumption good is produced by a

¢ This introduces a common link across production technologies. The capital good sector is
exogenous to the model. In other words, the rental payment made to hire capital good is a deadweight
loss.

"The analytical results corresponding to the linear technology were reported in Richard and
Sundaresan [11] but did not appear in Richard and Sundaresan [12].

8 The additivity across time and goods is a critical assumption to most of our results.
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stochastic constant returns to scale technology. The technology for consumption
good i, in general, uses both good i and a capital good as inputs and produces an
uncertain quantity of consumption good i. Each production technology changes
over time due to random productivity shocks, which are specified exogenously.
All consumers have free access to the production technologies. Let k:(t) be the
quantity of capital good invested in the production technology of consumption
good i at time ¢ and x(t) be a state variable which summarizes the state of the
production technology at time ¢. Output of consumption good i net of consumption
and rentals to capital dg;(t), is described by the stochastic differential equation®

in = [#.’(Qn ki, x) —¢; — k,y] dt + G,'(q,', k;, x) dZ fori =1, 2. 3)

In Equation (3) u; is the mean instantaneous gross output and k;y dt is the
amount of rentals paid for the capital good investment. The equilibrium rental
rate y will be determined endogenously. The total supply of capital good is fixed
at K.'° The capital good sector is exogenous to the model. In the model I am
studying, all the risk is borne only by the identical investors and none by the
absent owners of the capital good. If the capital good is owned by investors in
equal proportions and the “rental rate” y = 0, then all our results will hold in
such a setting as well.

In Equation (3) G; = (gi1, &2, &3) is a 1 X 3 vector of diffusion coefficient
functions and Z(t) = (21, 22, 23)’ is a 3 X 1 vector of 3 independent Wiener
processes. The functions u; and G; are homogeneous of degree one in g; and k;,
thereby making production stochastic constant returns to scale. Notice that (3)
implies higher marginal net productivity with lower consumption. Each consumer
knows that the dynamics of x are given by the stochastic differential equation

dx = B(x) dt + S(x) dZ (4)

In (4) 8 is a function of x denoting the expected instantaneous change in x and
S(x) is a 1 X 3 diffusion matrix such that SS’ > 0 is the instantaneous variance
of the state variable. The state of the economy is fully captured by the triple (@,
@3, x).!* The opportunity set facing consumers has several markets. A competitive
spot market exists for both consumption goods. Consumption good 1 is assumed
to be the numeraire good by convention and its price is always one. The relative
price of consumption good 2 is denoted by P. By Ito’s Lemma the dynamics of P

are
dP = BP dt + op dZ, (5)

where 8p and op are defined in the Appendix. Consumers can also create and
trade in competitive markets unit discount bonds on the numeraire good. The
unit discount bond price, F(t, T), is the price to be paid at time ¢ in the numeraire
good for default-free delivery of one unit of the numeraire good at T > t. We
assume that consumers can instantaneously borrow or lend the numeraire good
at the instantaneously risk-free interest rate r.!> By Ito’s Lemma the dynamics

? See Cox and Miller [7] for a lucid treatment of stochastic differential equations.

197 thank a referee for pointing this out to me. Alternative supply conditions and preferences have

been explored in Sundaresan [16], [17].

11 This assertion follows from the Markov property of the stochastic processes used in our analysis.

dF(t, t)

12 The equilibrium instantaneous interest rate r(t) is defined by r(t) = — aT
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of F are
dF = BF dt + OF dZ, (6)

where 8r and of are defined in the Appendix.

We now proceed to sketch the consumer’s optimization problem briefly. The
consumer at each point in time must allocate his wealth among investments in
the production technologies, unit discount bonds, and riskless borrowing or
lending. In addition he must make his consumption choice. Let g¢;(t) be the
investment of consumption good i and m(t) be the number of unit discount bonds
held. His total wealth, w(t), must be fully invested at each time ¢. Therefore the
wealth invested in riskless borrowing or lending is given by [w — g, — Pg; — mF].
The change in wealth over the next instant is the intertemporal budget dynamics
and can be written as

dw = B, dt + o, dZ, (7

where 3, is the instantaneous expected change in wealth and ¢,0, is the variance
of this change. In the Appendix we have derived §,, and o, explicitly.

The consumer maximizes his lifetime expected utility (1) subject to his budget
constraint (7). The price functions P(-), r(-), and F(-), the dynamics (4), and
the dynamics of @;(t) and @-(t) are taken as given by the consumer. The Bellman
equation for this problem and the first-order conditions are fairly standard. They
are reported in the Appendix. The market clearing conditions are intuitive: since
all consumers are identical, there will be no lending or borrowing in the instanta-
neously riskless market. For the same reason no unit discount bonds will be held
at equilibrium. Consequently, all the wealth must be allocated to investment in the
production technologies. Furthermore, the total amount of capital good demanded
for investment purposes must be equal to the total fixed supply of the capital
good. A further condition for market equilibrium is that consumers have rational
expectations. In other words, the price functions and state dynamics assumed by
consumers coincide with the actual price functions and state dynamics implied
by the aggregation of the consumers’ optimal decisions.!® The formulas for the
equilibrium price functions at this level of generality can be derived following
the insights of Cox, Ingersoll, and Ross [5].* In order to get sharper insights we
proceed to examine some special cases in the rest of this paper.

I1. Single Consumption Good Cobb-Douglas Stochastic Production
Economy

In this section, we specialize to a single consumption good so that there is no
relative price uncertainty. Furthermore, we impose the following restrictions on

(3):
wi(qa, ki, x) = q°k'™u where 1 > a > 0,
Gi(q1, k1, x) = [og, 0, 0],

13 Since all consumers are identical, there are no aggregation problems in this paper.
4 See also Breeden [2], Rubinstein [14], and Richard and Sundaresan [12].
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and
Z(t) = [z, 0, 0]'.

These restrictions imply that there is only one source of uncertainty. Moreover
with these restrictions the production technology for the consumption good can
be written (gross of consumption and rental payments to capital good) as

dg = q°k'™u dt + oq dz,, 8
It is instructive to rewrite (8) as follows:
dq B q a—1

7 = <k> udt + o dz. 9)

Equation (9) makes it transparent that the rate of return from the consumption
good technology is additively uncertain. The expected return depends on the
ratio of the capital to consumption good. The variance of the return is constant,
and is independent of the quantities invested. An intutitive way to think about
this technology is that the choice of consumption good investment to capital
good investment ratio can be used to control the expected return from the
technology. However, the variance of return from technology is always constant.
This technology specification was chosen as it provides a simple generalization
of linear technology to illustrate the point we wish to make. At this stage there
is no essential difficulty in introducing many technologies with less than perfectly
correlated returns, so long as the parameter « is the same across all technologies.'®
We retain the single production technology assumption to simplify exposition.
We now state our main result in this section as:

THEOREM 1. The equilbrium instantaneous interest rate is given by

(a—1)
= au<%> - o2

If there are many technologies with R denoting the covariance matrix of
instantaneous returns from M risky technologies, then

r= ap(%)a- - [I'R™1]7%

where 1 is an M X 1 vector and R is assumed to be nonsingular. Furthermore,
the equilibrium interest rate has a nontrivial steady state distribution and
exhibits mean reversion.®

Before we proceed to discuss the results of Theorem 1, we note in passing that
the aggregate consumption function is identical to the one found by Cox, Ingersoll,
and Ross [5] and is given by

C=0Q.

151 thank a referee who suggested this extension.
16 The result corresponding to the multiple technologies case indicates that there is a diversification
effect, leading to lower overall variance.
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The equilibrium instantaneous rate of interest is an increasing function of u
and a decreasing function of o2 In order to gain an intuitive feel for the
relationship between r, @, and their dynamics, the problem is first studied with
o2 = 0. The consumption good stock dynamics under these conditions can be
determined as

de

Q (r — p) dt.

Thus the consumption good stock grows when r > p and depletes when r < p.
When r = p there is no change in the consumption good stock. There is a market
feedback mechanism that drives the economy to this steady state. For instance
when r > p, the consumption good stock grows. As it grows, the interest rate
tends to fall as can be verified from Theorem 1. Eventually r reaches a value
equal to p, the rate of time preference and the consumption good stock reaches a
steady state. Similarly, when r < p, the consumption good stock falls. This causes
the interest rate to rise. This adjustment takes place until the interest rate equals
the rate of time preference. Thus one can regard r = p as the steady state of the
economy.

Using the dynamics for @ at equilibrium in the expression for interest rate it
is seen that interest rate dynamics follow

d_rr= (e = 1)(r — p) dt.

Given that we know the interest rate r at time 0 to be r(0) we may solve this
differential equation to obtain interest rate at any time ¢ to get

r(0)est-)
r(0)fest ¥ — 1}°
p

r(t) =

1+

Clearly, the time rate of preference and the parameter o determine the relation
between r(t) and r(0). It can be shown that the unit discount bond prices are
given by

1
(1=a)p(T—t) __ =
rle 1}] = (10)

Fir,t, T) = [1 +
p
The bond price is a decreasing function of maturity and the spot (instanta-
neous) rate of interest.
Once again under a steady state r = p and the bond prices reduce to

F(r,t, T) =T,

This has an intuitive present value interpretation. In general the unit discount
bond prices inherit the parameters of the technology, time rate of preference of
the individuals, the concurrent spot rate of interest, and the time of maturity.
Since there is a one-to-one relation between the spot rate r and the aggregate
physical stock of consumption good @, the interest rate effectively serves as a
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state variable for the purposes of determining the yield curve.!” In this particdlar
case it has been possible to get an analytical characterization of the yield curve
as,

r{e(l—a)p(T—t) _ 1}>
P
(T-6H1 - a)

1n<1 +
¥, T) =

When ¢2 # 0, the dynamics of the instantaneous rate of interest can be shown
to follow the stochastic differential equation

dr=(a—1)(r+ 02)[<r —p+ g—g—2> dt + a} dz;.

The distributional properties of instantaneous spot rate of interest are directly
dependent upon the stochastic process followed by the consumption good stock
at equilibrium in the economy. This follows from Theorem 1. It is now shown
that a nontrivial steady state distribution exists for the aggregate consumption
good stock. The dynamics for @ in this economy are
%=[r+02—-p]dt+adzl. (11)

The expected growth rate in the consumption good stock has an intuitive
interpretation: with log utility, the relative risk aversion coefficient is unity so
that o2 represents the risk premium and p represents the depletion rate due to
consumption. Thus, as consumers become more impatient, current consumption
tends to increase causing a reduction in the expected growth rate of consumption
good stock. Compared to the certainty case, the expected growth rate tends to be
higher for higher values of ¢2.

Let us define ¥ = In Q. Then (11) could be rewritten as

dd = h(9) dt + o dzy, (12)

where

2
h(¥) = auK 1™~ (17a? — <p + %) (13)

Note that A(¢) is continuous in ¢. Furthermore, lim hA(J) = © and lim h(¥) =

Y——00 J—+0

2
—-(p + %) < 0. Under these conditions it is demonstrated in the Appendix that

7 Cox, Ingersoll, and Ross [5] have noted (see their footnote 30) that: “The most important
circumstances sufficient for bond prices to depend only on the spot rate are: (i) the technology is
nonstochastic and the interest rate is a monotone function of wealth, and (ii) individuals have
constant relative risk aversion, uncertainty in the technology can be described by a single variable
and the interest rate is a monotonic function of this variable.” As pointed out by the referee, the
technological environment must be nonstochastic for this result to obtain.
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— and + are inaccessible for the process ¢. This in turn implies that 0 and
+o0 are inaccessible for the process Q. Hence a nontrivial steady state distribution
for @ exists. Note that there is a one-to-one correspondence between interest
rate and consumption good stock as given by

r=auK® QM — 42 (14)

Equations (11) and (14) can be used in conjunction to study the behavior of
interest rate in this economy. For instance, let us consider a state where r is very
high to begin with. From Equation (11), this causes the consumption good stock
to grow, on average. As the consumption good stock grows the spot rate tends to
go down, as can be verified from Equation (14). Similarly, if r is very low to begin
with, so much so that r + ¢2 < p, then the consumption good stock declines, on
average. This causes the interest rate to go up. Thus, there is a correcting
mechanism in the economy which causes the interest rate to fluctuate around a
value dependent on p and o2 As shocks from the technology are realized, the
consumption good stock fluctuates causing the interest rate to move. As described
above there is a tendency for the interest rate to fluctuate around a mean.

What are the bounds for r? Notice that @ is bounded by the open interval
(0, ©) and has a nontrivial steady state distribution in this interval. As @ tends
to zero, r tends to ® but as Q tends to =, r tends to —¢?%. So the interest rate is
bounded by the open interval (—a2, ). This introduces the possibility that under
certain states of the economy when the consumption good stock is very high, the
real spot rate can be negative. As our analysis has shown, this situation gets
corrected by reduction in the stock of consumption good due to higher consump-
tion. As the consumption good stock falls, interest rates become positive. The
distributional properties of equilibrium interest rates differ from those obtained
by Cox, Ingersoll, and Ross [5]. But our model also implies a mean reverting
behavior for interest rates. In this sense our findings complement those of Cox,
Ingersoll, and Ross [5] . Our results in this context can also be related to the
findings of Breeden [3]. Breeden [3] points out that with logarithmic utility
function, the riskless rate is equal to the expected return on optimal risky
investment, less its variance. This intuition is confirmed by our analysis. The
expected rate of consumption growth in our model is r + o® — p. Clearly expected
rate of consumption growth is higher when the riskless rate is higher. The
variance in the consumption growth rate ¢ is inversely related to the interest
rate. These findings are consistent with the analysis of Breeden [3]. In the
approach taken by Breeden [3], only mild assumptions were needed as he was
interested in obtaining some general relations. In the approach that we have
taken, strong assumptions were made to get analytical characterization of equil-
brium interest rate and its distributional properties. By imposing all equilibrium
restrictions, we have also provided an explicit equilbrium setting in which our
results confirm the findings of Breeden [3].

III. Multiple Consumption Goods Cobb-Douglas Stochastic Production
Economy

In the previous section, relative price uncertainty was precluded. We admit
explicit relative price uncertainty in this section by introducing a second con-
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sumption good whose price relative to the first consumption good is P and is
generally stochastic. We impose the following restrictions on (3);

wilqi, ki, x) = qfk} W where 1 > a > 0,

Gi(qi, ki, x) = [o1q1, 0, 0],

Ga(qi, ki, x) = [0, 0243, 0],
and

Z(t) = [z, 22, 0]".

Again our assumption implies that dx = 0 or the technological environment is
nonstochastic. Thus the production technology is given by

dg; = qfki™w; dt + aiqidz;, (=1, 2).

These restrictions imply two important properties for the production technolo-
gies. First, each production technology is stochastic constant returns to scale.
Second, there are substitution possibilities introduced by the fact that the capital
good is needed to produce either of the two consumption goods. This will turn
out to be an important factor in our subsequent analysis. At each instant, the
consumer must allocate a fixed supply of capital good between the production
technologies of two consumption goods, in a regime of relative price uncertainty. It
is of interest to ask what specification will emerge for the equilibrium interest
rate in this setting. This is addressed in the next theorem.

THEOREM 2. The equilibrium interest rate is given by

r=ap "K' [@ul’* + Qx(Pu)"?*" — of (15)
where the relative spot price P of consumption good 2 is given by
Ao @y
P=——. (16)
A1 @

The proof of this theorem is in the Appendix. Two important observations
may be made at this juncture. First, the equilibrium interest rate is directly
influenced by the relative spot price P. Thus, shifts in the consumption oppor-
tunity set via relative price changes have a direct influence on the instantaneous
spot rate of interest. This is likely to have interesting term structure implications.
Second, the equilibrium interest rate can be expressed solely as a function of
aggregate consumptions of good 1 and good 2. In the Appendix it is demonstrated
that the aggregate consumption functions are given by

C: = pQ.. (17

Inspection of (15), (16), and (17) suggests that the interest rate can be expressed
strictly in terms of C; and C; by substituting for P and @;. The key result that
the equilibrium interest rate is directly affected by relative price should come as
no surprise. Interest rates are anchored to marginal products from risky produc-
tion technologies. When technologies are linear, marginal product depends only
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on exogenously specified productivity shocks. Thus with « = 1, there is no
substitution and r = u; — ¢%. Hence consumption goods stock do not influence
interest rates. With Cobb-Douglas technologies, however, marginal products
depend on consumption good stock and therefore on relative prices.

The properties of the equilibrium rate of interest are fairly intuitive. It is
decreasing in ¢? and increasing in the aggregate stock of capital good. The
equilibrium interest rate is a decreasing function of @, and an increasing function
of @,. The dependence of equilibrium interest rate on the aggregate consumption
is linear in aggregate stock as given by (17). The dynamics of the equilibrium
interest rate depend in a fairly complicated way on the evolution of aggregate
consumption goods stock. The interest rate specification (15) is fairly rich. Under
certainty the equilibrium interest rate can be written as

ln r = 60 + ﬂ]ln Kx + 6211’1[01 + 33C€‘C(21_ﬁ‘)] (18)
where the coefficients 8; (i =0, - - - , 4) obey the following restrictions
o
= Iln|—| =1 = —1;
Bo n[(l — a)p]’ 61 B2

1/a
Bs = [sz} > 0; and B,=a'>0.
>\1#1

Kx are the aggregate payments to the capital good sector. C; and C, are the
aggregate physical consumption of good 1 and 2, respectively. Except for 8, all
the coefficients have refutable restrictions either in terms of values or signs. The
sign of (B, depends on the factor shares parameter, o, (1 — «) and their relation
to the time rate of preference p. This specification places refutable restrictions
on real rate of interest, capital expenditure, and aggregate consumption. The
aggregate consumption function is robust and is linear in the aggregate stock of
goods. The log utility assumption is essentially the main reason behind this
result. With log utility individuals do not “hedge” movements in the opportunity
set and hence their consumption decisions are myopic for a wide range of
economic scenarios.

We proceed to relate our results to those of Richard and Sundaresan [11] and
conclude in the next section.

IV. Conclusion

Richard and Sundaresan [11] demonstrated that the analytical term structure
results obtained by Cox, Ingersoll, and Ross [5] in a general equilibrium setting
are unaffected by the introduction of endogenous relative price uncertainty. In
order to demonstrate this result they made certain assumptions which in the
context of our paper imply the following restrictions on (3):

#i(Qi, ki’ x) = qipiXx,
Gi(qi, ki, x) = [gil\/;, giZ‘/;, gis\/;],
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and
Z(t) = (21, 22, 23]’

Furthermore, they assumed that there is no capital good sector and that (4) is a
mean reverting “square root” diffusion process used by Cox, Ingersoll, and Ross
[6]. These assumptions were shown to be sufficient for the analytical term
structure results of Cox, Ingersoll, and Ross [5] to hold under relative price
uncertainty as well.’® These assumptions imply lack of any complementarity or
substitution across production technologies of different goods. In other words,
only the output good is used as input to each good’s technology. The assumption
on preferences made by Richard and Sundaresan [11] was the same as (2). This
implies additive preferences across goods. Our analysis in Section III suggests
that the introduction of a common input across the production technologies of
different goods is sufficient to cause the equilibrium interest rate to depend
directly on relative prices. It may be possible to obtain similar conclusions by
permitting substitutions or cross-elasticities of demand across goods. This will
require relaxing the additivity (across goods) assumption made in (2).

Our analysis is intended to complement the research work on equilibrium
interest rate determination by Cox, Ingersoll, and Ross [5] and Breeden [3]. By
focusing on stochastic production technologies and relative price uncertainty this
paper has highlighted the importance of these variables on the determination of
equilibrium interest rates and their term structure. It appears that substitution
or complementarity in either preferences and/or production technologies might
lead to rich term structure specifications. Introduction of substitution possibilities
across time and goods through preferences is a potentially interesting topic for
future research. One of the lessons learned from this study is that the choice of
assumptions about technology and the number of goods in the economy seems
to be crucial in determining the properties of equilibrium interest rates.

Appendix
I. Derivation of Price Dynamics
Let n(t) = 7(Q1, @2, X, t) be the price of any claim. Then,
dr(t) = (Lm) dt + =, S + woG dZ. (A)

. om dr OJdm G .
In the equation above, m, = a; T = < 3.’ 3 Q2> G = <G;>; and L is a
differential operator defined by

82
aQian
(SS — t Y2, (GS’):

B(x)+2 ¢;+ Z Y21 (GG)

2 + a
0Q.0x

18 In addition, it was assumed that all consumers are identical. The log utility assumption is critical
to the result as well.
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Using this general relationship (A), we can explicitly identify 8p, op, Br, and
or. (¢; denotes the drift term in the dynamics of the aggregate stock of consump-
tion good i.)

II. Derivation of Wealth Dynamics
dw = dq, + Pdq; + g2 dP + dP dq, + m dF + (w — q, — Pq, — mF) r dt.
Substituting from (3)-(6) and simplifying we get
dw = 3, dt + o, dz,
where

Buw = [u1 + Puz — ¢c1 — Pco — k1y — kyy + q28p +Pg20pG;

+ m(Br — rF) + r(w — g1 — Pgy)]
and

o, = (G, + PGy + qa0p + movy).

II1. General Optimization Problem
The Bellman equation is
0= Max [uley, c2) — pd + LJ + Bud,

{c1,€2:1,a2,%1. kg,
+ Y2duwwowol, + 0SS 'Jux + 0,G'Jugl. (A1)

In the equation above, J is the optimum value function. Let us rewrite the
Bellman equation as
0 = ulcy, ¢2) + LJ — pd,
where
d 1 92 3? 9?
—+ - 0,00, —5 + ouS’ + 0,G .
dw 277 aw? T ™ Gwax " " woQ

Then the relevant first-order conditions are:

L=L+8,

g, =0, (A2)
601
% _py, =o, (A3)
(902
duy aG, | , ' ’
B e + | S londw + S s + G'dug] = 0, (A4)
aq oq

|:P§£z+ﬁp+P0'pGé—rP}Jw
(efep)

+ [P 3—52 + Up:l[a',:,c]w + S'Ju: + G'Jdug]l = 0, (A5)
2
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[gﬁ - y]J,,, =0, (A6)
{p Ou _ y]J.,, =0, (A7)
ks
and
[8r = rF)Ju + 0p0tduw + 058 dux + 05G'Jug = 0. (A8)

IV. Proof of Theorem 1

The proof is by actual substitution. First we impose the restrictions on u(-),
Gi(-), and Z(t) from Section II. These are substituted in (A1)-(A8). It may be
verified that the following controls and prices satisfy (A1)-(A8).

J =—In w + Y(Q) is the indirect value function. The consumption function is
p
¢ = pw. The consumption good investment is ¢ = w. The capital good investment

isk= @- The number of bonds held is m = 0. The equilibrium interest rate is

a—1 a
= ap<1%> and the equilibrium rental rate is y = (1 — a)u(%) . QED.

V. Existence of a Nontrivial Steady State Distribution

The proof follows directly from Merton [9] and is provided only for complete-
ness. In Equation (12), note that h(¢J) is continuous. Furthermore

0,2
lim h(¥)=—|p+—=)<0
—+o0 2

lim h(9) =

9——00
It then follows that there exists an x > —o such that for all ¥ € [—o, x], there
exists a 6, > 0 such that

h(9) = hix) Z 5,

In a similar manner, there exists an x < o such that for all ¥ € [x, =], there
exists a §; < 0 such that

h(¥) = h(x) = 6,

Consider a Wiener process W,(t) with drift §, and variance o2 defined on the
interval [—o, x] where x is a reflecting barrier. Cox and Miller [7] have demon-
strated such a process has a nondegenerate steady state and hence —x is an
inaccessible boundary. Since h(¥#) = 6§, for the process, followed by ¥ as well, the
boundary is not accessible.

In a similar manner, Cox and Miller [7] show that for the process W,(t) with
drift 4, and variance ¢% defined on the interval [X, ] where x is a reflecting
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barrier, « is inaccessible so long as g, < 0. Since h(¥) = 6, in this interval —o is
inaccessible for .

The proof is complete once it is noted that ¥ = In Q. Intuitively when ¢ takes
very high values, the drift term h(¥) becomes negative. Similarly when ¢ takes
large negative values h(J) becomes positive. This accounts for the existence of a
nontrivial distribution. Q.E.D.

VI. Proof of Theorem 2

The proof is by actual substitution. First we substitute the restrictions on
wi(+), G«-), and Z(t) from Section III into (A1)-(A8). It may be verified that the
following controls and prices satisfy (A1)-(A8).

The indirect value function is

M+ A
J = —17—2 In w + ¢(Q1, Q).

The optimal consumption of goods is

Aip Ap Q@

=—w, cy = — w.
>‘1+>\2w M@
The optimal consumption good investments are given by

- M, R
VIS Vi R DI W

(41

qQ1

The optimal capital good investments are
- g Kqy
= -1 1y
Quui™ ) + Qx(Puz)
__ (Pu)“Kq,
= = =1 .
Quut™ ) + Qu(Puy)
The number of bonds held is m = 0. The relative spot price is given by
A2 @
M QS

ky

ks

P =

The equilibrium rental rate is

y=(1— oK [Qul’* + Q(Pus)"*]"
and the equilibrium rate of interest is given by (15). Q.E.D.
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