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ABSTRACT

Interest rate swap pricing theory traditionally views swaps as a portfolio of forward con-

tracts with net swap payments discounted at LIBOR rates. In practice, the use of marking-

to-market and collateralization question this view as they introduce intermediate cash flows

and alter credit characteristics. We provide a swap valuation theory under marking-to-

market and costly collateral and examine the theory’s empirical implications. We find

evidence consistent with costly collateral using two different approaches; the first uses

single-factor models and Eurodollar futures prices, and the second uses a formal term

structure model and Treasury/swap data.
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The traditional approach to interest rate swap valuation (Sundaresan (1991a) and Duffie

and Singleton (1997)) treats a swap as a portfolio of forward contracts on the underlying

floating interest rate. Under specific assumptions regarding the nature of default and the

credit risk of the counterparties, Duffie and Singleton (1997) prove that swap rates are

par bond rates of an issuer who remains at LIBOR quality throughout the life of the

contract. This result is extremely useful for extracting zero-coupon bond prices, pricing

swap derivatives, and testing spot rate models.

Despite the popularity of the traditional view, market practice brings into question

some of the underlying assumptions of this approach. As the swap market rapidly grew in

the late 1980s and early 1990s, an increasingly diverse group of counterparties entered the

market. To mitigate their exposure to counterparty credit risk, market participants began

using a number of credit enhancements to improve the credit quality of swap contracts.

Without question, the most important credit enhancement is the posting of collateral in

the amount of the current mark-to-market value of the swap contract (ISDA (1999)).

Due to these credit enhancements, market participants commonly view interest rate

swaps as free of counterparty default risk (see, for example, Tuckman (2002)). This implies

that, in contrast to the traditional approach, swap rates should be discounted not at default-

risky LIBOR rates, but rather at default-free rates. Despite this observation, however, it

is still common to model swap yields as par rates. Hence, an internal inconsistency arises.1

This paper provides a theory of swap valuation in the presence of bilateral marking-

3



to-market (MTM) and collateralization. MTM requires that counterparties post collateral

in the amount of the current mark-to-market value of the contract. This generates an im-

portant departure from the traditional theory which assumes that all cash flows exchanged

between counterparties occur on the periodic swap dates. Since collateral is generally costly

to post, these payments induce economic costs (benefits) to the payer (receiver). Further,

since these credit enhancements are part of the swap contract, they must be accounted for

in valuation (see the “Credit Support Annex” (ISDA (1994)) to the ISDA Master Swap

Agreement). Due to these credit enhancements, it is also increasingly common to build

models assuming that swaps are free of counterparty credit risk (Collin-Dufresne and Solnik

(2001) and He (2001)) by appealing to the institutional practice of posting collateral.

Formally, we assume that counterparties post cash or Treasury securities as collateral

in the mark-to-market value of the swap. Cash and Treasuries are default-free, they can

easily be invested or loaned out, and they are the two most common forms of collateral

(ISDA (2003)). We show that MTM and costly collateral result in intermediate cash flows

that take the form of a stochastic dividend, where the dividend rate represents the cost of

posting collateral. This result is reminiscent of Cox, Ingersoll, and Ross (CIR) (1981), who

show that the MTM feature of futures contracts results in stochastic dividends. Futures

contracts are marked-to-market daily and variation margin calls are met by cash. Because

of this, it is common to assume the cost of collateral is the default-free short-term interest

rate. This suggests that swaps collateralized by cash may be more reasonably thought of
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as a portfolio of futures contracts.2 However, because it is common to rebate some of the

interest earned on swap collateral, the collateral cost on a swap contract is net of the rebate,

in contrast to a futures contract. Overall, this implies that swaps are a hybrid contract,

with features of both futures (MTM) and forwards (common strike or forward price).

We model default in the swap market via an exogenous random stopping time in con-

tinuous time. Following Duffie and Singleton (1997), we use a default-adjusted short rate

to model LIBOR rates, although we do not assume that default in the swap and LIBOR

markets is concurrent. If collateral is costless, we show that swaps are indeed priced by

discounting net swap payments at the risk-free rate as in He (2001) and Collin-Dufresne

and Solnik (2001). Costless collateral is clearly counterfactual, however, as it implies that it

is costless to eliminate credit risk! If collateral is costly, it enters as a negative convenience

yield on the swap, altering the discount rates.

What is the directional effect of MTM and net costly collateral on swap rates? We

argue that swap rates will increase. To see this, consider the swap from the perspective

of the fixed receiver and assume that net collateral costs are positively related to interest

rates. When floating rates fall, the swap will have a positive MTM value and the fixed

receiver receives collateral. The return on invested collateral is lower due to the decreased

interest rates. Conversely, when rates increase, the swap will have a negative MTM value

and the fixed receiver will have to post collateral, which is now more costly due to the

increased rates. Thus, intuitively, it follows that the fixed receiver will demand a higher
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swap rate to compensate for the acceleration of (opportunity) costs implied by MTM and

costly collateral. Formally in our model, we find that under standard assumptions on net

collateral costs, swap rates and swap spreads increase. These assumptions require that the

net cost of collateral is positively correlated with the short rate or the spread to LIBOR.

Empirically, we find support for the presence of net costly collateral using two indepen-

dent empirical approaches. First, we calibrate the CIR (1985) and Vasicek (1977) models

to the Eurodollar futures curve, which provides information about the LIBOR term struc-

ture. We then compute hypothetical swap curves assuming that swaps are priced as a

portfolio of futures (opportunity cost of collateral is the risk-free rate) and also as par

rates (the traditional approach). Over our sample, we find that market swap rates are

generally between the futures- and forwards-based swap rates, consistent with net costly

collateral. More revealing, the position of market swap rates relative to the futures- and

forwards-based swap rates varies substantially over time. In periods of market stress (1998

and 2000), market swap rates are almost identical to the portfolio of futures rates; in most

years they are closer to the portfolio of futures rates. This is consistent with positive net

collateral costs on average and high net costs in periods of market stress. The finding

that on average market swap rates are between the hypothetical portfolio of futures and

forwards curves is consistent with a significant positive correlation between net collateral

costs and short-term rates.

Second, we specify and estimate a dynamic term structure model using Treasury and
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swap data to illustrate the nature and impact of costly collateral. The default-free term

structure model has two factors, the short rate and a time-varying central tendency factor.

The third factor is the spread between LIBOR and Treasury rates and the final factor is

the net cost of collateral. Estimation results indicate that the implied net cost of collateral

is generally small, but exhibits significant and interesting time-variation. In particular,

net collateral costs increase around periods of market stress such as the hedge fund crises

in 1998, Y2K concerns in the fall of 1999, and the bursting of the dot-com bubble in the

spring of 2000. Moreover, the net cost of collateral factor is positively correlated with the

short-term default-free interest rate. This reinforces the results from the Eurodollar futures

market, which are consistent with net collateral costs being related the short-term default-

free interest rate. Finally, the effect of costly collateral can be large, increasing swap rates

at seven-years by more than 15 basis points.

The rest of the paper is organized as follows. Section I discusses the institutional

features of marking-to-market and collateralization. Section II provides our swap valuation

theory in both discrete and continuous time. Section III provides an empirical analysis

using Eurodollar features, and Section IV characterizes costly collateral in the context of

a formal term structure model. Section V concludes.

I. Institutional Features of Collateralization

In this section, we provide background on credit enhancements in swap contracts, based
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in large part on information from market surveys by ISDA, The International Swap and

Derivatives Association. For information regarding common market practices, see ISDA

(1998, 1999, 2000), Clarke (1999) or BIS (2001).

Collateralization and MTM have always been an important feature of the over-the-

counter (OTC) derivatives market (Litzenberger (1992)) and their use is nearly universal.

There is no precise date at which MTM and collateralization became prevalent, although

there is anecdotal historical evidence that systematic collateralization began in the late

1980s and by the early-to-mid 1990s was widespread.3 For example, Daigler and Steelman

(1988) note that “there is not always a marking-to-market of collateral and there does

not have to be any up-front margin” (p. 24), while Litzenberger (1992) and Brown and

Smith (1993) note that it is common for lower-rated credits to be forced to post margin

when entering into swaps with higher-rated counterparties. In 1994, in response to a

demand for market-wide standards, ISDA introduced the Credit Support Annex (CSA) to

the Master Swap Agreement, providing a legal standard for collateralization and facilitating

the transfer of swap positions among diverse counterparties.

It is a common misperception that MTM and collateralization became common only

after the Long-Term Capital Management (LTCM) hedge fund crisis in 1998. In fact,

Lowenstein (2000) notes that LTCM both collateralized and marked their positions to

market: “the banks did hold collateral, after all, and Long-Term generally settled up (in

cash) at the end of each trading day, collecting on winners and paying on losers” (p. 47).
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The main difference between LTCM and other counterparties is that LTCM refused to pay

haircuts or initial margins that would have limited their ability to leverage.4 In a review of

collateral management during the market stress of 1997 and 1998, ISDA (1999) finds that

“many institutions avoided or greatly reduced credit losses” through collateralization (p.

13). Moreover, the causes of any losses were not due to the inability of collateralization to

mitigate credit risk, but instead improper implementation due to inadequate haircuts (on

Russian bonds) or internal data errors (omitting certain transactions).

ISDA (2001, 2003) market surveys indicate that collateral use is widespread and increas-

ing. ISDA (2001) finds that more than 65% of “plain vanilla derivatives, especially interest

rate swaps” are collateralized according to the CSA. Discussions with market participants

indicate that nearly all swaps at major investment banks are collateralized. In addition,

nearly all collateral agreements are bilateral, in the sense that both counterparties post

collateral if either is out-of-the money (ISDA (2003)). This is different than under unilat-

eral agreements, whereby only the lower-rated counterparty posts collateral. In discussions

with market participants, bilateral agreements are the norm for interest rate swaps. Due

to the importance of collateralization, new institutions such as SWAPCLEAR have been

established to mitigate credit exposure through large-scale MTM and collateralization.

ISDA (2003) reports that most of the collateral posted is in the form of USD cash

(70%), US government securities (19%), or agency securities. Securities are more difficult

to manage than cash as the holder must account for the risk that the value of the securities
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held as collateral might fall below the value of the swap at the same time the payer of

collateral defaults. Thus, noncash collateral is typically subject to a haircut.

An important feature of bilateral collateralization is that interest on collateral is often

rebated (see paragraph 13, item H of ISDA (1994)), in which case a short-term interest rate

such as the T-bill rate is commonly paid to collateral payer. In contrast, mark-to-market

gains on futures are the property of the receiver and these gains accrue interest at the

short-term rate. The key to effective credit risk mitigation is frequent margin calls. ISDA’s

(2001) survey of market participants finds that at least 74% of survey respondents MTM

at least daily.

The posting of collateral, regardless of what or how it is posted, entails a cost and,

for the other counterparty, a benefit. The easiest way to see this is to first note that

the receiver of collateral reduces or eliminates any losses conditional on default. Second,

collateral receivers, when allowed, typically reuse or rehypothecate the collateral for other

purposes. Indeed, 89% of reusable collateral is rehypothecated (ISDA (2001)). Third, even

when interest is rebated, there is often a cost to posting collateral as the interest rebated is

typically less than the payer’s funding costs. As an example, suppose that cash is posted,

the cash is invested either at general collateral (GC) repo or Federal Funds rates, and T-bill

rates are refunded. Due to the well-known liquidity premium embedded in Treasuries (see

Grinblatt (2001) or Longstaff (2004)), T-bill rates are lower than Federal Funds rates or

GC repo rates. This difference can generate a net cost of collateral. In addition, most
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market participants borrow short term at rates higher than LIBOR, which generates an

additional cost. Finally, another source of time-varying collateral costs is the potential for

securities posted such as Treasuries to go on special, allowing the holder of special collateral

to borrow at below risk-free rates. Grinblatt (2001) argues that there can be significant

gains for the holders of Treasuries. Unfortunately, no information is available on interest

rate rebates in the swap market.

A key to the success of MTM and collateralization are amendments to the U.S. Bank-

ruptcy Code passed in the 1970s and 1980s that assign a special status to collateralized

derivatives transactions. Unlike other creditors,5 a derivative’s counterparty receives an ex-

emption from the Code’s automatic stay provision and the 90-day preference period. These

provisions prevent creditors from seizing the debtor’s assets once they declare bankruptcy

and may allow the court to recover any transfers from the debtor to creditors in the 90

days prior to bankruptcy. Due to this exemption, counterparties to derivatives transactions

can seize any margin or collateral even though the debtor has filed for bankruptcy, which

shields its assets from collection activities by other creditors. Thus, there is no concern

that the debtor will have legal recourse to recover the collateral or that the creditor will

have to participate in legal proceedings.6

II. Swap Valuation

In this section, we discuss swap valuation in the presence of MTM and costly collateral
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in both discrete and continuous time.

A. The Impact of MTM and Costly Collateral on Swaps: Discrete Time

To develop intuition, we first consider a simple discrete time setting to understand how

MTM and costly collateral impact swap valuation. We assume that there are two periods

with three dates, t = 0, 1, and 2. At time 1, the mark-to-market exposure of the swap

is collateralized with USD cash or Treasury securities. At the end of period 2, Party A

agrees to pay Party B a fixed rate and receive the floating rate. We assume it is costly

to post collateral, whereas holding collateral generates a benefit. The costs and benefits

are symmetric: The cost to one party equals the benefit to the other party. Let s0 denote

the fixed swap rate, {Vt}2t=0 be the market value of the swap contract at time t, y1 denote

the net cost (benefit) to posting (receiving) the cash collateral at time 1, and L2 denote

six-month LIBOR at time 2.

The mechanics of the swap and MTM procedure proceed as follows: at time 0, the

swap rate, s0, is set to make the market value of all future cash flows equal to zero, that

is, V0 = 0. At time 1, assume the market value of the seasoned swap changes, where for

simplicity, V1 > 0. Then Party B pays Party A $V1. At time 2, Party A receives a benefit

from holding the collateral in the amount of y1V1 and the parties net the collateral payment

with the exchange of fixed and floating payments, L2 − s0.

At initiation, the market value of the swap is zero and the collateralized swap rate solves

PV0 [(L2 − s0) + V1y1] = 0, where PV0 denotes the present value of the cash flows at time 0.
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We intentionally do not specify what interest rate (default-free or default-risky) is used to

discount the cash flows. The collateralized swap rate is different from the uncollateralized

swap rate, which solves 0 = PV0 [V2] = PV0 [L2 − s0], as the traditional approach ignores

collateralization and treats a swap as a portfolio of forwards.

This simple example provides the intuition for the more general results in the next

section and demonstrates the following implications of MTM and collateralization. First,

MTM and collateralization result in a stochastic dividend, V1y1, between contract initiation

and the final period. This implies that collateralized swaps are not simply portfolios of

forward contracts. The stochastic dividend result is reminiscent of Cox, Ingersoll, and Ross

(1981), who demonstrate that, due to MTM, futures contracts have stochastic dividends.

Second, MTM and collateralization alter the recovery characteristics in the case of default.

Suppose Party B defaults on Party A and Party A keeps the collateral posted, V1. The

maximum loss is now L2−s0+V1. The collateral reduces any potential losses, conditional on

default, which was clearly the original intent of requiring counterparties to post collateral,

and is precisely why ISDA (1999) finds that collateralization “greatly reduced credit losses”

in 1998.

B. The Impact of MTM and Costly Collateral on Swaps: Continuous Time

In continuous time, we follow the extant literature and assume a reduced-form model

for instantaneous LIBOR. The default risk-adjusted spot rate, Rt, is given by Rt = rt+ δt,

where rt is the default-free short rate and δt is the credit risk spread to instantaneous
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LIBOR. Discretely compounded LIBOR is given by L6 (T ) = 2
£
PR (T, 6)−1 − 1

¤
, where

PR (T, s) = EQ
T

h
exp

³
−
R T+s
T

Rtdt
´i

and Q is an equivalent martingale measure. The

LIBOR rate on the swap can be either LIBOR at the time of the exchange or its value

six months earlier (settled in arrears). Because the interpretation of results is cleaner with

contemporaneous settlement, we often assume this case in our examples; the differences

between the two rates are quite small.7

As a benchmark, we consider the swap valuation model in Duffie and Singleton (1997).

The authors assume counterparties are default-risky, their credit risk is equal to the av-

erage credit quality of the LIBOR panel, and there is no recovery conditional on default.

Together, these assumptions imply that swap payments are discounted at Rt. In the case

of a single period swap, the market fixed rate, sR0 , is given by

sR0 =
EQ
0

h
exp

³
−
R T
0
Rtdt

´
L6 (T )

i
PR (0, T )

= EQ
0 [L6 (T )] +

covQ0

h
exp

³
−
R T
0
Rtdt

´
, L6 (T )

i
PR (0, T )

, (1)

where EQ
0 [L6 (T )] is the futures rate on six-month LIBOR and L6 (T ) can be either six-

month LIBOR at time T or at time T − 6. This result displays the close relationship

between swap rates and futures rates. Since the covariance term is always negative, swap

rates in the traditional approach are less than the associated futures rates.8

To value the collateralized swap, we assume only that default by either counterparty

can be represented by a first jump time, τ , of a jump process with potentially stochastic

intensity. We do not require any further assumptions on the nature of default by the

counterparties. Conditional on default, we assume that there is no recovery in excess of
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the collateral posted. Our approach relaxes two of the assumptions in Duffie and Singleton

(1997), namely, (1) that default characteristics and occurrences in the LIBOR and swap

market are the same, and (2) that the counterparties are expected to remain at LIBOR

quality until a default time.

We let Vt denote the market value of the swap at time t, and we assume that the

counterparties are required to continuously post collateral in the MTM value of the swap,

that is, they post collateral to secure their future obligations. In practice, swaps are

typically marked at least daily with the option to demand additional collateral in the case

of large market moves. The contract is assumed to be fully collateralized, with the amount

of collateral posted at time t equal to the market value of the swap, Vt.We assume further

that there is a stochastic net cost of collateral, yt. We interpret the net cost of collateral as

an instantaneous interest rate accrual on the principal of Vt. While it is common to assume

that the cost of collateral when valuing futures contracts is the default-free short rate, rt,

due to the potential for rebating interest that we consider, we expect the collateral costs

to be less than rt. We also assume the cost is symmetric, which simplifies the analysis.9

Appendix A provides a more general treatment and the details of the valuation approach.

We focus on a number of special cases that correspond to different assumptions regarding

the net cost of collateral. The first case assumes that collateral is costless to post, that is,

yt = 0, and that the contract is fully collateralized. Since recovery is full conditional on
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default, the contract is default-free and the swap value is

Vt = EQ
t

h
e−

T
t rsdsΦT

i
, (2)

where ΦT = L6 (T ) − sr0 and V0 = 0. This formally justifies the valuation approach in He

(2001) and Collin-Dufresne and Solnik (2001): If the swap is collateralized in the MTM

value of the swap and it is costless to post collateral, then swaps are discounted at the

risk-free rate. Of course, this case is clearly counterfactual as it is not costless to post

collateral. The swap rate in this case, sr0, is given by

EQ
0

h
exp

³
−
R T
0
rsds

´
L6 (T )

i
P r (0, T )

= EQ
0 [L6 (T )] +

covQ0

h
exp

³
−
R T
0
rsds

´
, L6 (T )

i
P r (0, T )

, (3)

where P r is the price of a zero-coupon bond discounted at rt. The covariance between the

risk-free discount factor and LIBOR is typically negative, since Rt = rt + δt. This example

highlights the subtle role of MTM and costly collateral: ignoring credit risk, even though

the contract is marked-to-market, it has no impact on the swap rates because collateral is

costless.

Next, consider the case with net costly collateral. As we show in Appendix A, the

collateralized swap value is

Vt = EQ
t

∙
exp

µ
−
Z T

t

rsds

¶
ΦT+

Z T

t

exp

µ
−
Z s

t

rudu

¶
ysVsds

¸
, (4)

which is the familiar stochastic dividend yield formula, implying that

Vt = EQ
t

∙
exp

µ
−
Z T

t

(rs − ys) ds

¶
ΦT

¸
. (5)
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Note that MTM and costly collateral together impact swap rates. They do not have an

independent impact because MTM is a procedure and yt measures the costs that accrue due

to the procedure; thus, the two are inexorably linked. This will have important implications

for our empirical work later on.

At initiation, V0 = 0 and the collateralized swap rate, s
r−y
0 , is

EQ
0

h
exp

³
−
R T
0
(rs − ys) ds

´
L6 (T )

i
P r−y (0, T )

= EQ
0 [L6 (T )]+

covQ0

h
exp

³
−
R T
0
(rs − ys) ds

´
, L6 (T )

i
P r−y (0, T )

.

(6)

As in the case of costless collateral, swap contracts are again free of counterparty default

risk, however, costly collateral now alters the discount rate. The impact of net costly

collateral will be determined by the expected covariance between rt − yt and L6 (T ). The

potential impact can be significant. To see this, suppose yt = rt, which implies that swaps

are priced as a portfolio of futures contracts on six-month LIBOR. The difference between

futures and forwards is significant and can be large (see Sundaresan (1991b), Grinblatt and

Jegadeesh (1996), and Gupta and Subrahmanyam (2000)).

It is important to note the subtle differences between a futures contract and a collater-

alized swap. First, futures prices are reset continuously and as a consequence the value of

the contract is zero. With a collateralized swap, in contrast, the swap rate remains fixed

until termination of the contract (either by default or expiration). Second, with futures,

the MTM gains earn rt in a margin account, and thus yt = rt. However, as we discuss in

Section II, since the net benefit of swap collateral is generally less than rt, collateralized
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swap rates are different from futures rates. Thus, swaps are a hybrid contract, with features

of both futures (MTM) and forwards (constant swap rate).

Is it possible to generically order the swap rates under the various assumptions regarding

MTM and collateralization? There are four rates of interest: sR0 , s
r
0, s

r−y
0 , and the futures

rates. From the swap valuation equations, we see that there is a close relationship between

swap rates and futures rates, and that the covariance of the discount factors with the

LIBOR rates determines the differences.

Since covQ0
h
exp

³
−
R T
0
Rsds

´
, L6 (T )

i
and covQ0

h
exp

³
−
R T
0
rsds

´
, L6 (T )

i
are negative,

both sr0 and sR0 are less than EQ
0 [L6 (T )]. If yt is deterministic, then sr−y0 = sr0. This result

is related to Cox, Ingersoll, and Ross (1981), who show that futures and forwards prices

are equal if interest rates are nonstochastic. Consider next the difference between the

default-free swap rate, sr0, and the default-risky swap rate, s
R
0 :

sr0 − sR0 =
covQ0

h
exp

³
−
R T
0
rsds

´
, L6 (T )

i
P r (0, T )

−
covQ0

h
exp

³
−
R T
0
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´
, L6 (T )

i
PR (0, T )

. (7)

Since Rt and rt are positively correlated,

covQ0

h
e−

T
0 Rsds, L6 (T )

i
< covQ0

h
e−

T
0 rsds, L6 (T )

i
, (8)

and since PR < P r, this implies that sr0 > sR0 . This result is somewhat counterintuitive as

it implies that eliminating counterparty credit risk actually increases swap rates. Results

in the extant literature indicate that while sr0 > sR0 , the difference is rather small. For

example, using the model and parameter estimates in Collin-Dufresne and Solnik (2001),
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the difference for ten-year swaps is about two to five basis points, depending on the state

variables. In this setting, credit risk has such a small impact due to netting (as the principal

is netted) and the fact that Duffie and Singleton (1997) assume that counterparty credit

risk is equal to the credit risk embedded in LIBOR (which is extremely small).

If collateral is positively correlated with the default-free short rate, rt, or the spread to

LIBOR, δt, then (see Appendix A)

covQ0

∙
exp

µ
−
Z T

0

rsds

¶
, L6 (T )

¸
< covQ0

∙
exp

µ
−
Z T

0

(rs − ys) ds

¶
, L6 (T )

¸
(9)

and sr−y0 > sr0. This shows that MTM and costly collateral further increase swap rates. In

general, since we expect the net cost of collateral embedded in swap rates to be less than

rt, we have that E
Q
0 [L6 (T )] > sr−y0 > sr0 > sR0 . In the next two sections, we investigate the

magnitudes of the differences using futures data (Section IV) and a formal term structure

model (Section V).

III. Do MTM and Costly Collateral Matter?

While MTM and collateralization are clearly contractual features of interest rate swaps,

it is important to investigate whether they matter, that is, whether their presence and

associated costs and benefits impact market swap rates in a meaningful manner. In this

section, we use the information embedded in Eurodollar futures and market swap rates to

examine this question.
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As we argue in the previous sections, MTM and time-varying net costly collateral alter

the discount factors and generally increase the swap rates relative to their values using

the traditional approach. An obvious way to examine the impact of MTM and net costly

collateral would be to construct hypothetical swap rates from refreshed LIBOR bond prices,

PR, using the par representation and to compare them to market swap rates. If market

swap rates are above the hypothetical par rates, then collateral matters, that is, swaps are

not discounted at Rt. Unfortunately, refreshed LIBOR bond prices are typically obtained

from swap rates assuming the par representation holds, rendering this exercise circular.

To investigate the validity of the portfolio of forwards approach, we need information

about the LIBOR zero-coupon term structure. The best source of this information is the

futures contract on three-month LIBOR, the Eurodollar futures. Using the approach of

the previous section, the futures rate at time t of a contract that expires at time Tn > t is

FUTt,Tn = EQ
t [L3 (Tn)], where L3 (Tn) is three-month LIBOR. Eurodollar futures provide a

“clean” piecewise view of expected LIBOR rates, and, unlike swap rates, do not require po-

tentially controversial assumptions regarding the cost of collateral and counterparty credit

risk. The Eurodollar futures market is most liquid derivatives market in the world in terms

of notional dollar volume of daily transactions. The only disadvantage of Eurodollar futures

is that they do not provide zero-coupon bond prices directly . Thus, we must estimate a

term structure model to compute refreshed LIBOR bond prices. Unfortunately, there is

no way around this issue. For robustness, we use different term structure models and are
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careful to compare our results to those in the literature.

We obtain daily closing prices for the Eurodollar futures contract from the Chicago

Mercantile Exchange for the period January 1994 though December 2002. We discard

serial month contracts, and use Wednesday-close prices of quarterly contracts for the first

seven years. If Wednesday is not available, we use Thursday rates. We do not use data

past seven years to avoid potential liquidity concerns on the long end of the futures curve,

although, as we mention below, none of our results are sensitive to the inclusion or exclusion

of the long end of the futures curve.

We use the Vasicek (1977) and Cox, Ingersoll, and Ross (1985) models and the Hull

and White (1990) calibration procedure to compute convexity adjustments. It is common

to use single-factor models to compute convexity adjustments for two reasons. First, they

are parsimonious, with few parameters to estimate relative to multifactor models. Sec-

ond, provided the models are reestimated frequently, they provide an accurate fit to the

futures curve as recalibrated parameters (e.g., the long-run mean) proxy for state variables

in popular multifactor models (e.g., time-varying central tendency) without introducing

numerous parameters. In a comparison, the “A1 (3)” model considered in Collin-Dufresne,

Goldstein, and Jones (2004) has 26 parameters.

For every week in our sample, we compute the parameters that provide the closest fit

of the model to the observed data, that is,

bΘt = argmin
28X
j=1

°°°Futt,Tj (Θt)− FutMar
t,Tj

°°° , (10)
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where Futt,Tj (Θt) is the model-implied prices at time t of a futures contract expiring at

time Tj, FutMar
t,Tj

is the market-observed futures rates, and k·k is a distance measure. We use

both absolute deviations and squared deviations; the results reported below use squared

deviations. All of the models considered closely fit the futures curve. To ensure smoothness

of the curves, we constrain the parameters from taking extreme values.

With the calibrated models, we compute hypothetical swap rates assuming swaps are

priced as a portfolio of forwards or futures. In the latter case, the portfolio of futures swap

rate, sFUT0,T , on an T -year swap on six-month LIBOR with semiannual payments settled

in-arrears solves

0 = EQ
0

hX2T

j=1

¡
L6 ((j − 1) /2)− sFUT0,T

¢i
, (11)

which implies that

sFUT0,T =
1

2T

X2T

j=1
EQ
0 [L6 ((j − 1) /2)] . (12)

Note that we take into account the fact that the dates on which swap payments are ex-

changed are six months later than the date on which the floating index is determined. We

report the difference between the market swap rates, sMar
0,T , and the hypothetical forwards-

and futures-based swap rates, sFor0,T −sMar
0,T and sFut0,T −sMar

0,T . If swaps are priced as par rates,

sFor0,T − sMar
0,T should be zero.

[Table I here]
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We report results for five- and seven-year maturities for the two models.10 Tables I

and II provide calibration summary statistics and Figures 1 and 2 provide time series plots

of sFut0,T − sMar
0,T and sFor0,T − sMar

0,T for the five- and seven-year maturities for both models.

Throughout, we focus on results that are robust across maturities and models.

The results indicate that swaps are not always and, in fact, rarely priced as par rates.

For example, focusing first on the full sample, market seven-year swap rates are about 13

(15) basis points above the portfolio of forwards swap rates for the Vasicek (CIR) model

and about eight (ten) basis points below the futures rates. The same is true of the five-year

swap rates, although on average the five-year swap rates are closer to the futures-based

rates. In light of our theoretical arguments above, this evidence is consistent with swaps

being discounted at a rate lower than LIBOR, and, in particular, MTM and time-varying

net costly collateral being significantly, positively related to short interest rates.

[Table II here]

Next, note that the average position of the market swap rates vis-à-vis the portfolio of

forwards and futures rates changes substantially over time. Based on year-by-year results,

for example, in 1998 and 2000 the market swap rates are almost the same as the hypothetical

portfolio of futures for both models and for both maturities. In 1998 there was significant

market stress in the fixed income market due to the collapse of LTCM and, in 2000, interest

rates were relatively high and increasing, with market stress due to the bursting of the
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dot-com “bubble.” In contrast to these years, market swap rates were much closer to the

portfolio of forwards rates for both models and both maturities in 2002, which was a year

with extremely low interest rates and generally stable market conditions.

The results in these cases are intuitively consistent with the time-varying costly net

collateral explanation: In periods of market stress and/or high interest rates, collateral is

more costly and swap rates move closer to, and could even exceed, the portfolio of futures

rates. In most other years, market swap rates are closer to the portfolio of futures rates,

although not as close as in 1998 and 2000 (for both models and both maturities), and there

is some minor variation across models and maturities as we discuss below.

[Figures 1 and 2 here]

Figures 1 and 2 depict the very strong time variation in the relative position of market

swap rates vis-à-vis the portfolio of futures- and forwards-based swap rates. Graphically,

it is apparent that market swap rates were very close to the futures-based swap rates,

especially during the Mexican currency crisis in late 1994 to early 1995, the Asian currency

crises in 1997, the fall of 1998, and the fall of 2000. Together, this suggests the importance

of time-varying net collateral costs.

The figures also clearly illustrate the strong impact of September 11, 2001 on the results

for 2001, which results in greater variation across maturities and models in this year than in

others. This is not surprising for two reasons. First, 2001 is an interesting year because the
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yield curve was flat to slightly inverted in the early portion of the year and then extremely

steeply sloped (more than 3%) post-September 11th. The convexity adjustments from the

two models differ in steeply sloped interest rate environments due to the state dependence

in the volatility coefficient in the CIR model. Second, the fixed income markets were in

general disarray after September 11 as there were major microstructure problems with

trades not clearing and the Treasury intervening with a rare “snap” or same-day auction in

October. Although clearly a period of market stress, short interest rates declined rapidly

in 2001 as the Federal Reserve injected liquidity to stabilize the markets; this increase in

liquidity would reduce the net cost of collateral and decrease market swap rates.

A few additional issues require discussion. First, there are a couple of periods during

which market swap rates were slightly above the portfolio of futures rates, notably, in

1995, 1998, and 2000. For example, in 1995, the five-year swap rates were slightly above

the futures rates, but the seven-year rates were below but still closer to the futures rates.

It is important to note that in such instances (a) the magnitude is quite small, at only

a few basis points, (b) the effect is short lived, and (c) the effect is concentrated at the

five-year maturity. Our Gaussian model formally allows for the swap rates to exceed the

futures rates, if the expectations of net collateral costs are greater than the risk-free rate.

We find this unlikely, especially given the fact that the swap rates are below the portfolio

of futures rates for the other maturities. There are also brief periods, for example, in the

fall of 2001, when the slope of the yield curve was at record levels and swap rates were
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below the portfolio of forwards rates.

We cannot expect our simple models to capture every movement in futures and swap

rates, and the periods above are likely due to model misspecification, market segmentation,

or temporary mispricings. The latter two explanations are quite plausible given that the

swap rates were above the portfolio of futures for a relatively short time and only by a few

basis points. As Grinblatt and Jegadeesh (1996) note, these mispricings can exist as it is

not possible to directly arbitrage the futures and forward/swap market precisely because

the futures and forwards generally have different expiration dates. Grinblatt and Jegadeesh

(1996) also find that mispricing occasionally occurs and discuss the limits of arbitrage in

the context of the Eurodollar futures market. Second, it is likely that collateral use and

the liquidity of longer-dated Eurodollar futures increased over the first part of the sample,

especially in 1994 and 1995, which could impact the results in the first two years of our

sample.

Third, the convexity adjustments we report are generated from the Vasicek and CIR

models. Since different models generate different convexity adjustments, it is important

to ensure our convexity adjustments are reasonable. Our main reference in this regard

is Gupta and Subrahmanyam (2000), who quantify the convexity adjustments in swaps.

They compute convexity adjustments from a number of different models and, in conclusion,

argue that “The results using any of the models suggest that the convexity adjustment can

be very large for long-dated contracts. For a ten-year futures contract, our calculations
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suggest that this adjustment is on the order of 80 − 100 basis points, which translates

into a convexity adjustment of about 35 − 40 basis points for a ten-year swap. Even a

conservative estimate of the bias for a five-year USD swap is about 12− 16 basis points (p.

269).”

Our results are consistent with their results. As a comparison, for the Vasicek model

for five-year and ten-year swaps, our total convexity adjustment is about 14 (12.3+1.4) and

31 (14.1+16.9) basis points over our whole sample, which is at the lower end of the range

that Gupta and Subrahmanyam (2000) considered reasonable. Also, and again consistent

with Gupta and Subrahmanyam (2000), we find that the CIR adjustments are generally

larger than the Vasicek adjustments. The differences between the models generally occur in

extreme periods, for example, when the term structure slope is very high. One alternative

approach would be to subtract, for example, 12 to 16 basis points from the fitted five-year

futures rates to get the portfolio of forwards rates. As is clear from Figures 1 and 2, market

swap rates would again be closer to the futures rate and the time-variation is similar. As

a final check, we obtain convexity adjustments from a proprietary model used at a major

investment bank for 2002 and find that these adjustments are in the upper end of the

range mentioned by Gupta and Subrahmanyam (2000). This is further evidence that our

convexity adjustments are reasonable.

To conclude, the evidence indicates that swaps are priced not as par rates, but instead,

swaps are almost always significantly greater than par rates. Moreover, the relative position
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changes substantially over time, consistent with our time-varying collateral cost argument.

Are there alternative explanations that would generate this effect? The only alternative

that we are aware of is the liquidity explanation of Grinblatt (2001), which relies on the

convenience yield generated by holding Treasury securities. The convenience yield is gen-

erated by the repo specialness of on-the-run Treasuries. Grinblatt (2001) and Duffie and

Singleton (1997) incorporate this liquidity factor and argue that it results in an adjusted

discount rate for swap payments of eRt = rt − lt + δt, where lt is the liquidity cost. Since

eRt < Rt, this would be consistent with market swap rates lying above those implied by the

par representation. However, our results indicate that swaps are often priced close to and

statistically indistinguishable from a portfolio of futures. In this case, the liquidity-based

argument would imply that eRt = 0 or that lt = rt + δt. This is implausibly high for a

liquidity proxy. For example, consider a five-year swap. The benchmark five-year Treasury

note on which the convenience yield would accrue was auctioned monthly in the 1990s.

Thus, at most, the on-the-run specialness would accrue for a maximum of one month and

therefore is likely to be a minor component of swap rates.

IV. Characterizing the Net Cost of Collateral

Given the results in the previous section and our modeling framework from Section

II, the next issue is to characterize the net cost of collateral. Evidence from the previous

section indicates that swaps are priced between a portfolio of forwards and futures, and

28



the relative position varies over time. In our context, that means that yt is related to the

short-term default-free interest rate and the impact is time-varying.

The purpose of this section is to give an illustrative feel for the time series properties

of the net cost of collateral process in the context of a term structure model. A term

structure model allows us to impose a model of net costly collateral on the data and

therefore to quantify its impact on swap rates and provide estimates of the state variable,

yt. With this state variable, we can examine, for example, whether the net cost of collateral

implied from the model increases in periods of crisis or in high interest rate environments

as one’s intuition might suggest. In the context of the term structure model, we can also

quantify the impact of yt on swap rates. It is important to document that time-varying net

collateral costs are quantitatively important. He (2001) and Liu, Longstaff, and Mandel

(2001) provide more general models for explaining swap spreads.

We follow the literature and use a Gaussian term structure model, which we describe

in detail in Appendix B. To address costly collateral, we must model both the default-free

term structure and the LIBOR/swap term structure. To model the short rate, we use the

two-factor model from Collin-Dufresne and Solnik (2001), where the state variables are the

default-free short rate, rt, and the long-run central tendency factor, θt, which captures the

slope of the default-free yield curve. In addition to rt and θt, the swap curve is influenced by

δt and yt. Since costly collateral only matters in so far as it is correlated with other term

structure variables, we allow for general interactions between δt, yt, and the other term
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structure variables. Specifically, we are interested in interactions between net collateral

costs and the risk-free rate, which we measure by the parameter κy,r.

Our goal in using this model is to estimate the impact of net costly collateral in a

formal setting and to examine the correlation of costly collateral with other term structure

variables, specifically, δt and rt. Given the large number of state variables, we try to

economize on the parameters, in part because the most general and flexible specifications

have a very large number of parameters. For example, Collin-Dufresne, Goldstein, and

Jones (2004) estimate a flexible three-factor affine model (A1 (3)) that has 26 parameters,

about half of which are insignificant. Thus, we choose the simplest default-free model and

a parsimonious specification for δt and yt.

It is important to recognize that all statements are model dependent and, as Dai and

Singleton (2000) note, different models and parameterizations can be observationally equiv-

alent (in terms of the ability to price swaps), although the factors will be rotated.11 In

general, this suggests that we should take care in interpreting δt and yt as their levels and

scales can be arbitrarily altered by rotation in different model specifications. However, two

points should minimize these concerns. First, in the case of δt, we constrain the long-run

mean of δt to equal the in-sample average of the three-month LIBOR-Treasury (TED)

spread, which ensures that δt can be safely identified as the spread between LIBOR and

Treasuries. Second, our two-stage estimation procedure identifies rt and θt exclusively from

Treasury prices, which ensures that yt is identified solely from the swap curve and that yt
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does not alter the estimates of rt or θt.

We note that there could be other factors not in our model which are also important

for understanding the impact and character of net collateral costs. For example, Duffie

and Singleton (1997) and Grinblatt (2001) argue that repo specialness of Treasuries may

be important for pricing both Treasuries and swaps. This repo specialness, which closely

related to the on-the-run/off-the-run Treasury spreads, is important for understanding net

collateral costs as Treasuries are commonly posted as collateral. Similarly, net collateral

costs should increase in periods of market stress and thus a model incorporating a factor

such as flight-to-quality would have interesting implications for net collateral costs. Since

collateral only matters in so far as it is correlated with other systematic factors, our results

will be limited to identifying the systematic relationship between collateral and rt, δt, and

θt.

[Table II here]

We estimate the model using a two-stage maximum likelihood procedure. Table III

provides summary statistics of the data we use; and details of the estimation approach

are in Appendix B. Table IV provides maximum likelihood estimates, which are largely

consistent with prior studies. For example, κr, σr, κr, λr, ρr,θ, κδ, and σδ are all qualitatively

similar to Collin-Dufresne and Solnik (2001), although there are slight differences due

to different specifications and data periods. Regarding the off-diagonal terms, we are

primarily interested in κy,r, which is positive and strongly significant and captures the
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positive relationship between net collateral costs and the default-free short-term rate. This

is consistent with the results in the previous section that document that swaps are generally

priced above a hypothetical portfolio of forwards, which would occur if net collateral costs

were positively related to rt. Table V summarizes the pricing errors. The pricing errors

are similar to, but the average RMSEs are slightly smaller than, those in Collin-Dufresne

and Solnik (2001), which is not a surprise as we have an additional factor.

[Tables III, IV and V here]

The implied states are very highly correlated with their analogs in the Treasury and

LIBOR/swap data. For example, the in-sample means for rt and δt are nearly identical to

sample means of the T-bill and TED spread. The correlation between the δt and the TED

spread is almost 98%. The correlation between the δt and rt is 32.2%. While standard

structural models would imply that this spread should be negative, our positive correlation

is not a surprise as the TED spread and the three-month T-bill rate were strongly positively

correlated over the same time period. The in-sample mean of yt is 69 basis points, which

is plausible for a net cost of collateral when interest is rebated. The correlation between

yt and rt is 38.9%, which, along with the positive and significant κy,r, points to the close

relationship between the net cost of collateral and the default-free short-term interest rate.

This is broadly consistent with the findings in the previous section.

[Figure 3 here]
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Figure 3 provides times series of the implied states. The state variables rt, θt, and

δt, are as expected, but the net cost of collateral has an interesting time-variation. Net

collateral costs increase dramatically around periods of market stress such as the hedge

fund crises in 1998, Y2K concerns in fall 1999, and the bursting of the dot-com bubble

in spring of 2000. This also is consistent with economic intuition: The cost of posting

collateral increases dramatically during periods of market stress. Further support for this

hypothesis comes from summary statistics of the TED and ten-year swap spread. The TED

spread is, on average, 35 basis points over the sample period and the ten-year swap spread

(ten-year swap rate minus ten-year Treasury rate) is 60 basis points. In addition to the

large magnitude of the swap spread relative to the TED spread, the correlation between the

ten-year swap spread and the TED spread is 39%, which is a smaller magnitude than one

would expect from standard models such as those in He (2001). Accordingly, researchers

have typically turned to additional factors such as liquidity or a large credit or liquidity

risk premium (Liu, Longstaff, and Mandel (2001)). In our model, the additional factor is

the net cost of collateral, which is positively related to the short-term interest rates. This

feature squares nicely with the high observed correlation (41%) between the ten-year swap

spread and the three-month Treasury rate.

[Figure 4 here]

Finally, our model implies that net swap payments should be discounted at rt − yt

instead of rt + δt. We now examine the quantitative implications of our model for swap
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curves. The top panel of Figure 4 plots the swap curves discounted at rt, Rt, and rt−yt and

the bottom panel plots the differences between the par curve (discounted at Rt) and the

two credit-adjusted curves. Each of these curves is computed assuming the state variables

are equal to their in-sample means.

Note first the small difference between the par curve and the curve discounted at rt. He

(2001, p. 15) notes a similar result. The small magnitude is in part model driven as our

model (and that in He (2001)) assumes that the shocks between rt and δt are independent

and there is at best a modest, model-implied relationship between rt and δt (as we note in

the previous paragraph). Alternatively, using the parameters in Collin-Dufresne and Solnik

(2001), the difference between the par curve and the curve discounted at rt is in the range

of three basis points at the ten-year maturity (with states evaluated at in-sample means).

This is also consistent with prior findings (Sun, Sundaresan, and Wang (1993) and Duffie

and Huang (1996)) who found that the credit risk component of swaps is rather small, on

the order of a couple of basis points.

The main results indicate that the quantitative impact of collateral on swap rates is

significant. To compare our results here with those in Section IV, note that by inspection

Figure 4 implies that the difference between the seven-year par (portfolio of forwards) and

seven-year collateralized rates is about 15 to 20 basis points. Recall that Section IV used

Eurodollar futures data up to seven years and the results indicated that market rates were

13 (15) basis points higher than hypothetical forward rates in the Vasicek (CIR) model at
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the seven-year maturity. These results are remarkably close, despite the fact that in this

section we do not use futures data. Taken together, our results point to a strong relationship

between net collateral costs and rt. Overall, the two experiments provide qualitatively and

quantitatively similar conclusions.

A few caveats are in order. First, given the difficulties in identifying all of the parameters

in dynamic term structure models, we use the longest possible time series, from 1990 to

2002. Unlike the results in the previous section that are based on year-by-year calculations,

we assume here that the parameters are constant throughout this period and that collateral

is priced throughout. As we mention in Section I, it is likely that the impact of collateral

changed over this period of time, especially during the early portion, and thus should be

taken into account when interpreting our results. Second, our results, like virtually all

in fixed income, are model- and specification-dependent. Other variables (e.g., flight-to-

quality), time-varying parameters, or more complicated parameterizations could impact

the results.

V. Conclusion

In this paper, we examine theoretical and empirical implications of MTM and collat-

eralization on swap rates. Theoretically, we show that collateralized swaps are free of

counterparty default risk and that costly collateral enters as a convenience yield, altering

the discounting of net swap payments. Empirically, we find broadly consistent evidence
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from two independent sources of information, the Eurodollar futures market and the Trea-

sury/LIBOR/swap term structure, which points to the importance of costly collateral.

Often, swaps are priced close to portfolios of futures rather than portfolios of forwards

discounted at the instantaneous LIBOR rates.

Two related issues require further analysis. First and foremost, net cost of collateral,

liquidity, and default are clearly related. For example, while we follow He (2001) and Collin-

Dufresne and Solnik (2001) and use Treasuries for the default-free curve, it might be useful

to use alternatives such as the repo rates or Federal Funds rates, that may more accurately

capture the default-free rate. This would allow us to separately model the liquidity and

flight-to-quality components of Treasuries and the default component in LIBOR. Given

these components, we could analyze the relative contributions and relationships among

liquidity, default and costly collateral. Second, it would be particularly interesting to

understand the theoretical determinants of costly collateral. If there are market participants

with differing credit profiles, whose collateral costs matter? Santos and Scheinkman (2001)

develop a model that could be extended to handle this issue. Third, in this paper we

characterize the impact of collateral on swap rates, but nearly all OTC derivatives are

collateralized and marked-to-market. Like swaps, it is common to discount OTC derivatives

using the LIBOR curve. It would be interesting to analyze the impact of net costly collateral

on these other derivative contracts.

36



Appendix A: Pricing Collateralized Swaps in Continuous Time

This appendix provides the details of our continuous time swap valuation approach with

MTM and net costly collateral. The general valuation approach uses the intuition of the

discrete time model combined with a formal treatment of default. If τ is a random time

indicating default, we define 1[τ>T ] = 1 if there is no default by time T (see Bielecki and

Rutkowski (2002) for formal definitions). We do not require any further assumptions on

the nature of default by the counterparties.

We assume Ct is posted as collateral and that yt is the interest rate accrual on this

collateral. The value, Vt, of a collateralized swap at time t < τ is then given by

Vt = EQ
t

∙
exp

µ
−
Z T

t

rsds

¶
ΦT1[τ>T ] + exp

µ
−
Z τ

t

rsds

¶
Cτ1[τ≤T ]

¸
+ (A1)

EQ
t

∙
1[τ>T ]

Z T

t

exp
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−
Z s

t

rudu

¶
ysCsds+ 1[τ≤T ]

Z τ

t
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µ
−
Z s

t

rudu

¶
ysCsds

¸
.

The first term, exp
³
−
R T
t
rsds

´
ΦT1[τ>T ], is the usual discounted net swap payment as-

suming that there is no default prior to expiration. The second term is the discounted

value of the collateral that is posted and recovered at the time of default. We assume

that there is no recovery in excess of collateral, although it is easy to incorporate various

assumptions regarding recovery (e.g., Duffie and Singleton (1999)). The third term is the

discounted value of the accrued interest on the collateral, assuming no default. At each

point in time, there is a net benefit of ysCs, which accrues to the holder of the collateral

and is appropriately discounted back. The final term is the discounted value of the net
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interest rate accruals on the collateral, conditional on a default.

There are a number of special cases of interest. First, consider the case in which it is

costless to post and maintain collateral, that is, ys = 0. Here, the market value of a swap

struck at sr0, Vt, is given by the solution of

Vt = EQ
t

∙
exp

µ
−
Z T

t

rsds

¶
ΦT1[τ>T ] + exp

µ
−
Z τ

t

rsds

¶
Cτ1[τ≤T ]

¸
, (A2)

where ΦT = L6 (T )− sr0 and V0 = 0. The first term in the expectation is the present value

of the cash flows conditional on no default and the second component is the present value

of the amount received conditional on a default occurring at time τ ≤ T , Cτ . We assume

that the amount posted in collateral is equal to the MTM value of the swap, Ct = Vt, which

implies the swap price process solves (for t < τ)

Vt = EQ
t

∙
exp

µ
−
Z T

t

rsds

¶
ΦT1[τ>T ] + exp

µ
−
Z τ

t

rsds

¶
Vτ1[τ≤T ]

¸
. (A3)

Since recovery is full conditional on default, a collateralized swap contract is simply a

contract with a random termination time. The law of iterated expectations implies that

Vt = EQ
t

h
e−

T
t rsdsΦT

i
, (A4)

which is the same value as a claim paying ΦT with no default (as recovery is full).

Next, consider the case with time-varying net costly collateral. Under full collateraliza-

tion, the collateralized swap value is

Vt = EQ
t

∙
exp

µ
−
Z T

t

rsds

¶
ΦT+

Z T

t

exp

µ
−
Z s

t
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¸
, (A5)
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which is the familiar stochastic dividend yield formula, implying that

Vt = EQ
t

∙
exp

µ
−
Z T

t

(rs − ys) ds

¶
ΦT

¸
. (A6)

This is similar to the futures valuation approach in Cox, Ingersoll, and Ross (1981). At

initiation, V0 = 0 and the collateralized swap rate, s
r−y
0 , is

EQ
0

h
exp

³R T
0
(ys − rs) ds

´
L6 (T )

i
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´
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(A7)

Finally, at the end of Section II.B, we provide an ordering of swap rates. To sign the

difference between sr0 and sr−y0 , we note that if

covQ0
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¶
, L6 (T )

¸
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¸
, (A8)

then EQ
0 [L6 (T )] > sr−y0 > sr0 > sR0 . To understand this condition, consider a first-order

approximation to the exponential ex = 1 + x. This implies that the required condition is

covQ0

∙
1−

Z T

0

rsds, L6 (T )

¸
< covQ0
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= covQ0

∙
1−

Z T

0

rsds, L6 (T )

¸
+ covQ0

∙Z T

0

ysds, L6 (T )

¸
.

Thus, if covQ0
hR T
0
ysds, L6 (T )

i
> 0, swap rates in the presence of costly collateral are higher

than those assuming no default (or costless collateral). This condition holds if, for example,

net collateral costs are positively correlated to either the default-free short rate, rt, or the

instantaneous TED spread, δt.
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Appendix B: Term Structure Model Specification

This appendix provides the details of our dynamic term structure model. To evaluate

the role of costly collateral, we need a model that characterizes the risk-free term structure

and the LIBOR and swap market. We use a multifactor Vasicek (1977) style model with

conditionally Gaussian factors, which is common for modeling swap rates (see, for example,

Grinblatt (2001), Collin-Dufresne and Solnik (2001), He (2001), Liu, Longstaff, and Mandel

(2001). Our goal in building a model is to have the simplest possible specification that

allows us to characterize costly collateral.

The default-free term structure is given by the two-factor Gaussian model

drt = kr (θt − rr) dt+ σrdW
r
t (P) (B1)

dθt = kθ (θθ − θt) dt+ σθdW
θ
t (P) ,

where θt is the central tendency factor. We assume a constant market price of interest

rate risk, λr, so that the drift of rt, under an equivalent martingale measure Q, is given

by [kr (θt − rr)− λr]. We originally included a constant market price of risk for θt, but

the estimate is insignificant (as in Collin-Dufresne and Solnik (2001)), and thus we set

this coefficient to zero. We assume the Brownian motions are correlated with constant

correlation ρr,θ. To simplify estimation and identification, we follow Duffie, Pedersen, and

Singleton (2002) and constrain θθ to be equal to the sample average of the three-month

T-bill rate.
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Since time-varying net collateral costs only matter if they are correlated with other term

structure variables, we assume that yt and δt are correlated in levels and their evolution

depends on the level of the short-rate as shown below:

dδt = [κδ (θδ − δt) + κr,δ(rt − θθ) + κδ,y (yt − θy)− λδ] dt+ σδdW
δ
t (Q) (B2)

dyt = [κy (θy − yt) + κy,r(rt − θθ) + κy,θ(θt − θθ)− λy] dt+ σydW
y
t (Q) .

Their dynamics under P are the same without the constant risk premium parameters. We

de-mean the “off-diagonal” terms, which aids in identification and ensures that θy and θδ

are interpreted as long-run means. We originally included an off-diagonal term, κy,δ, but

it is not significant and we set this coefficient to zero. As it is not possible to separately

identify correlations and off-diagonal terms, we assume that W δ
t and W y

t are independent.

To estimate the model, we follow Duffie, Pedersen, and Singleton (2002) and use a

two-stage maximum likelihood procedure. In the first stage, we estimate the two-factor

default-free term structure using Treasuries. The second stage uses LIBOR and swap rates

to estimate the parameters indexing δt and yt. We fit the three-month and seven-year

Treasury rates without error and the three-, five-, and ten-year rates with error. In using

Treasuries for the default-free curve, we follow Collin-Dufresne and Solnik (2001) and Liu,

Longstaff, and Mandel (2001) and use Treasury rates to extract information about the

default-free term structure. One could alternatively use either term Federal Funds or

general collateral repo rates, although these series are short dated and seriously polluted

by microstructure noise (e.g., settlement Wednesdays).12
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In the second stage, we take the first-stage parameters and state variables as given

and estimate a two-factor model for the LIBOR/swap market. We fit the three-month

LIBOR rate and seven-year swap rates without error and the three-, five-, and ten-year

rates with error. The two-step procedure sacrifices asymptotic statistical efficiency. The

informational loss is measured by the information contained in the LIBOR/swap curve

regarding the default-free parameter estimates and is likely to be small.

42



References

Bank for International Settlements, 2001, Collateral in wholesale financial markets: Recent

trends, risk management and market dynamics, Prepared for the Committee on the Global

Financial System.

Bielecki, Tomasz, and Marek Rutkowski, 2002, Credit Risk: Modeling, Valuation and Hedg-

ing, (Springer, New York).

Brown, Keith, and Donald Smith, 1993, Default risk and innovations in the design of

interest rate swaps, Financial Management 22, 94-105.

Brown, Keith, and Donald Smith, 1995, Interest Rate and Currency Swaps: A Tutorial,

The Research Foundation of the Institute of Chartered Financial Analysts, (Charlottesville,

Virginia).

Clarke, Michael, 1999, An introduction to the legal aspects of collateralization, Technical

report, JP Morgan.

Collin-Dufresne, Pierre, Robert Goldstein and Chris Jones, 2004, Identification and esti-

mation of ‘maximal’ affine term structure models: An application to stochastic volatility,

Working paper, Carnegie Mellon.

Collin-Dufresne, Pierre, and Bruno Solnik, 2001, On the term structure of default premia

in the swap and LIBOR markets, Journal of Finance 56, 1095-1115.

43



Cox, John, Jonathan Ingersoll, and Stephen Ross, 1981, The relation between forward

prices and futures prices, Journal of Financial Economics 9, 321-346.

Cox, John, Jonathan Ingersoll, and Stephen Ross, 1985, A theory of the term structure of

interest rates, Econometrica 53, 385-408.

Dai, Qiang, and Kenneth Singleton, 2000, Specification Analysis of Affine Term Structure

Models, Journal of Finance 55, 1943-1978.

Daigler, Robert, and Donald Steelman, 1988, Interest rate swaps and financial institutions,

Working paper, Kidder Peabody, New York.

Duffie, Darrell, and Ming Huang, 1996, Swap rates and credit quality, Journal of Finance

51, 921-950.

Duffie, Darrell, and Kenneth Singleton, 1997, An econometric model of the term structure

of interest rate swap yields, Journal of Finance 52, 1287-1323.

Duffie, Darrell, and Kenneth Singleton, 1999, Modeling term structure models of default-

able bonds, Review of Financial Studies 12, 687-720.

Duffie, Darrell, Lasse Pedersen, and Kenneth Singleton, 2002, Modeling sovereign yield

spreads: A case study of Russian debt, Journal of Finance 55, 119-159.

Grinblatt, Mark, 2001, An analytic solution for interest rate swap spreads, International

Review of Finance 2, 113-149.

44



Grinblatt, Mark, and Narasimhan Jegadeesh, 1996, The relative pricing of Eurodollar fu-

tures and forward contracts, Journal of Finance 51, 1499-1522.

Gupta, Anurag, and Marti Subrahmanyam, 2000, An empirical examination of the convex-

ity bias in the pricing of interest rate swaps, Journal of Financial Economics 55, 239-279.

He, Hua, 2001, Modeling term structures of swap spreads, Working paper, Yale University.

Hull, John, and Alan White, 1990, Pricing interest rate sensitive securities, Review of

Financial Studies 3, 573-592

International Swaps and Derivatives Association, Inc., 1994, ISDA Credit Support Annex.

International Swaps and Derivatives Association, Inc., 1998, Guidelines for Collateral Prac-

titioners.

International Swaps and Derivatives Association, Inc., 1999, ISDA 1999 Collateral Review.

International Swaps and Derivatives Association, Inc., 2000, ISDA Collateral Survey 2000.

International Swaps and Derivatives Association, Inc., 2001, ISDA Margin Survey 2001.

International Swaps and Derivatives Association, Inc., 2003, ISDA Margin Survey 2003.

Jarrow, Robert, and Gary Oldfield, 1981, Forward contracts and futures contracts, Journal

of Financial Economics 9, 373-382.

Litzenberger, Robert, 1992, Swaps: Plain and fanciful, Journal of Finance 42, 403-417.

Liu, Jun, Francis Longstaff, and Ravit Mandell, 2001, The Market Price of Credit Risk,

Working paper, UCLA.

45



Longstaff, Francis, 2004, The Flight to Liquidity Premium in U.S. Treasury Bond Prices,

Journal of Business 77, 511-526.

Lowenstein, Roger, 2000, When Genius Failed: The Rise and Fall of Long-Term Capital

Management (Random House, New York).

Muelbroek, Lisa, 1992, A comparison of forward and futures prices of an interest rate-

sensitive financial asset, Journal of Finance 47, 381-396.

Richard, Scott, and Suresh Sundaresan, 1981, A Continuous time equilibrium model of

forward prices and futures prices in a multigood economy, Journal of Financial Economics

9, 347-371.

Santos, Tano, and Jose Scheinkman, 2001, Competition among Exchanges, Quarterly Jour-

nal of Economics 116, 1027-1061.

Sun, Tong-Sheng, Suresh Sundaresan, and Ching Wang, 1993, Interest rate swaps, an

empirical investigation, Journal of Financial Economics 34, 79-99.

Sundaresan, Suresh, 1991a, The valuation of swaps, in Sarkhis Khoury, ed.: Recent Devel-

opments in International Banking and Finance (Elsevier North-Holland, New York).

Sundaresan, Suresh, 1991b, Futures prices on yields, forward prices and implied forward

prices from the term structure, Journal of Financial and Quantitative Analysis 26, 409-424.

Tuckman, Bruce, 2002, Fixed Income Securities: Tools for Today’s Markets, 2nd Edition

(John Wiley & Sons, New York).

46



Vasicek, Oldrich, 1977, An equilibrium characterization of the term structure, Journal of

Financial Economics 5, 177-188.

47



Notes

1For example, Tuckman (2002) notes that “it becomes clear that there is an internal

inconsistency in the convention for pricing swaps... On the one hand, it is assumed that

there is no risk of counterparty default; The cashflows are assumed to be as specified in

the swap agreement... On the other hand, all cashflows are discounted at LIBOR or swap

rates” (p. 390).

2Cox, Ingersoll, and Ross (1981), Richard and Sundaresan (1981), and Jarrow and Old-

feld (1981) provide theoretical arguments for the differences and, in the case of interest rate

sensitive securities, Sundaresan (1991b), Muelbroek (1992), and Grinblatt and Jegadeesh

(1996) examine the empirical evidence.

3As an alternative to collateralized swaps, in the late 1980s a number of banks offered a

contract known as a “mark-to-market swap” in which the fixed swap rate was adjusted on

each swap date (see Brown and Smith (1993, 1995)). This contract, which fundamentally

changes the nature of the contract (the fixed rate is no longer fixed), never became popular.

We thank Keith Brown for pointing this contract out to us and for helpful discussions on

the evolution of the swap market.

4When LTCM was going under, John Meriwether apparently said that if the firm sur-

vived, “I guess we would call ourselves ‘No-Haircut Capital Management’” (Lowenstein
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(2000), p. 177).

5Technically, this statement is not completely correct. In unusual cases, certain other

creditors are exempt from the automatic stay provisions. These include government agents

(e.g., local police departments) exercising their regulatory powers and certain Federal agen-

cies (e.g., Housing and Urban Development) with monetary claims against the debtor.

These exemptions rarely, if ever, arise in the context of the bankruptcy of a party to a

derivatives transaction. We thank Ed Morrison for pointing this out.

6The Financial Institutions Reform, Recovery, and Enforcement Act of 1989 also im-

plies that collateral posted by commercial banks (regulated entities outside of the U.S.

Bankruptcy Code) can be seized.

7Sundaresan (1991a) finds that the difference between the fixed swap rate when the

floating payments are settled in-arrears and those settled contemporaneously is a fraction

of a basis point. In a slightly different setting, Duffie and Huang (1996) argue that the

differences are negligible.

8This well-known positive difference between futures and forward rates is typically called

the “convexity” correction. See, for example, Sundaresan (1991b), Grinblatt and Jegadeesh

(1996), and Gupta and Subramanyam (2000).

9At first glance, the assumption of common collateral costs is not consistent with the
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fact that a very diverse group of counterparties participates in the swap market, and that

these counterparties presumably have very different funding costs. This assumption is not

unique to swaps, as the same assumption is commonly used to price futures, another market

populated by diverse counterparties with different costs of posting collateral. In a formal

model, Santos and Scheinkman (2001) study this problem and argue that there is nothing

puzzling about counterparties with different credit quality trading at a common price.

Intuitively, those with high collateral costs enter into fewer contracts, thereby adjusting

through quantities rather than prices. In their model, the collateral costs that are reflected

in market prices are those of the marginal market participant.

10For the results using the first seven years of futures data, the results hold, and are even

stronger, at the ten-year maturity. The results are also qualitatively and quantitatively

unchanged if the whole futures curve is used for estimation. We thank the referee for

encouraging us to investigate these issues.

11We thank Ken Singleton for discussions regarding the specification and the interpreta-

tion of the factors.

12Even if clean series for the these variables were available, our results would not likely

change. The reasoning is as follows. Standard models indicate that swap spreads are

properly amortized present discounted values of short-term spreads. In our case, the short-

term spread is LIBOR-T-bill, which is about 35 basis points on average. As short-term
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spreads are highly volatile and rapidly mean-reverting, these models imply the same for

swap spreads. However, as He (2001) and Liu, Longstaff, and Mandel (2001) note, swap

spreads tend to be persistent and much larger (60-70 basis points) than the present value

of the short-term spreads. If instead we used the LIBOR-GC repo short-term spread, the

problem would be even worse: This series is also rapidly mean-reverting, but it has a mean

of only about 15 basis points, in which case, our collateral factor would likely play an even

greater role.
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Table I

Vasicek Calibration Results

For each Wednesday from 1994 to 2002, we calibrate the Vasicek (1977) model to fit the

Eurodollar futures curve. Given the calibrated model, we compute hypothetical swap rates

assuming swaps are priced via the par representation (portfolio of forwards) and as a

portfolio of futures contracts. The columns marked forwards (futures) give the difference

between the hypothetical swap priced as a portfolio of forwards (futures) and the market

swap rate. The standard errors are in parentheses.

5 Year 7 Year

Time Period Forwards Futures Forwards Futures

1994-2002 -12.3 (0.4) 1.4 (0.3) -12.7 (0.4) 8.4 (0.3)

1994 -8.8 (0.7) 7.2 (0.7) -11.2 (1.1) 12.6 (0.7)

1995 -14.6 (0.8) -2.5 (0.9) -12.5 (0.7) 6.7 (0.7)

1996 -18.8 (0.8) 3.4 (0.9) -24.0 (1.0) 10.3 (0.7)

1997 -13.3 (0.6) 0.3 (0.5) -15.9 (0.9) 5.7 (0.5)

1998 -14.5 (0.6) -6.0 (0.6) -13.8 (0.5) -0.2 (0.5)

1999 -6.1 (0.7) 3.2 (0.7) -6.4 (0.6) 8.6 (0.6)

2000 -12.5 (1.1) -3.6 (1.1) -11.5 (0.9) 2.4 (0.9)

2001 -15.1 (0.1) -1.1 (1.0) -10.9 (0.9) 8.6 (1.0)

2002 -7.6 (1.6) 11.8 (1.5) -7.9 (1.4) 20.8 (1.0)
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Table II

Cox, Ingersoll, and Ross Calibration Results

For each Wednesday from 1994 to 2002, we calibrate the Cox, Ingersoll, and Ross (1985)

model to fit the Eurodollar futures curve. Given the calibrated model, we compute hypo-

thetical swap rates assuming that swaps are priced via the par representation (portfolio of

forwards) and as a portfolio of futures contracts. The columns marked forwards (futures)

give the difference between the hypothetical swap priced as a portfolio of forwards (futures)

and the market swap rate. The standard errors are in parenthesis.

5 Year 7 Year

Time Period Forwards Futures Forwards Futures

1994-2002 -12.0 (0.4) 3.5 (0.5) -14.7 (0.4) 10.0 (0.5)

1994 -14.4 (0.1) 7.7 (0.7) -19.6 (0.9) 13.1 (0.7)

1995 -16.0 (0.7) -1.6 (0.8) -16.6 (0.7) 7.4 (0.7)

1996 -13.3 (0.9) 3.4 (0.9) -16.3 (0.9) 10.2 (0.7)

1997 -12.5 (0.5) 1.2 (0.5) -16.3 (0.4) 6.4 (0.5)

1998 -17.3 (0.5) -5.8 (0.5) -18.9 (0.5) 0.1 (0.5)

1999 -8.7 (0.6) 4.5 (0.8) -12.3 (0.5) 9.7 (0.7)

2000 -17.0 (1.0) -3.1 (1.1) -19.8 (0.8) 2.9 (0.9)

2001 -5.6 (1.9) 5.6 (2.0) -3.4 (1.7) 13.8 (1.7)

2002 -2.9 (1.6) 19.4 (1.9) -8.6 (1.2) 26.5 (1.4)
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Table III

Treasury and LIBOR/Swap Summary Statistics

Summary statistics of interest rate data used for estimation. All series are sampled weekly,

on Wednesdays, from January 1990 to December 2002.

Treasury LIBOR/Swap

mean std mean std

3-month 4.750 1.510 5.103 1.612

3-year 5.696 1.325 6.152 1.359

5-year 6.022 1.212 6.531 1.252

7-year 6.256 1.150 6.758 1.206

10-year 6.362 1.138 6.968 1.156
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Table IV

Estimation Results

Two-stage maximum likelihood estimates obtained using weekly Treasury and LIBOR/swap

market data from 1/2/1990 to 10/29/2002. We calculate the standard errors using the

outer-product of the scores.

Parameter Estimate S.E. Parameter Estimate S.E.

κθ × 10 8.323 0.621 λδ × 102 -1.447 0.353

θθ × 102 4.65 - θy × 103 6.862 1.916

σθ × 10 1.549 0.228 σy × 102 1.019 0.174

κr × 10 9.069 1.027 λy × 103 6.668 1.781

σr × 103 8.135 0.131 κy × 102 4.527 1.499

λr × 102 -5.275 0.376 κy,r × 10 1.141 0.234

ρr,θ × 10 -3.627 0.383 κy,θ × 102 -3.830 2.243

κδ 1.669 0.147 κδ,y × 10 8.038 1.558

σδ × 103 9.116 1.740 κδ,r × 10 -1.633 0.436

55



Table IV

Pricing Errors

Mean and root-mean squared errors (RMSE) in basis points for the Treasury and swap

yields that are fitted with error. Three-month Treasury and LIBOR and seven-year Trea-

sury and swap rates are fit perfectly in the two-stage maximum likelihood procedure.

3-Year 5-Year 10-Year

Treasuries Mean -0.254 -0.261 0.133

RMSE 4.66 3.15 2.78

Swaps Mean 0.351 0.161 0.045

RMSE 4.60 2.25 2.97
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Figure 1. Dynamics of five-year swap rates. This figure provides weekly time series

of the differences between the hypothetical futures (solid line) and forwards (dashed line)

and market swap rates for the Vasicek and CIR models at the five-year maturity.
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Figure 2. Dynamics of seven-year swap rates. This figure provides weekly time

series of the differences between the hypothetical futures (solid line) and forwards (dashed

line) and market swap rates for the Vasicek and CIR models at the seven-year maturity.
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Figure 3. State variable dynamics. This figure provides time series of the inverted

factors: the central tendency (top panel), the short rate (second panel), the instantaneous

spread from Treasuries to LIBOR (third panel), and the net cost of collateral process

(bottom panel).
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Figure 4. The impact of collaterization on swap curves. The top panel provides

various swap curves. The dashed line gives the par swap curve (discounted at Rt = rt+δt),

the solid line gives the default-free swap curve (discounted at rt), and the dotted line gives

the collateralized swap curve (discounted at rt − yt) using the average values for the state

variables. The bottom panel displays the difference between collateralized swap rates, the

swap rates implied by the par representation, and the swap rates discounted at rt.
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