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Abstract

This paper extends our earlier analysis of interdependent security issues to a general

class of problems involving discrete interdependent risks with heterogeneous agents.

There is a threat of an event that can only happen once, and the risk depends on

actions taken by others. Any agent�s incentive to invest in managing the risk depends

on the actions of others. Security problems at airlines and in computer networks

come into this category, as do problems of risk management in organizations facing

the possibility of bankruptcy, and individuals� choices about whether to be vaccinated

against an infectious disease. Surprisingly the framework also covers certain aspects of

investment in R&D. Here we characterize Nash equilibria with heterogeneous agents

and give conditions for tipping and cascading of equilibria.

Key Words: Nash equilibrium, tipping, cascading, terrorism, security, interdepen-

dence.
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1 Introduction

Certain events can only occur once. Death is the obvious example: it is irreversible

and unrepeatable. Extinction of a species takes this even further. More mundane

examples are bankruptcy, being struck off a professional register for life, and other

discrete events. There are in addition events that can in principle occur twice but

that are so unlikely or so dreadful that one occurrence is all that can reasonably be

considered. The events of 9/11/01 are of this type, as is a nuclear meltdown in a highly

populated region. The probabilistic nature of events like these, together with the fact

that the risk that one agent faces depends on the behavior of others, gives a unique

and unnoticed structure to the incentives that agents face to manage these risks. For

other recent papers dealing with the interdependence of security-related risks, see

Keohane and Zeckhauser [26] and Orszag and Stiglitz [30]. Keohane and Zeckhauser

show how individual responses to collective threats may undermine the effectiveness of

government policies to combat them. Orszag and Stiglitz address the interdependency

issue by showing that homeowners do not take into account the positive externalities

associated with reducing damage to their neighbors when determining how Þreproof a

structure they should build. For reviews of the application of game theory to security

and terrorism at the national level, see Sandler [32] and Sandler and Acre [33].

The key point for these problems is that an agent�s incentive to invest in risk-

reduction measures depends on how he expects others like him to behave. If he thinks

that they will not invest in security, then this reduces the incentive for him to do so.

But should he believe that they will invest in security, then it may be best for him to
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do likewise. So there may be an equilibrium where no one invests in protection, even

though all would be better off if they had incurred this cost, and indeed all incurring

this cost may be an equilibrium. This situation does not have the structure of a

prisoners� dilemma game, even though it has some similarities (see Kunreuther and

Heal [27]). It contains elements of the coordination problem discussed by Heller [18],

Crawford and Haller [7] and others, in that there may be many alternative equilibria

of the system, some of which are Pareto ranked, but it is nevertheless not clear

which equilibria will emerge. The interdependence between the strategies of agents

means that in some cases there is a complementarity between them: by investing in

risk reduction, one agent makes this strategy more attractive to others, so that the

strategies work better when chosen by several agents than when chosen singly. In this

sense some of our results appear to be similar to those in the literature on strategic

complementarity (Bulow Geanakoplos and Klemperer [4]). However the discreteness

of our strategy space and the fact that damages are non-additive - you only die once

- means that the technical details are different.

It is possible that a change in the behavior of one agent can tip the system from

one equilibrium to another (see Schelling [35]): a related phenomenon is cascading,

when a change by one leads to a change by a second which provokes a change by a

third, and so on (see Dixit [12] and also Farrell and Saloner [13]).

1.1 Features of the Problem

There are several different versions of this interdependent security (IDS) problem but

all have certain features in common. We have already indicated one of these: a payoff
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that is discrete. A bad event either occurs or does not, and that is the full range

of possibilities. You die or you live. A Þrm is bankrupt or not. A plane crashes or

it doesn�t. You catch a disease or you do not. In these examples it is not useful to

differentiate the outcomes more Þnely.

Another feature common to the problems that we consider is that the risk faced

by one agent depends on the actions taken by others � there are externalities. The

risk of an airline�s plane being blown up by a bomb depends on the thoroughness

with which other airlines inspect bags that they transfer to this plane. The risk that

a corporate divisional manager faces that her company will be sent into bankruptcy

depends not only on how she manages her divisional risks but also on how other

division heads behave.

Finally there is a stochastic element in all of these situations. The question

addressed is whether to invest in security when there is some probability, often a

very small one, that there will be a catastrophic event that could be prevented or

mitigated. This risk depends in part on the behavior of others, and the unfavorable

outcome is discrete in that it either happens or does not.

These three factors � non-additivity of damages, dependence of risks on the actions

of others, and stochasticity � are sufficient to ensure that there can be equilibria

where there is underinvestment in risk-prevention measures. The precise degree of

underinvestment depends on the nature of the problem. We focus initially on the

two extremes that span the spectrum of possibilities. Both relate to security, one

of airlines and the other of computer networks. If an airline accepts baggage that
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contains a bomb, this need not damage one of its own planes: it may be transferred

to another airline before it explodes. So in this framework one agent may transfer a

risk fully to another. It may of course also receive a risk from another. There is a

game of �pass the parcel� here. The music stops when the bomb explodes. It can

only explode once, so only a single plane will be destroyed.

The structure of this game is quite different in the case of computer networks.

Here it is commonly the case that if a virus (or hacker) enters the network through

one weak point it (or he) then has relatively easy access to the rest of the network

and can damage all other computers as well as the entry machine. Indeed many

computer viruses are programmed to do this by sending themselves to all addresses in

an infected machine�s address book. In this case the bad outcome has a characteristic

similar to a public good: its consumption is non-rivalrous. Its capacity to damage is

not exhausted after it has inßicted damage once. A bomb, in contrast, has a limited

capacity to inßict damage, and this capacity is exhausted after one incident.

In both cases the incentives to take security measures depend on what others

do. Suppose that there are a large number of agents in the system. In [27] we show

that in the computer security problem, if none of the other machines are protected

against viruses or hackers, then the incentive for any agent to invest in protection

approaches zero as the number of agents increases. For airline security, if no other

airline has invested in baggage checking systems and there is a high probability that

bags will be transferred from one airline to another, in the limit the expected beneÞts

to any airline from this investment approaches 63% of what it would have been in
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the absence of contamination from others.

It is not only security problems that have this structure. It is common to all

problems with discrete and interdependent risks. It applies to units of a multi-unit

organization in which the risk of bankruptcy (a discrete event) faced by any unit is

affected by its own choices and by the choices made by other units. In such a situation

any unit�s incentive to take actions to reduce bankruptcy risks is compromised by

the knowledge that others are not being similarly diligent. A culture of risk-taking

can spread through the organization because knowledge that a few groups are taking

risks reduces the incentives that others have to manage them carefully.

Some decisions about research and development (R&D) investment also have this

structure. The central issue here is that if several Þrms want to solve a problem,

each may try on its own or may wait until another solves it Þrst. The greater the

probability that another will solve the problem Þrst, the less the incentive to try to

solve it oneself unless being Þrst conveys an advantage such as a right to patent.

With this type of interaction the externalities are negative rather than positive, in

the sense that action by others makes action by oneself less attractive.

The problem of choosing whether or not to be vaccinated against an infectious

disease has a similar structure. Firstly, vaccination is a yes-no choice and one can

in general only catch the disease once. Secondly, the risk of catching the disease

depends on the number of others who choose to be vaccinated, i.e. who invest in

risk-management. So once again we have the structure of an IDS problem.

In the vaccination case, as in the R&D case, the externalities between agents are
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negative in the sense that protection by others makes vaccination less attractive to

oneself. In the security and bankruptcy models where externalities are positive, we

have, as mentioned before, some of the properties associated with strategic comple-

mentarity: in the other cases we have something closer to strategic substitutability

[4]. A good illustration of the complementarity case is provided by investment in

visible burglar alarms: the decision by others in a neighborhood to protect them-

selves with alarms makes investment in protection more attractive to you because

you are now more likely to be a target. �Weakest link" and �best shot" games for the

provision of public goods (Hirschleifer [19], Sandler and Vicary [34], Vicary and San-

dler [36]) also exhibit strategic complementarity or substitutability respectively and

have points in common with our models: a generalization of our model to continuous

strategy spaces1 would have both types of game as special cases.

Our earlier paper [27] studied IDS problems where all agents are identical. Here

we extend the analysis to the more general case of agents whose risks and costs

differ and study the possibility of tipping. There may be one Þrm occupying such

a strategic position that if it changes from not investing to investing in protection,

then all others will Þnd it in their interests to do the same. And even if there is

no single Þrm that can exert such leverage, there may be a small group. We show

when this can happen and how to characterize those agents having so much leverage

that by switching policy they can change the equilibrium choices of all others, in the

process introducing a measure of the leverage a Þrm can exercise over others. This

1Currently under development.
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is a measure of its strategic importance within the group.2

Obviously this Þnding has signiÞcant implications for policy-making. It suggests

that there are some key players whom it is particularly important to persuade to

manage risks carefully. Working with them may be a substitute for working with

the population as a whole. They are in a certain sense leaders or trendsetters. We

also show that equilibria in these models may be susceptible to cascading, in that a

change by a Þrst Þrm can lead to emulation by a second, and the actions of these two

can lead to emulation by a third, and so on.

In our earlier paper the probabilities describing the risks of loss were taken as

exogenous. That was a simpliÞcation. It does not apply to many deliberate acts such

as terrorism. Take the case of airline security. In practice terrorists will try to attack

the airlines with the weakest security records. So if one airline improves its security

then this will reduce the chances of an attack on it and increase the chances of attacks

on others. Probabilities often respond to the policies adopted by the agents (Sandler

[32], Woo [38]). We model this phenomenon here. The tragic fate of PanAmerican�s

ßight 103 in 1988 illustrates this and other points from this introductory discussion.

The ßight was destroyed by a bomb loaded onto Malta Airlines at Gozo, Malta, ßown

to Frankfurt and then transferred to PanAm in London. Malta Airlines and Gozo

were presumably chosen because they were seen as having weak security procedures

relative to PanAm in London, and in the knowledge that for cost and logistical reasons

2Tipping can also occur with indentical agents, the case considered in our earlier paper [27], but
in that case if one agent can tip an equilibrium then so can any. All agents have the same leverage
over others, the same strategic importance.
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inter-airline baggage is never screened.3

The next two sections of the paper develop an IDS model where the probabilities

and risks differ between agents and then characterizes the structure of the Nash

equilibria. Section 4 then considers tipping and cascading, introducing a measure of

a Þrm�s leverage over others and showing that in some cases those with the greatest

leverage are those which produce the greatest aggregate negative externalities: if you

can convince them to invest in security other agents are likely to follow suit. After

considering the case of endogenous probabilities in Section 5, we turn in Sections

6-9 to a set of other IDS problems to see how they differ in structure from the

airline security problem. We begin with computer security then turn to bankruptcy,

investment in R&D and Þnally to vaccinations. The concluding section summarizes

the Þndings and suggests directions for future research. An appendix contains formal

proofs of the results and also proves the existence of a Nash equilibrium in pure

strategies for the models considered here. Because of the discreteness of the strategy

space, the standard proof of existence as given by Nash in his classic article does not

apply.

2 The Model

Initially we think in terms of the security of airlines, as this is an example that is

both topical and canonical. There are n ≥ 2 separate airlines. During the course

of a given time period the airline makes a certain number of trips, each of which is

3We believe that El Al is the only airline to screen bags received from other airlines.
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identical. Consider a given plane trip initiated by airline i. Assume that the airline

has made no investments in security systems. Let pij be the probability that on any

trip a bag containing a bomb is loaded onto airline i and is then transferred to airline

j and explodes on j. If i = j, we have the probability that an airline loads a bag

with a bomb and this explodes on its own plane. We denote by pi =
X
j

pij and by

epi =X
j 6=i
pij . Thus pi is the probability of airline i loading a bomb that explodes and

epi is the probability that it loads a bomb that explodes on another airline- a measure
of the risk that it poses to others. We expect that pi < 1 so that there is some

chance that the airline does not load a bag with a bomb that explodes. Each airline

can either invest in a security system S at a cost per trip of ci > 0 or not invest N.

Security systems are assumed to be completely effective so that they eliminate the

chance of a bomb coming through the airline�s own facility. In the event that a bomb

explodes on a plane the loss is L > 0. The initial income of an airline is Y > ci ∀i.

In the case of just airlines A1 and A2 maximizing expected proÞts this framework

gives rise to the following payoff matrix showing the outcomes for the four possible

combinations of N and S. If both airlines invest in security systems then their payoffs

per trip are just their initial incomes net of the investment costs. If A1 invests and

A2 does not, then A1 has a payoff of income Y minus investment cost c1 minus

the expected loss from a bomb transferred from A2 that explodes on A1 (i.e, p21L),

while A2 has a payoff of income Y minus the expected loss from a bomb loaded and

exploding on to its plane, p22L. If neither invests then A1 has a payoff of income

Y minus the expected loss from a bomb loaded and exploding on to its own plane
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p11L minus the expected loss from a bomb transferred from A2,that explodes on A1

(i.e, p21L) conditioned on there being no explosion from a bomb loaded by A1 itself

(1− p11). A2�s payoff is determined in a similar fashion.

A1/A2 S N

S Y − c1, Y − c2 Y − c1−p21L, Y − p22L

N Y − p11L, Y − c2−p12L Y − p11L− (1− p11) p21L, Y − p22L− (1− p22) p12L

Choosing to invest in security measures is a dominant strategy for 1 if and only if

c1 < p11L and c1 < p11 [1− p21]L (1)

The condition that c1 < p11L is clearly what we would expect from a single airline

operating on its own. The tighter condition that c1 < p11 [1− p21]L reßects the risk

imposed by a Þrm without security on its competitor: this is the risk that dangerous

baggage will be transferred from an unsecured airline to the other. This negative

externality plays a critical role in our analysis and we need to understand its structure

as the analysis is expanded to cover n airlines.

Let Xi (n,K) be the expected negative externality from all other airlines to airline

i when airlines in the set K invest in security and there are n airlines in total. For
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four Þrms and i = 1 we have terms of the form

X1 (4, {2, 3, 4}) = 0

X1 (4, {3, 4}) = Lp21

X1 (4, {2, 4}) = Lp31

X1 (4, {4}) = L {p21 + (1− p21) p31}

X1 (4, {3}) = L {p21 + (1− p21) p41}

X1 (4, {2}) = L {p31 + (1− p31) p41}

X1 (4, ∅) = L {p21 + (1− p21) p31 + (1− p21) (1− p31) p41}

In the Appendix we show that this last expression, for X1 (4, ∅) , can readily be

derived from the event tree corresponding to the four agent problem. In all cases

when transfers from more than one airline are possible then the losses from transfers

from the second and subsequent Þrms have to be conditional on there being no losses

from previous transfers. For n airlines when none of them invest in security this

generalizes to the following formula for the externality inßicted on the Þrst:

X1 (n, ∅) = L
j=nX
j=2

pj1

k=j−1Y
k=2

(1− pk1)

where it is understood that
k=j−1Y
k=2

(1− pk1) = 1 when j = 2. If Þrms in the set K are

investing in security then the total externality to Þrm 1 is given by an extension of
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this formula, replacing ∅ by K and noting that pkj = 0∀k ∈ K :

X1 (n,K) = L

j=nX
j=2

pj1

k=j−1Y
k=2

(1− pk1) (2)

The condition for S to be a dominant strategy for Þrm 1 when there are n Þrms

with none investing is that

c1 < p11 [L−X1 (n, ∅)] = c1 (n, ∅) (3)

Here c1 (n, ∅) is the maximum cost to agent 1 consistent with S being the best strategy

for 1 when no other Þrms invest in security. More generally

Definition 1 ci (n,K) is the maximum cost of investment in security at which agent

i will choose to invest in security when there are n agents and those in the set K

have already invested in security.

Clearly X1 (n, ∅) > X1 (n, {2}) > X1 (n, {2, 3}) > ... > X1 (n, {2, 3, 4, ..n− 1}) so

that c1 (n, ∅) < c1 (n, {2}) < .... < c1 (n, {2, 3, 4...n− 1}) . This implies that as we add

more agents who do not invest in security the externality on any other agent increases

and the condition for them to want to invest in security becomes more demanding

and so such investment becomes less likely. We showed in [27] that if all agents are

identical then limn→∞X1 (n, ∅) = L (1− e−p) where p is the common probability of

a transfer. From now on, we will drop the argument n from expressions for X and c,

as in general n will be held Þxed throughout the analysis.
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3 Nash Equilibria

The nature of the Nash equilibrium in the interdependent security model naturally

depends on the parameters. From the payoff matrix it is clear that (S, S) is a Nash

equilibrium if ci < piiL and is a dominant strategy if ci < piiL (1− pji) where i and j

are 1 or 2. (N,N) is a Nash equilibrium if ci > piiL (1− pji) and a dominant strategy

if ci > piiL. From these inequalities we note that (S, S) and (N,N) are both Nash

equilibria if piiL (1− pji) < ci < piiL. Finally if c1 > p11L but c2 < p22L (1− p12)

then (N,S) is a Nash equilibrium, and if 1 and 2 are interchanged then the equilibrium

is (S,N) . This conÞguration of Nash equilibria is summarized in Figure 1. Note that

if c1 = c2 then we are on the diagonal of Þgure 1 and the only possible equilibria

are (S, S), either (S, S) or (N,N) , and (N,N) . In this case mixed equilibria are not

possible, as stated in our earlier paper [27].

Figure 1 shows that even for two agents there is a wide variety of Nash equilibria

for this problem including cases where there are two possible equilibria {S, S} and

{N,N}. As one expands the number of agents the number of possible equilibria

expands exponentially.

Recall that ci (∅) is the maximum cost at which agent i will invest in security if no

others are investing. Clearly if ci > ci (∅)∀i then {N,N, ....N} is a Nash equilibrium.

More generally we can characterize a Nash equilibrium as follows:

Definition 2 A Nash equilibrium is a possibly empty set E of agents choosing S

such that ci < ci (E)∀i ∈ E and ci > ci (E)∀i /∈ E.
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S,S is dominant strategy
& Nash equilibrium

Either N,N or S,S
is Nash equilibrium

NN is
Nash and
dominant

S,N

N,S

S,S is Nash
equilibrium

S,S is Nash
equilibrium

N,N is Nash

N,N is Nash

c1

c2

P11[1-p21]L

P22[1-p12]L

P11L

P22L

Figure 1: Nash equilibria as a function of c1 and c2.
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In words, a Nash equilibrium is a situation where some Þrms are choosing S and

some N, and for those choosing S the actual cost of investing in security is less than

the maximum that is justiÞable economically, given the choices of others, and for

those choosing N, the actual cost is greater.

In the appendix we prove that a Nash equilibrium in pure strategies exists for the

general model of this section.

4 Tipping & Cascading

In some cases a change of strategy by one agent or a small set of agents can shift the

equilibrium radically. We refer to this change as tipping in the sense of Schelling

[35], Katz and Shapiro [22], Watts [37] (in the context of general networks) and more

recently Gladwell [14]. For example, there may be a Nash equilibrium at which no

agent invests in security. Yet if one agent changes strategy and invests - possibly in

response to events or incentives outside the game - then all other agents may follow

suit. We illustrate how tipping can occur for the case where all agents initially choose

strategy {N,N....N} : we give conditions for a change by a subset of these agents

to lead all the others to follow suit and invest in security, producing an equilibrium

{S, S....S}. Of course an equilibrium cannot be tipped from N to S if it is an equi-

librium in dominant strategies, so that the dominant strategy equilibria in Þgure 1

could not be tipped. These include the (N,S) and (S,N) equilibria. If we have an

equilibrium at which N is a dominant strategy for some Þrms and not for others then

this could be tipped provided that the Þrms for which N is dominant are included in
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those whose strategies are exogenously altered as part of the tipping process, e.g. by

being taxed or some other policy change.

Intuitively it seems that there are two important aspects of the tipping phe-

nomenon. One is the vulnerability of an agent to being tipped from not investing

to investing, which depends on how close its cost is to the maximum cost at which

investment is justiÞed. If this gap is small then a small change in the externalities

imposed on the agent by others may suffice to change its choice of strategy. The sec-

ond important aspect of tipping is the change in the externalities imposed on other

agents when one agent changes its policy. An agent for which this change is big is

more likely to cause tipping than one for which this is small. In general the possibil-

ity of tipping depends on both of these factors - on how close agents are to changing

their strategy choices and how large the negative externalities are from some agents

on others because they do not invest in protection.

Consider a Nash equilibrium where all agents choose strategy N . A critical coali-

tion K is a group of Þrms that by switching from N to S can tip the equilibrium to

one where all Þrms invest. It is a minimal critical coalition (MCC) if it is a critical

coalition and no subset is a critical coalition.4 Formally consider a Nash equilibrium

such that ci > ci (∅)∀i, so no agents invest in security, and ci < ci (K)∀i /∈ K. The

Þrms in K form a critical coalition: if they switch from N to S, then this leads all

other Þrms to follow suit because their critical costs will now be greater than their

actual costs of investment.

4The concept of mimimum critical coalition is introduced in Heal [16]. The minimum critical
coalition is in general not unique, although it is in the particular case considered in proposition 2.
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Firms in an MCC are an important group. If they change from not investing to

investing, then all others follow suit. The reason this occurs is that when these agents

invest they reduce the externalities on others sufficiently that it is now cost-effective

for the others to invest in security too. To understand the impact that an agent has

on others we need to know the total externalities that each agent generates on all

other agents by not investing in security.

We deÞne the externality from i to j when the Þrms in set K, i /∈ K, are investing

in security as the change in the total externality to j when i switches from not

investing to investing. Denote this by ∆ij (K) . Formally this is

∆ij (K) = Xj (K)−Xj (K + i) , i /∈ K

From the deÞnitions of Xj (K) and Xj(K + i) we have:

∆ij(K) = Lpij

k=j−1Y
k=2

(1− pkj) (4)

where as before pij = 0∀i ∈ K. The total externality generated by i is just the sum

over j of (4):

∆i {K} =
X
j

∆ij (K) = L
X
j 6=i
pij

k=j−1Y
k=2

(1− pkj) (5)

This is a reasonably compact and intuitive expression for the total externality gen-

erated by i when the Þrms K are investing in security. It is the loss from a single

occurrence times the sum of the probabilities of a transfer from i conditioned on

the other Þrms outside K not having inßicted damage on a Þrm already. We focus
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on the case when no Þrms are investing in security, in which case the appropriate

index is ∆i {∅} .With these deÞnitions in place, we can now give the following formal

characterization of a critical coalition.

Proposition 1 A critical coalition is a set of agents K such that

pjj
X
k∈K

∆kj = cj − pj (L+Xj (∅))∀j /∈ K

The left hand side here is the reduction in the total externality imposed on agent

j when agents in K switch from N to S, multiplied by pjj . It can be viewed as the

expected beneÞt to j of having agents in the critical coalition invest in security. The

right hand side is derived from equation (3) and is the difference between the actual

cost of investment in security and the maximum that it is worth paying to invest.

The derivation of this inequality is almost immediate from (3) and the deÞnition of

∆kj . It juxtaposes the two issues referred to above - the impact of a change in policy

by one agent on the externalities faced by others, and the nearness of these others to

changing their strategy choices.

Some Þrms - those for which ∆i {∅} is large - are clearly more likely, in some

general sense, to cause tipping than others.

In general there is no easy way of characterizing the agents who have greatest

leverage. There is however one interesting case in which this is possible, which is

when the contagion probabilities pij are the same for all j for a given i. This is

the case in which an agent is equally likely to transfer a bag to any other agent,
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so that pij = pik∀j, k 6= i. This case is implausible for airlines, but in some of the

applications considered later is quite realistic - for example the case of bankruptcy

in a multidivisional Þrm, or the case of a computer network. In the terminology

of Kearns and Mansour [24] this assumption makes the IDS game a summarization

game. Kearns and Ortiz [25] show that in this case the Nash equilibria of an IDS game

can be computed in a time that is a polynomial function of the number of parameters,

whereas in the general case the game is NP-complete. When pij = pik∀j, k 6= i the

agents with greatest leverage are those with the greatest values of ∆i {∅} , that is,

those that create the greatest externalities for others.5 These are the Þrms which will

�tip� a Nash equilibrium from not investing to investing.

Proposition 2 Assume that pij = pik∀j, k 6= i. If there is a minimal critical coalition

of k < n agents then it must consist of the Þrst k agents ranked by ∆i {∅}.6

Proof. The proof is in the Appendix.

Note that in this case a minimum critical coalition is unique. Proposition 1

shows that if there is a minimal critical coalition, then it consists of agents who

impose the largest externalities on the others. There is a simple intuition for this

result. The decision to invest in protection is determined by the expected direct

reduction in damage (i.e. piiL) minus the likelihood that the agent will be harmed

by unprotected agents multiplied by the resulting loss L. Order the agents so that

5 In general the distribution of the externalities matters as well as the total in calculating leverage.
However when all agents have the same chance of being impacted negatively by otheres only the total
matters.

6Ties will be broken randomly if needed. The ranking of agents by Ei {∅} is of course a function
only of the parameters of the model and is not affected by the strategy choices of agents.
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agent 1 has max{∆i {∅}}, agent 2 has the second highest value, and so on. Agent

1 inßicts the highest expected harm on others. Hence by inducing it to invest in

protection one has the most impact on the incentive of other unprotected agents to

invest in protection. Should a change of strategy by agent 1 not be sufficient to do

this, then one has to convince agent 2 to invest in protection as well in the hopes

that this will lead the remaining unprotected agents to invest. The smallest number

of agents to induce this type of tipping behavior is deemed an MCC.

4.1 Numerical Examples of Tipping and Cascading

The following numerical example demonstrates that such an MCC can indeed exist.

We shall consider three airlines and let 1 and 2 be identical. The characteristics of

these airlines are such that the only Nash equilibrium is one where none of them

invest in security. Yet if airline 3 changes from not investing to investing - perhaps

as a result of a Þnancial incentive or regulatory pressure or some other factor outside

of the model - then both others will change as well and there is a new equilibrium at

which all are investing. The change was produced by the change in 30s behavior.

Let p1j = p2j = 0.1 and p3j = 0.5 and L = 1000. In addition p11 = p22 = 0.1 and

c1 = c2 = 85. We do not specify p3j or c3. In this setting

c1 (∅) = 0.1
·
1000− (0.5) (1000)

2
−
µ
0.1− 0.05

2

¶
1000

2

¸
= 71.25

As c1 = c2 = 85 > c1 (∅) = c2 (∅) = 71.25, neither Þrm 1 nor Þrm 2 will invest in

security if no other Þrm is investing. And we can clearly choose c3 so that it is large
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enough that Þrm 3 will not invest either and (N,N,N) is the Nash equilibrium. And

if Þrm 3 does not invest, then not investing is a dominant strategy for both the other

Þrms for any cost above 75.

Suppose that for some reason airline 3 changes policy and invests. It now imposes

no externality on the other Þrms and so does not affect their decisions. To understand

the choices of Þrms 1 and 2 we simply have to apply inequality (1), which gives a

critical cost level of 90, meaning that investment will now be a dominant strategy

when the cost is less than 90. As the actual cost for Þrms 1 and 2 is less than this by

assumption at 85, we see that after Þrm 3 has changed strategy from N to S for both

Þrms 1 and 2 the dominant strategy has changed from not investing to investing.

Airline 3 therefore has the capacity to tip the equilibrium from not investing to

investing by changing its policy. It is easy to verify that airline 3 imposes the largest

externalities on the other airlines in accordance with Proposition 2 above.

The tipping phenomenon is shown geometrically in the following two diagrams.

These are similar to Þgure 1 above, showing the sets of {c1, c2} values corresponding

to different equilibrium types. The key point in seeing tipping geometrically is that

this diagram for Þrms 1 and 2 depends on what Þrm 3 does. A change by 3 alters the

entire equilibrium diagram for the other two Þrms.7 When Þrm 3 does not invest, as

in Þgure 2, not investing is a dominant strategy for the other Þrms as their cost point

(85, 85) lies in the quadrant bounded below by (75, 75) . When Þrm 3 changes and

invests, then the whole diagram for the other Þrms alters, now looking as in Þgure 3.

7We are really looking at a three-dimensional version of Þgure 1, and the diagrams for Þrms 1
and 2 are slices through this for different strategy choices for Þrm 3.
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75, 75

71.25, 71.25

c1

c2

90, 90

100, 100

Equilibrium in DS is (N,N)

Actual costs (85, 85) 
in (N,N) region

Equilibrium in DS is 
(S,S)

Figure 2: Equilibria for Þrms 1 and 2 when 3 does not invest and imposes externalities
on them. In this case (85, 85) is in the region in which not investing is a dominant
strategy.

The region in which investing is a dominant strategy is now greatly enlarged because

of the removal of the externalities generated by 3 and includes the point (85, 85) so

that it includes the point representing Þrms 1 and 2.

The tipping phenomenon that we are characterizing here is in fact more general

than the particular illustrative context as indicated by the following question: Given

a Pareto inefficient Nash equilibrium in a general game, does there exist a subset

of agents who by changing their strategy choices can induce all others to alter their

strategy choices in such a way that the new outcome is efficient? The previous propo-

sition and example show that this is the case in the interdependent security problem.

It would be interesting to ask this question for a broader class of games. Kearns and

Ortiz [25] use computational algorithms to give further numerical examples of mini-

mum critical coalitions and tipping in the context of data from 49 major international
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Equilibrium in DS is 
(S,S) 

75, 75
71.25, 71.25

c1

c2

90, 90

100, 100

Equilibrium in DS is (N,N)

Actual costs (85, 85)
in (S,S) region

Figure 3: Equilibria for Þrms 1 and 2 when 3 invests and imposes no externalities on
them. In this case (85, 85) is in the region in which investing is a dominant strategy.

airlines.

Our model can also give rise to the phenomenon of cascading (see also Dixit [12]).

This refers to a situation where one Þrm changes its policy, and this leads another to

follow suit. The fact that two Þrms have changed now persuades a third to follow,

and when the third changes policy this creates the preconditions for a fourth to do so,

and so on. The analogy with a row of dominoes is compelling: the Þrst knocks down

the second, which knocks down the third, and so on. To see how this can happen in

the our model, suppose that we have a Nash equilibrium at which all airlines choose N

and assume in addition we can number Þrms 1, 2, 3, ... so that the following conditions

are satisÞed:

� When 1 switches from N to S then 2�s best strategy changes from N to S but

no other Þrm�s best strategy changes
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� When 1 and 2 have switched from N to S then 3�s best strategy changes from

N to S and no other Þrm�s best strategy changes.

� When 1, 2 and 3 have switched from N to S then 4�s best strategy changes

from N to S and no other Þrm�s best strategy changes.

or in general

� When 1, 2, 3, ..., J have switched from N to S then (J + 1)�s best strategy

changes from N to S and no other Þrm�s best strategy changes for all Þrms

J > 1.

If such an ordering of the Þrms exists then it is immediate that if Þrm 1 switches

from N to S then it will start a cascade in which 2 changes followed by 3 then by

4 etc. etc. We can readily modify the numerical example above to illustrate this

cascading process. SpeciÞcally, keep the probabilities as above and let c1 = 85 as

before but c2 = 95. Then it is immediate from Þgure 2 and 3 that (c1, c2) is in the

region where (N,N) are the dominant strategies when three does not invest but also

is in the region where (N,S) is the equilibrium when three does invest (see also Þgure

1). So in this case when three changes from N to S this causes two to change from

not investing to investing as well. But once Þrms two and three are investing, Þrm

one is effectively on its own and will invest if c1 < p11L = 100, which is satisÞed. So

when two follows three and changes from not investing to investing it will cause one

to follow suit, generating a cascade.
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5 Endogenous Probabilities

So far the risks faced by the airlines are assumed to be independent of their behavior.

In reality if some airlines are known to be more security-conscious than others, they

are presumably less likely to be terrorist targets. There is a resemblance here to

the problem of theft protection: if a house announces that it has installed an alarm,

then burglars are likely to turn to other houses as targets [27]. In the case of airline

security, terrorists are more likely to focus on targets which are less well protected,

so that the ps depend on the investment in security. This is the phenomenon of

displacement or substitution, documented in Sandler [32]. Keohane and Zeckhauser

[26] also consider the case of endogenous terrorist risks.

We assume here that the risk faced by an airline not investing in security increases

as the fraction of airlines investing in security increases. In other words, if more

airlines from a given population invest in security then those who do not invest

become more vulnerable. Formally let #K be the number of airlines investing in

security, i.e. the number in the set K. The relevant probabilities facing those Þrms

not investing in security, pij (#K) , are increasing in #K. For airlines that have

invested in security the ps are assumed to be independent of #K.

Now return to equation (3) above, deÞning the cost of investment that marks the

boundary between a Þrm i investing and not investing in security when no other Þrm

invests when pij are exogenous:

ci < pii [L−Xi (∅)] = ci (∅)
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As an increasing number of other Þrms invest in security, then for a non-investing

Þrm the probability pij will increase. Hence the value of Xi (K) will change. The

expression for the critical value of the cost of investment for airline i is thus :

ci (K) = pii (#K)L

1−X
j /∈K

pij (#K)

n− 1
Y

k<j,k/∈K

µ
1− pik (#K)

n− 1
¶ (6)

The right hand side of (6) increases in #K via pii but also depends on #K through

the piks that enter into the expression for the externality imposed on i. The sign

of the impact of a change in #K on the externality is not clear a priori : an in-

crease in the number of Þrms investing will raise
P
j /∈K

pij(#K)
n−1 but will also decreaseY

k<j,k/∈K

³
1− pik(#K)

n−1

´
.

We assume, as seems generally reasonable, that the total externality imposed on

any non-investing Þrm decreases as the number of investing Þrms increases, in which

case an increase in #K, the number of Þrms investing, will increase the right hand

side of (6) and raise the value of ci (K) . This means that an agent is more likely to

invest in security for the case where probabilities are endogenous than when these

probabilities are exogenous. This assumption also implies the analysis with constant

probabilities remains qualitatively valid in the endogenous case.

Of course the computation of ci (K) is now more complex due to the dependence

of the probabilities on the number of Þrms investing in security. The endogeneity of

probabilities should lead more Þrms to invest in protection given that they are now

more likely to be targets. The concept of a minimum critical coalition also carries

over unaltered to the world of endogenous probabilities, although the actual MCCs
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will very likely be different.

Given that the basic concepts do not change qualitatively, Propositions 1 and 2

on tipping are relevant to a model with endogenous probabilities. It should now be

easier for a coalition to tip the other Þrms into investing for the following reason: not

only does a decision by a Þrm to invest reduce the externalities but it also increase

the risk that a Þrm who did not invest in security will become a target. In the next

four sections we examine how the IDS model applies to a set of problem contexts

where damage are non-additive and there are negative stochastic externalities. To

keep the analysis simple the probabilities are assumed to be exogenous.

6 Computer Security

When a virus affects a computer (the equivalent of a bag with a bomb being loaded

by an airline) it can be transmitted to all other computers on the network and can

damage them all rather than just one of them (Anderson [2]). Let pi be the probability

that computer i is infected by a virus and epi be the probability that it is infected by
a virus and this is transmitted to all other computers. Clearly epi ≤ pi and the ps

do not refer to independent events. The other notation is the same as in the airline

security problem. The stochastic negative externalities for the case of four computers
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are given by terms that include the following:

X1 (4, {2, 3, 4}) = 0

X1 (4, {3, 4}) = Lep2

X1 (4, {4}) = L {ep2 + (1− ep2) ep3}

X1 (4, ∅) = L {ep2 + (1− ep2) ep3 + (1− ep2) (1− ep3) ep4}

and in the general case of n computers when none of them invest in security this

generalizes to the following formula for the externality inßicted on the Þrst:

X1 (∅) = L
j=nX
j=2

epj k=j−1Y
k=2

(1− epk)

where it is understood that
k=j−1Y
k=2

(1− epk) = 1 when j = 2.
If agents in the set K are investing in security then the total externality to agent

1 is given by

X1 (K) = L
X
j /∈K

epj Y
k<j,k/∈K

(1− epk) (8)

The condition for S to be a dominant strategy when there are n agents with none

investing is that

c1 < p1 [L−X1 (∅)] ≡ c1 (∅) (9)

Here as before c1 (∅) is the maximum cost to agent 1 consistent with S being a Nash

equilibrium when no other agents invest in security. In K-H [27] we show that if all

agents are identical the term X1 (∅) goes to L as n → ∞. The proof used there can
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be modiÞed to apply to the present case, so that it is again the case that X1 (∅) goes

to L as n→∞.

The deÞnitions of Nash equilibrium and minimum critical coalition carry over

unchanged from the previous sections. Now it is natural to assume, as we have, that

the contagion probabilities are uniform, so that agents� leverage can be calculated by

the value of the externalities that they impose on others when they switch policy. We

can therefore prove an exact analog of proposition 2 for the computer network case:

Proposition 3 A minimal critical coalition of k < n agents must consist of the Þrst

k agents ranked by Ei {∅} or equivalently by epi.
The proof is exactly as before, and we can use the same numerical example to

illustrate the proposition. In this case we Þnd that c1 (∅) = 45 and c1 ({3}) = 90 so

that if computer 1 switches policy, it tips the network from not investing to investing

in security.

7 Bankruptcy of Firms

Consider a multi-divisional organization, such as an investment bank, in which each

division has some degree of decision-making autonomy and can incur risks on behalf of

the entire organization. If any one division miscalculates grossly, incurring a large risk

that causes a catastrophic loss, it may force the entire organization into bankruptcy.

Several years ago the British merchant bank Barings, at that point the longest-

established bank in the UK, was destroyed by the actions of a single trader in its

Singapore branch. Nick Leeson incurred positions that put at risk sums that could

29



and indeed did destroy the company.8 In a rather different line of business Arthur

Anderson was recently sent into bankruptcy in large part by the actions of its Houston

branch in managing the Enron audits. Union Carbide suffered catastrophic losses

from the accident at Bhopal in 1984 that eventually led to the Þrm being bought by

Dow Chemical.

In each of these cases the situation is analytically similar to the computer security

problem. An organization consists of a group of divisions i = 1, ..., n, each of which

can incur risks for which the company as a whole is liable. Let pi be the probability

that division i incurs a loss so that management closes down only this division and

epi be the probability that division i incurs such a large loss that the entire company
is bankrupt and every division is closed. As in the computer security case epi ≤ pi

and the ps do not refer to independent events. The loss to a division in the event of

its being closed is L. One should view L as the costs that employees of the division

will incur if their division or the entire Þrm goes bankrupt. These include the search

costs for new employment and other negative features associated with losing ones job

including loss of reputation. Divisions can invest in monitoring their risks at a cost

ci, so they can avoid the loss L.9

Clearly when division i takes on a risk, it is imposing an external effect on other

divisions because there is some chance that a large loss to this division will cause

the Þrm to be closed down. Nick Leeson in Barings imposed risks on all branches of

8For a more detailed description of the factors causing the collapse of Barings Bank see chapter
1 of Hoch and Kunreuther [20].

9One could also think of ci as an opportunity cost resulting from avoiding certain deals that might
compromise the entire enterprise.
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Barings, and Anderson�s Houston branch similarly imposed risks on all of Anderson.

And as before these losses are non-additive: the risk is only relevant if the other

divisions have not already been closed down by losses originating elsewhere. So the

problem is identical in structure to the computer network problem. The total external

costs imposed on division 1 when no other divisions are managing risks are given by

X1 (∅) = L
j=nX
j=2

epj k=j−1Y
k=2

(1− epk)
In the present context this means that the incentive that any division faces to

invest in risk-control depends on whether others are making similar investments.

Senior management may want each division to invest in loss prevention. Due to the

negative externalities, divisions may be loathe to incur these costs because of their

adverse impacts on divisional proÞts. From the perspective in overseeing the entire

Þrm, senior management will seek policy measures that will change the payoffs and

make investing in risk-control a dominant choice, but it may be difficult for them to

do this if each of the divisions operates in a decentralized manner. There will also be

the possibility of tipping the equilibrium by persuading a small number of divisions to

adopt stricter controls, with an exact analog to proposition 2. For a more extensive

analysis of the managerial and organizational implications of this problem, see [28].

8 Investing in Research and Development

The same IDS structure has relevance to the problem of determining whether to invest

funds in research and development (R&D), a topic on which there is an extensive
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literature (see e.g. Dasgupta and Stiglitz [8] and [9], Dixit [11] and Grossman and

Shapiro [15]). In this literature the concern is to characterize the privately and

socially optimal levels of investment in R&D and the relationship between them,

which typically depends on institutional structures such as patent rights. Here we

explore the investment levels that are privately optimal, and show that under the

assumption that the investment in R&D is discrete - a Þrm invests or does not invest

- the problem has the IDS structure, which enables us to give a more complete

characterization of the Nash equilibria than the earlier models. We also explore how

the strength of intellectual property rights affects the equilibrium.

Consider a group of Þrms, each of whom are trying to solve the same problem or

trying to discover the same new facts. If one Þrm solves the problem or discovers the

facts, then its solution may be available to some or all others at no cost or at a very

low cost. In such a situation each Þrm has to decide whether to invest in obtaining

the information or making the discovery, bearing in mind that another Þrm might

make the discovery. If the information from the other Þrm were freely available, any

investment of its own would be redundant.

The investment decision here has the same formal structure as the problems con-

sidered in previous sections, with one important difference. In this case investment de-

cisions are not mutually reinforcing. In the airline, computer security and bankruptcy

cases, investment by one agent increases the incentive for others to invest and it is

this property that can lead to tipping behavior or cascading behavior. A move by

one Þrm may encourage other Þrms to do the same and could start an avalanche. In
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the R&D case, investment by one Þrm discourages others from following suit. Each

Þrm knows that as the number of Þrms attacking a particular problem increases, the

chances that the problem will be solved by one of the others increases, so making it

more efficient to wait until one of these others discovers the solution. The R&D prob-

lem has the same formal mathematical structure as the other IDS problems discussed

above, except for a difference in the sign reßecting the interactions between Þrms.

This means that we no longer expect to see the tipping or cascading of equilibria.

Assume that Þrm i can invest in R&D at a cost of ci. This generates a payoff of

G with probability pi. There is, in addition, a chance pj that another Þrm j invests

and succeeds, in which case the information it gains reaches Þrm i. If I stands for

investing and N for not investing then the payoff for the two by two case is

Payoff matrix for Þrms 1 and 2 in the R&D problem

1/2 I N

I Y − c1+p1G+(1− p1) p2G, Y − c2+p2G+(1− p2) p1G Y − c1+p1G,Y + p1G

N Y + p2G,Y − c2+p2G Y, Y

Here if neither invests then there is no chance of either getting the information

and so both their payoffs are their initial income Y . If Þrm one invests and two

does not, then the payoff to the investor is Y − c1+p1G, income net of the cost of

investing plus the expected gain from the investment. The payoff to the non-investor

here is Y + p1G, income plus the expected gain as the information is transferred to

it from the successful investor. Finally if both invest then Þrm i has a payoff of

Y − ci+piG+(1− pi) pjG, which is income net of the cost of investment plus the
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expected gain from its own investment plus the expected gain from the other�s in-

vestment conditional on its own investment not having succeeded.

In this payoff matrix I is a dominant strategy if and only if

ci < pi [1− pj ]G (10)

Thus the possibility of getting the information free from someone else reduces the

incentive to invest in R&D: without this possibility the equivalent inequality would

obviously be ci < piG. The term [1− pj ] represents what was previously labeled

contagion in [27]. In this context it might be called the free rider effect since there

is a temptation for each Þrm to take advantage of the other Þrm�s R&D investment.

The knowledge that Þrm j is investing will reduce the incentive that Þrm i has to do

likewise.

8.1 Nash Equilibrium

The Nash equilibrium for this problem differs from the airline and computer security

cases because there is less incentive to invest in R&D if others have already done so.

If no Þrms are investing then the return from investment is at its highest level while

if all other Þrms are investing then the expected returns from investment is at its

lowest level. We work with the simplest possible case of two Þrms where there is no

advantage of being the Þrst to discover: the results generalize readily. We initially

suppose the Þrms to be different and show how this simpliÞes when Þrms are identical.
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We know already from (10) that (I, I) is a Nash equilibrium if

c1 < p1 [1− p2]G and c2 < p2 [1− p1]G

Similarly (I,N) is a Nash equilibrium if

p1G > c1 and c2 > Gp2 [1− p1]

and (N, I) is an equilibrium if

p2G > c2 and c1 > Gp1 [1− p2]

We can now look at the plane with c1 and c2 as its axes, position the other

parameters on this and analyze when (I, I) , (N, I) , (I,N) and (N,N) are Nash

equilibria. The c1 − c2 plane is divided into Þve regions by the above inequalities on

c1 and c2. In the lower left region the only possible equilibria are those where both

Þrms choose to invest and in the upper right region the only equilibria are those where

neither chooses to invest. Between these regions is one where there are two possible

outcomes, (N, I) and (I,N) , and to the upper left the only possible outcomes are

(I,N) and to the lower right (N, I) . If both Þrms are identical then the Þgure is

completely symmetric and of course c1 = c2 so we are restricted to the diagonal.

We therefore have three possible outcomes: (I, I) for low c values, (N,N) for high c

values; in between both (N, I) and (I,N) are possible. The asymmetric regions are

not possible if the Þrms are identical.
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p1Gp1{1-p2}G

p2{1-p1}G
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N,N only

N,I only

I,N only

I,I only

Both I,N & N,I

c1

c2

Figure 4: Equilibria of the DR&D game as a function of costs c2 and c2 and other
parameters.

There are two possible generalizations to an n-agent framework. Scenario 1 is

where the Þrm tries to keep the information proprietary but there is a probability

epj > 0 that any other Þrm obtains the information from Þrm j if Þrm j is successful.

Scenario 1 is the analog of the computer network case in that once the information

becomes public all Þrms can obtain the information, just as once a virus is spread

from one computer it affects all other computers. Scenario 2 is where the information

once discovered leaks, but only to one speciÞc Þrm. Let pji be the probability of a

leak from j to i if j is successful. Scenario 2 is the analog of the airline security case.

We examine Scenario 1 so that each Þrm undertaking investment provides a pos-

itive external effect to the others and in so doing reduces its own incentives to invest.

This external effect is referred to as technological spillover in the endogenous growth
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literature - see Aghion and Hewitt [1]. In this case the external beneÞts to Þrm 1

of four Þrms consist of terms such as the following where {2, 3, 4} , {3, 4} etc. now

denote the set of Þrms that are not investing in R&D:

X1 (4, {2, 3, 4}) = 0

X1 (4, {3, 4}) = Gep2

X1 (4, {4}) = G {ep2 + (1− ep2) ep3}

X1 (4, ∅) = G {ep2 + (1− ep2) ep3 + (1− ep2) (1− ep3) ep4}

If no other Þrms invest, then the external effects are clearly zero. If Þrm 2 invests (3

and 4 do not) then the expected gain to one is Gep2 : if Þrms 2 and 3 invest then we

have the expected gain from Þrm 2 plus the expected gain from Þrm 3 conditional

on there being no gain from Þrm 2 etc. This is the same pattern as in the computer

security case except that we are now dealing with gains rather than losses.

If Þrms in the set K are not investing in research then the total expected exter-

nality to Þrm 1 is given by

X1 (K) = G
X
j /∈K

epj Y
k<j,k/∈K

(1− epk) (12)

The condition for I to be a dominant strategy when there are n Þrms with all

investing is that

c1 < p1 [G−X1 (∅)] ≡ c1 (∅) (13)
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Here as before c1 (∅) is the maximum cost to agent 1 consistent with I being the best

choice for 1 when all other Þrms invest in research. We expect that X1 (∅) increases

with n, although unlike the identical agent case we cannot establish a precise limit.

If all agents are identical then from K-H [27] limn→∞X1 (∅) = G.

In the case of three Þrms we can conduct an analysis similar to the 2-person

case of the possible Nash equilibria. For the case of identical companies we Þnd the

following pattern of equilibria:

For c between zero and pG (1− ep)2 the only equilibrium is where all invest. For

pG (1− ep)2 < c < pG (1− ep) we have mixed equilibria where two Þrms invest and
one does not - there are three such equilibria and each is equally likely. Again there

are mixed equilibria for pG (1− ep) < cpG, in this case with one Þrm investing and

two not. Finally for pG < c the only equilibrium is where no one invests.

The 2 and 3-agent pattern of equilibria generalizes straightforwardly to the n-

agent case when all agents are identical - this is the case of the diagonal in Þgure

4.

In the n−agent identical case the regime changes for the Nash equilibria

occur at c values given by pG (1− ep)n−1 , pG (1− ep)n−2 , etc. For c <

pG (1− ep)n−1 all invest: for pG (1− ep)n−1 < c < pG (1− ep)n−2 all but

one invest, for pG (1− ep)n−2 < c < pG (1− ep)n−3 all but two invest, and

in general for pG (1− ep)n−k < c < pG (1− ep)n−k−1 all but k will invest.

There is an obvious intuition behind this result. The more individuals who invest in

R&D, the lower the cost will have to be for you to want to invest yourself.
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8.2 Gains for being first

Now we extend the results of the previous section by assuming that there is some

advantage to a Þrm that discovers the information Þrst, even if this eventually per-

colates to all the others. There could for example be a patent giving property rights

for a limited period of time, so that we are studying a patent race - see e.g. [8], [9].

Most literature on patent races assumes that all beneÞts accrue to the winner - here

in contrast we are assuming that some signiÞcant beneÞts accrue to others, perhaps

through the ability to licence inventions or to build on them, as in some of the models

in Aghion and Hewitt [1]. We formalize this by assuming that the payoff to acquiring

the information is F if you are the Þrst to do so, and G < F otherwise. In this case

the payoff matrix in the two Þrm case becomes

I N

I Y − c1+p1F+(1− p1) ep2G,Y − c2+p2F+(1− p2) ep1G Y − c1+p1F, Y+ep1G

N Y+ep2G,Y − c2+p2F Y, Y

and the condition for investing to be a dominant strategy for Þrm 1 is

c1 < p1 [F − ep2G]

Not surprisingly the range of costs for which investing can be a dominant strategy is

now larger and investment is more likely. In the many Þrm version of this case the

formula (12) still describes the externalities received by Þrm 1 when Þrms in K are
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not investing and formula (13) becomes

c1 < p1 [F −X1 (∅)]

with G replaced by F. In the identical Þrm case we have as before that

lim
n→∞X1 (∅) = G

Since G < F there is still an incentive to invest in R&D even with full spillovers and

a large number of Þrms.

9 Vaccination

The decision facing an individual deciding whether to be vaccinated against an infec-

tious disease is similar to the IDS problem in two respects. Catching these diseases

normally conveys immunity so that you can only catch the disease once. In other

words damages are non-additive. Secondly, the risk that each person faces depends

on whether others are vaccinated - security is interdependent. You can catch the

disease from the environment - i.e. from a non-human host - or from another person.

If everyone else is vaccinated then the remaining person faces only the risk of catch-

ing the disease from a non-human host. Like the R&D problem, there is less of an

incentive to adopt the vaccine as more people have protected themselves against the

disease.

Assume that it costs c to be vaccinated: this may reßect a combination of cash
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costs, psychological costs and possible adverse reactions. If someone catches the

disease then the total cost to them is L (for loss). There are non-human hosts for

the infectious agent, so that one can be infected even if no one else is. Cholera is a

disease of this type: cholera pathogens are resident in the environment even when

the disease is not present in humans. The alternative case can be formulated as a

special case of this more general situation. Smallpox appears to be a disease that

is not endemic in the environment, although a terrorist group could play the role

played by non-human hosts in the other case. In the absence of deliberate infection

by an enemy, we could not normally catch smallpox unless someone else were already

infected. We let p be the probability of catching the disease even if no one else has it:

this is the environmental risk of the disease, the background risk (positive for cholera

and zero for smallpox). i is the probability that someone who has the disease will

infect someone else who is not vaccinated, and ip is the chance of catching the disease

and infecting another susceptible person. Y is person i0s initial income or welfare,

the reference point from which welfare changes are measured. We denote the product

ip by q, as this will occur frequently.

In the two person case we have the following payoff matrix to the strategies of

being vaccinated (V ) and not being vaccinated (NV ):

V NV

V Y − c, Y − c Y − c, Y − pL

NV Y − pL, Y − c Y − pL− (1− p)qL, Y − pL− (1− p)qL

If both are vaccinated then each has a payoff of Y −c, initial income net of the cost
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of vaccination. If only one is vaccinated then her payoff is Y − c, and the other�s is

Y −pL: the latter person runs no risk of infection from the former as she is vaccinated

and by assumption cannot transmit the disease.

In the case in which neither individual chooses to be vaccinated, the payoffs are

the initial wealth Y minus the expected losses from two sources: (1) from an infection

from the environment pL and (2) from infection by the other person qL, which only

matters if you have not already been infected (1− p). From this payoff matrix it is

clear that:

1. When c < pL, (V, V ) is a Nash equilibrium.

2. For pL < c < pL+ (1− p) qL, both (N,V ) or (V,N) are equilibria, and

3. For (1− p) qL+ pL < c then (NV,NV ) is the equilibrium.

If the cost associated with a vaccination is sufficiently low then both individuals

will want to be protected. As c increases then only 1 person will want to be vaccinated.

If c is sufficiently high then neither person will want to be protected. This is likely to

occur if there is a sufficiently high probability of severe side-effects from the vaccine.

The critical values of c at which the equilibrium changes are the expected loss from

infection if the other person is vaccinated (pL), and the expected loss from infection

if she is not L (p+ (1− p) q). Here (p+ (1− p) q) is the probability of infection if

neither is vaccinated. As we shall see below, this structure persists as we consider

situations with more people. For a more general discussion of the vaccination problem

see Heal and Kunreuther [17].
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10 Conclusions

This paper has modeled the management of risks that are discrete and interdepen-

dent, and examines how groups of agents react to these risks. The combination of

non-additive damages and interdependence of risks gives rise to a novel intellectual

structure. This structure is common to a wide range of problems that include air-

line security, computer network security, bankruptcy and risk-management within

an organization, R&D and vaccination. A key aspect of all of these problems is

that all agents in the group face the same policy choice, and that the incentives

that they have to make this choice depend on the actions of others. The signs of

this interdependence vary in the different cases: we have strategic complementarity

in the airline and bankruptcy and network cases, and substitutability in the other

cases. Lakdawalla and Zanjani [29] also investigate ways in which the public sector

can be involved in reducing similar negative externalities. In addition Keohane and

Zeckhauser [26] discuss ways of dealing with externalities associated with terrorism

when there are threats that affect speciÞc individuals who can contaminate others.

They also review collective threats where the number of people exposed to a threat

affects the probability of a terrorist attack. This is another version of the problem

of endogenous probabilities that we consider in section 5.

Another application of our model, currently topical in the U.S., is to the man-

agement of failure risks in electric power grids. Such grids consist of a number of

networks transferring power between each other. Each faces a risk that the power

transmitted over its network will exceed capacity, causing a local failure that, if not
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effectively isolated, can shift power demand to other parts of the network and cause

them to be overloaded and fail. In interconnected networks the inability to isolate a

failure can cause the initial failure to propagate through the system, which is what

happened on 9/3/03. This situation has all the main characteristics of an IDS game:

risks are interdependent, the incentive to invest in failure prevention and isolation

is reduced if others do not do the same, and damages are non-additive in that once

a system has been closed by an overload, additional power surges can do no further

damage.

Another issue that has some resemblance to our models is that of bank runs

or panics (see Calomiris and Gorton [5], Diamond and Dybvig [10] and Chari and

Jaganathan [6]). In these situations the failure of one bank leads depositors to revise

their estimates of the safety of remaining banks and can lead to panic withdrawals

from these even though they were otherwise facing no risks of failure. This is obviously

similar to our concept of �contagion", the spreading of a risk from one agent to

another. Via this mechanism one bank behaving in an imprudent manner can impose

risks on others even though they themselves behave with the utmost caution.10 There

is however an element of our model that is not present in the models of bank panics

just cited: in our model the knowledge that one Þrm will underinvest in security will

reduce the incentives that others have to invest. Hence in equilibrium there may

be underinvestment all around. This is not a feature of the banking panic models,

10For a similar treatment of contagion in the context of insurance see Polonchek and Miller [31]
with respect to equity issuances by insurers. In their model an announcement of an issuance by an
individual insurers reveals information about the quality of the announcing Þrm�s portfolio as well
as the quality of rival Þrms� portfolios.
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although if the banks are aware of the contagion effect then perhaps it should be.11

An interesting feature of the Þrst three cases - airline security, computer network

security, bankruptcy and risk-management within an organization - is the possibility

of tipping. Tipping occurs when changes in the behavior of a small number of players

lead all the rest to change their strategies, thus transforming the equilibrium radically.

In such situations, one or a few players are likely to have great leverage over the system

as a whole. In our 3-agent numerical example a change of strategy from N to S by

one airline leads the other two airlines to also invest in security. Closely associated

with the possibility of tipping is that of cascading, where a change of strategy by one

agent causes a domino effect that leads a second to change, then a third, and so on

until all have changed, a classical �domino effect".

The policy implications are interesting: it may be that the private sector through

some coordinating mechanism (e.g. a trade association) or the government can iden-

tify those �inßuentials� or �opinion leaders� whom it is cost-effective to persuade to

change their positions. As noted in our example, the tax needed to inßuence the

minimum critical coalition is much less than that needed to inßuence all players. In

[27] we examine private and/or public sector policy interventions that could be used

to correct the underinvestment. These include taxes, subsidies, regulations, third

party inspections and the use of associations and other coordinating mechanisms.

The equilibria for IDS problems are often inefficient because of the negative ex-

11There is a literature on �fads" and their social transmission which could be thought of as mod-
elling a contagion process -see Bikhchandani Hirshleifer and Welch [3]. However the underlying
motivation is rather different from ours - there is no element of risk management or risk spreading
in those models.
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Figure 5: Event tree for the four Þrm case.

ternal effects between parties. The social return to an investment (in protection,

in R&D, in risk management or in infection-prevention) is greater than the private

return, thus leading to under-investment. In the special cases in which all agents are

identical and the number of agents is very large, we can quantify the under-investment

because we have a simple expression for the incentive to invest in security. In the com-

puter network case this incentive approaches zero and in the airline security case it

is reduced to about 60% of what its value would be in the absence of external effects.

11 Appendix

The event tree in Þgure 5 shows the possible ways in which a bag can explode on

airline 1 when there are four Þrms in total and none have invested in security. A
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bomb may or may not be transferred from 2, and then may or not be transferred

from 3, and then likewise from 4. If 1, 2 or 3 bombs are transferred, the loss is still L.

This means that the expected externality imposed on Þrm 1 is, as stated in section 2

X1 (4, ∅) = L {p21 + (1− p21) p31 + (1− p21) (1− p31) p41}

Proposition 2. Assume that pij = epi∀j 6= i. If there is a minimal critical

coalition of k < n agents then it must consist of the Þrst k agents ranked by ∆i {∅}

or equivalently by epi
Proof. To tip a Nash equilibrium from one at which none invest to one at which

all are investing requires that the minimum cost at which investing is justiÞed be

raised from below to above the cost of investing for all other than those in the critical

coalition. Formally this means that in the initial situation ci > ci (∅)∀i but in the

Þnal situation ci < ci (I)∀i /∈ I where the agents in the set I are investing in security

and form a critical coalition. Now from equation (3) ci (∅) = pii [L−Xi (∅)] and

ci (I) = pii [L−Xi (I)] . As agents in I change strategy the changes in the maximum

cost consistent with investing in security are ci (I)− ci (∅) and to tip the equilibrium

it is necessary (and sufficient) that ci (I) − ci (∅) ≥ ci − ci (∅)∀i /∈ I. Rank agents

by the size of ∆i (∅) , without loss of generality ordering them so that ∆1 (∅) ≥

∆2 (∅) ≥ ∆3 (∅) ≥ ...... If agent 1 switches then maximum cost consistent with

investing rises by pii∆i (∅)∀i /∈ I. If agents 1 and 2 switch then the returns rise

by pii (∆1 (∅) +∆2 (∅)), etc. Let max
i/∈K

[ci − ci (∅)] ≤ pii
³P

j≤k∆j (∅)
´
where k is the

smallest number for which this holds. ThenK is the minimum critical coalition where
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K = {1, 2, ....k} are the Þrst k agents ranked by ∆j (∅) .

Proposition 4 Under the assumption of the paper, a Nash equilibrium in pure strate-

gies exists for the models of sections 2 and 5.12

Proof. We prove existence of an equilibrium constructively, giving an algorithm

which will terminate by locating an equilibrium. We consider the model of section 2:

essentially the same argument will apply for the other models considered in the text.

First set all strategies at Y, so that all Þrms are investing in security. If each

Þrm is playing a best response we have an equilibrium and we are done. Suppose

that without loss of generality the Þrst k Þrms are not picking best responses at

this conÞguration: change their strategies to N. It is clear that for these Þrms N

is a dominant strategy, as when all others are picking S their environment is most

conducive to S being the best strategy. If some other Þrm switches from S to N then

this can only make N more attractive to Þrms from 1 to k : hence N is a dominant

strategy for them. Next check whether we have an equilibrium when Þrms 1 to k

choose N and k + 1 to n choose S. If yes, we are done.

If not, there are some Þrms in k + 1 to n for which N is the best response to the

strategies now being played by the others: change their strategies to N. Now check

again if we have a Nash equilibrium. If yes, we are again done. If not, proceed as

before: change the strategies of the Þrms for which S is not a best response to N .

This process will terminate either when all Þrms are choosing N, which will be

a Nash equilibrium, or at a point when there is a Nash equilibrium with some Þrms

12This argument is taken with grateful thanks from Michael Kearns, personal communication [23].
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choosing N and others choosing S.

Next we extend this argument to the case of endogenous probabilities considered

in section 5. For the argument to work in this case we require that it still be the case

that a Þrm is most likely to choose S when all others are also choosing S and that if

in such a situation it chooses N then it will always choose N . But this is implied by

the assumption of section 5 that the total externality imposed on a Þrm decreases as

the number of other Þrms investing increases. Hence the same argument applies in

the case of endogenous probabilities.
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