
 1 

Facilitating Pareto-Optimal Coordination by Subsidies in Deterministic 
and Stochastic Payoff Settings 

 

Ming Gong, Geoffrey Heal, David H. Krantz, Howard Kunreuther and Elke Weber 

JAN 16 2011 

 

Abstract 

 

Can subsidies promote Pareto-optimum coordination? We found that partially subsidizing 2 

out of 6 players in a laboratory coordination game usually produced better coordination and higher 

total payoffs both with deterministic and stochastic payoffs. After removing the subsidy, high 

coordination continued in most groups with stochastic payoffs, but declined for groups with 

deterministic ones. A post-game survey indicated that decision justifications differ between 

deterministic and stochastic payoff settings. Temporary subsidies seem to promote lasting 

coordination in risk reduction, whereas in a deterministic setting, subsidy may be 

counterproductive, because it crowds out other rationales for coordination. 

 

 

 
1. Introduction  

 
In many situations, individual agents in an interactive game or a social network 

reinforce each others’ decisions. Examples include Schelling’s (1978) tipping points 
on racial composition in a neighborhood, and Leibenstein’s (1950) “bandwagon 
effects” in which one agent’s demand for a good increases with others’ demand level.  

The existence of such mutual reinforcement has been captured by coordination 
games with multiple Pareto-ranked Nash Equilibria (NE). Interdependency among 
airlines with respect to luggage security (Kunreuther and Heal 2003) is an example of 
such coordination. Airline companies face the decision whether to invest in luggage 
security screening equipment. The new equipment will greatly reduce its risk of 
terrorist bombs, but the company still faces indirect risk of unsafe luggage transferred 
from other airlines who decide not to invest in the screening equipment. The Pareto 
preferable equilibrium is that all airlines invest and eliminate the risk. A second 
equilibrium is that no airline invests because of the high indirect risk from 
non-investing airlines. Other examples of interdependent security (IDS) include 
wildfire protection decisions (Shafran and Flores, 2008), computer network security 
update (Kearns 2004), and failure of divisions in organizations to invest in risk 
reducing measures (Kunreuther and Heal 2005;  Kunreuther 2009)  

Another real-world coordination problem is the garbage disposal decision 
households face daily in some communities in China. Often 20-30 households share a 
garbage bin outside of their apartment building. For unknown reasons, some residents 
tend to leave their garbage outside of the bin. This behavior may affect others’ in at 
least two ways. First, once the garbage left outside accumulates, others need to step 
on those outside garbage in order to dump their own garbage into the bin, which 
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imposes an extra cost. Second, it sends a signal that littering is acceptable in this 
community, thus reducing the psychological cost of breaking a social norm to keep 
the public area clean. A Nash equilibrium is reached when everyone starts to leave the 
garbage outside. The inferior Nash equilibrium of littering outside the bin is so 
common that during the 2008 Beijing Olympic season, one of the slogans was 
actually “Learn to be Civilized and Dump your Garbage in the Bin”. Obviously, the 
more preferable Nash equilibrium of disposing of garbage in bins provides everyone 
with a cleaner environment at virtually no additional cost.  

Note the difference between the garbage disposal game and the airline security 
example. The airline security example is a coordination game in a stochastic setting, 
with an outcome that depends not only on the degree of cooperation (how many 
airlines invest in protection) and nature’s move (whether or not there is a terrorist 
attack). The garbage disposal coordination game involves deterministic outcomes and 
with the outcome depending only on the degree of coordination i.e. the number of 
individuals who leave garbage outside of the bin. Other deterministic examples with 
Pareto-ranked equilibria include hiring private tutors for one’s children for them to 
achieve better grades than others in their class, or using commercial software instead 
of open source software.    

The above examples illustrate social reinforcement in which positive decisions 
by a few individuals are likely to lead others to follow suit. Recently, Heal and 
Kunreuther (2009) modeled this behavior in a game theoretical framework by 
showing that changes in the decisions by a subset of players can theoretically shift the 
system from one equilibrium to another. External incentives given to an appropriate 
set of players can lead to cascading or tipping so the system reaches the socially 
optimal equilibrium. One obvious external intervention is to subsidize a subset of 
players.1  
 

2. Role of Incentives in Coordination Games 
 
This paper investigates how people respond to positive incentives in an 

interdependent coordination game. Rational choice theory predicts that subsidies 
promote the Pareto optimum, if non-subsidized players believe that this optimum is 
easier to be attained, given that subsidized players are more likely to choose the 
Pareto preferable option. REF. On the other hand, human motivation typically is more 
complex than suggested by rational choice theory and not necessarily purely 
consequentialist. For example, the research on the overjustification effect in 
psychology reported that expecting rewards reduced intrinsic motivations for 
previously enjoyable activities (Lepper et al. ,1973; Greene et al., 1976).  

More recently, behavioral economists began to test the relationship between a 

                                                        
1 Zhuang et al. (2007) present a dynamic theoretical model of interdependent 

security where the probability of losses evolves over time and the agents have 
heterogeneous discounting rates. Zhuang et al. conclude that subsidy is more efficient 
if allocated to those agents least likely to improve security on their own. 
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specific kind of reward, financial reward, and motivation. Motivation crowding theory 
(Frey and Jegen, 2001) suggests that external monetary intervention, such as a subsidy 
or a financial punishment, may undermine intrinsic motivations, by changing either 
the decision maker’s preference, or changing her perception of the task.  

In a field study, Meier (2007) found that using subsidies to encourage the 
provision of one type of public good, charitable giving, promoted the willingness to 
contribute in the short run, but had a negative net long run effect by reducing 
aggregate contributions. Meier proposed several possible underlying reasons for this 
crowding-out effect include such as incentives undermining pro-social motivations, 
such as a sense of responsibility, trust between donors and the magnitude of 
contributions being reduced by the subsidy. Conditional cooperation can be 
compromised if incentives lead individuals to conclude that nobody will contribute in 
the absence of the incentive.  

More generally, in coordination games the players’ strategies depend not only 
on their own preferences and motivations, but also on their perception of those of the 
others. Subsidies could potentially “crowd out” other reasons for a given choice of 
strategy, which may cause players to be even less willing to choose the Pareto 
preferable option.  

Coordination in stochastic settings may differ from coordination with 
deterministic payoffs with similar payoff structure as illustrated above in comparing 
investment in airline security and disposing of garbage. Berger and Hershey (1994) 
found subjects less likely to contribute to a public good when returns were stochastic 
rather than deterministic. Gong et al. (2009) report that individuals are less 
cooperative than groups in deterministic prisoner’s dilemma games but more 
cooperative than groups when the outcomes are stochastic.  

We now briefly review previous experimental work on coordination games in 
both deterministic and stochastic settings. Experimental studies on coordination 
games in deterministic settings have attracted much attention over the past two 
decades. The existence of multiple equilibria in coordination games makes it difficult 
to predict which equilibrium a system will reach. The problem is thus an empirical 
one. Following Van Hayck et. al (1990, 1991), we hereafter refer to failing to reach 
the Pareto optimum equilibrium in a coordination game as coordination failure. 
Previous experimental research has found that coordination failure is common in the 
lab, but that coordination can be improved by a variety of methods (for a review, see 
Camerer, 2003).  

Camerer (2003) divides coordination games into three categories: matching 
games, e.g. beauty contest game; games with asymmetric payoffs, e.g. battle of sex; 
and games with asymmetric equilibria, e.g. stag hunt game. The game type most 
related to our work is the order-statistic game with multiple Pareto-ranked Nash 
equilibria (Van Hayck et. al, 1990,1991) of which the stag-hunt game is a special case. 
In a typical order-statistic game, N players each choose among a fixed set of actions, 
(X1, X2, ...., Xn). A player’s payoff is increasing in the order-statistic of all players, 
usually the median or minimum of the chosen actions, and decreasing in the deviation 
of the player’s choice from the order-statistics. This game mimics a real-world 
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decision faced by team members: the production level depends on the median 
person’s effort or the minimum effort, and people prefer not to work too hard or too 
little. Multiple Pareto-ranked Nash equilibria exist in an order statistic game: all 
players choosing X1, or X2, …. , or Xn. Depending on the nature of the order statistic, 
usually there is a payoff-dominant or efficient equilibrium in which all players choose 
the highest action to maximize the payoffs, and a secure equilibrium in which all 
players choose the action that maximize the lowest possible payoff.  

Previous research finds that people often fail to reach the payoff dominant 
equilibrium and fall into the security equilibrium that yields lower payoffs. Different 
studies have tested different ways to encourage coordination, such as lowering the 
attractiveness of the secure action (Brandts and Cooper, 2004), reducing deviation 
cost from the order statistic (Goeree and Holt, 2005), smaller group size (Van Huyck 
et al., 2007), and communication and information sharing (Van Huyck et al., 1993; 
Chaudhuri et al., 2005).  

One method that is particularly relevant to our research on subsidy is charging 
an entry fee to encourage coordination. Subjects in Cachon and Camerer (1996) 
coordinate to an equilibrium with higher payoffs when they have to pay an entry fee 
than when there is no fee, because players use “avoid losses” as a selection principle 
which leads to an expectation that others will try to avoid losses as well, and choose 
an equilibrium with a positive payoff after the entry fee is subtracted. In a sense, the 
entry fee functions as a negative subsidy that changes both the players’ preferences 
and their expectation of other players’ preferences. A more complete review on the 
order statistic game, including the stag-hunt game, has been provided by Devetag and 
Ortmann (2007).  

The games characterizing the experiments in this paper also belong to the 
category of critical mass games. In a critical mass game, players usually make binary 
decisions (X or Y), and once a threshold of players choose X (Y), all other players can 
be expected to follow X(Y). Urban segregation and weekly seminars participation are 
typical examples of a critical mass game (see in Schelling (1978) for more details)  
as are the threshold public good games in which a public good is provided once the 
total contribution meets or exceeds a threshold value (Van de Kragt et al., 1983; Isaac 
et al., 1989). In a critical mass game, information about other player’s historical 
decisions and increasing returns above the critical mass are encourage players to reach 
the efficient equilibrium (Devetag 2003). 

An additional complication arises in situations characterized by the presence of 
uncertainty, such as the IDS game. In a stochastic coordination game, the decisions of 
the agents depend on both their expectation of others’ actions and their own risk 
preferences. For example, Hess et al. (2007) find that coordination failure is common 
in an IDS game in which players simultaneously make decisions to coordinate 
investment to reduce the probability of losses, but coordination is improved when the 
degree of interdependency is small relative to the overall risk, or when decisions are 
made sequentially.  probably because making decisions in sequence increases the 
leader’s expectation on others following her strategy. 

To determine potential reasons for previously observed differences between 
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successful and unsuccessful coordination in stochastic and deterministic settings, we 
studied subsidy effects in both types of coordination game. In light of the disparity 
between the positive short-term effect and negative long-term impact of subsidies  
reported by Meier (2007), we also tested whether provision of a subsidy carried over 
to subsequent non-subsidized periods. Our results show that that partially subsidizing 
2 out of 6 players in a laboratory coordination game usually produced greater 
coordination and higher total payoffs, especially in a stochastic setting where subsidy 
had a significant effect in tipping some groups into the Pareto-optimum equilibrium. 
After removal of the subsidy, high coordination continued in most groups with 
stochastic payoffs, but declined with deterministic ones. A post-game survey indicated 
that decision motivations may differ between deterministic and stochastic settings. 
Temporary subsidies may promote lasting coordination whereas subsidy may be 
counterproductive in a deterministic setting because it crowds out other bases for 
coordination. 

Section 3 describes the study design, Section 4 describes our results. 
Implications are discussed in Section 5.  

 
3. Experimental Design 

 
3.1 General Setup 
We conducted two games: a stochastic coordination game and a deterministic 

one. The stochastic game is based on the IDS game by Kunreuther and Heal (2003), in 
which n players each need to make a discrete decision, strategy A or B. All players 
face the possibility of a local security breach with probability p of losing L. Strategy A 
can eliminate the local breach risk at a cost of C. Besides the local breach, a player 
also faces possible interdependent security breaches, i.e., cross breaches from other 
players. If any player suffers a loss, all other players have a probability q of being 
contaminated and losing L. Players can only suffer the loss once, either from the local 
breach or the cross breach. Each player’s initial wealth is Y.  

Letπ(i, m) denote the payoff of a player who chooses strategy i when m out of 

n-1 other players choose strategy A, and }.,{ BAi  The player’s expected payoff for 

choosing A or B when no other players choose A are given respectively by  
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On the other hand, if all other players choose A, then  
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and 

pLYnB  )1,(                                  (4) 
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In a coordination game,π(A,0) <π(B,0), andπ(A,n-1) >π(B,n-1). That is, a 
rational and risk neutral agent will choose A (B) if all other players choose A (B). 
Thus there are two Pareto-ranked NEs, all-A and all-B. All-A is the preferable 
equilibrium. Depending on the values of the parameters, there is a tipping point s at 

which ),(),( sBsA    and )1,()1,(  sBsA  .  

Howard and Geoff, can you double check to make sure that the above are 
correct?  

 
2.2 The Coordination Games  
There were 6 players in a game. The parameters were chosen so that the 

tipping point was 4. That is, if 4 or more players chose A, a player had a higher 
expected payoff by also choosing A than B. Otherwise, the player should choose B. A 
fictitious currency (Talers) was used with 50 talers equal to $1. The parameters in our 
game were p=0.4, q=0.2, Y=2000 Talers (exchangeable for $40), C=32 Talers, L=100 
Talers, n=6, and s=4. Table 1 shows a player’s probabilities of suffering a loss when 
she chose A or B as a function of other players’ decisions. 
 

Table 1: Probabilities of Losing 100 Talers in the Stochastic Game 
Number of Other Players Who Choose 

Option A 
 

0 1 2 3 4 5 
Option A (cost= 32) 67%  59%  49%  36%  20%  0% Your  

Choice Option B (cost= 0) 80%  75%  69%  61%  52%  40%  

 
As shown in Figure 1, the expected loss of strategy B is less than the expected 

loss (including the cost of choosing A) of strategy A until at least 4 players choose A. 
Theoretically if less than 4 players choose A, the system tips to the Pareto-inferior 
equilibrium, all-B. Otherwise, the system converges to the Pareto-superior 
equilibrium, all-A. Both equilibria were observed in our study.  

Note that in Figure 1, there is a third line that represents the expected loss from 
Strategy A for subsidized players. The subsidy is set to be 22 Talers. That is, those 
who are subsidized pay 10 Talers a the cost of Strategy A instead of 32 Talers. For a 
risk neutral subsidized player, the expected loss of strategy A is always less than that 
of strategy B.  
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Figure 1: Expected Loss in the Coordination Game 

 

 
To create a corresponding deterministic game, we removed the uncertainty of 

payoffs in the stochastic game and provided players with the expected value of each 
cell in the stochastic game, as described in Table 2. 

 
Table 2: Possible Losses in the Deterministic Game 

 
Number of Other Players Who Choose 

Option A 
 

0 1 2 3 4 5 
Option A (cost= 32) 67 59 49 36 20 0 Your  

Choice Option B (cost= 0) 80 75 69 61 52 40 

 
 
2.3 Four Conditions  
 
A 2X2 between-subject design:  (Subsidy vs. Baseline) X (Stochastic Game 

vs. Deterministic Game), allowed us to test the effect of a subsidy in promoting the 
Pareto-optimum equilibrium in coordination games, and to look for an interaction 
between subsidy provision and the stochastic/deterministic setting. 

As in most coordination studies, we ran repeated games to allow for learning 
and convergence to the equilibria. The same 6 players play 20 periods of the same 
game in a session. Each player was given 2000 Talers at the beginning of the session. 
As shown in Table 1, in each period a player’s probability of suffering a 100-Taler 
loss, X%, depended on both their own and other players’ decisions. The server 
computer then generated a random number between 0 and 100. If the random number 
was smaller or equal to the value of X, the player lost 100 Talers. The losses over the 
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20 periods were accumulated and deducted from players’ initial wealth. Participants 
were told that there was a 20% chance that their final payoff would depend on their 
number of Talers at the end of the game. Before making their decision between option 
A and B in each period, players also indicated how many other players they expected 
to choose A. After each period t, players were given information on their loss, 
accumulated losses, wealth level, and number of players choosing A in all past periods, 
including period t.  

We tested whether there was a carry-over effect of subsidy by running a 
second session in each condition. At the beginning of Session 2, players’ wealth level 
was restored to 2000 Talers. The same 6 players played the same type of game 
(stochastic or deterministic) for another 20 rounds, with the subsidy removed for 
those who were given a subsidy in Session 1.  Players were not aware of the 
existence of Session 2 until they finished Session 1.  
 

2.4 Participants and Procedure 
 
288 people (48 6-person groups) participated in the study. 82% of participants 

were between 18 and 25 years old, and 62% were females. All were paid a $10 
show-up fee. 20% were randomly chosen to be paid the dollar values of Talers they 
earned in the game.  

The study was conducted in the behavioral labs of two northeastern universities 
using Z-tree, a software package for developing economic experiments (Fischbacher, 
2007). Each player was provided with a personal computer to make her decisions, 
with the computers of the six group members in the same room, but in separate 
cubicles to provide anonymity. Participants were not allowed to talk to each other. 
Instructions were read aloud to insure that the rules and payoff structure of the game 
were common knowledge, an important consideration in examining how players 
formed their expectation of other players’ decisions.  

After reading the instruction and before playing the game, all participants were 
required to complete a quiz that contained questions regarding the game, the 
procedure, decision method, payment information etc., At the end of the experiment, 
participants answered a survey that provided information about their risk preferences 
(Holt & Laury (2002?),  their reasons for choosing A or B, and demographics. 

 
4. Hypotheses and Results 
 
4.1 Hypotheses 
We tested the following hypotheses: 
 The General Subsidy Effect Hypothesis.  
H1: Players are more likely to choose Strategy A with subsidy than without 

subsidy in both the stochastic and deterministic game. H1 was tested using the 
between-subject data from 48 groups in Session 1 only. 

The Subsidy Carry-over Effect Hypothesis. 
 H2: The higher cooperation rate in Session 1 due to a subsidy is sustained 
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after the subsidy is removed. H2 was tested using data from Sessions 1 and 2.  
 
4.2 Results for Session 1 
Average cooperation rates (percentage choosing A) across periods in the 4 

conditions are reported in Table 3. We first focus on the data from Session 1. Random 
effect logit regressions confirmed H1, i.e., players were more likely to choose 
Strategy A with a subsidy than without a subsidy (p<0.01) after controlling for  
period and individual subject differences. The complete regression results are reported 
in Table 4. Note that the rate of coordination dropped over time, consistent with 
previous studies and learning from feedback over time. Social welfare, computed as 
summed payoff minus subsidy cost, was 7% higher in the subsidy conditions than in 
the baseline conditions in both the deterministic and stochastic settings. Note that the 
coefficient for Period is negative (p<0.05), indicating that the coordination level 
decreased over time. This is consistent with previous findings in coordination games 
(reference to be added).  

 
Table 3: Percentage of Choosing A in the Four Conditions 

Name DB1-DS2 DS1-DB2 SB1-SS2 SS1-SB2 

# of 

6-Person 

Groups 

13 13 10 12 

 Description Percentage Description Percentage Description Percentage Description Percentage 

Session 

1 

Deterministic- 

Baseline 
0.64 

Deterministic 

–Subsidy 
0.74 

Stochastic- 

Baseline 
0.71 

Stochastic- 

Subsidy 
0.79 

Session 

2 

Deterministic- 

Subsidy 
0.79 

Deterministic- 

Baseline- 
0.68 

Stochastic- 

Subsidy 
0.76 

Stochastic- 

Baseline 
0.79 

 
Table 4. Random Individual Logit Model for Choosing Strategy A in Session 1 

 
Variable Coefficient Standard Error z value Pr(>|z|) 
Dependent 
Variable 

    

Choosing A     
Independent 
Variables 

    

Constant 1.23 0.26 4.68 0.00 

Stochastic Game 0.57 0.31 1.86 0.06 

Subsidy 0.98 0.31 3.19 0.001 

Fixed Effects     

Period -0.01 0.006 -2.06 0.04 

Rho 5.76 2.40   

Log likelihood -2422 

Sample size 5760 

 
Figure 2 provides more details on the average cooperation rate in each period. . 

The unit numbers on the y-axis correspond to the number of players choosing A. For 
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example, the cooperation rate on the y-axis is 0.17 if only 1 out of 6 players in that 
group chose A. At the first sight, it appears that the subsidy effect in encouraging 
players to choose A are similar in the stochastic and deterministic game, except that 
players were somewhat more likely to choose A in the stochastic game than in the 
deterministic game (p<0.10). The average cooperation rates, however, mask important 
group differences and decision dynamics in different periods, as shown in Table 5 and 
Figure 3.  

Figure 2: Cooperation Rates in Session 1 

 
Table 5 reports all 48 groups’ cooperation rates in the 20 periods of Session 1, 

grouped into Period 1-5, 6-15, and 16-20. Again, group averages in each period 
category confirm H1, namely that subsidy encouraged players to choose Option A. 
The subsidy-induced coordination improvement occurred at the beginning periods 
(Period 1-5) and was sustained through the game. This suggests that the subsidy 
changed participants’ expectations of the number of other players who might choose 
Option A and the options chosen by others over time confirmed these expectations. 

  
Table 5: Average Cooperation Rates in each Group by Periods in Session 1  
 

Stochastic – Baseline 

Group Number  
6 7 9 10 22 23 30 31 32 33    Average 

Period 1-5 1.00 0.47 0.73 0.57 0.67 0.80 0.93 0.83 0.43 0.93    0.74 

Period 6-15 1.00 0.62 0.43 0.33 0.77 0.80 0.90 0.80 0.57 0.80    0.70 

Period 16-20 1.00 0.67 0.27 0.67 0.77 0.67 0.83 0.80 0.40 0.77    0.68 

All Periods 1.00 0.59 0.47 0.48 0.74 0.77 0.89 0.81 0.49 0.83    0.70 

Stochastic - Subsidy 

Group Number  
5 11 12 13 18 19 20 21 35 37 38 39  Average 

Period 1-5 0.77 0.80 0.80 0.63 0.80 0.80 1.00 1.00 0.83 0.93 0.53 0.83  0.81 

Period 6-15 0.77 0.80 0.58 0.83 0.73 0.80 0.98 0.98 0.87 0.98 0.50 0.67  0.79 

Period 16-20 0.87 0.83 0.57 0.90 0.73 0.70 0.87 1.00 0.77 1.00 0.37 0.63  0.77 

All Periods 0.79 0.81 0.63 0.80 0.75 0.78 0.96 0.99 0.83 0.98 0.48 0.70  0.79 

Subsidy Effect in the Stochastic Game
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Deterministic - Baseline 

Group Number  
1 2 15 24 28 29 34 36 45 46 47 48 49 Average 

Period 1-5 0.57 0.90 0.77 0.80 0.20 0.27 0.50 0.53 0.60 0.53 1.00 0.63 0.67 0.61 

Period 6-15 0.37 1.00 0.98 0.90 0.70 0.07 0.35 1.00 0.28 0.43 1.00 0.52 0.92 0.66 

Period 16-20 0.37 1.00 1.00 0.97 0.63 0.07 0.20 0.97 0.13 0.20 0.97 0.83 1.00 0.64 

All Periods 0.42 0.98 0.93 0.89 0.56 0.12 0.35 0.88 0.33 0.40 0.99 0.63 0.88 0.64 

Deterministic - Subsidy 

Group Number  
3 4 14 16 17 25 26 27 40 41 42 43 44 Average 

Period 1-5 0.73 0.70 1.00 0.53 0.43 0.70 0.83 0.97 0.53 0.53 0.93 0.40 1.00 0.72 

Period 6-15 0.73 0.85 1.00 0.77 0.75 0.55 0.98 0.98 0.57 0.50 0.95 0.45 1.00 0.78 

Period 16-20 0.60 0.80 1.00 0.33 0.47 0.57 1.00 0.97 0.53 0.40 0.97 0.47 0.97 0.70 

All Periods 0.70 0.80 1.00 0.60 0.60 0.59 0.95 0.98 0.55 0.48 0.95 0.44 0.99 0.74 

 
 
It is instructive to ask whether the expectations regarding the cooperation rate 

differed between subsidized and unsubsidized players. The rational theory discussed 
in the beginning of the paper predicts that the unsubsidized players would increase 
their expectation of the coordination rate when realizing that the two subsidized 
players would probably choose A. The subsidized players would also predict a higher 
coordination rate for the same reason. Bounded rationality and finite attention and 
limited information processing capacity (e.g, Simon, 1957) predicts that the effect of   
a subsidy would be more salient to the subsidized players than the unsubsidized 
players, because the subsidized players actually received a rebate if they chose A. Iin 
contrast the unsubsidized group who were told that others were able to incur a lower 
cost of investing in A than they were (Hertwig et al., 2007). 

The random effect (individual subjects) regression results in Table 6 confirm 
these predictions. Compared with the players in the Baseline conditions, unsubsidized 
players in the Subsidy condition had inflated expectations on how many others 
players would choose A (p=0.01), confirming the tipping theory. Their expectations, 
however, were lower than the expectations of those subsidized players, consistent 
with the bounded rationality predictions. The increase in expectations affected the 
behavior:  the unsubsidized players in the Subsidy condition were more likely to 
choose A than players in the Baseline condition (p=0.05, one-tail z test). As will be 
shown in Figure 3, in some groups, this expectation and behavior change resulted in 
the whole group tipping toward the All-A equilibrium. Similar results are found when 
using data from the 1st period, or from the first five periods only. 

 
Table 6. Subsidy Effects on Expectations 

 
Variable Coefficient Standard Error t value Pr(>|z|) 
Dependent Variable     
Expectation on the number of others choosing A     
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Independent Variables     
Constant 3.57 0.11 33.72 0.00 

Players in Baseline Condition -0.30 0.12 -2.74 0.01 

Subsidized Players in Subsidy Condition 0.08 0.04 2.16 0.03 

Stochastic Game 0.09 0.12 0.76 0.45 

Period 0.01 0.002 6.30 0.00 

Log likelihood -8302 

Sample size 5760 

 
We now turn to differences in reaching successful coordination in the last five 

periods for the four different conditions. Figure 3, showing  average cooperation 
rates in Period 16-20 of Session 1, reveals interesting and important similarities and 
differences between the stochastic and deterministic games. First, there is a clear 
pattern that subsidy did improve the cooperation rates in both games. Second, both 
Nash equilibria, all-A and all-B, were observed in the study, although a large number 
of groups never reached the theoretically predicted equilibria. No groups were trapped 
in the inefficient equilibrium with subsidy in either games, because, as the payoff 
graphs shows in Figure 1, for the two subsidized players, choosing A is always 
preferable than B, even when there are no other players choosing A. The data confirm 
that the subsidized players chose option A  91% of the time.  

 
Figure 3: Cooperation Rate in Groups in Period 16-20 in Session 1  
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Third, as the theory predicted, subsidy tipped some groups toward the 

Pareto-superior equilibrium. Recall that the tipping point for choosing A based on the 
rational theory prediction is the expectation that 4 other players will choose A. Hence 
we define an efficient equilibrium as 5 or more players choosing A (i.e., cooperation 
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rate equal to or greater than 0.83) in the last 5 periods, and an inefficient equilibrium 
as 2 or fewer players choosing A (i.e., cooperation rate equal to or smaller than 0.33) 
in the last 5 periods.  

The tipping effect of the subsidy is clearly illustrated in the stochastic game. In 
the Stochastic-Baseline condition, only 2 out of 10 groups (20%) had a cooperation 
rate over 0.83, only one group converged on the inefficient equilibrium, and the 
majority of the groups were stuck in middle, between the two NEs. In the 
Stochastic-Subsidy condition, however, 6 out of 12 groups (50%) successfully 
reached the efficient equilibrium.  

Fourth, although subsidy also improved the average cooperation tendency in 
the deterministic game, there is a noticeable difference in the patterns of how subsidy 
functioned in the two games. 13 of the 15 groups in the Deterministic-Baseline 
condition reached the predicted NEs, consistent with previous research (Van Huyck et 
al., 1997; more ...). In particular, 7 groups reached the efficient equilibrium, and 4 
groups clustered at the inefficient equilibrium, and only 2 groups settled between the 
two NEs. In the Deterministic-Subsidy condition, the majority of   the groups had 
2-4 players choosing A, i.e., no group converged into the inefficient equilibrium; 
however, fewer groups reached the efficient equilibrium than in the baseline 
condition.  

To summarize, subsidy improved coordination in the stochastic game by 
tipping half of the groups towards the efficient equilibrium, and by diverting one third 
of the groups away from the inefficient equilibrium. However, several questions 
remain unanswered by the data. For instance, why do players show a dichotomous 
pattern in the Deterministic-Baseline condition, but cluster in the middle in the 
Stochastic-Baseline game?  

Why does subsidy help the divided groups in the stochastic game to reach the 
efficient equilibrium, but not those in the deterministic game? The post-game survey 
provides some tentative answers to these questions. Players’ decision in the stochastic 
game depends not only on their expectation of what others will do, but also their own 
risk preferences. The risk preference data collected in our post-game survey 
confirmed that the more risk-averse a player was, the more likely she would choose 
Strategy A to reduce her chance of suffering a 100-Taler loss (p<0.01) whether or not 
she was subsidized. 78% of the players in the stochastic game considered A to be a 
safer option than B.  Players with a high degree of risk aversion may thus always 
prefer A to B, even when they expect others to choose B. This would explain why we 
rarely observed the All-B equilibrium in the Stochastic-Baseline condition. 
Risk-seeking players may decide not to pay the cost of choosing A, even though they 
expect others to do so, explaining why we observed only two groups reaching the 
All-A equilibrium. 

How does subsidy function differently in the deterministic and stochastic game? 
To answer that question, we first analyze how subsidy changes the decisions of the 
divided groups??? and encourage them to reach the efficient equilibrium in the 
stochastic game. On the one hand, subsidy encourage subsidized players to choose A, 
because, at a cost of 32 Talers, some players may be willing to take the risk instead of 
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paying the cost, while others prefer to pay the cost to reduce the risk. With the subsidy, 
those who would have chosen B without subsidy now consider the cost level of 10 
Talers to be worth it for the risk reduction, and switch to A. On the other hand, the 
tipping process discussed earlier may be at work to encourage unsubsidized players to 
choose A in that the unsubsidized players foresee the changes in the subsidized 
players, increase their expectation of the number of players choosing A, and switch 
from B to A. 

 For example, as shown in Table 1, a moderately risk averse player may expect 
only one other player to choose A, and decide that it is not worthy 32 Talers to reduce 
the risk of losing 100 Talers from 75% to 59%. Assume that this player is not 
subsidized but believes that 2 subsidized players will choose A. She is now willing to 
pay 32 Talers to reduce her risk from 61% to 36%. This is not the case in the 
deterministic game. The expectation question data proves that the average expectation 
of the efficient groups in the stochastic game is significantly lower than that in the 
deterministic game (4.5 vs. 4.1, p<0.01), indicating that a lower tipping point is 
probably required to change players’ strategy from B to A in the stochastic game.   

Note that in the above example, an unsubsidized player increases her 
expectation of others choosing A from one player to three players by adding two 
subsidized players. That is, we assume that the unsubsidized player is a naïve decision 
maker and does not take into account of the subsidized players’ initial tendency to 
choose A without subsidy or believes that the subsidized players will not choose A 
without subsidy. In the lab or real world, the expectation formation process is 
probably much more complicated than simply adding the number of the subsidized 
players (2 in this case) to the expectation. People may add a fraction of 2, or adjust it 
only when their initial expectation is below 2. They may even decrease their 
expectation if their initial expectation is above 2 and they suspect the existence of a 
crowding-out effect, as mentioned in the literature review. The fact that fewer groups 
reached the efficient equilibrium in the Deterministic-Subsidy condition than in the 
Deterministic-Baseline condition is an indication that there might be a crowding-out 
effect for some groups. We will revisit the crowding-out effect later in the data 
analysis for Session 2. 

 
4.3 Results in Session 2 
Combined data from Sessions 1 and 2 were used to test H2, the Subsidy 

Carry-over Effect Hypothesis, with 78 participants (13 groups) in the DS1-DB2 
condition, and 72 participants (12 groups) in the SS1-SB2 condition. A random effect 
logit model tested whether the subsidy effect carried over from the first session to a 
second session in which the subsidy was removed. The regression results, reported in 
Table 7 show that there was a significant interaction between game type (stochastic vs. 
deterministic) and the subsidy carry-over effect (p<0.01). Participants in the 
deterministic game were significantly less likely to choose A after the subsidy was 
removed than with subsidy (p<0.01), but those in the stochastic game sustained the 
same level of coordination without subsidy as with the subsidy (p>0.10)2.  

                                                        
2 The results of a second regression, similar to the one reported in Table 5, to test the subsidy carry-over effect in 
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Table 7. Random Individual Logit model for Choosing Strategy A in the 

Subsidy Condition 
 

Variable Coefficient Standard Error z value Pr(>|z|) 
Dependent 
Variable 

    

Choosing A     
Independent 
Variables 

    

Constant 2.50 0.33 7.52 0.00 

Stochastic Game 0.62 0.47 1.31 0.19 

Subsidy Removed -0.51 0.10 -4.98 0.00 

Fixed Effects     

Period -0.02 0.007 -4.25 0.00 

Interaction      

Stochastic Game X 
Subsidy Removed 

0.49 0.16 3.11 0.001 

Rho 7.22 2.69   

Log likelihood -2227 

Sample size 5988 

 
 
The interaction between the game type and the subsidy carry-over effect can be 

shown more clearly when we look at cooperation rates in greater detail, as in Figure 4. 
The red symbols show groups in the stochastic game, while the blue symbols show 
groups in the deterministic game. Figure 4 shows that almost all groups in the 
stochastic game maintained the coordination levels they had achieved with the 
subsidy in Session 1, after the subsidy was removed in Session 2. In the deterministic 
game, however, after the subsidy was removed, groups manifested the same 
dichotomous pattern observed in the Deterministic-Baseline condition (the green dots 
in Figure 3), as if they had never been exposed to the subsidy. That is, the subsidy 
effect of Session 1 did not carry over to an unsubsidized Session 2 for the 
deterministic game.  

 
Figure 4: Cooperation Rates in Period 16-20 with Subsidy and without Subsidy 

in Subsequent Session as a Function of Game Type. 

                                                                                                                                                               
the stochastic game are available upon request. 
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Why is there a difference in the subsidy carry-over effect in the deterministic 

vs. stochastic game? Our post-game survey showed that in the deterministic game, 
consistent with the motivation crowding-out theory (Frey and Jegen, 2001), 43% of 
players believed that paying a lower cost was the only reason to choose A, and that 
others would choose A only when subsidized. Once the subsidy was removed, those 
players probably expected fewer players to choose A, and decided to choose B. Hence, 
some divided groups tipped toward the inefficient equilibrium all-B. In the stochastic 
game, only 22% of players viewed paying a lower cost as the only reason for 
choosing A. 78% of the players simply regarded A as a safer option, and assumed that 
others also preferred reduced risk, once the subsidy helped the group reach a higher 
number of players choosing A. In summary, subsidy seems to crowd out other 
possible reasons for cooperation in the deterministic setting, but safety is the principal 
reason for coordination on A in the stochastic setting. As a result, the subsidy effect 
carries over in the stochastic setting, but not in the deterministic one. 

 
5. Conclusions  

Prior research shows that people often have difficulty reaching the efficient 
equilibrium in coordination games with multiple Pareto-ranked Nash Equilibria. The 
current study investigates the function of subsidy in a coordination game, both in a 
deterministic and stochastic setting. We find that partially subsidizing one third of the 
players not only encourages the subsidized players to cooperate, but also changes the 
unsubsidized players’ expectation and behavior, so that some groups are tipped 
towards the efficient equilibrium. Social welfare is increased with subsidy in both the 
deterministic and stochastic settings. Furthermore, the subsidy-induced coordination 
improvement is sustained after the subsidy is removed in the stochastic game, but not 
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in the deterministic game. A post-game survey indicated that decision justifications 
differ between deterministic and stochastic payoff settings. Temporary subsidies seem 
to promote lasting coordination in risk reduction, whereas in a deterministic setting, 
subsidy may be counterproductive, because it crowds out other bases for coordination. 

The experimental results in this paper have important public policy 
implications. If the laboratory results hold in community settings, then a limited 
budget might best be used to support temporary subsidies in stochastic settings, 
spread among many groups, because the coordination on Pareto optimum will often 
persist after the subsidy ends. In deterministic settings subsidies might have to be 
maintained indefinitely and might crowd out cooperation based on social expectation. 
Another implication is that instead of playing down the uncertain factors in a 
coordination scenario, as public policy makers often do, we may be able to utilize 
people’s natural tendency to be risk averse to encourage efficient and lasting risk 
reduction cooperation by emphasizing the uncertainty existing in the problem. 
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Appendix A: Average Rate of Choosing A in each Group in Session 2 
 
 

 
Table 8: Average Rate of Choosing A in each Group in Session 2 

 
Stochastic - Subsidy 

Group Number  
6 7 9 10 22 23 30 31 32 33    Average 

Period 1-5 0.97  0.63  0.47 0.70  0.87  0.87 0.93 0.93 0.63 0.83    0.78  

Period 6-15 0.93  0.77  0.53 0.57  0.80  0.90 0.87 0.90 0.73 0.83    0.78  

Period 16-20 0.87  0.77  0.43 0.50  0.83  0.83 0.73 0.80 0.73 0.83    0.73  

All Periods 0.93  0.73  0.49 0.58  0.83  0.88 0.85 0.88 0.71 0.83    0.77  

Stochastic - Baseline  

Group Number  
5 11 12 13 18 19 20 21 35 37 38 39  Average 

Period 1-5 0.80  0.83  0.70 0.73  0.57  0.60 0.97 0.87 0.80 1.00 0.53 0.93  0.78  

Period 6-15 0.77  0.83  0.77 0.85  0.73  0.68 1.00 0.93 0.85 1.00 0.43 0.82  0.81  

Period 16-20 0.70  0.83  0.63 0.77  0.79  0.83 0.90 0.90 0.83 1.00 0.30 0.80  0.77  

All Periods 0.76  0.83  0.72 0.80  0.70  0.69 0.97 0.91 0.83 1.00 0.43 0.84  0.79  

Deterministic - Subsidy 

Group Number  
1 2 15 24 28 29 34 36 45 46 47 48 49 Average 

Period 1-5 0.67  1.00  1.00 0.93  0.77  0.70 0.50 0.97 0.63 0.60 1.00 0.83 0.97  0.81  

Period 6-15 0.55  1.00  1.00 0.95  0.87  0.48 0.37 1.00 0.63 0.45 1.00 0.95 0.97  0.79  

Period 16-20 0.37  1.00  1.00 0.93  1.00  0.53 0.40 1.00 0.40 0.40 0.97 1.00 1.00  0.77  

All Periods 0.53  1.00  1.00 0.94  0.88  0.55 0.41 0.99 0.58 0.48 0.99 0.93 0.98  0.79  

Deterministic - Baseline 

Group Number  
3 4 14 16 17 25 26 27 40 41 42 43 44 Average 

Period 1-5 0.80  0.37  1.00 0.97  0.30  0.93 0.93 0.97 0.73 0.33 0.90 0.67 1.00  0.76  

Period 6-15 0.55  0.22  1.00 0.82  0.17  1.00 0.95 1.00 0.55 0.18 0.77 0.32 1.00  0.66  

Period 16-20 0.47  0.03  0.97 0.93  0.10  1.00 0.93 1.00 0.47 0.27 1.00 0.20 0.97  0.64  

All Periods 0.59  0.21  0.99 0.88  0.18  0.98 0.94 0.99 0.58 0.24 0.86 0.38 0.99  0.68  
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Appendix B: Instruction Sample in the Stochastic- Subsidy Condition 
 

Instructions 

In this study, you will be randomly matched with 5 persons to play 6-person 
games in which the outcomes of your decisions depend not only on what you do, but 
also on what others do.  

 
You will be given 2000 Talers at the beginning of the study (2000 Talers = $40 or 

1 Taler = 2 cents). The amount of Talers you keep may determines your final payoff. 
Two persons will be chosen at random to receive the dollar equivalent of the Talers 
they have at the end of the study, plus a $10 show-up fee.  

 
To illustrate, suppose that Participant 3 and 5 are randomly chosen to be paid for 

their Talers. Suppose at the end of the game, Participant 3 has 900 Talers and 
Participant 5 has 800 Talers. Participant 3 will be paid $18 (900 Talers) + $10 showup 
fee = $28. Participant 5 will be paid $16 (800 Talers) + $10 showup fee = $26. Other 
people will be paid $10 for showing up. 
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The Game 

There are 20 rounds in the game. You will be playing with the SAME 5 other 
people in all 20 rounds. In each round, all players will independently make a decision 
about whether to choose Option A or Option B. Your outcome depends on how many 
of the other 5 players choose Option A and how many of the other 5 players choose 
Option B .  

 
There are two kinds of players, Player X or Player Y. In each round, the computer 

randomly assigns 4 players to be X, and 2 players to be Y. The assignment lasts for 
one round only. Assignments in each round are independent. That is, in each round, 
you have 2/3 chance of being X, and 1/3 chance of being Y. 

The following illustrates possible outcomes of Player X and Y respectively. You 
should be familiar with both, because you probably will play both as X and Y during 
the 20-round game.  

 
For Player X: 
Table 1 illustrates possible outcomes in each round for Player X. For example, if 

you choose Option A, it costs 32 Talers. If no players out of the other 5 players choose 
Option A, you have a 67% probability of losing 100 Talers, in addition to paying 32 
Talers (the cost of A). If one out of the other 5 players choose Option A, you have a 
59% probability of losing 100 Talers, in addition to paying 32 Talers. All other 
possible outcomes are presented in Table 1 in the Option A row. 

If you choose Option B, it costs zero Talers. If no players out of the other 5 
players choose Option A, you have an 80% probability of losing 100 Talers. If one 
out of the other 5 players choose Option A, you have 75% probability of losing 100 
Talers. All other possible outcomes are presented in Table 1 in the Option B row. 

Table 1: Probabilities of Losing 100 Talers for Player X 
Number of Other Players Who Choose 

Option A 
 

0 1 2 3 4 5 
Option A (cost= 32) 67%  59%  49%  36%  20%  0% Your  

Choice Option B (cost= 0) 80%  75%  69%  61%  52%  40%  

 
For Player Y: 
The major difference between Player X and Y is that the cost of Option A for 

Player Y is 10 Talers instead of 32 Talers. Table 2 illustrates possible outcomes in 
each round for Player Y 

Table 2: Probabilities of Losing 100 Talers for Player Y 
Number of Other Players Who Choose 

Option A 
 

0 1 2 3 4 5 
Option A (cost= 10) 67%  59%  49%  36%  20%  0% Your  

Choice Option B (cost= 0) 80%  75%  69%  61%  52%  40%  
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Procedure 

You will not know the decision of other players until the end of the round.  
Here is an example of the decision page for the first round for a Player Y: 
 

 

After all players have made a decision, the computer will randomly generate a 
number between 1 and 100 to decide whether you have suffered a loss.  

 
For example, suppose that in one round, you choose Option A, and 3 out of the 

other 5 players have chosen A as well. According to Table 1, you have 36% chance of 
losing 100, plus paying 32 for the cost of Option A. If the random number is less than 
or equal to 36, you suffer the 100 Talers loss. That is, you will have to pay 
100+32=132 Talers in that round. If the random number is greater than 36, however, 
you will pay the cost of Option A only (32 Talers).   

The general rule is that if the random number is less than or equal to your chance 
of losing 100 Talers (in percentage), you will suffer a loss of 100 Talers, plus paying 
whatever cost your choice incurs (32 for A or 0 for B). Note that in each round, the 
computer generates only one random number. That is, the same random number is 
compared to all players’ respective probabilities to determine who suffer a loss. 

 
There is no strict time limit on how long you can spend on making a decision. But 

please keep in mind that everyone in this room will have to wait for you if it takes too 
long for you to make a decision. A reminder will appear on the top right of the screen 
if fail to make your decision within 60 seconds.  

Before starting the next round, you will be given feedback on your loss in the 
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current round, your total wealth so far, and how many players (including you) have 
chosen A and how many have chosen B.  

Here is an example of the feedback page for a Player X: 

 

Starting the 2nd round, you will be given information on how many players have 
chosen A and B respectively in each of previous rounds. Here is an example of the 
decision page for the 3rd round for a Player Y: 

 

Please raise your hand if you have any question. Otherwise, please open Zleaf 

on your desktop to start quiz. 
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