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Consider a firm that sells products over repeated seasons, each of which includes a full-price period and a
markdown period. The firm may deliberately understock products in the markdown period to induce high-

value customers to purchase early at full price. Customers cannot perfectly anticipate availability. Instead, they
use observed past capacities to form capacity expectations according to a heuristic smoothing rule. Based on
their expectations of capacity, customers decide to buy either in the full-price period or in the markdown period.
We embed this customer learning process in a dynamic program of the firm’s capacity choices over time. One
main result demonstrates the existence of a monotone optimal path of customers’ expectations, which converges
to either a rationing equilibrium or a low-price-only equilibrium. Further, there exists a critical value of capacity
expectation such that the market converges to a rationing equilibrium if customers’ initial expectations are less
than that critical value; otherwise, a low-price-only equilibrium is the limiting outcome. These results show how
firms can be stuck with unprofitable selling strategies from incumbent customer expectations. We also examine
numerically how this critical value is affected by the firm’s discount factor and customers’ learning speed and
risk aversion. Last, we show that the equilibrium under adaptive learning converges to that under rational
expectations as the firm’s discount factor approaches one.
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1. Introduction
Faced with dynamic pricing, customers have an
incentive to strategize the timing of their purchases
and attempt to buy only when prices are low. One
way for a firm to thwart this behavior is to delib-
erately create shortages to induce customers to buy
early at higher prices. An earlier paper (Liu and
van Ryzin 2008) addresses how a firm should opti-
mally balance the benefit of capacity rationing against
the opportunity cost of lost sales. It shows that a large
high-value customer segment, large price differences
over time, and risk aversion among customers all tend
to make rationing an optimal strategy.
A key assumption made in Liu and van Ryzin

(2008) is that customers have rational expectations1

about the firm’s capacity choice; that is, customers
perfectly anticipate availability. The concept that cus-
tomers rationally predict future product availability
has been adopted in several recent papers on strate-
gic customer behavior, for example, Aviv and Pazgal

1 Note we use the term rational expectations to refer to the case where
customers’ expectations about the firm’s capacity are rational; that
is, based on all available information and correctly anticipating the
firm’s optimal stocking decision. Although it is related, we do not
use the term in the sense it is used in macroeconomics.

(2008), Cachon and Swinney (2009), Elmaghraby et al.
(2008), Liu and van Ryzin (2008), Su (2007, 2008),
and Jerath et al. (2007). Yet in reality, customers may
only learn about a firm’s strategy through repeat
experiences. This is the situation this paper explores;
we drop the rational expectations assumption and
assume instead that customers adaptively learn over
time. To give a concrete example of this phenomenon,
we have heard department store managers lament the
fact that they have, in effect, “trained customers to
buy on sale” as a result of a longstanding practice of
frequent promotional sales and end-of-season mark-
downs. Stores would like to regain the credibility of
selling at full price but worry that without promo-
tions or markdowns, customers may refuse to buy at
all. In such a situation, should they attempt to change
customers’ expectations by restricting markdowns or
the availability of goods? Or is it simply too difficult
and costly to do so? What is the optimal response?
These are the main questions we address in this paper.
The fundamental question of how customers form

expectations of the future is addressed by adaptation-
level theory; see Helson (1964), Sterman (1987),
and Rubinstein (1998) for an overview. Experimen-
tal and empirical evidence support the hypothesis
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that customers form expectations using an expo-
nentially smoothed average of new and old infor-
mation; see, for example, Akerman (1957), Nerlove
(1958), Monroe (1973), Sterman (1989), Jacobson and
Obermiller (1990), Stidham (1992), Greenleaf (1995),
Kopalle et al. (1996), Rump and Stidham (1998),
and Popescu and Wu (2007). Adaptive expectations
imply that customers do not believe the perma-
nence of recently revealed information; rather, they
adjust to this new information gradually and merge
it with past experience. To give an instance, Akerman
(1957) and Nerlove (1958) look at how farmers react
to price changes for their crops. When the current
price increases, farmers do not believe its perma-
nence until such an increased price remains in effect
for a considerable period of time. Instead, farm-
ers “discount” recent price changes and adapt their
“memory” of prices accordingly. According to this
exponential smoothing process, the effect of pre-
vious information decreases over time as weights
decay exponentially; more recent information has a
greater impact on expectations than the less recent
information.
Other forms of dynamic expectation updates have

also been employed to model customer demand. For
example, Gans (2002) studies a problem of customer
choice among a set of suppliers with uncertain ser-
vice in quality level. He models customers’ response
to uncertain quality as a Bayesian multiarmed updat-
ing problem.
We use an exponential smoothing model to update

customers’ capacity expectations; that is, customers
estimate the current capacity as a weighted average
of the firm’s capacity in the previous season and their
prior estimate. In each season, based on their capacity
expectations, customers decide whether to purchase
at full price or to wait for a discount. The firm’s deci-
sion is to make capacity choices for each season and
profitably influence customers’ expectations of capac-
ity and thus their purchase behavior. This is modeled
as a dynamic program, which links the firm’s capacity
decision and customers’ capacity updates.
We establish several results for our model. First, we

prove that the firm’s capacity choices and customers’
expectations converge to either a rationing equilib-
rium or a low-price-only equilibrium. We further
show there exists a critical value of capacity expec-
tation such that a rationing equilibrium is reached if
customers’ initial expectations are less than this crit-
ical value; otherwise, the firm eventually converges
to serve the entire market at a low price without
rationing. This helps explain how firms can be sad-
dled with an unprofitable strategy because of their
history. For example, in the department store sce-
nario, mentioned above, customers may be used to
finding products available whenever there is a sale,

and it might take many seasons of lost sales to per-
suade customers that products are not as plentiful as
before. The cost of lost sales incurred while customers
learned this fact might dwarf the long-run benefit of
finally getting them to change their behavior and buy
at full price.
We also examine how the equilibrium obtained

when customers adaptively learn about capacity ex-
pectations is related to the equilibrium when cus-
tomers have rational expectations. Compared with the
rational expectations case, the rationing equilibrium
capacity under adaptive learning is always larger, as
long as the discount factor is strictly less than one,
whereas the long-run average profit at the rationing
equilibrium under adaptive learning is lower than
that under rational expectations. However, when the
discount factor approaches one, the two equilibria are
the same. This implies that the equilibrium under
adaptive expectations learning is a good approxima-
tion of the rational expectations equilibrium when the
discount factor is high enough.
Some recent literature also looks at dynamic expec-

tation updating. Ovchinnikov and Milner (2009)
study how a firm manages last-minute deals when
customers learn and strategically respond to rev-
enue management decisions. They consider differ-
ent learning behaviors, including smoothing and self-
regulating learning. However, they do not model each
individual customer’s waiting behavior as based on
their payoff; rather, they assume that a random frac-
tion of customers wait to buy. Gallego et al. (2008)
investigate optimal pricing policies for a fixed stock
of perishable goods when customers’ learning behav-
ior is taken into account. They analyze the influence
of this learning behavior on a firm’s equilibrium sales
quantity based on a fluid model. Kleywegt (2006) con-
siders a simple learning model, in which customers
do not have full information about a firm’s pricing
policy or they learn about their valuations over time.
Gaur and Park (2007) analyze a model of asymmetric
consumer learning in which each customer updates
his belief about product availability based on his own
purchase experience and responds asymmetrically to
positive and negative outcomes. However, the firm’s
fill rate is set at the beginning of the game and fixed
throughout the time horizon; our model assumes the
firm adjusts its capacity over time.
The remainder of the paper is organized as follows.

In §2, we model the firm’s capacity decisions when
customers form expectations adaptively as a dynamic
program. In §3, we show that the firm’s optimal
capacity converges to either a rationing equilibrium
or a low-price-only equilibrium. Moreover, a critical
value of capacity expectation determines which equi-
librium is reached. In §4, we compare the adaptive
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learning equilibrium to the rational expectations out-
come of Liu and van Ryzin (2008). In §5, we conduct
numerical examples to study comparative statics for
the critical value of capacity expectation. In §6, we
study an alternative model based on fill-rate updates
and discuss several extensions. Section 7 concludes
the paper.

2. Adaptive Learning Model
2.1. Notation and Assumptions
Consider a firm that sells products over repeated
sales seasons to a fixed population of customers. Each
season (also called a stage) consists of two selling
periods—a full-price (high-price) period and a mark-
down (low-price) period. At the beginning of each
season, the firm makes its capacity decision. Resup-
ply is not possible within a season. There are N cus-
tomers in the market in each season. Customers are
present when sales start and remain in the market
until they either buy or the sales season ends. The
market size N is deterministic and common knowl-
edge to both the firm and the customers.2 We assume
N is large, so demand can be considered a contin-
uous quantity, customers are nonatomic, and hence
strategic interactions among customers can be safely
ignored. Customers have unit demand and heteroge-
nous valuations for the firm’s product that are uni-
formly distributed over �0�U �. The valuation distri-
bution is common knowledge to both the firm and
customers. We also assume customers have identical
power utility functions u� · � = � · �	 , where 0 < 	 < 1,
implying they are risk averse.3 The assumptions of
uniform valuations and power utility function sim-
plify the analysis. Nevertheless, we find numerically
that the main results derived under these specialized
assumptions hold for more general distributions of
valuation and utility functions. Notation and para-
metric assumptions are summarized in Table 1.

2.2. The Model of Customer Behavior
During each season t, customers decide when to buy.
They either buy early at full price and obtain one unit
of product for sure, or they wait for a markdown,
in which case availability is not guaranteed. Specifi-
cally, customers assess the fill rate (i.e., the probability
of getting a unit), q̂t , and then weigh the payoff
of purchasing immediately at the full price versus
the expected payoff of waiting for a markdown. As

2 Deterministic aggregate demand is an assumption made in other
literature on strategic customer behavior, such as Besanko and
Winston (1990), Elmaghraby et al. (2008), and Su (2007).
3 Risk aversion is required. As shown in Liu and van Ryzin (2008),
when 	 = 1 (i.e., risk-neutral customers), the rationing equilibrium
becomes a limiting case; that is, only the full-price period incurs
sales.

Table 1 List of Symbols

Symbols Definitions and parametric assumptions

pH Unit price in the full-price period
pL Unit price in the markdown period
c Unit procurement cost; c < pL < pH

N Population size
U Upper bound of uniform valuations
� Firm’s discount factor; 0< �< 1
	 Customers’ learning speed; 0≤ 	 ≤ 1

 Customers’ risk aversion; 0< 
 < 1
t Season (stage) index

C Lower bound of capacity;C = N

U

U − pH�

�C Upper bound of capacity; �C = N

U

U − pL�

Ct The firm’s capacity choice in season t
�Ct Customers’ expectation of capacity in season t

Cs Segmentation threshold capacity estimate; Cs = �C
(U − pH

U − pL

)


�Cc Critical value of capacity expectation
C0 Rationing equilibrium capacity under adaptive learning
C∗ Equilibrium capacity under adaptive learning;

either C∗ = C0 or C∗ = �C
C0
R Rationing equilibrium capacity under rational expectations

qt The firm’s actual fill rate in the markdown period of season t

q̂t Customers’ expectation of fill rate in the
markdown period of season t

q̂c Critical value of fill rate expectation
q0 Rationing equilibrium fill rate under adaptive learning
vt Threshold (cutoff) valuation in season t

shown in Liu and van Ryzin (2008), if customer utility
functions are concave and strictly increasing, then for
each fill rate there exists a unique cutoff value such
that only customers with valuations greater than that
value purchase at full price, and customers with valu-
ations less than that value wait for a markdown. Cus-
tomers with valuations equal to the cutoff value are
indifferent. This indifference point (cutoff valuation),
vt , is defined (implicitly) by

�vt − pH�	 = q̂t�vt − pL�
	�4 (1)

Note that each customer’s decision is based on his
payoffs, and we do not consider waiting costs. Su
(2007) models each customer’s purchase decision
by similar payoff functions, but waiting costs are
included in the payoffs. In contrast, Ovchinnikov and
Milner (2009) and Anderson and Wilson (2003) do not

4 We do not consider the case in which customers discount util-
ity over time. As shown in Liu and van Ryzin (2008), when both
discounting and rationing risk are taken into account, the results
are qualitatively similar; discounting utility only adds to the incen-
tive to buy early at a high price. But analytically characterizing
optimal strategies becomes complicated. To keep the model sim-
ple and highlight the role of rationing, we don’t consider the case
where customers discount utility over time. We conjecture, how-
ever, that—as in the rational equilibrium case—our results qualita-
tively remain the same.
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consider the buy-or-wait decision of individual cus-
tomers; they model the aggregate waiting behavior
and assume that a fraction of customers buy at full
price and a fraction wait for a markdown. In partic-
ular, Ovchinnikov and Milner (2009) assume that a
random number of customers, whose distribution is
parameterized by a waiting parameter, will postpone
purchases; Anderson and Wilson (2003) assume all
the low-type customers will wait once the probability
of obtaining discounted products is high.
In (1), the fill rate is the ratio of residual capacity to

residual demand in the markdown period given by

q̂t =
�Ct − �N/U��U − vt�

�N/U��vt − pL�
� (2)

where we use the notation “ �C” to distinguish cus-
tomers’ expectation of capacity from the firm’s actual
capacity decision.
By combining (1) and (2), the cutoff value and cus-

tomers’ expectation of capacity are related by

�Ct =
N

U

(
U − vt + �vt − pL�

(
vt − pH

vt − pL

)	)
�

pH ≤ vt ≤U� (3)

According to (3), we have

C ≤ �Ct ≤Cs = �C
(

U − pH

U − pL

)	

�

where we call Cs the segmentation threshold capacity
estimate. If customers’ expectation of capacity is less
than Cs , the market is segmented and a fraction of
customers buys at the full price; otherwise, all cus-
tomers opt to buy in the markdown period.
We next show that the cutoff valuation, vt , is

uniquely determined by capacity expectation, �Ct . This
follows directly from Lemma 1 below, the proof of
which is provided in the appendix.

Lemma 1. �Ct�vt� defined by (3) is strictly increasing
and concave in vt ∈ �pH�U �.

Lemma 1 implies that the inverse function of �Ct�vt�,
denoted g� �Ct�, exists; further, g� �Ct� is strictly increas-
ing and convex in �Ct ∈ �C�Cs�. This is because the
inverse function of a strictly increasing and concave
function is strictly increasing and convex.5 Therefore,
the cutoff valuation vt is uniquely characterized by
g� �Ct� when C ≤ �Ct ≤ Cs . Once �Ct exceeds Cs , cus-
tomer purchase behavior changes fundamentally; all
customers wait to buy in the markdown period and

5 The brief reason is the following: suppose h� · � is strictly increas-
ing and concave, and g� · � is the inverse function of h� · �. Then
g′�x� = 1/�h′�g�x��� > 0, and g′′�x� = −h′′��g�x��g′�x��/��h′�g�x���2�
≥ 0 because g′�x� > 0 and h′′�g�x��≤ 0.

segmentation of the market is no longer attainable.
We define vt equal to U when Cs ≤ �Ct ≤ �C. Then, for
any given capacity expectation �Ct ∈ �C� �C�, the cutoff
valuation vt is uniquely determined by

v� �Ct�=



g� �Ct� if C ≤ �Ct ≤Cs�

U if Cs ≤ �Ct ≤ �C�

To model the customers’ learning process, we
use an exponential smoothing function. We assume
that this learning process takes place using capacity
rather than fill rates and that all customers have the
same expectation of capacity; that is, �Ct is a consen-
sus and commonly held estimate among customers.
Under these assumptions, the customers’ expectation
of capacity for season t+1, �Ct+1, is a weighted average
of the firm’s capacity in season t, Ct , and customers’
prior estimate, �Ct

�Ct+1 = �Ct + �1− �� �Ct� (4)

where � is the customers’ learning speed. As �
increases, customers place more weight on new infor-
mation and adjust their expectation more rapidly. An
extreme case of � = 1 implies customers take the
firm’s capacity in the previous season as their esti-
mate of the current capacity. The other extreme case
of � = 0 implies no learning at all; customers simply
stick to their initial beliefs.6 We exclude this later case
to avoid trivialities.
One may naturally question the plausibility of

the assumption that customers observe and esti-
mate capacity rather than fill rates. Customers might
not be able to observe capacity directly, or even if
they can, the firm might manipulate their percep-
tion of capacity by limiting the “on the rack” dis-
play. Yet the update of capacity in our model (4) is
made ex post after season t is completed and hence
would be influenced by a variety of information other
than direct observation, including word of mouth,
advertisements, websites, reports and surveys, etc.
These sources of information may compensate for the
inability to observe capacity directly. Another major
motivation for using a capacity representation of the
learning process is that it is analytically more tractable
than the fill-rate update model. Moreover, we ana-
lyze a model of fill-rate updating in detail in §6.1, and
many of the structural results are the same for both
models.
Another desirable generalization of the learning

process might be to allow customers to have heteroge-
neous estimates based on their own purchase histories

6 We can also interpret 1−� as a memory parameter; thus, for � = 1,
customers have no memory; for � = 0, customers have full memory
and never adapt to observed information.
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and stock-out experiences, rather than assuming that
all customers share the same expectation of availabil-
ity. Although such a model would be interesting to
study, it would be much less tractable; we would have
to track each customer’s expectation of availability,
and doing so would require a state vector with large
dimension, leading to a significantly more complex
model. Gaur and Park (2007) model an asynchronous
learning process in which each customer updates his
fill rate expectation based on purchase experience.
However, they consider a homogeneous population
of customers who have identical valuations; thus, cus-
tomers’ purchase decisions are determined by their
perceived product availability only. Another differ-
ence is that they assume the firm’s fill rate is fixed
throughout the time horizon once it is selected at the
beginning of sales. These assumptions simplify the
analysis.
More importantly, assuming customers only form

expectations based on their individual purchase expe-
rience is equally unrealistic. It would suggest, for
example, that we could only know whether a car
maker’s automobiles are overstocked if we attempt
to buy one—end-of-season liquidation advertisements
blaring on our television sets notwithstanding. Or it
could suggest that when we book a flight early, we
do not learn whether it is sold out afterward—despite
the fact that we observe how full the plane is once
we travel. In this sense, the assumption of individ-
ual updating based only on purchase outcomes is
the opposite extreme of our assumption of common
knowledge among customers. Reality, of course, lies
somewhere in between.
Distinct from assumptions about private or com-

mon knowledge of availability, it may also be desir-
able to allow customers to have different learning
speeds. Again like updating based on private pur-
chase experience, this type of heterogeneity would
increase the complexity of the state space, though
allowing for a small number of types (e.g., “slow”
and “fast” learners) might not be overly difficult.
Still, assuming a common learning speed captures the
essential behavior we want to study and is simple and
tractable.

2.3. The Model of the Firm
The capacity learning process (4) links the firm’s
capacity choices from one season to the next. Conse-
quently, the firm’s decision problem is naturally mod-
eled as a dynamic program. Let V � �Ct� denote the
maximum discounted profit, given that customers’
capacity expectation is �Ct . Future value is discounted
by a discount factor of � per season. V � �Ct� satisfies
the following Bellman equation:

V � �Ct�= max
Ct∈�C� �C�

{
�� �Ct�Ct�+ �V ��Ct + �1− �� �Ct�

}
� (5)

where �� �Ct�Ct� is the one-stage profit, given that the
customers’ capacity expectation is �Ct and the firm’s
capacity is Ct :

�� �Ct�Ct�=
N

U
�pH − pL��U − v� �Ct��+ �pL − c�Ct� (6)

The constraint C ≤ Ct ≤ �C ensures that there is no
shortage during the full-price period and no overage
during the markdown period.7

We note, however, that in some cases it may be
profitable to deliberately understock products in the
full-price period in order to change customer expec-
tations as quickly as possible. For example, Greenleaf
(1995) finds that offering “reverse” promotions—in
which extremely high prices are charged in some
periods—may be optimal in a recurring promotion
model in order to raise future reference prices. Sim-
ilarly, Byers and Huff (2005) find that it may be
optimal to leave demand unfilled at higher prices on
purpose to boost future demand. These possibilities
are interesting, but our control constraints rule out
such extreme actions.
To understand the basic tradeoff the firm faces,

notice that customer decisions about when to buy
depend only on their capacity expectation �Ct , not on
the firm’s actual capacity choice Ct . Hence, if the firm
were only interested in maximizing the current profit,
it would choose the maximum capacity �C and satisfy
all demand during both the full-price and markdown
periods. But the firm’s capacity choice also influ-
ences customers’ future expectations; a larger current
capacity increases customers’ expectation of capac-
ity in future seasons, which encourages them to wait
for markdowns. This will reduce future profits. So
the key tradeoff is the short-term benefit of stocking
amply to satisfy current demand versus the negative
impact that such high stock levels have on customers’
future expectations of capacity. The firm’s goal is to
seek a sequence of capacity choices over time that
optimally balances these effects and maximizes its
total discounted profit.
In (5), when the firm’s optimal response to the state

�Ct is to choose Ct = �Ct , both the firm’s optimal capac-
ity decision and customers’ expectation of capacity
will be the same and will stay at that value there-
after. We call such a stable value an equilibrium of the

7 Actually, a weaker constraint of �N/U��U − vt� �Ct��≤ Ct ≤ �N/U� ·
�U −pL� is sufficient to guarantee underage never occurs during the
full-price period and overage never occurs during the markdown
period. However, state-dependent constraints of this type signifi-
cantly complicate the analysis of the model. For technical reasons,
we assume the firm would stock at least the potential demand at
full price, C, and no more than the potential demand at markdown
price, �C.
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model (5). More precisely, let C∗� �C� denote the opti-
mal solution to (5), given state �C. Then an equilibrium
of (5) is a fixed point of the state updating function—

f � �C�= �C∗� �C�+ �1− �� �C�

That is, �C is an equilibrium if f � �C�= �C. At the equi-
librium, C∗� �C� = �C. We henceforth do not differenti-
ate the firm’s capacity and customers’ expectation of
capacity at the equilibrium, both of which we call the
equilibrium capacity.

3. Analysis of the Optimal
Capacity Decision

Because customers exhibit fundamentally different
purchase behavior once their expectation of capac-
ity exceeds the segmentation threshold capacity esti-
mate Cs , a direct analysis of the model (5) is quite
complex. However, note that it can be easily solved
as long as the state (i.e., capacity expectation) does
not cross Cs . Therefore, we use a “separate-and-paste”
approach to analyze the problem. We divide the entire
state space into two subspaces, over which two iso-
lated subproblems, called the region 1 and region 2
problems, are defined. In this section, we first show
that both the region 1 and region 2 problems are well
behaved and can be completely analyzed using clas-
sical optimization techniques. In §3.2, we show that
there always exists a monotone optimal state path
for the original problem. Because of this property, the
problem eventually reduces to either the region 1 or
region 2 problem. We can then “paste” the results
of subproblems together to solve the original prob-
lem. We find that the firm’s optimal capacity choices
converge to either a rationing equilibrium or a low-
price-only equilibrium, depending on customers’ ini-
tial expectations of capacity. In §3.3, we show that
there exists a critical value of capacity expectation that
determines which of these equilibria is reached. When
customers’ capacity expectation is less than that crit-
ical value, the rationing equilibrium is obtained; oth-
erwise, the low-price-only equilibrium is the optimal
long-run outcome.

3.1. Analysis of the Region 1 and
Region 2 Problems

As discussed before, all customers wait to buy in
the markdown period if their capacity expectation is
greater than the segmentation threshold capacity esti-
mate Cs . Then the firm’s best response is to stock�C to meet all potential demand at the markdown
price. Because the switch from a segmented market
to a nonsegmented market induces a jump of capac-
ity, the value function V � �Ct�, unfortunately, is not
well behaved (i.e., V � �Ct� may be not differentiable

at Cs). Nevertheless, the threshold function v� �Ct� has
special structure: it is convex in the range of �C�Cs�
and constant at �C afterward. This motivates us to
divide the entire state space into two subspaces—
�C�Cs� and �Cs� �C�—over which two subproblems are
defined. Specifically, the region 1 problem is defined
as follows:

V1� �Ct� = max
Ct∈S1� �Ct�

{
N

U
�pH − pL��U − v� �Ct��+ �pL − c�Ct

+ �V1��Ct + �1− �� �Ct�

}
� (7)

where

S1� �C�=
{
C �C ≤C ≤ �C and C ≤−1− �

�
�C + Cs

�

}
�

The region 2 problem is then

V2� �Ct�= max
Ct∈S2� �Ct�

{
�pL− c�Ct +�V2��Ct + �1−�� �Ct�

}
� (8)

where

S2� �C�=
{
C �C ≤C ≤ �C and C ≥−1− �

�
�C + Cs

�

}
�

We require Ct ∈ S1� �Ct� in the region 1 problem to
ensure that any state falls within �C�Cs�; and Ct ∈
S2� �Ct� guarantees that the state space of the region 2
problem is �Cs� �C�. There are no overlapping states
between these two subproblems except state Cs .
We first examine the region 2 problem, which is

quite simple to analyze. Because all customers delay
purchases in this region, the firm stocks �C to satisfy
all demand at the markdown price. The value func-
tion V2� �Ct� is then state independent, and the equilib-
rium is trivially �C. However, the equilibrium �C cannot
be reached in finite time unless customers’ capacity
expectation is �C. This is because customers update
expectations via �Ct+1 = �Ct + �1 − �� �Ct , and both Ct

and �Ct are less than �C, though �Ct → �C as t →�.
We then focus on the analysis of the region 1 prob-

lem. Using an argument similar to the one for the
original problem (5), there exists a tradeoff between
stocking more to increase current profits and stock-
ing less to reduce customer expectations and induce
more early purchases in future. In fact, we show that a
rationing unique equilibrium capacity exists and char-
acterize it in Proposition 1. The uniqueness of this
equilibrium eliminates the optimality of manipulating
customers’ expectations whenever rationing is achiev-
able; that is, it is not profitable to cycle between pro-
viding high and low availability.
To show the existence of equilibrium and further

characterize it, we need the concavity of the value
function V1� �Ct�, which is established in the following
lemma.
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Lemma 2. The value function V1� �Ct� defined by (7) is
strictly concave and decreasing in �Ct .

The proof of Lemma 2 is in the appendix. By
the concavity of the value function V1� �Ct�, it is easy
to check that the inner maximization term of (7) is
concave in Ct as well. The optimal capacity is then
derived from the first-order conditions. Following the
same approach as in Lemma 2, we can show that
the value function V � �Ct� defined by (5) is decreas-
ing in �Ct . This monotonicity is quite intuitive; a lower
expectation of capacity induces more customers to
purchase early at full price, thus leading to a higher
current profit. In addition, a lower current expecta-
tion of capacity leads to lower future expectation of
capacity, so future profits benefit as well. However,
the value function for the whole problem V � �Ct� is not
concave; in fact, it is not even differentiable at some
points. This is discussed further in §3.2.
Proposition 1 establishes the existence of a unique

rationing equilibrium. Although it is hard to obtain
the equilibrium in a closed form, we characterize it
as a solution to an implicit function, allowing us to
examine comparative statics of the equilibrium. This
is established in Corollary 1 below. Both proofs are
given in the appendix.

Proposition 1. For the region 1 problem, there exists
a unique equilibrium capacity that is equal to min C0�Cs!,
where Cs is the segmentation threshold capacity and C0 is
called the rationing equilibrium capacity determined by

C0 = N

U

(
U − v0+ �v0− pL�

(
v0− pH

v0− pL

)	)
� (9)

In (9), v0 is the solution to(
v− pH

v− pL

)	(
1+ 	�pH − pL�

v− pH

)

− �pL − c��1/�− 1�+ ��pH − c�

�pL − c��1/�− 1+ ��
= 0� (10)

Note that C0 defined in (9) is strictly increasing
in v0 and C0 is equal to Cs when v0 = U . There-
fore, the equilibrium for the region 1 problem is the
rationing equilibrium capacity C0 when v0 < U ; oth-
erwise, it is Cs .

Corollary 1. The rationing equilibrium capacity C0

defined in (9) decreases in the firm’s discount factor � and
customers’ learning speed �. And the per stage profit at
C0, ��C0�C0�, increases in � and �.

The intuition for the monotonicity in discount
factor is straightforward; the larger the firm’s dis-
count factor, the more important are future prof-
its. Hence, the long-run benefit of stocking less and
creating future expectations of shortages dominates

the short-term profit from stocking and selling more
in the current season. As a result, a lower equilib-
rium capacity is expected as the firm’s discount fac-
tor increases. The learning speed effect is less obvi-
ous but also intuitive. When customers adapt quickly
to changes in capacity, the future benefit of creating
expectations of shortages is realized quickly; that is,
if we reduce capacity now, customers quickly adjust
and we reap the benefit of their revised expectations
(i.e., their desire to buy early at high prices) in the
next few seasons. If, in contrast, they are slow to react,
any current shortages we create take many seasons
to work their way into revised expectations that will,
ultimately, induce them to buy early at high prices.
Hence, a high learning speed makes current short-
ages more beneficial and leads to a lower equilibrium
capacity. The speed of learning also plays important
roles in the papers by Ovchinnikov and Milner (2009)
and Gallego et al. (2008). In both papers, they show
that the firm’s optimal policy also converges when
customers learn slowly.

3.2. Convergence of the Optimal Capacity Policy
In this section, we “paste” the results for each region
problem and establish monotone convergence to equi-
libria for the original problem. Proposition 2 states
the relationship of the equilibria for the original prob-
lem to equilibria for each region problem; namely, the
equilibria for the original problem must be equilibria
for the region 1 or region 2 problems. The key reason
that we are able to “paste” results of two subproblems
is the monotonicity of optimal state paths, which is
established in Proposition 3.

Proposition 2. If there exists an equilibrium for the
problem (5), then it is either C0 or �C.

The proof of Proposition 2 is given in the appendix,
but the intuition is straightforward; an equilibrium
capacity for the original problem (5), if it exits, must
be an equilibrium for either the region 1 or region 2
problems as well, but C0 or �C is the only possible
equilibrium for these subproblems.
Proposition 3 plays an important role in the

separate-and-paste procedure. According to this
proposition, there exists a monotone optimal state
path. Therefore, the state of problem (5) will eventu-
ally remain in either region 1 or region 2. Hence, the
equilibrium results for each region problem carry over
to the original problem. The proof of Proposition 3
uses a sample-path analysis approach, which is pro-
vided in the appendix.

Proposition 3. For the problem (5), there exists an
optimal monotone state path; namely, given any initial
state �C1, there exists an optimal state path, denoted  �Ct!t≥1,
such that either �C1 ≥ · · · ≥ �Ct ≥ · · · or �C1 ≤ · · · ≤ �Ct ≤ · · · �
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According to the monotone convergence theorem,
any bounded monotone sequence converges. Because
the state space in our model is compact, a direct con-
sequence of Proposition 3 is that an optimal monotone
state path must converge to some limiting state. We
can further show that this limiting state is an equilib-
rium of the original problem, which must also be an
equilibrium for the region 1 and region 2 problems.
Theorem 1 below summarizes this result.

Theorem 1. For the problem (5), given any state �C1 ∈
�C� �C�, there exists a monotone optimal state path  �Ct!t≥1,
which converges to either a rationing equilibrium capacity
C0 or a low-price-only equilibrium capacity �C.

Proof. Given any state �C1, there exists a monotone
optimal state path  �Ct!t≥1 by Proposition 3. Because
 �Ct!t≥1 is bounded within �C� �C�, the state sequence
 �Ct!t≥1 converges to some state, denoted �C∗.
Because of monotonicity of the state path  �Ct!t=1�2����,

there exists a stage t′ such that either C ≤ �Ct ≤ Cs�
∀ t ≥ t′ or Cs < �Ct ≤ �C� ∀ t ≥ t′.
Case 1. C ≤ �Ct ≤Cs� ∀ t ≥ t′

In this case, the problem (5) eventually remains in
region 1 after stage t′. Note that the region 1 prob-
lem and the original problem have the same dynamic
program formulation, and any feasible policy for the
region 1 problem is feasible for the original problem
as well. Therefore, if the optimal policy for the orig-
inal problem is feasible for the region 1 problem, it
must be an optimal policy for the region 1 problem.
Hence,  �Ct!t≥t′ is an optimal state path for the region 1
problem and converges to state �C∗, C ≤ �C∗ ≤ Cs . That
is, limk→� �Ct′+k = �C∗. Recall in the region 1 problem
the state updating function, f � �C�= �C∗� �C�+ �1−�� �C,
is continuous in �C (see the proof of Proposition 1).
Then

f � �C∗�= f
(
lim
k→�

�Ct′+k

)
= lim

k→�
f � �Ct′+k�= lim

k→�
�Ct′+k+1 = �C∗�

Because �C∗ is an equilibrium of the region 1 problem,
either �C∗ = C0 or �C∗ = Cs by Proposition 1. However,
the value V � �Ct� strictly increases if the capacity deci-
sion is �C instead of Cs for the original problem, which
contradicts the optimality of the state path  �Ct!t≥t′ .
Hence, it must be that �C∗ =C0.
Case 2. Cs < �Ct ≤ �C� ∀ t ≥ t′

The problem (5) remains in region 2 after stage t′.
Along the same line of argument as in Case 1,
 �Ct!t≥t′ is also an optimal path for the region 2 prob-
lem. Because the optimal policy at any state for the
region 2 problem is �C, the state updating function
f � �C�= � �C + �1− �� �C is obviously continuous in �C. It
follows that the limiting state is an equilibrium of the
region 2 problem. �

Theorem 1 shows that repeated interactions
between the firm and its customers lead to an equi-
librium, which is either a rationing equilibrium C0

or a low-price-only equilibrium without rationing �C.
Moreover, the fact that there is monotone conver-
gence to these equilibria implies the optimal deci-
sions do not oscillate among high and low capacity
choices. In other words, the firm does not profit from
manipulating customers’ expectations by alternating
between providing high and low availability during
markdown periods. This differs from some previous
results. For example, Ovchinnikov and Milner (2009)
and Gallego et al. (2008) find that the firm alternates
between offering high and low availability when cus-
tomers learn quickly. However, the reason for such a
difference is not well understood: Ovchinnikov and
Milner do not model an individual’s buy-or-wait deci-
sion but instead consider aggregate waiting behav-
ior, and Gallego et al. (2008) demonstrate this result
numerically only. It is therefore difficult to discern
the underlying reason for this difference in the opti-
mal policy. Policies of this type of convergence or
cycling are also explored in dynamic pricing models
with reference price effects—for example, Greenleaf
(1995) and Kopalle et al. (1996). They find that the
optimal prices either cycle or converge to a constant
level, depending primarily on the customers’ asym-
metric responses to perceived gains and losses.
It is worth noting that not every optimal state path

is monotone; there may exist an optimal nonmono-
tone state path. However, Proposition 4 shows that
such a nonmonotone state path, if it exists, is of
quite specialized form: it can change direction only at
state C0 and must converge to a low-price-only equi-
librium. The proof is given in the appendix.

Proposition 4. If there exists an optimal nonmonotone
state path for the problem (5), it can change its direction
only at state C0; furthermore, such a path must converge
to state �C.

3.3. Incumbent Expectations and
Equilibrium Outcomes

Both C0 (rationing) and �C (no rationing) can be equi-
libria for the adaptive learning model (5). Under what
conditions does there exist a unique equilibrium? One
can show that if a low-price-only equilibrium is more
profitable than a rationing equilibrium in the long
run, the low-price-only solution is the unique equi-
librium for all initial expectations. (See Lemma 4 for
a formal statement and proof.) However, if rationing
is more profitable in the long run, both equilibria can
be reached, depending on customers’ initial expecta-
tions of capacity. If customers’ expectations are larger
than a critical value, the long-run equilibrium is no
rationing, but if their initial expectations are smaller
than the critical value, the outcome converges to a
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rationing equilibrium. This result is established in the
following theorem.

Theorem 2. There exists a critical value of capacity
expectation, denoted �Cc, such that the optimal capacity con-
verges to �C if the customers’ capacity expectation �C is
greater than �Cc; otherwise, it converges to C0.

Proof. Suppose there exists an optimal state path
from �C1, denoted  �Ct!t≥1, which converges to �C. We
now show that any state path starting from a state
greater than �C1 will converge to �C as well. The proof
is given on a case-by-case basis in terms of the loca-
tion of the state �C1.
Case 1. �C1 ≤C0

∀ �C1 > �C1, suppose no optimal state path exists from�C1 which converges to �C; then any optimal state path
from �C1, denoted  �Ct!t≥1, must converge to C0. Along
the optimal state path,  �Ct!t≥1, there must exist state�Cm and �Cm+1�m≥ 1, such that �Cm ≤ C0 < �Cm+1. By the
optimality of V � �Cm�,

��� �Cm� �Cm+1�+ �V � �Cm+1�≥ ��� �Cm�C0�+ �V �C0��

which implies

V �C0�−V � �Cm+1�≤
pL − c

��
� �Cm+1−C0�� (11)

Because  �Ct!t≥1 converges to C0 only,

���C0�C0�+ �V �C0� > ���C0� �Cm+1�+ �V � �Cm+1��

which implies

V �C0�−V � �Cm+1� >
pL − c

��
� �Cm+1−C0�� (12)

But (12) contradicts (11). Therefore, there exists an
optimal path from �C1 that converges to �C.
Case 2. �C1 > C0

Define C� �C1�= � �C+ �1−�� �C1. One can easily check
C� �C1� > �C1 if �C1 >C. Given any state �C1 ∈ � �C1�C� �C1��,
suppose there exists no optimal state path that con-
verges to �C. Then such an optimal state path, denoted
 �Ct!t≥1, must converge to C0.
Figure 1 illustrates all the possible scenarios of loca-

tions of states �C1, �C2, �C1, and �C2. We claim it is
feasible to reach state �C2 from �C1 in one step and
to reach state �C2 from �C1 in one step. This is triv-
ially true for cases (a), (b), and (c) in Figure 1. In
the case of �C1 > �C2 > �C2 > �C1 (Figure 1(d)), we can
check that � �C2− �1− �� �C1�/� ≤ � �C1− �1− �� �C1�/� ≤ �C
and � �C2− �1− �� �C1�/� > � �C1− �1− �� �C1�/� = �C1 ≥ C.
Hence, it is feasible for reach �C2 from �C1 in one step.
The same argument shows that �C1 can reach �C2 in one
step as well.
By the optimality of V � �C1�,

��� �C1� �C2�+ �V � �C2�≥ ��� �C1� �C2�+ �V � �C2��

which implies

V � �C2�−V � �C2�≤
pL − c

��
� �C2− �C2�� (13)

As hypothesized, there does not exist an optimal state
at state �C1 that converges to �C; therefore,

��� �C1� �C2�+ �V � �C2� > ��� �C1� �C2�+ �V � �C2��
which implies

V � �C2�−V � �C2� >
pL − c

��
� �C2− �C2�� (14)

But (14) contradicts (13); hence, there exists an optimal
state path at state �C1 that converges to �C.
Thus far, we have shown that if there exists an opti-

mal state path at �C1 that converges to �C, then for any
state between �C1 and C� �C1�, there exists an optimal
state path that also converges to �C. Then set �C1 ←
C� �C1�; along the same line of argument, there exists
an optimal state path converging to �C for any state
within � �C1�C� �C1��. Because C� �C1� is strictly larger
than �C1, eventually, C� �C1� converges to �C. Hence,
starting with any state greater than �C1, there exists an
optimal state path converging to �C as well if there
exists an optimal state path at �C1 with the convergent
state �C.
Applying the similar arguments, we can show that

if there exists an optimal state path from �C1 that con-
verges to C0, then any state path from a state less
than �C1 will converge to C0, too. We thus conclude
that there exists a critical value of state, �Cc, such
that the optimal state path converges to �C if it starts
from a state greater than �Cc, and converges to C0

otherwise. �

Note the proof of Case 1 in Theorem 2 holds for any
state �C1 (i.e., �C1 ≥ �C1 is not necessary). This implies
that if there exists an optimal state path from a state
less than C0 that converges to �C, then for any state,
there exists an optimal state path that converges to �C
as well. Therefore, the critical value of capacity expec-
tation that determines which equilibrium is attained
is either C or greater than C0. The equilibrium is sta-
ble as long as perturbation is small enough not to
cross the critical value of capacity expectation.
Theorem 2 is perhaps the most important result in

our analysis. It provides an explanation for why retail
firms may follow policies of providing high availabil-
ity even though such policies may not be the most
profitable in the long run. For instance, traditional
department stores find themselves trapped in a pat-
tern of selling most of their stock during holiday and
end-of-season sale periods, whereas newer retailers
like Zara are able to convince customers to buy at
full price by stocking less and phasing out products
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Figure 1 Feasible Actions to Comprise an Alternative State Path
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quickly. Similarly, General Motors was saddled with
a pattern of dealer haggling, end-of-model-year dis-
counting, and frequent promotions, yet its subsidiary
upstart Saturn was able to enter the market with
nonnegotiated prices and less-frequent discounting.
Simply put, if customers expect high availability at
discounted prices based on a long history of always
finding products available on sale, and if these expec-
tations change slowly, it can be quite costly to reach a
new equilibrium in which customers anticipate diffi-
culty finding products at less than full price. In prac-
tical terms, changing strategies might require limiting
availability of discounts for a number of seasons, dur-
ing which customers still refuse to buy at full price
because they expect products to be available at a dis-
count. It could take several years of experience to con-
vince customers that the firm’s availability policy has
really changed, and the profit losses incurred during
this process might simply be too severe to justify the
change in strategy.

4. Comparison to Rational
Expectation Equilibrium

Liu and van Ryzin (2008) study a similar capac-
ity rationing problem but assume that customers
can perfectly anticipate the firm’s capacity (fill rate).
That is, whatever capacity a firm chooses, customers
immediately react and adjust their buying decisions
accordingly. This corresponds to a case of rational
expectations, and we call the resulting equilibrium
the rational expectation equilibrium. In particular, Liu
and van Ryzin (2008) show that the rational expec-
tation equilibrium is either C0

R or �C, where C0
R is

determined by

C0
R = N

U

(
U − v0R + �v0R − pL�

(
v0R − pH

v0R − pL

)	)
�

and v0R is a solution to the equation(
v− pH

v− pL

)	(
1+ 	�pH − pL�

v− pH

)
− pH − c

pL − c
= 0� (15)

When the firms stocks �C, the outcome involves no
rationing.
How is the adaptive learning equilibrium related

to the rational expectation equilibrium? The answer is
given in Theorem 3 below.

Theorem 3. As the firm’s discount factor � → 1, the
adaptive learning equilibrium converges to the rational
expectation equilibrium.

The proof of this theorem requires the following
two lemmas, the proofs of which are provided in the
appendix.

Lemma 3. As the firm’s discount factor � approaches
one, the rationing equilibrium C0 under adaptive learn-
ing converges to the rationing equilibrium under rational
expectations C0

R.

Lemma 4. For the adaptive learning model (5), if the
per stage profit at a rationing equilibrium, ��C0�C0�, is
less than that at a low-price-only equilibrium equal to
�pL − c� �C, then the equilibrium is uniquely attained at �C;
otherwise, C0 is the optimal long-run equilibrium when �
approaches one.

Lemma 4 says when the discount factor is high
enough, rationing is optimal if it brings more profits
for the current period than no rationing. However, in
general, the transition to a rationing strategy may not
be optimal even though it leads to higher one-stage
profits. As shown in Theorem 2, a critical value of
capacity expectation determines when transitioning to
rationing is optimal.
Liu and van Ryzin (2008) show that when custo-

mers have rational expectations, the optimal stocking
quantity is C0

R if ��C0
R�C

0
R� > �pL − c� �C; otherwise,

the firm stocks �C without rationing. Then based on
the above two lemmas, Theorem 3 follows imme-
diately. This result is intuitive too. As mentioned,
a fundamental tradeoff under adaptive learning is
between stocking more to increase short-term prof-
its and stocking less to create expectations of short-
ages and thereby enhance long-run profits. Once the
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Table 2 Equilibrium Capacities and Fill Rates Under Different
Discount Factors

Discount factor 0�99 0�98 0�97 0�96
Equilibrium capacity 531�3 531�4 531�6 531�7
Equilibrium fill rate (%) 45�5 45�8 46�2 46�5

discount factor approaches one, the firm cares only
about customers’ long-run expectations and profits.
Therefore, we would expect the adaptive learning
equilibrium to be close to the rational expectation
equilibrium.
We further find numerically that the adaptive learn-

ing equilibrium is a good approximation of the ratio-
nal expectations equilibrium if the discount factor
is high. Table 2 illustrates the equilibrium capaci-
ties under different discount factors when customers
adaptively update their expectations of capacity.
In this example, the other parameters are set as N =

1�000, pH = 1, pL = 0�8, c = 0�2, U = 2, 	 = 0�5, and
� = 0�5. We can easily check that under rational expec-
tations rationing is optimal, and the rationing equi-
librium capacity C0

R is 531.1. Table 2 shows that the
rationing equilibrium capacity under adaptive learn-
ing is indeed very close to the rational expectation
outcome C0

R.

5. Numerical Examples
In this section, we conduct extensive numerical exam-
ples to study comparative statics for the critical
value of initial capacity expectations. In all the exam-
ples, we set N = 1�000, pH = 1, pL = 0�8, c = 0�2,
and U = 2. The other parameters are 	 = 0�75,

Table 3 Critical Values and Equilibrium Outcomes in Capacity Learning Model

(a) Under different discount factors

� �Cc C0 q0 (%) �
C0� C0�

0.5 500 514�2 37�0 401�3
0.6 500 513�1 32�7 402�1
0.7 553�1 512�1 28�9 402�5
0.8 574�4 511�2 25�6 402�8
0.9 600 510�3 22�7 403�0

(b) Under different learning speeds

	 �Cc C0 q0 (%) �
C0� C0�

0.1 526�3 515�9 44�2 399�4
0.3 542�5 512�8 31�4 402�2
0.5 586�3 511�7 27�5 402�7
0.7 600 511�2 25�6 402�8
0.9 600 510�8 24�4 402�9

(c) Under different risk aversions


 �Cc C0 q0 (%) �
C0� C0�

0.25 600 561�6 71�8 429�7
0.50 600 534�4 52�6 413�0
0.75 570�9 511�9 28�2 402�6

� = 0�7 in Table 3(a);	 = 0�75, � = 0�8 in Table 3(b);
� = 0�8, � = 0�45 in Table 3(c). In all these examples,
the lower bound of capacity C is 500 and the upper
bound of capacity �C is 600. We numerically solved
the problem (5) by a value iteration approach and
graphed the optimal state updating functions. The
critical value of capacity expectation is then deter-
mined by the point where the optimal state updat-
ing function jumps across the 45-degree line. The
rationing equilibrium and associated one-stage profit
are computed by (9) and (6), respectively. Table 3
summarizes the critical value of capacity expectation
�Cc, the rationing equilibrium capacity C0, the fill rate
equilibrium at C0, and the long-run per stage profit
at C0, ��C0�C0�, under different parameter settings of
the firm’s discount factor �, the customers’ learning
speed �, and their risk aversion 	.
We observe that the critical value of capacity expec-

tation increases in the firm’s discount factor (see
Table 3(a)). For example, in the case of � = 0�7,
only when customers’ capacity expectation is less
than 553.1 does rationing become the optimal long-
run outcome. As � increases to 0.9, the critical value
of capacity expectation becomes 600; thus, rationing
is always optimal regardless of customers’ capacity
expectation. Less discounting (i.e., a larger discount
factor) means that future profits are more important
to the firm. Therefore, there is increased incentive for
a firm to endure the short-term losses of understock-
ing to reap the long-term benefits of changing cus-
tomers’ capacity expectations. This leads to a larger
critical value.
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We find that the critical value of the customers’
capacity expectation increases in their learning speed.
The more quickly customers adapt their expectations
to changes in the firm’s actual capacity choices, the
lower the transition cost of changing their expecta-
tions. Hence, changing expectations to the rationing
equilibrium is optimal for a larger range of customers’
capacity expectations.
We also observe that the critical value increases in

the customers’ risk aversion (a smaller 	 implies more
risk-averse customers). Intuitively, when customers
become more risk averse, only a smaller amount of
rationing risk is needed to induce segmentation, and
thus the lost-sales cost of rationing is lower. With a
lower rationing cost, there is more incentive to incur
the (modest) transition cost to change customers’
expectations, and again a larger critical value results.

6. Extensions
Our research can be extended in a number of direc-
tions. As mentioned earlier, it is arguably more natu-
ral to model customer learning using fill rate rather
than capacity estimates. We next provide the analysis
for this alternative fill-rate updating model.

6.1. The Fill-Rate Learning Model
As in the capacity updating model, we assume that
customers update their expectations by an expo-
nential smoothing process; that is, given customers’
expectation of fill rate for the current season t,
denoted q̂t , and the firm’s actual fill rate in season t,
qt , a customer’s estimate of the fill rate for the next
season t+ 1, q̂t+1, is

q̂t+1 = �qt + �1− ��q̂t� (16)

where � is the customers’ learning speed, as before.
As we did for the capacity learning process, we can
define V �q̂t�, the maximum discounted profit given
customers’ expectation of fill rate qt , by the following
Bellman equation:

V �q̂t�

=max
0≤qt≤1

{
N

U
�pH −c��U −v�q̂t��+

N

U
�pL−c��v�q̂t�−pL�qt

+�V ��qt+�1−��q̂t�

}
� (17)

where v�q̂t� is the threshold valuation for a fill-rate
expectation of q̂t and is determined by

v�q̂t�=min
{
pH − pLq̂

1/	
t

1− q̂1/	t

�U

}
� (18)

Note that in the capacity updating model, it is
easy to show that the value function for the region 1

problem (7) is concave because the one-stage profit
function, �N/U��pH − pL��U − v� �Ct�� + �pL − c�Ct , is
jointly concave in � �Ct�Ct�. However, in the fill-rate
learning model (17), the one-stage profit function,
�N/U��pH − c��U −v�q̂t��+ �N/U��pL − c��v�q̂t�−pL�qt ,
is not jointly concave in �q̂t� qt� in the region 1 prob-
lem. Despite this structural difference in the form of
the profit function, we can still obtain some analytical
results for convergence in the fill-rate learning model.
To this end, we change the decision variable to be the
fill-rate expectation in the next period; the Bellman
equation (17) can be then expressed as

V �q̂t�

= max
0≤q̂t+1≤1

{
N

U
�pH −c��U −v�q̂t��+

N

�U
�pL−c��v�q̂t�−pL�

·�q̂t+1−�1−��q̂t�+�V �q̂t+1�
}
� (19)

The following lemma shows that customers’ expecta-
tions of fill rates converge.

Lemma 5. The state paths  q̂t!t≥1 determined by (19)
are monotone and thus converge.

However, beyond existence, we were not able to
further analyze properties of the equilibrium as we
did in the capacity model. We thus used value itera-
tion to study numerical solutions to the fill-rate learn-
ing model. Table 4 summarizes the critical values
of fill-rate expectations and the rationing equilibrium

Table 4 Critical Values and Equilibrium Outcomes in Fill-Rate
Updating Model

(a) Under different discount factors

� q̂c (%) q0 (%) C0 �
q0� q0�

0.5 0�0 78�5 522�1 360�5
0.6 0�0 68�0 520�4 382�5
0.7 68�7 57�4 518�5 392�9
0.8 83�9 43�4 515�7 399�6
0.9 100�0 30�4 512�5 402�4

(b) Under different learning speeds

	 q̂c (%) q0 C0 �
C0� C0�

0.1 0�0 87�2 523�3 314�0
0.3 0�0 65�1 519�9 386�0
0.5 80�0 52�2 517�5 396�0
0.7 83�8 43�8 515�8 399�5
0.9 86�6 38�1 514�5 401�1

(c) Under different risk aversion


 q̂c (%) q0 (%) C0 �
q0� q0�

0.25 100�0 76�3 564�1 449�8
0.50 97�2 65�0 539�4 445�4
0.75 77�8 54�7 518�0 443�8
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outcomes under different values of the firm’s discount
factor, the customers’ learning speed, and their risk
aversion. These are the same data used in the capacity
learning example of §5.
As seen in Table 4, when the critical value of fill-

rate expectation, q̂c, is strictly greater than zero and
less than one, both rationing and low-price-only out-
comes can be equilibria. In particular, when the cus-
tomers’ expectation of fill rate is higher than this
critical value, the firm’s capacity choices converge
to a low-price-only equilibrium; otherwise, capacity
rationing is optimal.
Observe from Table 4 that the critical value of fill-

rate expectation increases in the firm’s discount factor,
the customers’ learning speed, and their risk aver-
sion, just as in the capacity updating model. We also
observe that the rationing equilibrium decreases in
the firm’s discount factor and the customers’ learn-
ing speed, whereas it increases in the customers’ risk
aversion. These results indicate that the qualitative
behavior of the equilibrium outcome does not depend
critically on whether the learning state variable is fill
rate or capacity.8

6.2. Other Valuation Distributions and
Utility Functions

Although all the analytical results derived in the
paper are based on uniform distribution of customer
valuations and the power utility function, we tested
the model numerically on other distributions and util-
ity functions such as exponential and truncated nor-
mal distribution for valuation and exponential and
log utility functions. The numerical results show that,
as before, customers’ expectations of capacity con-
verge to either a rationing equilibrium or a low-price-
only equilibrium; the rationing equilibrium capacity
decreases in the firm’s discount factor and the cus-
tomers’ learning speed, whereas it increases in cus-
tomers’ risk aversion; the critical value of capacity
expectation increases in the firm’s discount factor, the
customers’ learning speed, and risk aversion. Thus
the major results appear quite robust to more general
valuation distributions and utility functions.

6.3. Asynchronous Expectation Updates
Our current model assumes that all customers have
identical expectations and synchronous updating of
expectations based on common knowledge of over-
all availability. It would be desirable to analyze the

8 Note, however, that the critical value of fill-rate expectation and
the rationing equilibria are quite different in the two models, even
though the same parameters are used in both cases. This is because
the mapping between capacity and fill rate is not linear, leading
to different capacity and fill-rate updates and different equilibrium
values. So although the qualitative behavior is the same, the numer-
ical predictions are quite different.

opposite extreme in which customers have heteroge-
neous expectations and asynchronously update them
based on individual purchase experience. Our con-
jecture, however, is that this asynchronous learning
would not result in qualitatively different decisions
and system behavior. Rather than having one expec-
tation, customers would have a mix of expectations,
and each would decide to buy early or wait based on
their individual expectation. Their aggregate demand
would thus be a weighted average of their individual
demand, and the firm’s decisions to provide more or
less availability would shift each customers’ expecta-
tions in the corresponding direction. As in the homo-
geneous case, we conjecture that the firm’s decision
would be to move either to a rationing or low-price-
only equilibrium, likely depending on some threshold
of a weighted measure of customers’ expectations. We
have performed some numerical experiments with
two-segment models of this type that support these
conjectures. We also observed that although expec-
tations may start out heterogenous, eventually the
firm’s availability converges and customer expecta-
tions converge to the true availability, so ultimately
the rationing and low-price-only equilibria are the
same as in the homogeneous case. It would be nice
to confirm these conjectures formally, but our pre-
liminary analysis suggests the value function for this
model is considerably more difficult to work with.

7. Conclusions
Rationing can serve as an optimal selling strategy
when customers strategize over the timing of pur-
chases. Threatened by rationing risk, customers have
an incentive to purchase early at the full price. Yet
they may not perfectly anticipate rationing risk. This
raises the question of how a firm should respond
in terms of its capacity decision. Our model shows
that rationing can be sustained as an equilibrium only
if changing customer expectations is not very costly.
When customers adjust their expectations slowly,
future profits are deeply discounted, or customers are
not very risk averse, the firm could end up serving
the entire market at the discount price, even though
rationing is more profitable in the long run. We also
find when the firm’s discount factor approaches one,
the equilibrium produced by assuming customers
adaptively learn converges to the equilibrium under
rational expectations.
The optimal policy in our model converges,

although it may be cyclical in other works, for exam-
ple, Ovchinnikov and Milner (2009). This difference
appears because of the convexity/concavity of pay-
offs; if the value function is convex (as for example in
the model of Ovchinnikov and Milner 2009), it pays
to oscillate between high and low availability because
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the average payoff from being in two extreme states
dominates the payoff from being at the average of
the two states. When the value function is concave
(as in our case of the region 1 problem), the payoff
from oscillating between states cannot dominate the
payoff from staying in one state. Yet how the particu-
lar model primitives in each case lead to this convex
versus concave payoff appears somewhat trickier to
determine. It would be desirable to have better busi-
ness intuition on whether oscillating or constant avail-
ability is optimal.
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Appendix

Proof of Lemma 1. Take the first and second derivatives
of �Ct�vt� in (3):

d �Ct

dvt

= N

U

((
vt − pH

vt − pL

)	(
1+ 	�pH − pL�

vt − pH

)
− 1

)
�

d2 �Ct

dvt
2
= −N

U
	�1−	��pH − pL�

2�vt − pL�
−1

· �vt − pH�−2
(

vt − pH

vt − pL

)	

≤ 0�

Then d �Ct/dvt strictly decreases in vt > pH . Together with
the fact that d �Ct/dvt�vt→+� → 0, we have d �Ct/dvt > 0 when
vt > pH . Hence, �Ct�vt� is strictly increasing and concave in
vt > pH . Note that �Ct�vt� is continuous at pH ; thus �Ct�vt� is
strictly increasing and concave in vt ≥ pH . �

Proof of Corollary 1. We first claim that there is a
unique solution to

(
v− pH

v− pL

)	(
1+ 	�pH − pL�

v− pH

)

− �pL − c��1/�− 1�+ ��pH − c�

�pL − c��1/�− 1+ ��
= 0� (20)

Denote g�v� = ��v− pH�/�v− pL��
	�1+ 	�pH − pL�/�v− pH��.

Then g�v� decreases in v; and g�v��v→vH
→ +�

and g�v��v→+� → 1. Note that ��pL − c��1/� − 1� +
��pH − c��/��pL − c��1/�− 1+ ��� > 1. Therefore, there exists
the unique solution, denoted v0, to the Equation (20).
Because ��pL − c��1/�− 1�+ ��pH − c��/��pL − c��1/�−1+���
increases in � and �, the solution v0 to (20) decreases in �
and �. Because C0 increases in v0, C0 decreases in � and �
as well.
Next we show the per stage profit increases in � and �.

The profit per stage at the v0, denoted ��v0�, is given by

��v0�= N

U
�pH − c��U − v0�+ �pL − c��v0− pL�

(
v0− pH

v0− pL

)	

�

One can easily check that ��v0� is strictly concave in v0 and
maximized at v0R, where v0R is the solution to the equation(

v− pH

v− pL

)	(
1+ 	�pH − pL�

v− pH

)
− pH − c

pL − c
= 0�

Because

�pL − c��1/�− 1�+ ��pH − c�

�pL − c��1/�− 1+ ��
<

pH − c

pL − c
�

it must be v0 > v0R when 0 < � < 1. Because ��v0� is
decreasing in v0 when v0 > v0R, together with the fact that
��pL − c��1/�− 1�+ ��1− c��/��pL − c��1/�− 1+ ��� increases
in � and �, we conclude ��v0� increases in � and � as
well. �

Proof of Lemma 2. For the value function of the region 1
problem

V1� �Ct� = max
Ct∈S1� �Ct�

{
N

U
�pH − pL��U − v� �Ct��+ �pL − c�Ct

+ �V 1
t+1��Ct + �1− �� �Ct�

}
�

we can easily show that �N/U��pH − pL��U − v� �Ct�� +
�pL−c�Ct is strictly joint concave in �Ct� �Ct�. The reason is the
following: according to Lemma 1, v� �Ct� is strictly concave
in �Ct ; thus, N/U�pH − pL��U − v� �Ct��+ �pL − c�Ct is strictly
joint concave in �Ct� �Ct�. Then the strict concavity of V1� �Ct�
directly follows Theorem 4.8 in Stokey and Lucas (1989).
Because one-stage profit function �N/U��pH − pL� ·

�U − v� �Ct�� + �pL − c�Ct decreases in �Ct , it follows imme-
diately from Theorem 4.7 in Stokey and Lucas (1989) that
V1� �Ct� decreases in �Ct .9 �

Proof of Proposition 1. We first show there exists a
unique equilibrium for the region 1 problem. By the Con-
traction Mapping Theorem, it is sufficient to show the fol-
lowing state updating function is a contraction mapping:

f � �C�= �C∗� �C�+ �1− �� �C�

where C∗� �C� is the optimal solution to the value function (7)
given state �C. By Theorem 4.8 in Stokey and Lucas (1989),
f � �C� is a single-valued and continuous function.
Because V1� �C� is strictly concave in �C, the inner maxi-

mization term of (7) is strictly concave in C, given �C as
well. The first-order conditions then sufficiently character-
ize optimal policies. We denote the first derivative of the
inner maximization term of (7) with respect to C by g�C�:

g�C�= pL − c+ ��
dV1

d �C �

If C∗� �C� is an interior point of the set S1� �C�, then C∗� �C�
is the optimal solution; otherwise, the optimal solution is
attained at boundary points.

9 Theorem 4.7 in Stokey and Lucas (1989) says that V1� �Ct� is increas-
ing in �Ct if the one-stage profit function increases in the first argu-
ment �Ct . Using the same approach, we can show that V1� �Ct� is
decreasing in �Ct if the one-stage profit function decreases in the
first argument �Ct .
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Figure A.1 Illustration of Contraction Mapping of State Updating Function
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ĈĈ

f (C )

ˆf (C ) ˆf (C)

ˆf (C)

C
~

C
~

C
~

O CsCO

(b-2)

45° 45°

45° 45°

Case 1. dV1/d �C�C ≤−�pL − c�/��

Because V1� �C� is decreasing in �C, dV1/d �C�C ≤
−�pL − c�/�� implies g�C�≤ 0 for any �C ∈ �C�Cs�. It follows
with C∗ = C and f � �C� = �C + �1− �� �C, which is illustrated
in Figure A.1(a). Then, ∀ �C1� �C2 ∈ �C�Cs�, we have

�f � �C1�− f � �C2�� = �1− ��� �C1− �C2��

Therefore, �C �→ f � �C� is a contraction mapping if � > 0.10

Case 2. dV1/d �C�Cs
<−�pL − c�/�� < dV1/d �C�C

Because of the strict concavity of V1� · �, there exists
the unique �C ∈ �C�Cs� such that dV1/d �C� �C = −�pL − c�/��.
Hence,

C∗ =




−1− �

�
�C +

�C
�

if � �C + �1− �� �C > �C > �C + �1− �� �C�

C if �C ≤ �C + �1− �� �C�

�C if �C ≥ � �C + �1− �� �C�

10 We exclude the case of � = 0, in which customer expectations stay
constant at the initial 1; there is no learning at all.

and

f � �C�=




�C if � �C+�1−�� �C> �C>�C+�1−�� �C�

�C+�1−�� �C if �C≤�C+�1−�� �C�

� �C+�1−�� �C if �C≥� �C+�1−�� �C�

Figure A.1(b-1) and (b-2) depict state-updating functions in
this case. Then, ∀ �C1� �C2 ∈ �C�Cs�, we have

�f � �C1�− f � �C2��


=0 if f � �C1�= f � �C2��

≤�1− ��� �C1− �C2� otherwise�11

Again, �C �→ f � �C� is a contraction mapping if � > 0.
Case 3. dV1/d �C�Cs

≥−�pL − c�/��

11When f � �C1� �= f � �C2�, it must be true that one of �C1, �C2 attains �C.
In other words, it cannot be the case that f � �C1� or f � �C2� is equal
to �C + �1− �� �C, and the other is � �C + �1− �� �C. This can be easily
checked in Figure A.1(b-1) and (b-2).
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Because V1� �C� decreases in �C, �dV1�/d �C�Cs
≥−�pL − c�/��

implies g�C�≥ 0 for any �C ∈ �C�Cs�. Then,

C∗ =




�C if � �C + �1− �� �C ≤Cs�

−1− �

�
�C + Cs

�
otherwise

and

f � �C�=



� �C + �1− �� �C if � �C + �1− �� �C ≤Cs�

Cs otherwise�

See Figure A.1(c) for the state updating function in this
case. Then, ∀ �C1� �C2 ∈ �C�Cs�, it is easy to check

�f � �C1�− f � �C2�� ≤ �1− ��� �C1− �C2��
Hence, �C �→ f � �C� is a contraction mapping if � > 0.
We next derive this unique equilibrium. To do this, we

formulate the Bellman equation (7) as a sequence problem:

V1� �C1�= max
 �Ct+1!�t=1

�∑
t=1

�t−1 ��� �Ct� �Ct+1�

s.t. �Ct+1 ∈ ŝ1� �Ct�� t = 1�2� � � �
�C1 ∈ �C�Cs� given�

where

ŝ1� �C� =  C �min � �C+�1−�� �C�Cs!≥C≥�C+�1−�� �C!�

��� �Ct� �Ct+1� =
N

U
�pH −pL��U −v� �Ct��−

1
�
�1−���pL−c� �Ct

+ 1
�
�pL−c� �Ct+1�

Then the optimal state sequence  �C∗
t+1!, provided �C∗

t+1 is in
the interior of �C�Cs�, satisfies the Euler equation:

&��� �Ct� �Ct+1�

& �Ct+1

∣∣∣∣
� �C∗

t � �C∗
t+1�

+ �
&��� �Ct� �Ct+1�

& �Ct

∣∣∣∣
� �C∗

t+1� �C∗
t+2�

= 0�

This leads to

v′� �C∗
t+1�=

�pL − c��1/�− 1+ ��

�N/U���pH − pL�
� (21)

However,

�C�v�= N

U

(
U − v+ �v− pL�

(
v− pH

v− pL

)	)
� 1≤ v≤U�

By the inverse function theorem,

v′� �C� = 1
�C ′�v�

=
{

N

U

[(
v− pH

v− pL

)	(
1+ 	�pH − pL�

v− pH

)
− 1

]}−1
� (22)

Combine (21) and (22), and some algebraic calculations
yield Equation (10). Further, it is easy to check that the left-
hand side of (10) is strictly decreasing in v > pH and has dif-
ferent signs at v → pH and v →+�. Therefore, there exists
the unique solution v0 > pH to (10).

When v0 < U , C0 defined by (9) is in the interior of the
set �C�Cs�. Moreover, the transversality condition

lim
t→��t �C∗

t ·
&��� �Ct� �Ct+1�

& �Ct

∣∣∣∣
� �C∗

t � �C∗
t+1�

= 0

is satisfied. Hence, the Euler and transversality conditions
are sufficient for the optimality of �v0�C0� (Stokey and
Lucas 1989, Theorem 4.15).12

When v0 > U , no interior solution satisfies the Euler
equation. The equilibrium capacity is attained at boundary
points of either C or Cs . We claim it can only be Cs . The
reason is the following:
Apply the Envelope Theorem to the following Bellman

equation:

V1� �Ct� = max
�Ct+1∈ŝ1� �Ct�

{
N

U
�pH −pL��U −v� �Ct��−

1
�
�1−���pL−c� �Ct

+ 1
�
�pL−c� �Ct+1+�V1� �Ct+1�

}
�

then

V ′
1� �Ct�=−N

U
�pH − pL�v

′� �Ct�−
1
�
�1− ���pL − c��

According to (22),

lim
�Ct→C+

v′� �Ct�= lim
v→1+

1
�C ′�v�

= 0�

Because the value function V1� �Ct� is right continuous at C
by the Maximum Theorem,

lim
�Ct→C+

V ′
1� �Ct�=− 1

�
�1− ���pL − c� >− 1

��
�pL − c� �

This implies Case 1 never exists, thus the equilibrium is
uniquely attained at Cs . �

Proof of Proposition 2. Suppose there exists an equi-
librium �C for the original problem (5), and �C �= C0, �C �= �C.
Then �C < Cs because if Cs ≤ �C < �C, the value gained at �C is
strictly less than the value at �C. The value at �C is

V � �C�=
�∑

t=0
�t�� �C� �C��

By the definition of the equilibrium,

�� �C� �C�+�V � �C�≥�� �C�C�+�V ��C+�1−�� �C�� ∀C∈ �C� �C��

We now claim ∀ �C ∈ �C�Cs�; the optimal value of the
region 1 problem at state �C is less than that of the original
problem at the same state, namely, V1� �C� ≤ V � �C�. This is
because the optimal policy for the region 1 problem is fea-
sible for the original problem, and the two problems have
the same dynamic program formulation.

12 Theorem 4.15 from Stokey and Lucas (1989) requires the one-
stage profit function ��� �Ct� �Ct+1� is strictly increasing in the first
argument �Ct . But this result also holds when ��� �Ct� �Ct+1� is strictly
decreasing in the first argument �Ct .
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On the other hand, as shown, C ≤ �C < Cs . Therefore the
policy  �C� �C� � � �! is feasible for the region 1 problem. By the
principle of optimality, V1� �C�≥ V � �C�. It then follows that

�� �C�C�+ �V1��C + �1− �� �C�

≤�� �C�C�+ �V ��C + �1− �� �C�

≤�� �C� �C�+ �V � �C�

≤�� �C� �C�+ �V1� �C��

Therefore, �C is an equilibrium of the region 1 problem as
well. Together with the fact that �C < Cs , it must be �C = C0.
This contradicts the assumption that �C �=C0. �

Proof of Proposition 3.We first claim that if there exists
an optimal state path  �Ct!t≥1 such that �Ct < �Ct+1 = · · · =
�Ct+m and �Ct+m > �Ct+m+1, or �Ct > �Ct+1 = · · · = �Ct+m and �Ct+m <
�Ct+m+1, where m > 1. Then replacing the subpath �Ct+m−1 →�Ct+m → �Ct+m+1 along  �Ct!t≥1 by �Ct+m−1 → �Ct+m+1 yields an
optimal state path as well.
As defined, V � �C1� is the total discounted value col-

lected along the optimal state path  �Ct!t≥1. Let V1� �C1� be
the value collected along the state path that substitutes
�Ct+m−1 → �Ct+m → �Ct+m+1 on the optimal state path with�Ct+m−1 → �Ct+m+1 (i.e., take one step from �Ct+m−1 to �Ct+m+1).
Denote V2� �C1� as the value along the state path that replaces�Ct+m−1 → �Ct+m → �Ct+m+1 on the optimal state path by
�Ct+m−1 → �Ct+m → �Ct+m → �Ct+m+1 (i.e., stays at �Ct+m for one
more stage). Then,

V � �Ct� = �� �Ct�Ct�+ ��+ · · ·+ �m−1��� �Ct+1� �Ct+1�

+ �m�� �Ct+m�Ct+m�+ �m+1V � �Ct+m+1��

V1� �Ct� = �� �Ct�Ct�+ ��+ · · ·+ �m−2��� �Ct+1� �Ct+1�

+ �m−1�� �Ct+m�Ct+m�+ �mV � �Ct+m+1��

V2� �Ct� = �� �Ct�Ct�+ ��+ · · ·+ �m��� �Ct+1� �Ct+1�

+ �m+1�� �Ct+m�Ct+m�+ �m+2V � �Ct+m+1��

where

Ct =
�Ct+1− �1− �� �Ct

�
and Ct+m =

�Ct+m+1− �1− �� �Ct+m

�
�

By the optimality of V � �Ct�, V � �Ct�≥ V1� �Ct�, implying

V � �Ct+m+1�≤
�� �Ct+m� �Ct+m�

��1− ��
− �� �Ct+m�Ct+m�

�
�

Similarly, V � �Ct�≥ V2� �Ct�� following with

V � �Ct+m+1�≥
�� �Ct+m� �Ct+m�

��1− ��
− �� �Ct+m�Ct+m�

�
�

Therefore, it must be

V � �Ct+m+1�=
�� �Ct+m� �Ct+m�

��1− ��
− �� �Ct+m�Ct+m�

�
' and

V � �Ct�= V1� �Ct�= V2� �Ct��

Thus, if it is optimal to stay at state �Ct+m for m stages
(m > 1), it is optimal as well to stay there for m− 1 stages.

Now suppose that the optimal state path  �Ct!t≥1 is not
monotone. It then suffices to restrict attention to the case
in which there exists a subpath �Ct → �Ct+1 → �Ct+2 on the
optimal state path such that either �Ct < �Ct+1 and �Ct+1 > �Ct+2,
or �Ct > �Ct+1 and �Ct+1 < �Ct+2.
Let V � �C1� again be the total discounted value collected

along the optimal state path  �Ct!t≥1; let V1� �C1� be the value
collected along the state path that substitutes �Ct → �Ct+1 →�Ct+2 on the optimal state path with �Ct → �Ct+2 (i.e., take one
step from �Ct to �Ct+2; the feasibility of this is argued below);
and let V2� �C1� be the value collected along the state path
that replaces �Ct → �Ct+1→ �Ct+2 on the optimal state path by�Ct → �Ct+1 → �Ct+1 → �Ct+2 (i.e., stays at �Ct+1 for one more
stage). Then

V � �Ct�=�� �Ct�Ct�+ ��� �Ct+1�Ct+1�+ �2V � �Ct+2��

V1� �Ct�=�� �Ct�C
′
t �+ �V � �Ct+2��

V2� �Ct�=�� �Ct�Ct�+ ��� �Ct+1� �Ct+1�

+ �2�� �Ct+1�Ct+1�+ �3V � �Ct+2��

where

Ct =
�Ct+1− �1− �� �Ct

�
� Ct+1 =

�Ct+2− �1− �� �Ct+1
�

�

C ′
t =

�Ct+2− �1− �� �Ct

�
�

One can easily show that C ′
t is a feasible action. By the

optimality of V � �Ct�, that is, V � �Ct� ≥ max V1� �Ct��V2� �Ct�!.
Along the same line of argument as before, it must be
that V � �Ct+2� = �1/�1− ����� �Ct+1� �Ct+1� + �1/������pL − c� ·
� �Ct+1 − �Ct+2�, and V � �Ct� = V1� �Ct� = V2� �Ct�. Therefore, we
can replace the nonmonotone subpath �Ct → �Ct+1 → �Ct+2
by �Ct → �Ct+2 and achieve at least as large as the optimal
value V � �Ct�. �

Proof of Proposition 4. If there exists an optimal non-
monotone state path  �Ct!t≥1, then along it there exists a sub-
path �Ct → �Ct+1 → ·· · → �Ct+m → �Ct+m+1 (m ≥ 1) such that
either �Ct < �Ct+1 = · · · = �Ct+m and �Ct+m > �Ct+m+1, or �Ct >
�Ct+1 = · · · = �Ct+m and �Ct+m < �Ct+m+1. According to the proof
of Proposition 3, it is also optimal to stay at �Ct+1 for m− 1
stages if staying at �Ct+1 for m stages is optimal (m > 1). The
optimal value at state �Ct can then be expressed as follows:

V � �Ct�=�� �Ct�Ct�+ ��� �Ct+1�Ct+1�+ �2V � �Ct+m+1�� (23)

where

Ct =
�Ct+1− �1− �� �Ct

�
�Ct+1 =

�Ct+m+1− �1− �� �Ct+1
�

�

As shown in Proposition 3, V � �Ct+m+1� = �� �Ct+1� �Ct+1�/
���1− ���−�� �Ct+1�Ct+1�/�. If we substitute it into (23), we
have V � �Ct�=�� �Ct�Ct�+ ��/�1− ����� �Ct+1� �Ct+1�. However,
V � �Ct�=�� �Ct�Ct�+ �V � �Ct+1�; therefore,

V � �Ct+1�=
�� �Ct+1� �Ct+1�

1− �
�

This implies �Ct+1 is an equilibrium of the original problem.
Note that �Ct+1 < �C, it must be �Ct+1 =C0.
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Next we show if there exists a nonmonotone optimal
state path along which

�Ct →C0→·· ·→C0︸ ︷︷ ︸
m

→ �Ct+m+1�m≥ 1��

it must be �Ct > C0 and �Ct+m+1 > C0. The reason is the follow-
ing: suppose �Ct < C0 and �Ct+m+1 < C0; then  �Ci!i≥t+m+1 must
be a decreasing sequence and converge to a state strictly
less than C0. This contradicts Theorem 1. Therefore, �Ct > C0

and �Ct+m+1 > C0. Further, because  �Ci!i≥t+m+1 is an increas-
ing sequence, it will converge to �C. �

Proof of Lemma 3. The cutoff value v0 under the adap-
tive learning model is the solution to

(
v− pH

v− pL

)	(
1+ 	�pH − pL�

v− pH

)

− �pL − c��1/�− 1�+ ��pH − c�

�pL − c��1/�− 1+ ��
= 0� (24)

This equation becomes (15) as � → 1. Therefore, v0 → v0R
and C0→C0R as �→ 1. �

Proof of Lemma 4. Let �V �C0� and �V �C0� be the values
of 5 at C0 when the capacity decisions take C0 and �C for
any stage, respectively; then

�V �C0�=��C0�C0�+ ���C0�C0�+ · · · � (25)

�V �C0�=��C0� �C�+ ���� �C + �1− ��C0� �C�+ · · · � (26)

Note the first term in (25) is strictly less than the first one
in (26); that is, ��C0�C0� < ��C0� �C�. Because ��C0�C0� ≤
�pL − c� �C ≤�� �C� �C�, ∀ �C ∈ �C� �C�, from the second term on,
(25) is at most as large as the counterpart in (26) on a term-
by-term basis. Therefore, it must be �V �C0� < �V �C0�. It then
follows that C0 cannot be an equilibrium.
We next show that C0 is the optimal equilibrium when

� approaches 1 and ��C0�C0� < �pL − c� �C. Suppose there
exists state �C1 ∈ �C� �C� such that an optimal state path from
�C1, denoted  �Ct!t≥1, converges to �C. By the monotonicity
of this optimal state path, there exists m ≥ 1 such that
�Ct ≥Cs� ∀ t ≥m (recall that Cs is the state which divides the
problem into the region 1 and region 2 problems); moreover,
the optimal policy C∗

t = �C� ∀ t ≥m. That is,

V � �C1� = �� �C1�C∗
1 �+ ��� �C2�C∗

2 �+ · · ·+ �m−2�� �Cm−1�C
∗
m−1�

+
�∑

t=m

�t−1�pL − c� �C�

Construct an alternative state path from �C1, denoted  �Ct!t≥1
( �C1 = �C1), which visits C0 at stage t = n and stays there
afterward; then the value along this path  �Ct!t≥1 denoted by�V � �C1� is
�V � �C1� = �� �C1�C1�+ ��� �C2�C2�+ · · ·+ �n−2�� �Cn−1�Cn−1�

+
�∑

t=n

�t−1��C0�C0��

Since V � �C1�≥ �V � �C1�, some algebraic arrangement yields
1

1− �

(
�m−1�pL − c� �C − �n−1��C0�C0�

)

≥�� �C1�C1�+ ��� �C2�C2�+ · · ·+ �n−2�� �Cn−1�Cn−1�

−�� �C1�C∗
1 �− ��� �C2�C∗

2 �− · · ·− �m−2�� �Cm−1�C
∗
m−1�� (27)

As � → 1−, the left-hand side of (27) goes to −� because
��C0�C0� > �pL − c� �C. However, the right-hand side of (27)
is a finite number. Hence, there does not exist such a state
�C1 from which an optimal state path converges to �C, and
therefore all the optimal state paths from any state converge
to C0 as �→ 1−. �

Proof of Lemma 5. In problem (19), because v�q̂t� is
increasing in q̂t , the function under maximization has posi-
tive cross-derivative and hence is supermodular in �q̂t� q̂t+1�.
Hence, the optimal decision, q̂t+1, is monotone increasing
in the state q̂t . Because the optimal decision is monotone
increasing in the state in each period, and the optimal
decision in the current period becomes the state for the
next period, we conclude the optimal decisions,  q̂t!t≥1, are
monotone and converge. �
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