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A dynamic-programming heuristic is described to find approximate solutions to the problem
of identifying a new, multi-attribute product profile associated with the highest share-of-choices
in a competitive market. The input data consist of idiosyncratic multi-attribute preference
functions estimated using conjoint or hybrid-conjoint analysis. An individual is assumed to
choose a new product profile if he/she associates a higher utility with it than with a status-quo
alternative. Importance weights are assigned to individuals to account for differences in their
purchase and/or usage rates and the performance of a new product profile is evaluated after
taking into account its cannibalization of a seller’s existing brands. In a simulation with
real-sized problems, the proposed heuristic strictly dominates an alternative lagrangian-relax-
ation heuristic in terms of both computational time and approximation of the optimal solution.
Across 192 simulated problems, the dynamic-programming heuristic identifies product profiles
whose share-of-choices, on average, are 98.2% of the share-of-choices of the optimal product
profile, suggesting that it closely approximates the optimal solution.

(MARKETING; PRODUCT DESIGN; CONJOINT ANALYSIS; HEURISTICS)

1. Introduction

Substantial effort has been devoted by marketing researchers to identifying and
evaluating the performance of new product concepts prior to their market introduction.
Consumer preference based methods such as conjoint analysis and multidimensional
scaling have benefited the most for this interest. Improved data-collection methods
have been proposed (e.g., Green 1984), and models and algorithms developed to evalu-
ate the potential performance of new product concepts (e.g., Gavish, Horsky and
Srikanth 1983; Green, Carroll and Goldberg 1981; Hauser and Simmie 1981).

This paper suggests a heuristic approach to new-product design using data from
conjoint or hybrid-conjoint analysis. Specifically, it presents a dynamic-programming
heuristic that provides an approximate solution to the problem of identifying a new,
feasible, multi-attribute product profile associated with the highest share-of-choices in a
competitive market. The proposed method assumes that individual preferences within
a product class are described by a multi-attribute utility function, that all attributes
have discrete levels, and that a new product is selected by an individual only if it has
higher utility than a status-quo alternative.

When all attributes are discrete and preferences are idiosyncratic, conjoint choice-
simulators (e.g., the QUALIN program of Green, Carroll and Goldberg’s 1981 POSSE
methodology) employ an enumeration procedure to identify a product profile with the
highest share-of-choices. This presents no major computational difficulty if, as in the
past, a small number of product profiles are tested. However, as commercial users have
acquired more extensive experience with conjoint methodology, their demands have
grown. Larger numbers of attributes and attribute-levels are being specified, especially
when hybrid-conjoint models are used to collect preference data (Green 1984, p. 156).
This in turn increases the number of product profiles evaluated and limits the use of
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enumeration as a method for identifying the optimal product profile. For example, we
describe an industry application (§5) in which a hybrid-conjoint model is used to collect
data for a problem involving 16 attributes. A share-of-choices simulation for the 286-
million product profiles is infeasible because it requires over 600 hours on a FPS-com-
puter (which runs approximately 10 times faster than a DEC-10 computer and 2 times
faster than a VAX-8600 computer). Even for a subproblem involving 10 attributes,
simulating the share-of-choices for all product profiles takes over 1.5 hours on an
FPS-computer. :

The proposed heuristic, unlike explicit simulation, takes seconds to identify a prod-
uct profile as its solution from a large set of feasible alternatives. For the preceding
example, the heuristic is implemented in 2 and 1.2 seconds for the problems involving
16 and 10 attributes, respectively. Because it is computationally efficient and obtains
solutions that are close to optimal, the proposed heuristic can also be used to perform
sensitivity analysis (by resolving the problem for different subsets of respondents, and
by perturbing utility-function estimates) and competitive analysis (by changing the set
of competing products).

§2 provides a brief overview of preference based methods for new-product design. §3
describes, in the context of conjoint analysis, the problem of identifying a new product
profile with the highest share-of-choices. §4 presents the proposed dynamic-program-
ming heuristic, and §5 evaluates its performance.

2. Background

Preference based methods for new-product design have emphasized two methodolo-
gies: multidimensional scaling (MDS) and conjoint analysis, Each approach is de-
scribed briefly below.

The Multidimensional Scaling Approach

The MDS approach describes consumer preferences in terms of brand and individual
(ideal point) locations in an attribute space. In its simplest version, individual ideal-
points are located in a common attribute space, the dimensions of which are differently
weighted across individuals. A consumer is assumed to prefer products closer to the
ideal point over those further away. Depending on the choice model employed, an
individual may either be assumed to deterministically choose the brand closest to
his/her ideal point or be seen to probabilistically select a brand where the probability of
choice from a competing set is a decreasing function of the distance of the brand from
the consumer’s ideal point.

A number of researchers have presented procedures for identifying a point location
in attribute-space that optimizes some objective function such as sales-revenue or
share-of-choices received by a brand. Explicit solution procedures for maximizing the
number of individuals for whom a new brand is closest to their respective ideal points
are presented by Albers (1979), Albers and Brockhoff (1977, 1979), Gavish, Horsky and
Srikanth (1983) and Zufryden (1979). Hauser and Simmie (1981) propose a model that
employs a probabilistic choice-function, explicitly considers costs and prices, and in-
cludes a transformation from perceptual-space to the physical-dimensions of a product.
However, they do not address the problem of cost measurement, which plagues all the
proposed methodologies for product design optimization (Green, Carroll and Goldberg
1981). Also, none of the procedures deals with technological constraints on the vari-
ables’ ranges. Computationally, all but the smallest problems take inordinately long to
solve. Only Gavish, Horsky and Srikanth (1983) present efficient heuristics for solving
problems of realistic sizes.
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The Conjoint Analysis Approach

Conjoint analysis has been commercially used since the early 1970’s (Green and Rao
1971; Johnson 1974). Unlike multidimensional scaling, this approach begins with the
selection of a relevant set of attributes, each of which is described at a finite number of
levels when the frequently-used part-worths model is employed. The attributes are used
as factors in a fractional-factorial design, and the treatments of the design describe
multi-attribute product profiles. Depending upon whether a conjoint or hybrid-con-
joint model is employed, either all or some of these product profiles are evaluated by a
respondent. In either case, at least some of the utility-function parameters (i.e., the part
worths) are estimable at the individual level. Estimates of the part worths, obtained by
scaling individual preferences (Green 1984; Srinivasan and Shocker 1973; Kruskal
1965), are then used to evaluate new product concepts (Green and Srinivasan 1978).

The first approach to product-design optimization using conjoint data was proposed
by Zufryden (1977). He formulated the problem as a 0-1 integer-program that maxi-
mized the weighted share-of-choices for the new product. Each individual was assumed
to deterministically choose the new product if she/he associated a higher utility with it
than with a currently favored brand. Zufryden did not present any numerical examples
of his approach, nor how the model could be implemented in terms of specific solution
algorithms.

A comprehensive methodology called POSSE was introduced a few years later by
Green, Carroll and Goldberg (1981). POSSE is a system of models and programs for
carrying out a variety of steps in conjoint analysis ranging from stimulus-design to
optimization and sensitivity-analysis. A unique feature of POSSE is its use of response-
surface methods (Box, Hunter and Hunter 1978) to identify various objective functions
that are subsequently employed in optimization routines. POSSE employs polynomial
optimization when all attributes are continuous. For idiosyncratic preferences and all
discrete attributes, it uses an enumeration to simulate the share-of-choices for new
product profiles (Green, Carroll, Goldberg and Kedia 1981, p. 15). Combinations of
discrete and continuous attributes are not directly considered in POSSE.

This paper addresses the problem of identifying a product profile that maximizes
share-of-choices when individuals have different preferences over a set of multi-attri-
bute alternatives and all attributes have discrete levels (combinations of fixed and
continuous attributes are also not considered in this paper). In contrast to previous
work on the problem, we emphasize a specific solution procedure that identifies “R”
independent, feasible, product profiles as its solution, where “R” is a number specified
by the user. The ability to identify more than one product profile is useful because a
single, “optimal” product profile is seldom of interest in share-of-choices simulations.
Rather, multiple product profiles are sought that are attractive in terms of their pre-
dicted shares-of-choices. The selected product profiles are evaluated in terms of their
technological feasibility, their manufacturing and marketing costs, and their compati-
bility with the firm’s current strategies and resources. One or more of these product
profiles is then selected for further testing.

Like Zufryden (1977), we assume that an individual deterministically selects a brand
with the highest utility in an offered set of alternatives. Individuals are assigned weights
to account for differences in their purchase and/or usage rates, and the performance of
a new product profile is evaluated after taking into account its cannibalization of a
seller’s existing-brand sales.

3. Description of Problem

First, let @ = {1, 2, ..., K} denote the set of K attributes. For attribute k € Q, let &,
={1,2,...,Ji} denote the set of J; levels. Further, let® = {1, 2, ..., I} denote the set
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of I individuals. For individual i, let w;j, denote the part worth of level j of attribute k.
Let O, denote the subset of individuals in ® whose currently favored (status-quo) brand
is offered by a seller seeking to introduce a new brand, and let ®, = ® — 0, denote the
subset of individuals for whom the status-quo brand is offered by a competitor. Let j¥
denote the level of attribute k that appears in the product profile of the status-quo brand
for individual i. Then

Cijk = Wijke — Wijzk (D
denotes the part worth of level j of attribute k relative to the part worth of level j¥ of
attribute k for individual i (we refer to the ¢;; as the “relative part worths” in the
following discussion).!

Let u,, denote the part-worths utility of product-profile p relative to the part-worths
utility of the status-quo brand for individual i. Then u,, has a value equal to the sum of
the c;jx across all levels of all attributes that appear in product-profile p. We assume that
individual i chooses product-profile p over his/her status-quo brand only if #;, > 0.

The share-of-choices for a test-profile is defined as the fraction of the number of
individuals in ® who choose it over their status-quo brand. Because the number of
individuals in © is a constant, identifying a product profile p* that maximizes the
share-of-choices is equivalent to maximizing the number of individuals in © for whom
U > 0.

Cannibalization of the sales of brands currently offered by the seller is considered by
maximizing over individuals in ©, rather than 0, because any increase in share obfained
by the seller should result from customers switching from a competitor’s brand (but not
the seller’s own brands) to the new product.?

Finally, let d; denote the importance weight the seller assigns to individual i € ©,.
Maximizing the share-of-choices for a new product profile (while controlling for canni-
balization) is then equivalent to selecting a product profile p* that maximizes the
weighted number of individuals in 0, for whom u;,« > 0, where d; is the weight asso-
ciated with individual i. The following heuristic is proposed to solve this problem.

4. The Dynamic-Programming Heuristic

Let C(k) denote the individuals-by-attribute-levels matrix of part worths for attribute
k € Q. Each row of C(k) corresponds a distinct individual, each column to a distinct level
of attribute k, and the ijth element to the relative part worth individual i associates with
level j of attribute k. Let C;(k) denote the jth column of C(k).
Step 1. To each column of ((1), add column C;(2), j € ®,. Call the resulting matrix
S;(2); i.e.,
5@ =C)+ G forall jed, )

where [1] denotes a conformable row-vector of unit elements.? Observe that there are as

! This discussion assumes a main-effects model of individual utilities and can be extended in an obvious
manner to include interaction effects.

2 Note that this controls for cannibalization of the seller’s sales, but not profits.

3 For example, if there are two individuals in ©, (i = 1, 2) and attribute 1 has two levels (j = 1, 2), then

i) = (caDen(D); o) = D)

C) = (cyDey@) forall jed; and
. cu(l) (1) c1;(2)

S(j2) = 1 1
2) chmm cu(l)] lae |t

_ () +¢j(2) cl) +¢i(2)
(1) + () en() +c(2) |
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many matrices S;(2) as there are levels of attribute 2. For each level j of attribute 2,
select the column from S;(2) that has the highest (weighted) number of positive ele-
ments, where d; is the weight for the ith element (individual). Ties are broken by (a)
selecting the tied column that has the highest (weighted) number of nonnegative ele-
ments, and (b) selecting from still-tied columns the one with the highest (weighted) sum
of nonnegative elements. If any columns are still tied, one of them is randomly selected.

Let the selected column from S;(2) be denoted s¥*(2) for all j € ®,. Form the matrix

S$*(Q2) = [s1(2)s3(2) - - - s%(2)]- 3

For each individual i € ©,, the value of s%(2) (the ijth element of $*(2)) is the sum of the
relative part worths for level j of attribute 2 and level j, of attribute 1, where j, is chosen
to maximize the (weighted) number of individuals in ©, for whom the sum c¢;; (1)
+ ¢;;(2) is positive.
Step 2. To each column of $*(2), add column Cj(3), j € ®;. Call the resulting matrix
S;(3); i.e.,
Si(3) = S*2) + [GB)[1]  forall  je&s, 4)

where [1] denotes a conformable row-vector of unit elements. For each level j of
attribute 3, select the column from S;(3) that has the highest (weighted) number of
positive elements. Ties are broken as described in Step 1 above. Let the selected column
from S;(3) be denoted s}*(3) for all j € ®;. Form the matrix

S*(3) = [st(3)s3(3) - - - s%,(3)]- (&)

For each individual i € ©,, the value of s%(3) is the sum of the part worths for level j of
attribute 3, level j, of attribute 2, and level j; of attribute 1. Given level j of attribute 3,
level j, of attribute 2 is chosen to maximize the (weighted) number of individuals for
whom the sum

HQ2) + ¢;(3) ©6)

is positive; and given level j, of attribute 2, level j; of attribute 1 is selected as in Step 1.
Step (k — 1) (General step). To each column of S*(k — 1), add column Cj(k) of
matrix C(k). Call the resulting matrix S;(k); i.e.,

Sk = S*k— D+ [GMRI1]  forall  jed, %

where [1] denotes a conformable row-vector of unit elements. For each level j of
attribute k, select the column from S;(k) that has the highest (weighted) number of
positive elements. Ties are broken as described in Step 1.

Let the selected column from S;(k) be denoted s¥ (k) for all j € ®;. Form the matrix

S*(k) = [st(k)s3(K) + - - s7(K)]. (®)

For each individual i € ©,, the value of s¥%(k) is the sum of the part worths for level j of
attribute k and one level of each of attributes 1, 2, . . . , (k — 1). Given level j of attribute
k, level j,_, of attribute k — 1 is chosen to maximize the number of individuals for
whom the sum

sk (k= 1)+ ¢;i(k) )]

is positive; given level j,_; of attribute k — 1, level ji_, of attribute k — 2 is selected to
maximize the number of individuals for whom the sum

Sha(k = 2) + ¢ (k= 1) (10)

is positive; and so on down to attribute 2, where for each level j, of attribute 2, level j, of
attribute 1 is selected as described in Step 1.
We emphasize that the proposed algorithm is a seuristic because for each level of an
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attribute only a level of a preceding (and no other) attribute is selected. The solution is
identified by the column that contains the largest (weighted) number of positive ele-
ments in S*(K). The ith element of this column represents the ith individual’s part-
worths utility for the selected product profile.

Infeasible Solutions

The above heuristic identifies a single product profile as the solution. However, in
practice, certain product profiles may be infeasible due to technological and/or cost
constraints, and a user may wish to examine more than one feasible solution-profile.
Therefore a procedure is needed to ensure that the product profile identified is not
infeasible, and also to permit a user to specify the number of feasible product profiles
identified by the heuristic. _

Let N denote the number of infeasible product profiles. Let level j of attribute k
appear in Ny (<N) infeasible product-profiles. Let N be the maximum of the number
of infeasible product-profiles across the J; levels of attribute k; i.e.,

Nk=max {]ijlje‘-bj} (11)

Let Ny, = min {N,|k € Q} be the minimum value of N, across all attributes k € Q, and
let k' be a (not necessarily unique) attribute for which Ny = Npin. Consider M (>Nmin)
product profiles, all of which have level j of attribute k’. Because each level of attribute
k' appears in no more than N, infeasible product-profiles, at least (M — N,;,) of these
M product profiles must be feasible. Therefore if M product profiles are identified for
each level of attribute k', then at least (M — Np,i,) product profiles must be feasible for
each level of attribute k'.

To ensure a feasible solution, the dynamic-programming heuristic is altered in two
ways. First, the algorithm is implemented with attribute k' (for which Ny = Npin)
considered /ast in the algorithm. Second, each S*(k) is constructed by selecting M
(>Nmin) columns, instead of 1 column, from each S;(k), provided the S;(k) have M
columns each; otherwise, all columns of S;(k) are carried over into the S*(k) matrix.
Because each level of attribute k' appears in no more than Ny, product profiles, at least
(M — Nui,) product profiles associated with each of its levels must be feasible. A single,
feasible, product profile is ensured if M = N.,;, + 1. More generally, R feasible product
profiles are ensured if M = Ny, + R.

5. Performance Evaluation

The predicted shares-of-choices for product profiles identified by the dynamic-pro-
gramming heuristic are compared to the predicted shares-of-choices for (a) product
profiles identified by an alternative lagrangian-relaxation heuristic, and (b) corre-
sponding optimal product profiles.* Also, the computational times for the dynamic-
programming heuristic are compared to those for the lagrangian-relaxation heuristic
and for an enumeration procedure for identifying optimal product profiles.

Forty-eight problems were generated using a 3 X 4? experimental design that em-
ployed number-of-individuals (100, 200, 300, 400), number-of-attributes (4, 6, 8) and
number-of-levels-per-attribute (2, 3, 4, 5) as the design factors. Problems involving
more than 8 attributes were not solved because the computational time required for
their enumeration is very large (e.g., over 60 hours on an FPS-computer for a problem
involving 400 individuals and 10 attributes at 5 levels each). All part worths were
randomly selected from a uniform distribution on [0, 1], then normalized within

4 Details of the lagrangian-relaxation heuristic are available in an appendix that can be obtained from
TIMS.
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individuals. Idiosyncratic status-quo product profiles were randomly chosen, and a unit
importance-weight was assigned to each individual. All product profiles were assumed
to be feasible.

Each problem was solved using the dynamic-programming and lagrangian-relaxation
heuristics, and also via an enumeration of all product profiles. For the 48 problems, the
dynamic-programming heuristic strictly dominates the lagrangian-relaxation heuristic
in terms of both computational time and approximation of the optimal solution. Table
1 (column 12, problem #13) shows that the share-of-choices for the lagrangian-relax-

TABLE 1
Relative Performance of Dynamic-Programming and Lagrangian-Relaxation Heuristics for 48 Simulated Problems

No. of
Problem  No. of No. of Levels per n(DP) n(LR) (DP) «LR)
Number Individuals Attributes Attribute  n(DP)* n(LR)** n(OPT)*** ((DP)# «LR)## (ENUM)### -+ n(OPT) + n(OPT) + ((ENUM) =+ (ENUM)

1 100 4 2 57 47 57 0.025 1.855 0.054 1.00 0.82 0.4630 34.3519

2 200 4 2 108 105 108 0.049 4.430 0.107 1.00 0.97 0.4579 41.4019

3 300 4 2 170 156 170 0.073 5.430 0.160 1.00 0.92 0.4563 33.9375

4 400 4 2 223 191 223 0.096 8.245 0.213 1.00 0.86 0.4507 38.7089

5 100 4 3 57 39 57 0.049 5.652 0.247 1.00 0.68 0.1984 22.8826

6 200 4 3 108 99 108 0.096 6.320 0.492 1.00 0.92 0.1951 12.8455

7 300 4 3 164 154 164 0.144  10.355 0.737 1.00 0.94 0.1954 14.0502

8 400 4 3 235 200 235 0.192  15.420 0.984 1.00 0.85 0.1951 15.6707

9 100 4 4 68 46 68 0.083 3.430 0.766 1.00 0.68 0.1084 4.4778
10 200 4 4 107 96 107 0.161 8.850 1.524 1.00 0.90 0.1056 5.8071
11 300 4 4 165 151 167 0.241  16.585 2.285 0.99 0.90 0.1055 7.2582
12 400 4 4 227 203 227 0.321  24.035 3.046 1.00 0.89 0.1054 7.8907
13 100 4 5 62 36 62 0.124 4.940 1.855 1.00 0.58 0.0668 2.6631
14 200 4 5 113 94 116 0.244  12.565 3.702 0.97 0.81 0.0659 3.3941
15 300 4 5 170 132 170 0.364  22.485 5.545 1.00 0.78 0.0656 4.0550
16 400 4 5 208 195 217 0.483  37.600 7.384 0.96 0.90 0.0654 5.0921
17 100 6 2 58 52 58 0.040 2.370 0.249 1.00 0.90 0.1606 9.5181
18 200 6 2 110 102 110 0.077 4.900 0.496 1.00 093 0.1552 9.8790
19 300 6 2 163 163 165 0.115 8.315 0.744 0.99 0.99 0.1546 11.1761
20 400 6 2 220 200 220 0.153  12.270 0.992 1.00 0.91 0.1542 12.3690
21 100 6 3 64 46 67 0.080 3.945 2.749 0.96 0.69 0.0291 1.4351
22 200 6 3 109 101 113 0.156 9.285 5.477 0.96 0.89 0.0285 1.6953
23 300 6 3 162 146 168 0.233  18.135 8.214 0.96 0.87 0.0284 2.2078
24 400 6 3 228 196 228 0311 21.995 10.958 1.00 0.86 0.0284 2.0072
25 100 6 4 65 47 65 0.135  13.195 15.390 1.00 0.72 0.0088 0.8574
26 200 6 4 111 98 115 0.264  15.750 30.678 0.97 0.85 0.0086 0.5134
27 300 6 4 171 153 176 0.395  27.110 46.057 0.97 0.87 0.0086 0.5886
28 400 6 4 209 204 213 0.522  44.580 61.281 0.98 0.96 0.0085 0.7275
29 100 6 5 68 49 69 0.205 16.420 58.726 0.99 0.71 0.0035 0.2796
30 200 6 5 124 101 124 0.402 22990 117.041 1.00 0.81 0.0034 0.1964
31 300 6 5 176 133 177 0.601  44.200 175.538 0.99 0.75 0.0034 0.2518
32 400 6 5 234 187 237 0.799  76.155 233.999 0.99 0.79 0.0034 0.3255
33 100 8 2 56 43 56 0.054 3.105 1.176 1.00 0.77 0.0459 2.6403
34 200 8 2 120 101 120 0.106 6.580 2.351 1.00 0.84 0.0451 2.7988
35 300 8 2 171 159 171 0.157  11.560 3.522 1.00 0.93 0.0446 3.2822
36 400 8 2 228 211 230 0.209 15970 4.698 0.99 0.92 0.0445 3.3993
37 100 8 3 69 51 69 0.111  10.030 29.913 1.00 0.74 0.0037 0.3353
38 200 8 3 110 88 121 0.216  17.265 59.683 0.91 0.73 0.0036 0.2893
39 300 8 3 171 142 173 0.323 32430 89.484 0.99 0.82 0.0036 0.3624
40 400 8 3 225 195 225 0.429  38.080 119.229 1.00 0.87 0.0036 0.3194
41 100 8 4 61 42 65 0.187 13.310 298.345 0.94 0.65 0.0006 0.0446
42 200 8 4 122 99 126 0.368  29.040 596.004 0.97 0.79 0.0006 0.0487
43 300 8 4 172 148 176 0.548  45.050 893.404 0.98 0.84 0.0006 0.0504
44 400 8 4 224 202 234 0.730 65.250  1191.156 0.96 0.86 0.0006 0.0548
45 100 8 5 65 42 67 0283 21.820 1776.824 0.97 0.63 0.0002 0.0123
46 200 8 5 112 91 118 0.556 31.860 3548.414 0.95 0.77 0.0002 0.0090
47 300 8 5 176 143 185 0.835 83.780  5323.910 0.95 0.77 0.0002 0.0157
48 400 8 5 230 179 233 1.108 124.455  7094.351 0.99 0.77 0.0002 0.0175

* n(DP) denotes the number of individuals for whom the dynamic-programming product profile has higher utility than the status-quo product profile.
** n(LR) denotes the number of individuals for whom the lagrangian-relaxation product profile has higher utility than the status-quo product profile.
*** n(OPT) denotes the number of individuals for whom the optimal product profile has higher utility than the status-quo product profile.

# ((DP) denotes the computational-time (in seconds) for the dynamic-programming heuristic.

## ((LR) denotes the computational-time (in seconds) for the lagrangian-relaxation heuristic.

### ((ENUM) denotes the computational-time (in seconds) for enumeration.
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ation product profile is always higher than 58% of the share-of-choices for the optimal
product profile. In contrast, the share-of-choices for the dynamic-programming-prod-
uct-profile (column 11, problem #38) is always higher than 91% of the share-of-choices
for the optimal-product-profile. Also, the gap between the computational times for the
two heuristics increases with problem sizes: for the smallest problem (#1) the dynamic-
programming heuristic is 74 times faster, and for the largest problem (#48) it is 100
times faster than the lagrangian-relaxation heuristic. The dynamic-programming heur-
istic also dominates the enumeration procedure computationally for all 48 problems. In
contrast, the lagrangian-relaxation heuristic dominates the enumeration for 21 of the
48 problems (#24-#32, and #37-#48).

TABLE 2
Performance of Dynamic-Programming Heuristic for 192 Randomly Generated Problems

n(DP)* n(OPT)** n(DP) + n(OPT)
No. of Replicate Replicate Replicate
Problem No. of No. of Levels per Average
Number Individuals  Attributes Attribute 1 2 3 4 1 2 3 4 1 2 3 4 n(DP) <+ n(OPT)

1 100 4 2 57 53 56 57 57 53 56 57 100 100 1.00 100 1.00

2 200 4 2 108 113 106 113 108 113 106 113 1.00 100 1.00 1.00 1.00

3 300 4 2 170 161 153 159 170 161 153 159 1.00 1.00 1.00 1.00 1.00

4 400 4 2 223 208 212 215 223 208 212 215 1.00 100 1.00 1.00 1.00

5 100 4 3 57 60 59 52 57 60 59 54 1.00 100 1.00 0.96 0.99

6 200 4 3 108 114 111 113 108 118 111 116 1.00 097 1.00 097 0.98

7 300 4 3 164 160 174 164 164 160 174 164 100 1.00 1.00 1.00 1.00

8 400 4 3 235 221 201 220 235 221 202 230 1.00 100 1.00 096 0.99

9 100 4 4 68 65 69 59 68 65 69 59 100 100 1.00 100 1.00
10 200 4 4 107 111 105 115 107 113 110 115 1.00 098 095 1.00 0.98
11 300 4 4 165 164 167 162 167 164 167 162 099 1.00 1.00 1.00 1.00
12 400 4 4 227 235 219 220 227 235 219 220 1.00 1.00 100 1.00 1.00
13 100 4 5 58 56 62 58 58 58 64 59 1.00 097 097 098 0.98
14 200 4 5 113 109 127 110 116 109 127 110 097 100 1.00 1.00 0.99
15 300 4 5 170 171 176 165 170 171 176 166 1.00 1.00 1.00 0.99 1.00
16 400 4 5 208 227 209 226 217 227 210 226 096 1.00 100 1.00 0.99
17 100 6 2 58 58 52 59 58 61 57 59 1.00 095 091 1.00 0.96
18 200 6 2 110 99 113 109 110 100 113 113 100 099 100 0.96 0.99
19 300 6 2 163 158 161 160 165 160 161 160 0.99 099 1.00 1.00 0.99
20 400 6 2 220 211 223 216 220 211 223 216 1.00 1.00 1.00 1.00 1.00
21 100 6 3 64 61 59 63 67 64 61 65 096 095 097 095 0.96
22 200 6 3 109 113 121 115 113 113 123 119 096 1.00 098 0.97 0.98
23 300 6 3 162 162 165 165 168 168 169 172 096 096 0.98 0.96 0.96
24 400 6 3 228 214 213 233 228 223 215 233 1.00 0.96 099 1.00 0.99
25 100 6 4 65 55 68 64 65 57 69 65 1.00 096 099 0.98 0.98
26 200 6 4 11115 120 113 115 116 121 118 097 099 099 096 0.98
27 300 6 4 171 172 161 177 176 175 172 177 097 098 0.94 1.00 0.97
28 400 6 4 209 242 221 219 213 242 230 219 098 100 096 1.00 0.98
29 100 6 5 68 58 65 64 69 61 66 66 099 095 098 097 097
30 200 6 5 124 124 121 119 124 126 123 124 1.00 098 098 0.96 0.98
31 300 6 5 176 174 175 176 177 176 176 176 099 0.99 099 1.00 0.99
32 400 6 5 234 222 227 216 237 227 228 219 099 098 1.00 0.99 0.99
33 100 8 2 56 64 66 56 56 64 66 57 100 1.00 1.00 098 0.99
34 200 8 2 120 113 112 105 120 119 113 108 1.00 095 0.99 097 0.98
35 300 8 2 171 167 164 163 171 169 167 163 1.00 099 098 1.00 0.99
36 400 8 2 228 212 22t 223 230 218 223 224 099 097 0.99 1.00 0.99
37 100 8 3 69 63 65 56 69 64 66 57 100 098 098 098 0.98
38 200 8 3 110 115 129 111 121 115 129 113 091 1.00 1.00 0.98 0.97
39 300 8 3 171 176 171 167 173 177 171 174 099 099 100 0.96 0.98
40 400 8 3 225 230 217 229 225 236 221 232 1.00 097 098 0.99 0.99
41 100 8 4 61 62 62 63 65 63 65 65 094 098 095 0.97 0.96
42 200 8 4 122 122 128 115 126 127 128 123 097 0.96 1.00 0.93 0.96
43 300 8 4 172 169 177 174 176 173 179 179 098 098 0.99 0.97 0.98
44 400 8 4 224 219 233 225 234 226 234 233 096 097 100 0.97 0.97
45 100 8 5 65 65 63 63 67 69 68 69 097 094 093 091 0.94
46 200 8 5 112 118 122 121 118 125 128 121 095 094 095 1.00 0.96
47 300 8 5 176 168 175 165 185 179 183 175 095 094 096 0.94 0.95
48 400 8 5 230 226 229 230 233 237 236 230 099 095 097 1.00 0.98

* n(DP) denotes the number of individuals for whom the dynamic-programming product profile has higher utility than the status-quo product profile.
** n(OPT) denotes the number of individuals for whom the optimal product profile has higher utility than the status-quo product profile.



HEURISTIC APPROACH TO PRODUCT DESIGN 1531

To further test the performance of the dynamic-programming heuristic, optimal and
dynamic-programming share-of-choices were compared for an additional 144 prob-
lems. These problems were also generated using the previously described experimental
design, three more randomly-generated problems being solved for each of the 48 dis-
tinct combinations of the number-of-individuals, number-of-attributes, and number-
of-levels-per-attribute. Including the previous 48 problems, a total of 192 problems
were solved using the dynamic-programming heuristic and enumeration.

Table 2 presents the results for the 192 problems (computational times for the
dynamic-programming and enumeration procedures are the same for each problem-
type as described in Table 1). The shares-of-choices of the dynamic-programming
product profiles are never below 91%, and on average are 98.2%, of the shares-of-
choices of the optimal product profiles. The optimal product profile is identified by the
heuristic in 46.35% (89 out of 192) cases.

Finally, the dynamic-programming heuristic was implemented for an actual dataset,
obtained from a hybrid-conjoint study for a consumer-durable product. One hundred
and eighty seven individuals participated in the study. Sixteen attributes were em-
ployed, 8 attributes appearing at 4 levels each, 7 attributes at 3 levels each, and 1
attribute at 2 levels. Idiosyncratic part worths were estimated, and a status-quo product
profile specified for each respondent. The dynamic-programming heuristic identified a
solution product-profile in 2 seconds. However, this solution could not be compared to
the optimal solution because an enumeration of all product profiles requires over 600
hours on an FPS-computer. The heuristic and optimal solutions were therefore com-
pared for a subproblem involving 10 attributes that can be solved in reasonable time by
the enumeration. The 16 attributes were ranked in descending order of their average-
part-worth ranges and the 10 highest-ranked attributes selected for the subproblem. The
dynamic-programming heuristic was implemented in 1.2 seconds, the enumeration in
1.5 hours. Both methods identified the same product profile. Therefore for at least this
problem the proposed heuristic performed as well as the enumeration procedure in
terms of the solution obtained.

These results suggest that the dynamic-programming heuristic should perform well in
practice. However in certain instances the heuristic can identify a product profile whose
predicted share-of-choices is not close to the share-of-choices of the optimal product
profile. The situations in which the dynamic-programming heuristic performs poorly is
illustrated by an example involving 3 attributes, one at 3 levels and the other two at 2
levels each. Consider the 2 segments below with identical part worths for respondents
within (but not between) segments:

Attribute
1 2 3
Level Level Level
Segment { 2 3 1 2 1 2
1 (n, individuals) 26 (—1/2) =6 0 —6 0 (1/2) + 26 0
2 (n, individuals) -1+ (—-1/2) -4 0 —6 0 (1/2) + 25 0

Let ¢ be a small, positive number, and let #, > »,. The dynamic-programming heuristic
selects the product profile with levels 1, 2 and 1 of attributes 1, 2 and 3, respectively.
Only individuals in segment | prefer this product profile over their status-quo product
profile. The optimal product profile has levels 2, 2 and 1 of attributes 1, 2 and 3,
respectively. Only individuals in segment 2 prefer this product profile to their status-
quo product profile. Therefore the ratio of the share-of-choices for the dynamic-pro-
gramming-product-profile and the optimal-product-profile is »,/n,. Because n, > n,,
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this ratio is less than 1, and the smaller the ratio, the worse the performance of the
dynamic-programming heuristic.

The dynamic-programming heuristic performs poorly in this case because of two
reasons. First, both segments have the same relative part-worths except for level 1 of
attribute 1, which individuals in segment 1 marginally prefer to the status-quo level but
individuals in segment 2 prefer significantly less than the status-quo level. Second,
attribute 1 is followed by an attribute (i.e., attribute 2) that is unimportant in the sense
that its relative part worths for both segments are either zero (level 2) or —é (level 1).
Consequently, attribute 2 does not contribute in a significant manner to the sum of the
part worths, but eliminates level 1 of attribute 1 from subsequent consideration be-
cause, for both of its levels, level 1 of attribute 1 is selected. However, it can be verified
that for any other ordering of attributes, the dynamic-programming heuristic recovers
the optimal product profile. This suggests that it is preferable to perform multiple runs
of the proposed heuristic for a given problem, different orderings of the attributes being
employed in different runs. Also, the analysis should preferably be performed at a
segment, rather than market, level so that preferences of respondents are not widely
divergent (as they are for level 1 of attribute 1 in the above example).

6. Conclusion

A heuristic procedure is presented to find approximate solutions to the problem of
identifying a new, feasible multi-attribute product profile associated with the highest
share-of-choices in a competitive market. The input data are comprised of idiosyncratic
part-worth utilities, estimated using conjoint or hybrid-conjoint analysis. Different
importance weights are assigned to individuals and the cannibalization of existing
brand-sales is controlled. A simulation indicates that the proposed heuristic dominates
an alternative lagrangian-relaxation heuristic in terms of both computational time and
approximation of the optimal solution. Computationally, the dynamic-programming
heuristic is significantly more efficient than an enumeration procedure for simulating
shares-of-choices, and also identifies product profiles whose share-of-choices is optimal
or near-optimal.®

51f n, > n,, the ratio n,/n, approaches zero, resulting in an arbitrarily-bad performance of the dynamic-pro-
gramming heuristic.

¢ The authors express their appreciation to Finbar McEvoy and R. Sukumar for computer programming
assistance. Thanks are also expressed to Paul E. Green for kindly furnishing the data for the industry
application. This research was supported by a Faculty Research Grant from the Joseph M. Katz Graduate
School of Business, University of Pittsburgh.
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