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Abstract

I present a model of consumption and savings for multi-person households in which mem-
bers are imperfectly altruistic and share wealth. I show that, despite having standard expo-
nential time preferences, the household is time-inconsistent: members save too little and over-
spend on private consumption goods. Access to private illiquid durable goods can exacerbate
overconsumption by providing a way for members to lock-up wealth from each other. The
household remains time-inconsistent, even when it is possible for members to save separately,
whenever intra-household relative-wealth shocks create the possibility that one member will
choose to transfer wealth to the other in the future.
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The standard theory of household financial decision making is based upon the behavior of a single
maximizing agent. However, a considerable body of empirical work strongly rejects the unitary
model as an adequate description of household decision making (see for example Lundberg et al.
(1997); Browning and Chiappori (1998); Phipps and Burton (1998); and, Ashraf (2009)). The
key lesson from this literature is that household members have distinct preferences and are self-
interested, caring more about the utility from their own consumption than their partners. Taking
up the challenge posed by these empirical findings has led to considerable theoretical work that
reconsiders the static theory of household demand for goods and labor supply (see for example Chi-
appori (1988); Browning et al. (1994); Browning and Chiappori (1998); Chiappori et al. (2002)).
Little attention has been directed to the question of how financial decision making will be affected
by the presence of distinct and imperfectly aligned preferences within a multi-person household.1

This paper provides a new framework for addressing this question. In particular I ask: are multi-
person households time-consistent or are they inherently unable to carry out optimal consumption
and savings plans?

I propose a model of the household comprising two members who are connected in three ways.
First, wealth is shared. Second, members derive utility both from private consumption, as well as
shared non-rival public consumption goods such as children and housing. Third, following the
evidence cited above, household members are altruistic but remain self-interested. Specifically,
member A cares more about the utility from his consumption than B cares about A’s consumption
and vice versa. To be stark, I assume that both members have the same exponential time prefer-
ences and therefore agree on the ex ante optimal path of total household consumption and savings.
This ensures that any time-inconsistency is derived solely from the strategic interaction between
household members.

I characterize the household’s equilibrium consumption path as a subgame perfect Nash equi-
librium in consumption choices. This is the equilibrium that obtains when household members
are unable to commit ex ante to their future consumption choices.2 I show that the household
is time-inconsistent: members systematically over-consume relative to the agreed optimal ex ante
consumption and savings plan. Time-inconsistency arises because both members wish to unilat-
erally deviate from the optimal plan and increase their own private consumption at the expense of
shared future savings. The central insight is that in a multi-person household, shared savings is
subject to a dynamic commons problem and is therefore under-provided in equilibrium.3

To measure the cost of the household’s time-inconsistency problem I find the fraction of total

1Recent exceptions include Mazzocco 2005; Mazzocco 2007; Schaner 2015.
2Technically this requires that members are unable to enforce contracts between themselves written contingent on

their consumption choices.
3Dynamic commons problems have been used to study national underinvestment (Lancaster 1973, Tornell and

Velasco 1992), overexploitation of natural resources (Levhari Mirman 1980), and sovereign debt (Amador 2008).
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wealth that the household would be willing to pay ex ante to achieve the full commitment consump-
tion path. I show this is monotonically increasing in the degree of self-interest and the importance
of private consumption. It is the interaction of these two factors that distorts the intertemporal
trade-off between the private benefit of consumption and the shared benefit of saving that both
members faces each period.

Next I show how the time-inconsistency of the household is impacted by access to private illiq-
uid durable goods (for example, sports cars, jewelry, and personal consumer electronics). I show
that household members have a private incentive to overconsume these goods relative to non-
durables because they offer a form of saving which is not shared with the rest of the household
and which, due to illiquidity, other members cannot reverse. This can produce an allocative time-
inconsistency in which these goods account for a larger fraction of household expenditure than
the household would optimally choose with commitment. I also show that access to these goods
can further exacerbate the intertemporal inefficiency of consumption as both members strategically
rush to lock-up shared liquid wealth for their own private access in the future using these illiquid as-
sets. I show that the time-inconsistency these goods create can be so large that the household would
be better off if it did not have access to these goods at all. This finding contrasts sharply with the
literature that has stressed that access to illiquid assets can mitigate individual time-inconsistency
by allowing an agent to constrain the actions of their future-selves4. Here, illiquidity is overvalued
as a way to constrain the future actions of other members of the household.

Having shown that the household overconsumes when savings are shared in a joint account,
I turn to studying household behavior when members are able to save individually (in separate
accounts that the other cannot access). If household members consume and save in complete
isolation, they will do so optimally. However, even when unable to directly access the savings of
others, household members remain linked by their altruism. As a result, a member with relatively
more wealth may decide to transfer savings to the other member. I show that if household members
anticipate that one will make a voluntary transfer to the other in the future, they will act as if their
savings are shared, and thus exhibit the same time-inconsistency. Initial transfers, to reduce any
ex ante wealth imbalance between members, can reduce the need for future interdependence and
thereby make savings more efficient. I show the presence of uninsurable intra-household relative
wealth shocks, such as shocks to the value of each member’s human capital, limit this function
since members anticipate that with some probability the member who receives a favorable shock
will transfer wealth to the other in the future. Anticipating this possibility creates the same time-
inconsistency that occurs when wealth is shared, despite wealth being held individually. This
demonstrates that the phenomenon studied in this paper can be applied to extended families (for
example, the interaction between adult siblings) where wealth is held separately but where the

4See for example Laibson 1998, Laibson Repetto and Tobacman 1998, and Beshears et al 2011.

3



possibility of future transfers may arise. Finally, I ask whether household members will choose
to save in separate individual accounts rather than sharing wealth. I show that the household will
only adopt separate accounts when its exposure to relative wealth shocks is sufficiently small. The
intuition is as follows: larger relative wealth shocks increase the risk pooling benefit of a shared
account and reduce the impact that separate accounts have on the under-savings problem.

This paper makes several contributions to the literature that studies household savings behavior.
The first is to show that the intra-household pattern of ownership and control of assets can impact
consumption and savings decisions. This contrasts with the unitary model of the household in
which only the combined household balance sheet matters, and hence is unable to rationalize
the choice between either arrangement. Survey evidence also suggests that both separate and
shared savings are popular in developed countries.5 Evidence from developing countries indicates
that household risk sharing is limited, and hence implies that some assets are effectively owned
separately (Robinson (2012), Duflo and Udry (2004)). The results in this paper indicate that even
with separate ownership, the possibility of transfers between altruistic household members, which
includes extended family, will still produce time-inconsistency. Recent papers by Ashraf (2009)
and Schaner (2015) show that household savings decisions differ depending on whether assets are
shared or held separately by household members.

By showing that time-inconsistency arises naturally in a multi-person household, the frame-
work rationalizes the use of commitment technologies that limit the ability of individual members
to unilaterally deviate from jointly agreed consumption and savings plans. As a prime example, in
the US, the Retirement Equity Act 1984 mandates that all retirement plans covered by the ERISA
1974 laws (this includes all defined benefit plans, IRA accounts, and all 401(k) plans) require
joint approval by both spouses before funds can be withdrawn or loans can be taken against such
savings. Aura (2005) shows that the introduction of this law increased household saving. In the
context of developing economies, savings commitment technologies such as ROSCAS are moti-
vated by the ability of one spouse to limit the ability of a partner to over-consume out of shared
wealth (Anderson and Baland (2002); Collins et al. (2009)).

This paper contributes to a large theoretical literature that studies household decision making
when members have misaligned preferences (see Lundberg and Pollak (2007); Browning et al.
(2006) for comprehensive surveys). In these papers, static household decision making is often
modeled as the outcome of an efficient bargaining process, and the focus is directed to studying
what determines the threat points and bargaining weights of each household member.6 Evidence on

5The 2002 General Social Survey (Smith et al. (2011)) finds that 53 per cent of all married households in the US
share all financial wealth. Similar survey evidence for the US and the UK is presented by Treas (1993) and Vogler
et al. (2006). A 2006 survey of Japanese wives found that fifty percent held secret savings (referred to in Japan as
"hesokuri") (see Alexy (2007)).

6As an exception non-cooperative decision making within the household has been considered by Lundberg and
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the question of whether households are able to enforce Pareto efficient allocations is mixed. Donni
and Chiappori (2011) point out that tests for static efficiency (see, for example, Bobonis (2009),
Browning and Chiappori (1998), and Chiappori et al. (2002)) find in the affirmative, whereas tests
for dynamic efficiency find the opposite (see for example De Mel et al. (2009), Duflo and Udry
(2004), Mazzocco (2007), Robinson (2012), Udry (1996)). Motivated by this evidence, I study
the equilibrium that obtains when commitment is not possible since the focus of this paper is
intertemporal household decision making.7

Finally, this paper is also related to the literature that studies individuals with dynamically
inconsistent time preferences.8 The goal of this paper is to stress that self-interest within multi-
person households can also produce time-inconsistency, and rationalizes commitment technologies
and behavior that cannot be explained by the literature focusing on individual time preferences or
self control (see, for example, Thaler and Benartzi (2004); Ashraf et al. (2006); Beshears et al.
(2011)).

The paper proceeds as follows. Section I sets up the base model of household consumption.
Section II characterizes the equilibrium consumption choices of the household and shows they are
time-inconsistent. Section III studies the impact of access to private illiquid durable goods. Section
IV studies household decision making when members are able to save in separate accounts. Section
V discusses empirical implications of the model including strategies that the household might adopt
to mitigate time-inconsistency. All derivations are provided in the Internet Appendix.

I Model of Household Consumption

The household has two members, indexed by i, labeled A and B. Time is discrete and indexed
by t. The household is formed at the beginning of period t = 0. Both household members live
for Y years. I assume that the household remains together for their entire lives with certainty and
abstract from endogenous household formation. Each year contains N ≥ 1 periods.9 Consumption
occurs from t = 1 until T = NY . The initial period of the household’s life (t = 0) is used to assess
the optimal consumption plan the household would like to achieve over its life and the utility cost
of being unable to precommit to this plan.

Pollack 1993; Chen Woolley 2001; and, Lundberg and Pollack 2003.
7Lundberg and Pollack (2003) argue that pareto efficient bargaining may breakdown in a dynamic context because

current decisions may affect future bargaining power.
8For theory see Thaler Shefrin 1981; Laibson 1997; Harris and Laibson 2001; Laibson, Repetto, and Tobacman

2003 and for evidence see Ainslie 1992; Frederick Lowenstein and O’Donoghue 2002; Shapiro 2005.
9For the bulk of the analysis N = 1. In the Internet Appendix I consider the limiting case as consumption decisions

are made in continuous time by letting N→ ∞.
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A Preferences

Each period t ≥ 1 member i derives utility from two goods. The first is a private consumption
good denoted Ci,t . The second is a non-rival public consumption good that both members share,
denoted Ht . This captures one defining characteristic of being in a household: members share
public consumption such as housing, children, and appliances. The utility derived by member i in
period t is10

ui,t = µ lnCi,t +(1−µ) lnHt (1)

where µ ∈ [0,1] is the relative weight that members place on private consumption. Note that
member i does not directly derive utility from member j’s private consumption. The total level
of household public consumption is the sum of the amount purchased by both members in each
period: Ht = HA,t +HB,t .

Both household members discount utility from future consumption using exponential discount
factor δ = d

1
N where d ∈ (0,1) is the annualized discount factor. The individual discounted utility

of household member i in period t is

Ui,t =
T−t

∑
x=0

δ
xui,t+x. (2)

Thus Ui,t is the discounted utility of household member i absent any concern for the other house-
hold member. Note that these are standard time preferences so that, if they were to act in isolation,
the optimal consumption plan for each household member would be time-consistent.

The second defining characteristic of the household is that its members are altruistic. I cap-
ture this by supposing that the objective of each member places weight 1+∆

2 on their own utility
and weight 1−∆

2 on the utility of the other member. I focus on the case where the altruism be-
tween household members is imperfect in the sense that each member cares more about their own
utility than their partners: ∆ ∈ [0,1]. In words, ∆ measures the degree of self-interest within the
household.11 The objective of member i at t is

Vi,t =
1+∆

2
Ui,t +

1−∆

2
U j,t . (3)

10Since consumption does not occur t = 0, I normalize ui,0 = 0.
11The framework can also be used to study the case where members care more about each other than themselves

(∆ < 0). Since the evidence on household consumption decisions suggests that this is generally not the case, I will not
focus on this scenario.
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B Household Budget Constraint

The present value of all combined household wealth at the beginning of t = 0 is W0. For
simplicity I assume the household starts life with wealth W0, which is taken as given, and has
no income.12 The third defining characteristic of the household is that all wealth is shared so
that both household members have full access to the remaining combined wealth in each period.
This assumption is made to align the framework with the way the budget constraint is treated
in any standard unitary model of intertemporal decision making. Moreover the 2002 General
Social Survey (Smith et al. (2011)) finds that 53 per cent of all married households in the US
share all financial wealth suggesting that this is the most empirically relevant characterization of
the household budget constraint. I study household behavior when household members are able
to save in separate assets in Section IV. For simplicity I normalize the relative price of the two
consumption goods to unity. Any wealth not consumed by the household is saved between periods
at a gross risk-free interest rate of R = R

1
N where R ≥ 1 is the gross effective annual yield on

savings. Household wealth evolves according to the following

Wt+1 = R(Wt−Xt) (4)

where
Xt =CA,t +CB,t +HA,t +HB,t (5)

is total household expenditure in period t.

C Decision Making

Household members cannot commit to a path of consumption. As a result, household members
are unable to enforce mutually agreed levels of consumption, either in the present or the future.
Household members non-cooperatively and simultaneously decide how much of the household
wealth Wt to spend on their own private consumption Ci,t ≥ 0 and on their contribution to public
consumption Hi,t ≥ 0 in each period. The dynamic equilibrium path of consumption will be the
Nash subgame perfect solution to the consumption game between these two members. Let a single
“*” denote the non-cooperative equilibrium quantities C∗i,t and H∗i,t .

Since both members make consumption decisions simultaneously it is possible that both mem-
bers could attempt to spend more than total household wealth. To avoid this problem I assume that

12This is identical to assuming that household labor supply decisions are fixed and the household is free to borrow
and lend at R each period. In this case Wt is the present value of all future income plus (minus) any savings (debt) that
the household has at period t.
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both members are able to consume, at most, half the total household wealth in any single period13:

Ci,t +Hi,t ≤
Wt

2
. (6)

This condition can be made arbitrarily weak by making N large. For example, (6) implies that
within a year one member can withdraw up to Wt

(
1− 1

2N

)
. As N→ ∞ this implies that all wealth

can be withdrawn in any finite period of time. By imposing (6) I ensure CA,t +CB,t ≤Wt , and
hence have a well defined budget constraint for each household member’s consumption problem
each period. I show in the Internet Appendix that (6) does not bind in any period t < T .14

D Full Commitment Problem and the Value of Commitment

To evaluate the optimality of the non-cooperative equilibrium consumption path, I compare
it to the consumption path that would be achieved if the household was able to fully commit to
consumption choices at t = 0. Consider the problem the household would face in setting a full
commitment path. Whenever ∆ > 0 household members disagree over the optimal allocation.
However, any allocation that they would choose must be Pareto optimal, and hence I characterize
the solution to the following full commitment Pareto problem:

max{
{Ci,t}t=T

t=1

}
i∈{A,B}

Π = ηVA,0 +(1−η)VB,0 (7)

subject to W0−
T

∑
x=1

R−x [CA,x +CB,x +Hx
]
≥ 0 and (8){

CA,t ,CB,t ,Hx
}t=T

t=1 ≥ 0. (9)

where η ∈ [0,1] is the Pareto weight placed on the objective of member A. Let a double “**”
denote the full commitment Pareto optimal consumption quantities C∗∗i,t and H∗∗t that solve this
problem.

To quantify the welfare loss incurred by the household’s time-inconsistency, I calculate how
much the household would be willing to pay at t = 0 for a technology that allowed them to com-
mit to an optimal consumption path. Let V ∗i,0 (W0) be the discounted lifetime utility that will be
achieved by household member i absent commitment as a function of initial household wealth. Let

13If the model were extended to allow household income then this constraint would impose the condition that credit
markets will not allow the household to raise debt in excess of the present value of all future income.

14In the Internet Appendix, I solve an otherwise identical model in which household members make consecutive
consumption decisions. In that setting (6) is replaced with the standard budget constraint Ci,t +Hi,t ≤Wt . I show that
the equilibrium studied here is arbitrarily close to the unique equilibrium from the consecutive move model as N→ ∞

thus demonstrating that (6) does not drive the results studied below.
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V ∗∗i,1 (W0 (1−φ) ,η) be the counterpart for the case where the household has spent a fraction φ of
their initial wealth W0 to achieve the full commitment plan that places weight η on the preferences
of member A. The value of commitment φ∗∗ is defined as the most that the household will pay
while ensuring that there exists a weight η so that the purchase is a Pareto improvement for both
members. Formally φ∗∗ solves:

φ
∗∗ = max

φ ,η
φ (10)

subject to V ∗∗i,0 (W0 (1−φ) ,η)≥V ∗i,0 (W0) for i ∈ {A,B} , and η ∈ [0,1] . (11)

An analytical solution for φ∗∗ is intractable in most cases so this will be solved for numerically.

II Consumption Choices and time-inconsistency

A Example: Two Periods

To illustrate the source of time-inconsistency within the household, I sketch a solution to the
two period version of the model (T = 2). If the household was able to commit to an optimal
consumption plan at t = 0 then it would satisfy the standard Euler equation

1
X∗∗t

= Rδ
1

X∗∗t+1
. (12)

Under this plan total consumption would be allocated between the public and private goods each
period according to their preference weights:

C∗∗i,t =
µ

2
X∗∗t and H∗∗t = (1−µ)X∗∗t (13)

where, without loss of generality, I have assumed a symmetric Pareto weight in the planning prob-
lem (η = 0.5). I show that this plan is time-inconsistent by illustrating that both members have
an incentive to unilaterally deviate from this consumption allocation at t = 1. To do this, observe
that with log utility the value function that each member will face for the second period can be
summarized as

Vi,2 = lnX2 +Constant (14)

where the second term is a constant invariant to X2 and hence irrelevant for the problem at t = 1.
Using (14), consider a deviation by member i from the optimal consumption path at t = 1 whereby
she increases her private consumption above C∗∗i,1 by a small amount εC > 0, recognizing that this
will lower combined household savings and hence consumption at t = 2 by RεC. The marginal
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benefit from such a deviation is15

∂

∂εC

{
1+∆

2
µ ln

(
C∗∗i,1 + εC

)
+δ ln(X∗∗2 −RεC)

}∣∣∣∣
εC=0

=
1

X∗∗1
[MU at t=1]

−
(

R
1+∆

)
[PRTSS]

δ
1

X∗∗2
[MU at t=2]

≥ 0

(15)
where the first equality follows using (13). Comparing (15) to the Euler equation that governs the
optimal allocation (12), yields that member i strictly prefers to make such a deviation from the
optimal consumption plan whenever altruism is imperfect: ∆ > 0. The incentive to deviate stems
from the difference between the social return to saving, R, and each member’s private return to
shared saving, R

1+∆
(the term denoted PRT SS). When considering the trade-off between consump-

tion and saving, each member recognizes that every dollar saved will be shared and, since altruism
is imperfect, they do not internalize the full combined household benefit of those shared savings.
Thus, a trade-off between the benefit of private of consumption and the return to shared saving
produces an incentive for each member to deviate from the ex ante optimal plan. As the degree
of self-interest within the household rises, as measured by ∆, the wedge between the social and
private return to saving increases.

To highlight the importance of private consumption in generating time-inconsistency, consider
a second possible deviation from the optimal household allocation given by (12). Suppose that
member i contemplates a deviation whereby she increases expenditure on public consumption
above H∗∗1 by a small amount εH > 0, recognizing that this will lower combined household savings,
and hence consumption at t = 2 by RεH . The marginal benefit from such a deviation is16

∂

∂εH
{(1−µ) ln(H∗∗1 + εH)+δ ln(X∗∗2 −RεH)}|εH=0 =

1
X∗∗1
−Rδ

1
X∗∗2

= 0 (16)

where, as before, the first equality follows using (13). In this case there is no intertemporal dis-
tortion. Each member trades off the shared benefit of consuming the public good today with the
shared benefit of saving. Since the same concern for the combined household is present in both
terms, there is no distortion to the relative intertemporal tradeoff.

B General Case

I now characterize household time-inconsistency by characterizing the household consumption
path for any T . With full commitment, the optimal consumption path that the household would

15I have omitted all terms unaffected by the deviation from i’s objective: 1−∆

2 µ lnC∗∗j,1 +(1−µ) lnH∗∗1 .
16I have omitted all terms unaffected by the deviation from i’s objective: 1+∆

2 µ lnC∗∗i,1 +
1−∆

2 µ lnC∗∗j,1.
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choose at t = 0 would specify the following level of total expenditure each period

X∗∗t =
1

1+∑
T−t
x=1 δ x

Wt . (17)

The allocation of X∗∗t remains according to (13).17

Without commitment, the equilibrium level of private and public consumption by member i in
period t < T is18

C∗i,t =
1+∆

2 µ

1+µ∆+∑
T−t
x=1 δ x

Wt and H∗t =
1−µ

1+µ∆+∑
T−t
x=1 δ x

Wt . (18)

Total equilibrium household expenditure in period t is

X∗t =
1

1+ 1
1+µ∆ ∑

T−t
x=1 δ x

Wt . (19)

Comparing (17) and (19) yields the following proposition.

Proposition 1. : Whenever µ∆ > 0 the household is time-inconsistent. Each period the fraction of

remaining wealth that the household consumes is strictly higher in the non-cooperative equilibrium

than under the full commitment pareto optimum.

Proposition 1 highlights that the household will be time-inconsistent whenever altruism is im-
perfect and members derive utility from private consumption. Whenever this is true, household
savings is subject to a dynamic commons problem. As a result the household will exceed the op-
timal level of consumption early in life and, through the intertemporal budget constraint, consume
below the optimal level later in life. For example, if T = 50, δ = 0.95, R = 1

0.95 and ∆ = µ = 0.5
the household will spend more than 33% above the optimal level in the first year and consume less
than 50% of the level that the household would like to commit to for each of the last five years of
its life.

C Quantifying the Inefficiency

Having shown that the allocation of consumption achieved in the non-cooperative solution is
inefficient, I now turn to quantifying this inefficiency. To do this I ask what fraction φ∗∗ of the
household’s initial wealth would both household members agree to spend in order to achieve a

17For any pareto weight η , C∗∗A,t = µηX∗∗t and C∗∗B,t = µ (1−η)X∗∗t .
18By assumption the equilibrium consumption in period t = NT is C∗i,t =

Wt
2 . Since it doesn’t matter who buys a

given unit of the public consumption good, the individual choices of HA,t and HB,t are not uniquely determined in
equilibrium.
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Pareto efficient allocation. Figure 1 shows that the value of commitment increases monotonically
with the degree of self-interest within the family ( Panel A) and the weight that members place
on private consumption (Panel B).19 A household in which ∆ = µ = 0.5, incurs a utility cost of
time-inconsistency that is equivalent to giving up 4.4% of household wealth at t = 0. The direct
conclusion is that time-inconsistency is more pronounced in households with members who have
more misaligned objectives: either due to altruism or shared concern for public consumption. The
comparative statics also suggest that when households experience a change in these attributes, the
tendency to over-consume will be affected accordingly.

III Durable Goods

So far I have shown that a multi-person household will display time-inconsistency: saving less
in equilibrium than household members would optimally choose to if commitment at the start of
their life was possible. I now show that, in the context of a multi-person household, access to
illiquid durable goods may further exacerbate consumption and savings inefficiencies. I augment
the baseline model by supposing members can also purchase an illiquid durable good and high-
light two additional sources of potential inefficiency this can give rise to: 1) creating allocative
inefficiency within any period whereby the household spends too much on illiquid durable goods
relative to non-durables, and 2) further exacerbating the intertemporal inefficiency of consumption.

A Setup with Durable Goods

I adapt the benchmark model introduced in Section I by assuming that household members can
derive utility from the services of durable and non-durable goods in any period. To capture the
utility from durable consumption, extend the period utility function in (1) to

ui,t = ln(Ci,t +Di,t) (20)

where Di,t denotes member i’s stock of durable goods in period t. Di,t , is a private good consumed
only by member i. Having established that time-inconsistency stems only from private consump-
tion, I focus on the case where there are no public goods in the household (µ = 1). A fraction
κ ∈ [0,1] of Di,t is lost to depreciation each period. Let p denote the price of the durable good
relative to the non-durable consumption good which remains the numeraire. The intertemporal
budget constraint of the household remains as in (4) where the definition of total expenditure is

19Unreported numerical simulations show that the value of commitment is non-monotonic in δ peaking when δ = 1
R .
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now expanded to
Xt =CA,t +CB,t + p [Dt− (1−κ)Dt−1] (21)

where Dt ≡ DA,t +DB,t is the household’s total consumption of durable consumption at t. The
household starts life with no durable goods: DA,0 = DB,0 = 0. Define Λt as

Λt ≡Wt +(1−κ)Dt−1 (22)

the total assets of the household at the start of period t held in the form of either shared savings or
private depreciating durable goods purchased in the past. To capture the illiquidity of the durable
good the expenditure limit of each member in any period (formerly given by (6)) is amended to20

Ci,t + pDi,t ≤
Wt

2
+ p(1−κ)Di,t−1. (23)

In words, new expenditure on durable or non-durable goods can only come from the shared liquid
wealth of the household Wt . Once member i has committed household resources to durable con-
sumption, neither member is able to reverse that decision by selling or borrowing against the future
remaining stock of that good

Di,t ≥ (1−κ)Di,t−1. (24)

The rest of the framework remains the same as the base line model presented in Section I. I study
two special cases of the model that highlight additional sources of inefficiency that can arise as a
result of access to illiquid durable goods.

B Durable Goods and Allocative Inefficiency (p≥ 1)

I start by considering the case where the illiquid durable good is more expensive than the non-
durable: p ≥ 1. To keep the solution tractable I concentrate on the case where T = 2 which is
sufficient to understand the allocative inefficiency created by an illiquid non-durable good. The
additional intertemporal inefficiency created by the presence of an illiquid non-durable good is
studied later, so this simplification comes at less cost.21

In the final period t = 2, the durable and non-durable good are perfect substitutes, and hence
both members will each spend their half of W2 on the non-durable good since p ≥ 1. This is
true also in the optimal full commitment allocation. Thus the question of efficiency depends on

20If instead the durable good were fully liquid then this constraint would be Ci,t + pDi,t ≤ 1
2

[
Λt + p(1−κ)R−1Dt

]
.

In words, each member could consume up to half of the value of all of the households assets in period t. If the durable
good were liquid, then the equilibrium is identical to the one studied with only non-durable goods, where wealth is
adjusted for the effective rental price of the durable good: p

[
1− (1−κ)R−1

]
.

21The distortions that drive the allocative inefficiency highlighted here where T = 2 carry over, and are stronger,
with longer horizons.
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how much, and which type of good, the household consumes at t = 1. In the optimal allocation
the household will consume a non-zero quantity of the durable good (D∗∗1 > 0) if and only if the
following condition is met:

p≤ p∗∗1 ≡ 1+
1−κ

R
. (25)

In words, (25) requires that one unit of the durable good costs no more than the present value of
the same stream of consumption delivered by the non-durable good22.

For the household without commitment the trade-off between each type of consumption good is
different. To provide intuition for this difference suppose that p > p∗∗1 and the household begins at
a symmetric Pareto optimal allocation with only non-durable consumption at t = 1. Now consider
the private incentive for member i to deviate from this allocation by substituting ε > 0 units of
the non-durable good with durable consumption at t = 1. Doing so would, by construction, leave
consumption and the utility of both members at t = 1 unchanged. The deviation will alter the
consumption of both members at t = 2 in the following way. Member i will enjoy the services
of the remaining durable good: ε (1−κ). Both members will have εR(p−1) less shared liquid
wealth at t = 2 to spend on consumption. Crucially, this cost is borne by both members. From i’s
perspective, for any concave period utility function u, making such a deviation is privately optimal
if

∂

∂ε

[
1+∆

2
u
(

ε (1−κ)+C∗∗2,i− ε
R
2
(p−1)

)
+

1−∆

2
u
(

C∗∗2, j− ε
R
2
(p−1)

)]∣∣∣∣
ε=0
≥ 0. (26)

Simplifying (26) yields that i will make such a deviation as long as the price of the durable good
satisfies the following condition: 23

p≤ 1+

(
1−κ

R
1+∆

)
. (27)

Comparing (25) to (27) shows that household members are prepared to pay more for the durable
good than the present value of the services that it renders whenever altruism is imperfect: ∆ > 0.
The logic is as follows. When a household member buys the illiquid durable good she receives the
full benefit of the services of the durable good at t = 2. The illiquidity ensures that this wealth is
locked in for her own exclusive use. Conversely, if the member buys the non-durable good and
saves the remaining p−1 for consumption at t = 2 then these additional savings are shared equally
with the other household member. Thus the effective private return on saving a dollar of liquid

22If (25) holds the household may also optimally chose to consume the non-durable good at t = 1 or t = 2 depending
on p and whether Rδ is greater or less than one. Exact conditions are given the Internet Appendix.

23The simplification makes use of the assumption that the full commitment allocation is symmetric so that
u′
(

C∗∗2,i

)
= u′

(
C∗∗2, j

)
. Notice that the argument applies for any concave and differentiable period utility function.
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wealth is R
1+∆

which is lower than the household’s combined return of R. This leads each member
to privately undervalue liquid savings relative to durable goods, which creates the incentive for
an allocative inefficiency whereby the household overconsumes illiquid durable goods relative to
non-durables.

For the remainder of the analysis I focus on the case where ∆ = 1 for simplicity24. Equilibrium
decisions, characterized fully in the Internet Appendix, are such that household members will
consume the durable good at t = 1 (D∗1 > 0) if and only if:

p≤ p∗1 ≡ 1+

(
1−κ

R
2

)
. (28)

Observe that p∗∗1 < p∗1. When p ∈
[
p∗∗1, p∗1

]
the household members choose to consume the

durable good even though the same consumption services could be obtained by consuming the
non-durable good at strictly lower cost. Formally:

Proposition 2. : In equilibrium the household will direct a higher fraction of expenditure at t = 1
towards the illiquid durable good ( pD∗1

X∗1
>

pD∗∗1
X∗∗1

) for intermediate values of p. In the case where

T = 2 this occurs if and only if p∈
[
p∗∗1, p∗1

]
. When the price of the durable good is in this range,

the degree of household over-expenditure at t = 1 is worse than when no illiquid durable good is

available ( X∗1
X∗∗1

> 1+δ

1+ δ

2
).

Proposition 225 highlights that in addition to allocative inefficiency, the increased incentive to
purchase durable goods, in order to lock in shared household wealth for private consumption, can
also lead the household to consume earlier in life in a strategic race to capture a larger share of
the combined resources. I return to this inefficiency later in this section. When the durable good
is prohibitively expensive, p≥ p∗1, the pattern of consumption and inefficiency is identical to the
original setup where the durable good is not available and there is trivially no impact of having it
available.

Alternately, access to an illiquid durable good can also improve efficiency.

Proposition 3. : In equilibrium household members will achieve the full commitment allocation

if the illiquid durable good is sufficiently durable and inexpensive. In the case where T = 2 this

24The qualitative results will extend to the case where altruism takes on intermediate values.
25Note that if the illiquid durable good were not available, the degree of overspending at t = 1, captured by the ratio

of equilibrium to full commitment expenditure would be X∗1
X∗∗1

= 1+δ

1+ δ
2

.

15



occurs if and only if

(i) p≤ p∗∗1 and κ ≤ 1−Rδ , or

(ii) p≤ p∗∗3and κ ∈
[

1−Rδ , 1− Rδ

2

]
.

where p∗∗3 ≡
(

1+δ

δ

)
(1−κ)R−1noting that p∗∗3 < p∗∗1 when κ ∈

[
1−Rδ , 1− Rδ

2

]
.

In words, this requires that the price of the durable good be below the present value of the
price of the same services from the non-durable good. Note also, Rδ is usually close to unity
in general equilibrium, and so Proposition 3 either requires the durable good to be extremely
durable or priced well below the equivalent set of non-durable services. Under these conditions
full intertemporal efficiency stems from the fact that illiquidity prevents the household borrowing
against the future depreciated stock of the durable good. Thus, if it is optimal to devote all wealth to
durable consumption at t = 1, household members cannot consume even more than this, promising
to sell the good at t = 2 to fund the deficit.

The relationship between the efficiency of consumption and the price of the durable good p,
is shown in Figure 2.26 Panel A and B show how the allocative and intertemporal efficiency of
consumption vary with the price of the illiquid durable good. Both are improved when the price is
low and exacerbated with the price is high (i.e. below or above p∗∗1). Panel B shows that when p∈[
p∗∗1, p∗1

]
the ovexpenditure at t = 1 is larger than when the durable good is not available. Panel

C shows how access to the durable good impacts the degree of time-inconsistency, as measured by
the value of commitment. It is reduced when p is low and exacerbated for higher values. Panel
D shows that access to the durable good improves welfare when it is inexpensive. However, at
intermediate prices, the reverse is true and household welfare would be strictly higher if access to
durable goods were not possible. This highlights a stark consequence of time-inconsistency in the
multi-person household: expanding the set of available goods can lower household welfare.

C Durable Goods and Intertemporal Inefficiency (p = 1)

I now consider a different special case of the set-up with durable goods to isolate the intertem-
poral inefficiencies that access to illiquid durable goods can produce. To do this, I focus on the
case where p = 1 and T → ∞.27 This removes the possibility of allocative inefficiency, since the
durable good dominates the non-durable and, by studying the case where the household is long-

26The Figure is drawn for the case where κ ∈
[
1−Rδ , 1− Rδ

2

]
.

27In the Internet Appendix I solve the model for all possible T ≥ 2. The results are qualitatively the same as
the infinite horizon case considered here. Infinite horizon affords much simpler results by ensuring that equilibrium
choices are stationary.
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lived, allows the full impact of any intertemporal inefficiency to be seen. I continue to simplify the
analysis by focusing on the case where there is no altruism: ∆ = 1.

The Pareto optimal consumption plan that household would choose, if it had full commitment,
is:

D∗∗t =

 W1 (1−κ)t−1 if κ ≤ κ
∗∗

Λt

[1−(1−κ)R−1](1+ δ

1−δ
)

if κ > κ
∗∗

 where κ
∗∗ ≡ 1−Rδ . (29)

In words, if the durable good is sufficiently durable, κ ≤ κ
∗∗, then, household members will

optimally spend all their wealth on the durable good immediately at t = 1 : D∗∗1 = W1. After
this point consumption is only derived from the depreciating stock of these goods. Note that if
Rδ is close to unity, as is often the case in general equilibrium, this requires the durable good to
not depreciate (κ∗∗ = 0). Alternately, if the good is of low sufficiently durability, κ > κ

∗∗, then
the optimal plan calls for household members to incrementally acquire additional amounts of the
durable good over time.

Without commitment, the equilibrium time path of consumption of the durable good is28

D∗t =

 W1 (1−κ)t−1 if κ ≤ κ
∗

Λt

[1−(1−κ)R−1](1+ 1
2

δ

1−δ
)

if κ > κ
∗

 where κ
∗ ≡ 1− Rδ

2
. (30)

The first difference is that, if in equilibrium the household incrementally acquires the durable
good over time (which occurs when the durable good depreciates quickly:κ > κ

∗), then, without
commitment too much is consumed early. Since these dynamics are identical to the case where
only a non-durable good is available, they offer no new insights. Instead, I focus on the other
difference: the range of cases for which the household rushes to consume all wealth right away is
strictly larger without commitment: κ

∗∗ < κ
∗. Thus, there are two cases to consider depending on

the magnitude of κ .
When the good is highly durable so that κ ≤ κ

∗∗, the household spends all wealth on durable
consumption at t = 1, and this is Pareto optimal. Crucially, this condition implies that the slope
of the optimal consumption path, Rδ , is smaller than slope generated from consuming the depre-
ciating goods: 1− κ . In this case overconsumption is prevented by illiquidity: members cannot
borrow against their future stock of depreciated durable goods. But, as observed above, if Rδ ≈ 1,
this scenario requires the durable good to last indefinitely, and is hence unlikely to be realistic.

28The stark nature of the equilibrium (all liquid wealth is spent immediately) is a feature of several simplifying
assumptions and hence should be taken as indicative of the general phenomenon to rush to consume durable goods in
richer setups.These assumptions include: the household can borrow against all lifetime income, the durable good and
non-durable good are perfect substitutes, and the household is infinitely lived. I show in the appendix, if the household
is finitely lived, the rush to lock up all wealth in illiquid durables can occur during the life of the household, with
incremental consumption occurring prior to that.
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With intermediate durability, κ ∈ [κ∗∗,κ∗], the household spends all wealth on the durable
good right away, even though the Pareto optimal solution calls for the household to save liquid
wealth each period. This stems from the same force behind the allocative inefficiency above:
the incentive to save is distorted by the fact that savings are shared whereas wealth committed
to the illiquid durable good is used exclusively by the member who purchases it. Further, this
force prompts a strategic race to consume. If household members anticipate that next period all
remaining wealth will be spent on durable goods, then it is better to move earlier and claim a larger
share of the combined resources today. Applying this logic iteratively produces large distortions
to the intertemporal path of consumption.

Figure 3 plots the amount the household would be willing to pay to achieve the full commit-
ment solution, comparing scenarios when the durable good is, and is not, available. The time-
inconsistency problem is particularly severe when κ is less than, but close to κ

∗. The household is
prepared to pay almost all its wealth for commitment to avoid the rush to spend all liquid wealth
immediately. Only when the good is highly durable, and hence comes close to mimicking the de-
sired lifetime path of consumption, does it lower the time-inconsistency problem, and hence reduce
the value of commitment relative to the case when the illiquid durable good is not available. As
argued above, since Rδ is normally close to unity in general equilibrium, this requires the durable
good be extremely slow to depreciate. Since the optimal consumption plan is unchanged for any
κ > κ

∗∗ it follows that the household is made strictly worse off whenever the value of commitment
with access to the durable good is higher than without. Figure 3 therefore further indicates that
household time-inconsistency is such that access to illiquid private durable goods can make the
household strictly worse off.

IV Separate Accounts and Intra-household Transfers

So far the paper has shown that imperfectly altruistic household members, who are linked by
saving in a shared asset, will under-save. In this section I study household behavior when members
are able to break their direct financial interdependence by saving in separate accounts that the other
cannot access. For example, this would correspond to each member of a married couple holding
assets such as bank accounts and retirement accounts solely in their own names. For studying ex-
tended family settings (for example, adult children interacting with each other and their parents and
grand parents) it is more natural to assume that each member has their own privately held wealth
that others cannot directly access. If there were no other connection between family members,
having separate accounts would trivially eliminate the inefficiency highlighted thus far, by making
each member fully autonomous. However, even with separate accounts, altruism among household
members may lead one member to anticipate making or receiving transfers from another, thereby
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making the future consumption of one member depend on the wealth of the other. The purpose
of this section is to show that this link is sufficient to generate under-saving. I also show that
the endogenous initial transfer of wealth between household members will be set to minimize this
possibility and demonstrate that this remedy is of limited use when members are uncertain about
shocks to their individual relative wealth in the future. Finally, I show that households will en-
dogenously choose to share all savings when the volatility of the relative wealth shocks they face
is sufficiently large.

A Setup with Separate Accounts

To incorporate individual ownership of financial wealth into the baseline model, I introduce a
measure of the wealth that each member has at the beginning of a period: Wi,t . Within each period
the timing of events is as follows. First, household members simultaneously choose a non-negative
amount Ψi,t ∈ [0,Wi,t ] to transfer to the other member. Transfers are chosen as non-cooperative
Nash best responses. Once transfers have been made, each member takes as given their wealth net
of transfers, W̃i,t = Wi,t− Ψi,t +Ψ j,t , and selects a level of private non-durable consumption Ci,t .
I allow for the possibility that Ci,t > W̃i,t so that members can borrow, at expected gross interest
rate R, against transfers they will receive in the future. Implicit in this formulation is that member
i must repay any debts carried from the previous period (captured by Wi,t < 0) before consuming
out of the remaining wealth W̃i,t . Note that neither member is compelled to repay the debt of
her partner, although she may effectively choose to do so through a voluntary transfer. No new
borrowing is possible at t = T and, in equilibrium, all loans will be repaid with certainty or else i

would be forced to have zero consumption at t = T which is infinitely costly. The intertemporal
budget constraint of each member is analogous to that in the baseline model

WA,t = R
(

W̃A,t−1−CA,t−1 +ϖt

)
and WB,t = R

(
W̃B,t−1−CB,t−1−ϖt

)
(31)

where each member’s initial wealth endowment Wi,0 is given. This intertemporal budget constraint
includes a stochastic uninsurable shock to the relative wealth of the household members: ϖt ∼
N (0,σt) with associated density functions of F () and f (). This captures shocks to the market
value of the human capital of each member, stochastic inheritances, or an unpredictable component
to savings returns. The shock can also be thought of providing a reduced form representation
of shocks to relative consumption needs that may arise, for example, from unexpected illness.
Consistent with the rest of the paper, I abstract from shocks to the total wealth of the household,
which will not meaningfully change the analysis, and focus entirely on shocks to the relative wealth
of each member. The presence of a relative wealth shock captures one key benefit to household
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membership: risk sharing.29 Shocks to initial wealth are subsumed into the analysis by studying
any initial combination of WA,0 and WB,0 and so, without loss of generality, I set σ1 = 0.

The objective function of each member is the same as in the baseline model as per (3). Since the
objective of each member is the same and the resources of the combined household are unaffected
by the use of separate accounts, it follows that the Pareto efficient full commitment consumption
allocation is the same as in the baseline model as per (17).

I limit the analysis to the case where T = 2 which is sufficient to capture the key forces in this
setting and rule out the availability of durable goods. I discuss how the results generalize to any
horizon length where possible.

B Equilibrium Choices at t = 2

At the end of their lives, both members will consume whatever wealth they have left net of any
transfers: C∗i,2 = W̃i,2. The only interesting question is: conditional on their relative wealth, how
much will each member transfer to the other? Without loss of generality, I focus only on equilibria
that do not involve redundant transfers. This implies that Ψi,t > 0 for at most one member. Thus,
taking Wi,2, Wj,2, and Ψ j,t = 0 as given, the optimal level of any non-zero transfer from member i

will maximize the weighted sum of each member’s utility, where the weights accord with member
i’s altruism:

max
Ψi,2

1+∆

2
ln(Wi,2−Ψi,2)+

1−∆

2
ln
(
Wj,2 +Ψi,2

)
subject to Ψi,2 ∈ [0,Wi,t ] . (32)

The solution to this problem,

Ψ
BR
i,2 = max

{
1−∆

2
Wi,2−

1+∆

2
Wj,2,0

}
(33)

characterizes i’s best response. Intuitively, (33) implies that i will transfer wealth to j at t = 2 if
and only if i’s relative wealth exceeds her relative concern for j: Wi,2

Wi,2
≥ 1+∆

1−∆
. The resulting Nash

equilibrium in transfers will involve one of three arrangements: A transfers to B, neither A or B

transfers at all, or B transfers to A. Formally,

{
Ψ
∗
A,2,Ψ

∗
B,2
}
=


{(1−∆

2

)
WA,2− 1+∆

2 WB,2,0
}

if WA,2
WB,2
≥ 1+∆

1−∆

{0,0} if WA,2
WB,2
∈
(1−∆

1+∆
, 1+∆

1−∆

){
0,
(1−∆

2

)
WB,2− 1+∆

2 WA,2
}

if WA,2
WB,2
≤ 1−∆

1+∆

 . (34)

29Evidence of the importance of risk sharing in households is provided by papers such as Kotlikoff and Spivak
(1981), Rosenzweig and Stark (1989), and Hess (2004).

20



Crucially, household members will refrain from transferring wealth to each other only if their
relative wealth is sufficiently equal in the sense that it falls between their relative concern for each
other. When this is not the case, the wealthy member will make a transfer of sufficient size to
ensure that the relative consumption of the two members matches her relative concern for each. As
a result, (34) produces equilibrium consumption choices for member i, as a function of Wi,2 and
Wj,2 of

C∗i,2
(
Wi,2,Wj,2

)
=


1+∆

2

(
WA,2 +WB,2

)
if Wi,2

W j,2
≥ 1+∆

1−∆

Wi,2 if Wi,2
W j,2
∈
(1−∆

1+∆
, 1+∆

1−∆

)(1−∆

2

)(
WA,2 +WB,2

)
if Wi,2

W j,2
≤ 1−∆

1+∆

 . (35)

Note that when there is sufficient intra-household wealth inequality at the start of t = 2, members
will be endogenously financially linked, despite having imperfect altruism and separate accounts.
In this case, the consumption of each member is determined purely by the combined wealth of
the household, as if all wealth were pooled. To see this connection more clearly, let V ′i,2 be value
function30 of member i at the start of t = 2 as a function of the realized value of the two state
variables WA,2 and WB,2,

V ′i,2
(
Wi,2,Wj,2

)
=


ln
(
WA,2 +WB,2

)
+ vHigh

2 if Wi,2
W j,2
≥ 1+∆

1−∆

1+∆

2 lnWi,2 +
1−∆

2 lnWj,2 if Wi,2
W j,2
∈
(1−∆

1+∆
, 1+∆

1−∆

)
ln
(
WA,2 +WB,2

)
+ vLow

2 if Wi,2
W j,2
≤ 1−∆

1+∆

 . (36)

Hence, if household members anticipate that one member will be transferring wealth to the other
at t = 2, then the value function of each is solely determined by their combined wealth and thus,
wealth is effectively shared. Intuitively, when member i decides how much to transfer, she takes
into account the assets held by both members and, thereby, effectively sets Ψi,2 so as to allocate the
combined wealth of the household according to her preferences. I now turn to studying the impact
this has on decisions at t = 1.

C Equilibrium Choices at t = 1

At the end of t = 1, member A takes W̃A,1, W̃B,1, and CB,1 as given and chooses CA,1 to solve

max
CA,1

1+∆

2
lnCA,1 +

1−∆

2
lnCB,1 +δVA,2 (37)

where VA,2 is the expected value function of A. This is determined by combining the intertemporal
budget constraint (31) with the realized value function (36) and taking expectations over possible

30Define constant terms vLow
2 ≡ 1+∆

2 ln 1−∆

2 + 1−∆

2 ln 1+∆

2 and vHigh
2 ≡ 1+∆

2 ln 1+∆

2 + 1−∆

2 ln 1−∆

2 .
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realizations of the relative wealth shock ϖ2. Formally,

VA,2 =
∫

ϖ
Low

−∞

[
ln
(

W̃A,1 +W̃B,1−CA,1−CB,1

)
+ vLow

A,2

]
f (ϖ)dϖ (38)

+
∫

ϖ
High

ϖ
Low

[
1+∆

2
ln
(

W̃A,1−CA,1 +ϖ

)
+

1−∆

2
ln
(

W̃B,1−CB,1−ϖ

)]
f (ϖ)dϖ

+
∫

∞

ϖ
High

[
ln
(

W̃A,1 +W̃B,1−CA,1−CB,1

)
+ vHigh

A,2

]
f (ϖ)dϖ + lnR,

The limits of the integral are determined by the realized values of the relative wealth shock that
place the household at the boundary of the region over which no transfers are made at t = 2.
Specifically, when

ϖ2 ≥ ϖ
High ≡ 1+∆

2

(
W̃B,1−CB,1

)
− 1−∆

2

(
W̃A,1−CA,1

)
(39)

the relative wealth shock is sufficiently favorable to A that she will choose to transfer wealth to B

at t = 2. The reverse is true when

ϖ2 ≤ ϖ
Low ≡ 1−∆

2

(
W̃B,1−CB,1

)
− 1+∆

2

(
W̃A,1−CA,1

)
. (40)

The best response function of member A is characterized by the Euler equation that solves (37).
This is31

1+∆

2
δCA,1

[MU at t = 1]

−

(
1

W̃A,1 +W̃B,1−CA,1−CB,1

)[
F

(
ϖ

Low

σ

)
+F

(
−ϖ

High

σ

)]
Expected MB of Shared Saving: Transfer at 2

(41)

−
∫

ϖ
High

ϖ
Low

(
1+∆

2

W̃A,1−CA,1 +ϖ

)(
1

σ
√

2π

)
e−
(

ϖ2

2σ2

)
dw

Expected MB of Individual Saving: No Transfer at 2

= 0.

This Euler equation has three terms. Member A trades off the marginal utility of her private con-
sumption at t = 1 with the expected marginal benefit of saving, both in the scenario where a transfer
does and does not occur, in the next period. Crucially, A’s marginal benefit of saving in each sce-
nario reflects her individual marginal benefit of additional saving when no transfer is expected,
and, conversely, the combined marginal benefit of pooled total household savings when a transfer
is expected. As such, the marginal incentive to save lies between the classic problem of the unitary
household, where agents act alone, and the scenario studied so far in this paper, where all savings

31The optimization problem and best response for B is defined analogously, allowing for the asymmetry that ϖ

enters with the opposite sign.
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are shared.
Analytically characterizing the Nash equilibrium that results from (41) and its counterpart for

B is, in general, infeasible. For this reason I proceed by studying analytical solutions for two
special cases and then use a numerical solution to describe how the equilibrium varies between
these extremes.

C-1 No Intra-Household Risk Sharing: σ2 = 0

Equilibrium Consumption Choices I start the analysis by considering the case where there is
no shock to the relative wealth of each member at t = 2 : σ2 = 0. Define the relative wealth of
member i, after transfers have taken place in period 1, as wi,1 ≡

W̃i,1

W̃ j,1
. I solve for the equilibrium

consumption choices in the Internet Appendix. Written as a function of wi,1, these are

C∗i,1 =



(
1+∆

2
1+∆+δ

)(
W̃i,1 +W̃j,1

)
(B Transfers to A at t=2)

if wi,1 ≤ w
′
i,1

1
1+δ

W̃i,1
(No Transfer at t=2)

if wi,1 ∈
[
w
′
i,1,w

′′
i,1

]
(

1+∆

2
1+∆+δ

)(
W̃i,1 +W̃j,1

)
(A Transfers to B at t=2)

if wi,1 ≥ w
′′
i,1


(42)

where w
′
i,1 and w

′′
i,1 are cutoffs such that

w
′
i,1 ≤

(
1−∆

1+∆

)(
δ

1+δ

)
< 1 <

(
1+∆

1−∆

)(
1+δ

δ

)
≤ w

′′
i,1. (43)

The equilibrium consumption choices at t = 1 fall into three possible cases, depending on the
relative wealth of each household member. When the wealth of each member is close to the other
wi,1 ∈

[
w
′
i,1,w

′′
i,1

]
, then no transfer is expected at t = 2 and the two members effectively operate

as separate agents. As a result, the unique equilibrium consumption choice is determined purely
by their time preferences and achieves the full commitment optimum. In contrast, when there is
sufficient inequality between the wealth of each member so that wi,1 ≤ w

′
i,1 or wi,1 ≥ w

′′
i,1, then

equilibrium consumption choices are identical to Pareto inefficient consumption choices in the
baseline model with a shared account as per (18). When a transfer is anticipated, each member
trades off the marginal benefit from their own consumption with the combined marginal benefit of
total household savings next period. This recreates the same commons problem encountered when
the household saves in a single combined savings account.

Using the equilibrium consumption choices in (42) I can write the value function of member i
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as a function of of the wealth of each member, net of transfers, at t = 1. This is

Vi,1 =



V (1)
i = (1+δ ) ln

(
W̃i,1 +W̃j,1

)
+ v(1)i

(B Transfers to A at t=2)

if wi,1 ≤ w
′
i,1

V (2)
i = (1+δ )

[
1+∆

2 lnW̃i,1 +
1−∆

2 lnW̃j,1

]
+ v(2)i

(No Transfer at t=2)

if wi,1 ∈
[
w
′
i,1,w

′′
i,1

]
V (3)

i = (1+δ ) ln
(

W̃i,1 +W̃j,1

)
+ v(3)i

(A Transfers to B at t=2)

if wi,1 ≥ w
′′
i,1


(44)

where v(1)i , v(1)i , and v(1)i are constants defined in the Internet Appendix. Note that when members
anticipate that either one will make a transfer at t = 2 then the value function of both members is
determined solely by total household wealth, as if it was held in a shared account. If, for example,
wi,1 ≥ w

′′
i,1 then A anticipates transferring wealth to B at t = 2. Any reallocation of wealth at

the start of t = 1, that leaves wi,1 ≥ w
′′
i,1 unchanged, will have no impact on the expected utility

of either member. Conversely, when members anticipate making no transfer to each other in the
future, then a marginal transfer of wealth from i to j at the start of t = 1 directly changes the
relative consumption of each member. These observations highlight the key forces that will drive
the equilibrium choice of transfers at t = 1.

Equilibrium Transfers Stepping back to the start of t = 1, equilibrium choice of transfers at
t = 1 will be

{
Ψ
∗
A,1,Ψ

∗
B,1
}
=


{1−∆

2 RWA,0− 1+∆

2 RWB,0,0
}

if WA,1
WB,1
≥ 1+∆

1−∆

{0,0} if WA,1
WB,1
∈
(1−∆

1+∆
, 1+∆

1−∆

){
0, 1−∆

2 RWB,0− 1+∆

2 RWA,0
}

if WA,1
WB,1
≤ 1−∆

1+∆

 . (45)

This equilibrium gives rise to the following proposition.

Proposition 4. : Suppose there is no intra-household relative wealth shock: σ2 = 0 . Equilibrium

transfer choices at t = 1 will ensure wi,1 ∈
[1−∆

1+∆
, 1+∆

1−∆

]
and hence rule out the possibility of future

transfers in the future. As a result equilibrium consumption choices will be identical to the full

commitment Pareto optimum.

The intuition for this Proposition is as follows. First, suppose that the initial allocation of wealth
within the household is roughly equal: Wi,1

Wi,1
∈
(

w
′
i,1,w

′′
i,1

)
. As a result, both members are assured

to remain independent in the future if no transfers are made at t = 1. Consumption and savings
decisions are efficient when made independently. In this case, any transfer made at t = 1 lowers the
wealth of the member who makes it and, if large enough, potentially renders consumption choices
inefficient. Thus, the only transfer that will be made in this scenario occurs if Wi,1

W j,1
∈
[

1+∆

1−∆
,w
′′
i,1

]
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and is simply made to realign the relative consumption of each member with i’s relative concern
for herself and her partner.

Now consider the opposite case, where the initial allocation of wealth within the household is
substantially unequal Wi,1

Wi,1
> w

′
i,1. In this scenario, small transfers which leave wi,1 above w

′′
i,1 will

be insufficient to prevent a transfer in the future, and hence, will have no impact on the resulting
equilibrium consumption choices as per (42). If however, i makes a sufficiently large transfer
to render wi,1 = 1+∆

1−∆
then she will be strictly better off for two reasons. First, such a transfer

will decouple the savings decision of each member, and hence, implement the efficient level of
household consumption and saving each period. Second, the transfer ensures that the relative
consumption of each member matches i’s relative concern for herself and her partner, thereby
maximizing welfare according to her preferences.

The direct implication of Proposition 4 is that when there are no relative wealth shocks, equi-
librium transfers at t = 1 will endogenously ensure effective financial separation and efficient con-
sumption and savings from then on. Further, Proposition 4 indicates that if a household member
anticipates making a transfer to another member in the future, that it is better to make a sufficiently
large transfer right away to avoid the need to do so later. Making the transfer sooner is preferred
because it credibly separates each member and therefore avoids time-inconsistency. Further, from
the perspective of the member making the transfer, it ensures that the relative consumption of both
members matches her relative concern right away and is therefore preferred. The result shows that
with separate accounts the allocation of wealth within the household impacts the propensity for
overconsumption, with relative equality within the household producing more efficient choices.
When σt = 0 ∀t, this result can be generalized by an argument of induction for any T ≥ 2. I now
show that this conclusion depends crucially on the absence of relative wealth shocks.

C-2 Relative Wealth Shocks are Arbitrarily Large: σ2→ ∞

Equilibrium Consumption Choices Having studied the case where household members do not
experience relative wealth shocks, I now turn to the other extreme case where these shocks are
arbitrarily large (σ2→∞). As before, the savings decisions of each member at t = 1 will determin-
istically set the level of total household resources at t = 2. But these will have a vanishingly small
impact on the realized relative wealth of each member at the start of t = 2. Instead, the member
who receives the beneficial shock will, almost surely, make a transfer to the other member. Thus,
irrespective of previous decisions, each member anticipates that she will make or receive a transfer,
with probability half each. As such, household members are financial linked with certainty. In this
case, the third term in (41) disappears, and the Euler equation that defines the consumption best
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response of each member at t = 1 is

1+∆

2
δCi,1

−

(
1

W̃A,1 +W̃B,1−CA,1−CB,1

)
= 0. (46)

The resulting Nash equilibrium consumption choices are the same outcome obtained with a shared
account,

C∗i,1 =
1+∆

2

(
W̃A,1 +W̃B,1

)
1+∆+δ

, (47)

and hence, generate the same undersavings problem highlighted earlier in the paper. The logic is as
follows. When trading-off consumption at t = 1 with the marginal benefit of savings, each member
knows that a dollar saved will, by virtue of its impact on the endogenous voluntary transfer that
will arise in the future, be shared. Either a fraction 1−∆

2 of each dollar will be transferred to the
other member, or conversely, each additional dollar saved will offset a transfer of 1+∆

2 from the
other member.

Equilibrium Transfer Choices Notice that (47) is invariant to the initial distribution of wealth,
as are the equilibrium consumption outcomes at t = 2. It follows that any transfer that members
might make at t = 1 will have no impact on the resulting consumption choices, and hence, by an
argument of indifference, any combination of choices forms a Nash equilibrium.

Proposition 5. : Suppose the standard deviation of intra-household relative wealth shocks is ar-

bitrarily large: σ2 → ∞ . The consumption and savings decisions of a household with separate

accounts is identical to those with a shared account.

This highlights a crucial caveat to Proposition 4: transfers at t = 1 implement the full commit-
ment consumption choices only if they can reduce the probability of transfers in the future to zero.
In a perfectly nonstochastic environment (σ = 0) this is possible. In contrast, when σ → ∞ trans-
fers at t = 2 are unavoidable regardless of what allocation of wealth the household elects to adopt
at the start of t = 1. This result extends by an argument of induction to any household lifespan
T ≥ 2 when σt → ∞ ∀t.

C-3 Relative Wealth Shocks are Finite: σ2 > 0

Equilibrium Consumption Choices For the case where relative wealth shocks are positive but
finite, I study a symmetric version of the model (WA,0 =WB,0) numerically. The symmetry of initial
wealth ensures that in equilibrium no transfers occur at t = 1 by focusing on the case where the
initial wealth distribution already minimizes the probability of any financial dependence between
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members at t = 2. The only decisions of interest in this symmetric case are date 1 consumption
choices. The Euler equations describing each member’s optimal consumption choice at t = 1 are as
per (41). Both members recognize that, with some probability, a sufficiently large relative wealth
shock will be realized at t = 2 and, as a result, their consumption choices will be endogenously
linked by a transfer. Thus, with some intermediate probability, each dollar of savings is effectively
shared. Conversely, with some probability, ϖ2 will take on a sufficiently low absolute value and no
transfers will occur. In this case, each member will independently consume every additional dollar
of their individual savings. Recognizing that both scenarios are possible recreates an intermediate
recurrence of the commons problem whose strength is determined by the probability that a transfer
will occur.

Figure 4 Panel A shows the equilibrium consumption choice of household members at t = 1
as a function of the normalized standard deviation of this relative wealth shock ( σ2

Wi,1
). For com-

parison, the level of consumption with a joint account (no commitment) and with full commitment
are shown for comparison (see dotted and dashed lines respectively) and both are indifferent to
σ2. The level of consumption with separate accounts falls between these two cases. As per Propo-
sition 4, when there is no relative wealth shocks, then separate accounts implement full commit-
ment consumption choices. When the volatility of these shocks increases, members progressively
lower their private assessment of the marginal value of a dollar saved, because it is more likely
to be shared. Thus equilibrium consumption choices, and hence, the undersaving problem, grows
monotonically with this probability. The improvement in the efficiency of savings decisions with
separate accounts, relative to those made with a joint savings account, decreases with this prob-
ability (indexed by σ2

Wi,1
). The numerical solutions verify the analytical result in Proposition 5:

consumption decisions under separate and joint accounts are the same when σ2 becomes arbitrar-
ily large. The figure demonstrates that the central argument of the paper, household savings will be
time-inconsistent, is robust even to allowing savings to occur in separate accounts, provided that
there is some risk of relative wealth shocks to individual members.

D The Choice to Use Separate Accounts

Having studied household consumption and savings decisions with separate and joint accounts,
I now ask: which savings arrangement will the household select? I assume that the choice occurs at
t = 0 and, for simplicity, is binding for the life of the household. To abstract from the details of the
bargaining problem that might arise to make this decision, I focus on the case where members have
ex ante identical wealth: WA,0 =WB,0. Under this assumption the expected utility of each member
at t = 0, Vi,0, is identical. Hence the decision is reduced to finding under which arrangement this
value function is largest. I present analytical solutions for each the extreme cases of σ2 and then
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numerically study the intermediate cases between them.

D-1 No Intra-Household Risk Sharing: σ2 = 0

When there is no intra-household risk, the choice of accounts follows directly from Proposition
8. Since in this case, separate accounts implement the unique Pareto efficient full-commitment
consumption decisions, it must be strictly preferred to joint accounts.

D-2 Relative Wealth Shocks are Arbitrarily Large: σ2→ ∞

As per Proposition 9, when the relative wealth shock is of arbitrarily large variance (σ2→ ∞),
the initial consumption choice of each household member is the same as when they share a joint
account. The difference between the two arrangements arises later in life, when the shock to
relative wealth is realized. With separate accounts, the level of consumption of each member
at t = 2 will depend upon the realization of the shock. If the shock is favorable to A, then she
will decide how much to transfer to B and hence will consume a fraction 1+∆

2 of the household’s
combined remaining wealth. Conversely, if the shock is unfavorable, her fraction will be strictly
lower: 1−∆

2 . Since both scenarios are equally likely, the expected level of consumption is one half of
the households combined wealth, which is the same as what would be consumed, with certainty, if
savings were shared. As a result, the difference in the expected value function under each scenario
is

V Shared
i,0 −V Separate

i,0 = δ
2
[

ln
(

1
2

)
− 1

2

[
ln

1+∆

2
+ ln

1−∆

2

]]
> 0. (48)

In words, the only difference between the two arrangements is that perfect risk sharing is achieved
only under the joint account, and hence, it is strictly preferred.

D-3 Relative Wealth Shocks are Finite: σ2 > 0

The analytical solutions for the two polar cases suggest that the household balances two forces
when deciding whether or not to share financial assets. Sharing leads to inefficiently low savings,
but also pools risk. The resolution of this trade-off depends on the magnitude of the relative wealth
shocks. When σ2 is low, the gain from pooling risk is low and are outweighed by the improved
savings decisions made with separate accounts. As σ2 increases, the value of risk pooling grows.
Moreover, as seen already in Figure 4 Panel A, the efficiency gain from separate accounts falls
as the exposure to intra-household risk increases. With higher risk, both members recognize that
their future finances are, with a higher probability, linked by endogenous transfers. Both effects
make the expected utility of sharing wealth rise relative to separate savings. This intuition is
borne out in Figure 4 Panel B, which compares the expected utility of a household member under
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both arrangements. When the relative wealth shock is above a finite threshold, the household will
endogenously elect to save in a joint account despite the inefficient consumption decisions this
gives rise to. The figure suggests that even small degrees of intra-household risk are sufficient to
render joint accounts optimal32. Unreported numerical solutions indicate that this threshold level
of σ2 is decreasing in the altruism between household members, so that, all else equal, households
with more altruism are more likely to share accounts.33

E Additional Considerations

Before concluding the consideration of separate and joint accounts, a few observations are war-
ranted. First, in the model presented in this section, separate accounts do not implement perfectly
efficient consumption choices because of the possibility of future financial transfers, which effec-
tively link the wealth of both. Another important factor that will reinforce this conclusion is that
members are also likely to be linked through their shared concern for public goods, such as chil-
dren or elderly parents. In this case, with separate accounts, each member will recognize that each
dollar they save individually will increase their contribution to the public good and offset the con-
tribution of the other member. Initial transfers may be able to minimize this problem.34 However,
uncertainty over future public good expenditure needs or over the relative wealth of each member
will both have the same effect: limit the consumption efficiency benefit of shared accounts and
while bringing about poorer risk sharing.

It should also be noted that the ability of household members to separate their finances is
subject to the institutional setting in which they exist. For example, following the federal Uniform
Marriage and Divorce Act (UMDA) of 1970, US states moved towards equitable distribution of
household assets (see: Golden (1983), Turner (2005), and Voena (2015)). Thus, even with separate
accounts, if both members of a married household recognize that divorce is possible with some
probability, then their savings in this scenario is shared and hence, subject to the same commons
problem. Combined with the results in this section, this reinforces the usefulness of the initial
setup of the paper whereby household behavior is studied assuming savings are shared.

32Numerical solutions with a range of other parameters also support this. However, given the stylized nature of the
model, it is difficult to conclude whether this risk is high or low relative to empirical applications. That is an empirical
question left for future work.

33In the extreme, a household with no altruism will always prefer separate accounts. Conversely, if members have
perfect altruism, ∆ = 0, then the household is not subject to either problem, and separate and joint accounts will both
render the full commitment solution.

34Although, in this case, transfers need to ensure the allocation of wealth is sufficiently unequal to avoid members
being linked by a shared responsibility for providing the public good.
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V Discussion and Empirical Implications

The canonical theory of household financial behavior supposes that a household can be mod-
eled as a single optimizing agent. Significant evidence rejects this premise: household members
have distinct preferences and are self-interested.35 The paper introduces a model of consumption
and saving in a multi-person household in which members have shared wealth, consume both pri-
vate and public goods, and have imperfectly aligned altruistic preferences. The central finding of
the paper is that the household is time-inconsistent, consuming a larger fraction of wealth each
period than the optimal plan that the household would like to commit to. The model highlights that
in a multi-person household, savings are subject to a dynamic commons problem. The tendency
to under-save stems from each member’s ability to deviate unilaterally from the optimal house-
hold plan and direct more resources to their own private consumption at the cost of shared wealth.
The extent of time-inconsistency is larger when members are more self-interested and when they
place less weight on shared public consumption goods such as children and housing. The paper
shows that access to illiquid durable goods can further exacerbate the degree of time-inconsistency.
Household members individually overconsume these goods because they provide a way for shared
wealth to be saved in an asset that the other member cannot access.

Unlike standard theories based on the unitary model of the household, this paper is able to ra-
tionalize the way that ownership and control of assets within the household can affect consumption
and savings decisions. The final section of the paper shows how the ability to separate the wealth of
each member can impact consumption and savings decisions. Even if each member saves individ-
ually, members are linked by their altruism: a relatively wealthy member may voluntarily decide to
transfer funds to the other at some point in time in the future. If such a voluntary transfer is antici-
pated in the future, then members will act as if they have shared wealth and will therefore exhibit
the same time-inconsistency. Endogenous initial transfers, to restore sufficient parity of wealth,
can ensure that members with separate accounts are effectively independent from then on, and are,
therefore, time-consistent. This relies on the assumption that members do not face any shocks to
their relative wealth. If on the contrary, household relative wealth shocks are possible, members are
unable to fully separate themselves because they anticipate that one member may choose to trans-
fer wealth to the other in the future. This possibility makes individual wealth effectively shared
and thereby introduces the same time-inconsistency created when household members share their
savings. Finally I show that when relative wealth shocks are sufficiently large, households will
optimally elect to share wealth in order to pool risk even though this creates the time-inconsistency
problem stressed above.

35see for example Lundberg et al. (1997); Browning and Chiappori (1998); Phipps and Burton (1998); and, Ashraf
(2009)
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Another strategy suggested by the paper is for household members to save in the form of assets
that require joint approval for withdrawals. Joint approval will remove the ability of household
members to act unilaterally and will therefore limit the possibility of over-consumption. As such
the paper provides a framework that can rationalize why several of the most important household
saving assets require joint approval to withdraw or borrow against. As a primary example, the U.S.
1984 Retirement Equity Act revised the rules governing all retirement plans covered by the 1974
Employee Retirement Income Security Act to require exactly this form of joint approval. This
covers all assets held by married households in 401(k) plans, IRA accounts, and defined benefit
plans, and thus accounts for the bulk of US retirement savings outside of housing. Aura (2005)
shows that the passing of these laws did in fact increase savings for households affected by this
law change. Similarly, joint ownership of a house prevents a household member borrowing against
home equity savings without the approval of his spouse. Joint approval may come at the cost of
significant inflexibility: for example limiting the ability to adapt consumption choices to privately
observed shocks to the marginal utility of each member and therefore may not be adopted. Further
consideration of this trade-off is left for future work.

Finally the model suggests that household members may use punishment strategies to mitigate
the temptation to over consume. Evidence that households do not exhibit dynamic efficiency (see,
for example, De Mel et al. (2009), Duflo and Udry (2004), Mazzocco (2007), Robinson (2012),
Udry (1996)) suggest that in practice these strategies are of limited effectiveness. This may be
because shocks to marginal utility are unobserved or because households are unable to credibly
commit not to renegotiate planned punishment strategies. A more detailed theoretical consideration
of punishment strategies within the household is left for future work.
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VI Appendix - Figures and Tables

Figure 1: Comparative Statics - The Value of Commitment

This plot shows the fraction of W0 that the household would be willing to pay at t = 0 to achieve the full commitment
consumption path. Due to the log additive utility functions this fraction is invariant to the level of W0. Panel A shows
how the value of commitment varies with the degree of self-interest within the household: ∆. Panel B shows how
the value of commitment varies with the relative concern for private consumption: µ . The plot is drawn using the
following parameters: both household members have exponential discount factor of δ = 0.95, the gross interest rate is
R = 1/0.95, and the household exists for T = 50 years.
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Figure 2: Illiquid Durable Good p≥ 1 and T = 2

These plots are drawn for the case where the household members can buy an illiquid durable good at p ≥ 1. The
parameters used assume no altruism (∆ = 1), the exponential discount factor is δ = 0.95, the gross interest rate is
R = 1/0.95, the durable good depreciation is κ = 0.35, and the household exists for T = 2 periods. Panel A shows the
misallocation of consumption between goods by comparing the fraction of total household expenditure on the durable
good as a fraction at t = 1 with and without commitment. Panel B shows the intertemporal misallocation of consump-
tion by comparing the fraction of wealth that the household spends at t = 1 both with and without commitment, and
also compares to the case where the household does not have access to the illiquid durable good. Panel C compares
the value of commitment when the durable good is and is not available. Panel D compares the discounted value of
utility for a member when the illiquid durable good is and is not available. The price of the durable good, p, is on the
x-axis in all panels.
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(b) Fraction of Wealth Spent at t = 1
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(c) The Value of Commitment
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(d) Welfare at t = 0
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Figure 3: Value of Commitment with Illiquid Durable Goods p = 1 and T → ∞

This plot is drawn for the case where household members can buy an illiquid durable good. The parameters used
assume no altruism (∆ = 1), δ = 0.95, and R = 1/0.95. The figure is drawn for the case where T → ∞ and shows
the amount the household would be willing to pay at t = 0 (as a fraction of W0) to achieve the full commitment
consumption path. Due to log additive utility functions this fraction will be invariant to the choice of W0. The figure
shows how the value of commitment varies with the rate at which the durable good depreciates κ and compares to the
case where the household does not have access to the illiquid durable good.
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Figure 4: Separate Accounts δ0 > 0 and T = 2

These plots are drawn to compare the case where household members save in separate and joint accounts. Panel
A shows equilibrium household consumption choices at t = 1 with 1) separate accounts, 2) joint account (absent
commitment), and 3) the Pareto efficient full-commitment solution. Panel B compares the resulting value function
of each member at t = 0 under all three arrangements. Comparative statics are shown with respect to the standard
deviation of the relative wealth normalized by the size of each members personal wealth at t = 1: σ2/Wi,1. Each Panel
is drawn using the following parameters: altruism is ∆ = 0.2, the exponential discount factor is δ = 0.95, the gross
interest rate is R = 1/0.95, each member begins t = 0 with Wi,0 = 95, and the household exists for T = 2 periods.
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INTERNET APPENDIX

for

Time-Consistent Individuals,
Time-Inconsistent Households

This internet appendix presents the formal proof of the results presented in the paper. Each
section of the appendix presents the results for the corresponding section in the paper. In addition,
Section IV considers a variation on the base model in which household members make consecutive
consumption choices. I use this alternative setting to show that the expenditure limit (6) that is
assumed in the base model is not crucial for obtaining the results on equilibrium consumption
choices.
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I Proofs for Section II (Base Model)
This section solves the base model described in Section I of the paper to support the results

presented in Section II. I start by solving the ex ante optimal consumption plan and then solve for
equilibrium consumption choices without commitment. Finally, by comparing each, I present an
analytical solution for value of commitment.

A Optimal Household Allocation with Full Commitment

Ex ante Pareto optimal household allocation solves:

max
{CA,t ,CB,t ,Ht ,}t=T

t=1

Π = ηVA,0 +(1−η)VB,0 (IA.1)

subject to W0−
T

∑
x=1

R−x [CA,x +CB,x +Hx
]
≥ 0 and (IA.2){

CA,t ,CB,t ,HA,t ,HB,t
}t=T

t=1 ≥ 0. (IA.3)

The objective of this problem can be re-written as

Π = (1−θ)UA,0 +θUB,0 (IA.4)

where θ ≡ 1
2
[1− (2η−1)∆] (IA.5)

using the expressions for UA,0 and UB,0 (IA.4) becomes

Π = (1−θ)µ

T

∑
x=1

δ
x lnCA,x +θ µ

T

∑
x=1

δ
x lnCB,x +(1−µ)

T

∑
x=1

δ
x lnH1+x. (IA.6)

I will start by ignoring the non-negativity constraints in (IA.3) and verify that these hold later.
Writing the Lagrangian for the remaining problem with Γ≥ 0 being the multiplier on the resource
constraint I have

max
{CA,t ,CB,t ,Ht}t=T

t=1

(1−θ)µ

T

∑
x=1

δ
x lnCA,x +θ µ

T

∑
x=1

δ
x lnCB,x (IA.7)

+(1−µ)
T

∑
x=1

δ
x lnH1+x +Γ

[
W0−

T

∑
x=1

R−x [CA,x +CB,x +Hx
]]

.
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The first order conditions give the optimal level of expenditure on each type of consumption in
every period as a function of Γ:

CA,x : C∗∗A,x =
(1−θ)µδ x

ΓR−x (IA.8)

CB,x : C∗∗B,x =
θ µδ x

ΓR−x (IA.9)

Hx : H∗∗x =
(1−µ)δ x

ΓR−x (IA.10)

where x ∈ {1,2, ...,T} and “**” indicates solution to the full commitment problem. The optimal
level of total expenditure in any period is

X∗∗x =
δ x

ΓR−x . (IA.11)

Since the optimal allocation will exhaust the household budget constraint it must be that

W0 =
T

∑
x=1

X∗∗x
Rx =

1
Γ

[
T

∑
x=1

δ
x

]
(IA.12)

which implies

Γ
∗∗ =

∑
T
x=1 δ x

W0
. (IA.13)

Combining (IA.13) with (IA.11) gives

X∗∗t =
(Rδ )t

∑
T
x=1 δ x

W0. (IA.14)

Under the full commitment allocation household wealth evolves as

Wt = RtW0−
t−1

∑
x=1

Rt−xX∗∗x = RtW0

[
∑

T
x=t δ x

∑
T
x=1 δ x

]
(IA.15)

and so

RtW0 =Wt

(
∑

T
x=1 δ x

∑
T
x=t δ x

)
. (IA.16)

Hence X∗∗t can be re-written as

X∗∗t =
1

∑
T−t
x=0 δ x

Wt . (IA.17)

This fully describes the total level of consumption each period under full commitment. The optimal
levels of C∗∗A,t , C∗∗B,t , and H∗∗t follow immediately by using (IA.8), (IA.9), and (IA.10) to get the
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following constant consumption shares within each period:

C∗∗A,t

X∗∗t
= (1−θ)µ, (IA.18)

C∗∗B,t

X∗∗t
= θ µ, (IA.19)

H∗∗t
X∗∗t

= 1−µ. (IA.20)

Note that the optimal solution satisfies (IA.3).

B Equilibrium Choices without Commitment

B-1 Equilibrium at t = T

In the final period t = T member i takes C j,T and H j,T as given and solves the following
problem:

max
Ci,T ,Hi,T

1+∆

2
[
µ lnCi,T +(1−µ) ln

(
Hi,T +H j,T

)]
(IA.21)

+
1−∆

2
[
µ lnC j,T +(1−µ) ln

(
Hi,T +H j,T

)]
subject to
WT

2
−Ci,T −Hi,T ≥ 0 and (IA.22)

Ci,T ,Hi,T ≥ 0. (IA.23)

Since (IA.21) is strictly increasing in Ci,T and Hi,T it follows that (IA.22) will bind with equality
and hence can be substituted into the objective. Ignoring terms which i takes as given I can rewrite
her problem as

max
Hi,T

1+∆

2
µ ln

(
WT

2
−Hi,T

)
+(1−µ) ln

(
Hi,T +H j,T

)
(IA.24)

subject to
WT

2
−Hi,T ≥ 0 and (IA.25)

Hi,T ≥ 0. (IA.26)

Start by ignoring the boundary conditions (IA.25) and (IA.26) on Hi,T . The first order condition
for the unconstrained problem rearranges to give:

Hi,T =
(1−µ)WT − (1+∆)µH j,T

2−µ (1−∆)
. (IA.27)
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Since the objective is strictly concave in Hi,T , using the boundary conditions (IA.25) and (IA.26)
on Hi,T gives that ı́’s unique best response to any possible choice of H j,T ≥ 0 is

HBR
i,T
(
H j,T

)
=

{
bT

WT
2 −mT H j,T if H j,T ≤ 1−µ

µ

WT
1+∆

0 if H j,T > 1−µ

µ

WT
1−∆

}
(IA.28)

where bT ≡
2(1−µ)

2−µ (1−∆)
> 0, and (IA.29)

mT ≡
(1+∆)µ

2−µ (1−∆)
∈ (0,1) . (IA.30)

Note that HBR
i,T
(
H j,T

)
is weakly decreasing and hence the most that i will spend on public con-

sumption is

HBR
i,T (0) =

1−µ

2−µ (1−∆)
WT (IA.31)

which is strictly less than the upper bound WT
2 since ∆ ≥ 0. Thus (IA.25) can be ignored. Note

that HBR
i,T (0) > 0 and hence HA,T = HB,T = 0 cannot be a Nash equilibrium. By an argument of

symmetry (or formally, since mT ≤ 1 ≤ 1
mT

) there must be an interior Nash equilibrium. This is
found by substituting the interior portion of j’s reaction function into the reaction function of i:

H∗i,T =
bT

1+mT

WT

2
. (IA.32)

To total expenditure on public consumption is

H∗T =
bT

1+mT
WT . (IA.33)

The equilibrium level of private consumption in this interior solution is

C∗i,T =

(
1− bT

1+mT

)
WT

2
. (IA.34)

Thus the equilibrium value of member i’s objective function is

Vi,T = lnWT + kT , (IA.35)

where kT is a constant term defined as

kT ≡ µ ln
(

1− bT

1+mT

)
+(1−µ) ln

(
bT

1+mT

)
−µ ln2. (IA.36)

B-2 Solve for Sub-game Perfect Consumption Path by Induction

I conjecture the following form for the subgame perfect household allocation and confirm it by
an argument of induction below.

42



Conjecture 1. The subgame perfect equilibrium household allocation from t until NT is pro-
portional to Wt . That is, for any period t ∈ {1, ...,NT} the subgame perfect equilibrium lev-
els of private and public consumption can be written as C∗i,t+x = gt+xWt and H∗t+x = ht+xWt for
x ∈ {0,1, ...,NT − t} where gt+x and ht+x are strictly positive constants independent of Wt .

Consider the problem that each household member faces in period t < T . Member i takes C j,t
and H j,t as given and solves the following:

max
Ci,t ,Hi,t

1+∆

2
µ lnCi,t +(1−µ) ln

(
Hi,t +H j,t

)
+

1−∆

2
µ lnC j,t (IA.37)

+
T−t

∑
x=1

δ
x
[

1+∆

2
µ lnC∗i,t+x +

1−∆

2
µ lnC∗j,t+x +(1−µ) ln

(
H∗t+x

)]
subject to

Wt+1 = R
(
Wt−Ci,t−C j,t−Hi,t−H j,t

)
, (IA.38)

Wt

2
−Ci,t−Hi,t ≥ 0, (IA.39)

Ci,t ≥ 0, and (IA.40)
Hi,t ≥ 0. (IA.41)

Conjecture 1 implies that

T−t

∑
x=1

δ
x
[

1+∆

2
µ lnC∗i,t+x +

1−∆

2
µ lnC∗j,t+x +(1−µ) ln

(
H∗t+x

)]
= Zt+1 lnWt+1 + kt (IA.42)

where Zt+1 ≡
T−t

∑
x=1

δ
x (IA.43)

and kt is a constant. In equilibrium the budget constraint will bind. Log utility will ensure C∗i,t > 0
in equilibrium and hence (IA.40) can be ignored for now and verified later. Ignoring terms that ı́
takes as given in t and substituting (IA.38) into the objective, i’s problem can be rewritten as

max
Ci,t ,Hi,t

1+∆

2
µ lnCi,t +(1−µ) ln

(
Hi,t +H j,t

)
(IA.44)

+Zt+1 ln
(
Wt−Ci,t−C j,t−Hi,t−H j,t

)
subject to
Wt

2
−Ci,t−Hi,t ≥ 0 and (IA.45)

Hi,t ≥ 0. (IA.46)

43



Start by ignoring (IA.45) and (IA.46). The first order conditions for the unconstrained problem are

Ci,t :
(1+∆)µ

2Ci,t
− Zt+1

Wt−Ci,t−C j,t−Hi,t−H j,t
= 0 (IA.47)

Hi,t :
1−µ

Hi,t +H j,t
− Zt+1

Wt−Ci,t−C j,t−Hi,t−H j,t
= 0 (IA.48)

The first order condition for Hi,t implies that

Ht = Hi,t +H j,t =
1−µ

1−µ +Zt+1

[
Wt−Ci,t−C j,t

]
. (IA.49)

Hence for any given level of Wt , Ci,t , and C j,t both members agree on the optimal level of Ht . Since
it is funded jointly they are indifferent as to who pays for it. Equation (IA.47) implies

Ci,t = gt
[
Wt−C j,t−Ht

]
. (IA.50)

where gt ≡
(1+∆)µ

2Zt+1 +(1+∆)µ
∈ (0,1) . (IA.51)

Substituting j’s analog of (IA.50) into ((IA.50)) gives

Ci,t =
gt

1−gt
[Wt−Ht ] . (IA.52)

Combining (IA.49) and (IA.52) gives the equilibrium level of public consumption

H∗t =

(
1−µ

1+µ∆+∑
T−t
x=1 δ x

)
Wt . (IA.53)

Combining (IA.52) and (IA.53) gives the equilibrium level of private consumption for each mem-
ber

C∗i,t =

( (1+∆

2

)
µ

1+µ∆+∑
T−t
x=1 δ x

)
Wt . (IA.54)

Equilibrium total expenditure is thus

X∗t = H∗t +C∗A,t +C∗B,t =

(
1

1+ 1
1+µ∆ ∑

T−t
x=1 δ x

)
Wt . (IA.55)

These solutions were derived for the unconstrained problem ignoring (IA.45) and (IA.40). The
expression for C∗i,t in (IA.54) demonstrates that (IA.40) is slack. It just remains to show that (IA.45)
is not violated for either household member. Note that X∗t < Wt for any t < T and hence, by an
argument of symmetry, (IA.45) must be satisfied. Thus, conditional on Conjecture 1 being true
(IA.53), (IA.54) and (IA.55) are the unique subgame perfect equilibrium consumption choices.

The final step of the derivation is to prove Conjecture 1 by induction. As the first step, note that
Conjecture 1 is verified for t = T above. Next observe that (IA.53) and (IA.54) give equilibrium
consumption levels that are proportional to Wt . Observe also that using (IA.55) I can compute Wt+1
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as

Wt+1 = R

( 1
1+µ∆ ∑

T−t
x=1 δ x

1+ 1
1+µ∆ ∑

T−t
x=1 δ x

)
Wt , (IA.56)

which is also proportional to Wt . By extension of (IA.53) and (IA.54) this implies that H∗t+1,C
∗
A,t+1,C

∗
B,t+1

are also proportional to Wt . The same argument applies for any period x > t. Hence this establishes
Conjecture 1 by induction.

C Household Value of Commitment

The value function for member i at t = 0 evaluated at the non-cooperative consumption path is

V ∗i,0 =
T

∑
t=1

δ
t
{

1+∆

2
µ lnC∗i,t +

1−∆

2
µ lnC∗j,t +(1−µ) lnH∗t

}
. (IA.57)

Using (IA.53), (IA.54), and (IA.55) I re-write (IA.57) as

V ∗i,0 =
T

∑
t=1

δ
t
[

µ

(
ln
(

1+∆

2

)
+ ln

(
µ

1−µ

))
+ ln

(
1−µ

1+∆µ

)]
+

T

∑
t=1

δ
t lnX∗t . (IA.58)

Similarly, the value function for each member at t = 0 evaluated at the full commitment consump-
tion path using (IA.14), (IA.18), (IA.19), and (IA.20) is

V ∗∗i,0 =
T

∑
t=1

δ
t
[

µ ln
(

µ (1−θi)

1−µ

)
+

(
1+∆

2

)
µ ln

(
θi

1−θi

)
+ ln(1−µ)

]
+

T

∑
t=1

δ
t lnX∗∗t (IA.59)

where θA = 1−θ and θB = θ . Note that V ∗∗A,0 (V ∗∗B,0) is strictly increasing (decreasing) in η while
η ∈ [0,1]. Note also that V ∗i,0 is independent of η .

The value of η that solves (??) is found by setting V ∗∗A,0−V ∗A,0 =V ∗∗B,0−V ∗B,0. To see this, suppose
that η were such that V ∗∗A,0−V ∗A,0 > V ∗∗B,0−V ∗B,0. Then only the constraint V ∗∗B,0 ≥ V ∗B,0 would bind
and η could be reduced to relax this constraint. This is achieved when

η = θ =
1
2
. (IA.60)

Since η ensures V ∗∗A,0−V ∗A,0 =V ∗∗B,0−V ∗B,0 I can focus on the value of φ that sets V ∗∗A,0(W0 (1−φ)) =
V ∗A,0 (W0). It follows from (IA.14) and (IA.59) that

V ∗∗A,0(W0 (1−φ)) =V ∗∗A,0(W0)+

(
T

∑
t=1

δ
t

)
ln(1−φ) (IA.61)

and so the value of commitment must be such that

V ∗∗A,0(W0)+

(
T

∑
t=1

δ
t

)
ln(1−φ) =V ∗A,0 (W0) . (IA.62)
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Re-writing (IA.62) using (IA.58 and (IA.59 evaluated at (IA.60) gives that the value of commit-
ment is

φ = 1−
(
(1+∆)µ

1+∆µ

)
e(∑

T
k=1 δ k)

−1
∑

T
t=1 δ t ln

{
X∗t
X∗∗t

}
(IA.63)

where, using (IA.55) and (IA.14) I have that

X∗t
X∗∗t

=

(
1

1+∆µ

)t−1 t

∏
s=1

(
1+∑

T−s
x=1 δ x

1+ 1
1+∆µ ∑

T−s
x=1 δ x

)
. (IA.64)

II Proofs for Section III (Durable Goods)
Here I solve the model with durable goods as outlined in Section III in the paper.

A Equilibrium when p≥ 1 and T = 2

At t = 2 both household members will spend all remaining liquid wealth on the non-durable
good so that

C∗i,2 =
1
2

W2 and D∗i,2 = (1−κ)Di,1. (IA.65)

Let Xi,t = Ci,t + pDi,t be the total expenditure of member i at t. In period t = 1 i will take X j,1 as
given and solve the following problem

max
Ci,1,Di,1

ln(Ci,1 +Di,1)+δ ln
(
(1−κ)Di,1 +

R
2
[
W1−Ci,1− pDi,1−X j,1

])
(IA.66)

subject to
W1

2
−Ci,1− pDi,1 ≥ 0 (IA.67)

Ci,1 ≥ 0 (IA.68)
Di,1 ≥ 0 (IA.69)

The Lagrangian for this problem is

max
Ci,1,Di,1

ln(Ci,1 +Di,1)+δ ln
(
(1−κ)Di,1 +

R
2
[
W1−Ci,1− pDi,1−X j,1

])
(IA.70)

+ΓW

[
W1

2
−Ci,1− pDi,1

]
+ΓCCi,1 +ΓDDi,1
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where ΓW ,ΓC,ΓD≥ 0 are the multipliers associated with (IA.67), (IA.68), and (IA.69) respectively.
The first order conditions which characterize the solution are

1
Ci,1 +Di,1

− Rδ

2(1−κ)Di,1 +R
[
W1−Ci,1− pDi,1−X j,1

] −ΓW +ΓC = 0 (IA.71)

1
Ci,1 +Di,1

−
Rδ
[
p−2(1−κ)R−1]

2(1−κ)Di,1 +R
[
W1−Ci,1− pDi,1−X j,1

] − pΓW +ΓD = 0. (IA.72)

Any candidate solution must satisfy (IA.71) and (IA.72) along with (IA.67), (IA.68), and (IA.69)
and obey the standard complementary slackness conditions on ΓW ,ΓC, and ΓD. The solution to
this problem yields a best response piecewise-defined function for i defined over different ranges
of the price of the durable good. Define the following cutoffs

p∗1 ≡ 1+2(1−κ)R−1, (IA.73)

p∗2 ≡ 1+δ , (IA.74)

p∗3 ≡
(

1+δ

δ

)
2(1−κ)R−1. (IA.75)

If p≥ p∗1 then

CBR
i,1 =

{
W1
2 if X j,1 < (1−δ ) W1

2
W1−X j,1

1+δ
if X j,1 ≥ (1−δ ) W1

2

]
and DBR

i,1 = 0. (IA.76)

If p ∈
(

p∗1−1, p∗1
)

then i’s best response is

DBR
i,1 =



0 if X j,1 ≤ XL
1

W1
2 [δ (1−κ)−(p−1)R

2 ]+(p−1)R
2 X j,1

(p−1)(1+δ )(1−κ) if X j,1 ∈
[
XL

1 ,X
M
1

]
W1
2p if X j,1 ∈

[
XM

1 ,XH
1

]
W1−X j,1

(1+δ )[P−2(1−κ)R−1]
if X j,1 ≥ XH

1

 (IA.77)

CBR
i,1 =


W1
2 if X j,1 ≤ XL

1
W1
2 (1−κ)(p−1−δ )+

(
W1
2 −X j,1

)
p(p−1)R

2

(p−1)(1+δ )(1−κ) if X j,1 ∈
[
XL

1 ,X
M
1

]
0 if X j,1 ≥ XM

1

 (IA.78)

where

XL
1 ≡

W1

2

[
1− 2δ (1−κ)

R(P−1)

]
, (IA.79)

XM
1 ≡

W1

2

[
1− 2(1−κ)(δ +1− p)

R(P−1) p

]
, (IA.80)

XH
1 ≡

W1

2

[
1−δ +

2(1+δ )(1−κ)

Rp

]
. (IA.81)
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Note that p ≥ 1⇔ XL
1 ≤ XM

1 and p ≤ p∗1 ⇔ XM
1 ≤ XH

1 . Finally if p ≤ p∗1− 1 then then i’s best
response is

DBR
i,1 =


0 if X j,1 ≤ XL

1
W1
2 [δ (1−κ)−(p−1)R

2 ]+(p−1)R
2 X j,1

(p−1)(1+δ )(1−κ) if X j,1 ∈
[
XL

1 ,X
M
1

]
W1
2p if X j,1 ≥ XM

1

 (IA.82)

CBR
i,1 =


W1
2 if X j,1 ≤ XL

1
W1
2 (1−κ)(p−1−δ )+

(
W1
2 −X j,1

)
p(p−1)R

2

(p−1)(1+δ )(1−κ) if X j,1 ∈
[
XL

1 ,X
M
1

]
0 if X j,1 ≥ XM

1

 (IA.83)

To solve for the Nash equilibrium at t = 1 I can take advantage of the fact that the best response
function for both members is symmetric and look for where they cross the 45 degree line. It is easy
to show that in all cases the symmetric equilibrium is unique (I omit this for brevity). When p≥ p∗1

the equilibrium at t = 1 is

C∗i,1 =
W1

1+δ
and D∗i,1 = 0. (IA.84)

Next suppose p≤ p∗1 and p≥ p∗3. Note that this space is non-empty if and only if κ ≥ 1− Rδ

2 .
In this case

C∗i,1 = 0 and D∗i,1 =
W1

p+(1+δ ) [p−2(1−κ)R−1]
. (IA.85)

Next suppose p≤ p∗1 and p≥ p∗2. This space is non-empty if and only if κ ≤ 1− Rδ

2 . In this
case

C∗i,1 =
(

p−1−δ

(p−1)(1+δ )

)
W1

2
and D∗i,1 =

(
δ

1+δ

)(
1

p−1

)
W1

2
. (IA.86)

Finally, suppose p≤min
{

p∗2, p∗3
}

. Note that p∗2 ≤ p∗3 if and only if κ ≤ 1− Rδ

2 . In this case

C∗i,1 = 0 and D∗i,1 =
W1

2p
. (IA.87)

B Full Commitment when p≥ 1 and T = 2

The full commitment solution for the household can be found by finding the optimal allocation
for each member for some initial wealth allocation where ηW1 is given to member A and (1−η)W1
to B. Without loss of generality I focus on the problem solved by A.

Since p≥ 1 any wealth that is carried to t = 2 will be spent on the non-durable good

C∗∗A,2 = R
[
ηW1−CA,1− pDA,1

]
and D∗∗A,2 = (1−κ)DA,1 (IA.88)
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Substituting (IA.88) into A’s objective gives us the problem solved by A at t = 1:

max
CA,1,DA,1

ln
(
CA,1 +DA,1

)
+δ ln

(
(1−κ)DA,1 +R

[
ηW1−CA,1− pDA,1

])
(IA.89)

subject to
ηW1−CA,1− pDA,1 ≥ 0 (IA.90)
CA,1 ≥ 0 (IA.91)
DA,1 ≥ 0 (IA.92)

The Lagrangian for this problem is

max
CA,1,DA,1

ln
(
CA,1 +DA,1

)
+δ ln

(
(1−κ)DA,1 +R

[
ηW1−CA,1− pDA,1

])
(IA.93)

+ΓW
[
ηW1−CA,1− pDA,1

]
+ΓCCA,1 +ΓDDA,1

where ΓW ,ΓC,ΓD≥ 0 are the multipliers associated with (IA.90), (IA.91), and (IA.92) respectively.
The first order conditions which characterize the solution are

1
CA,1 +DA,1

− Rδ

(1−κ)DA,1 +R
[
ηW1−CA,1− pDA,1

] −ΓW +ΓC = 0 (IA.94)

1
CA,1 +DA,1

−
Rδ
[
p− (1−κ)R−1]

(1−κ)DA,1 +R
[
ηW1−CA,1− pDA,1

] − pΓW +ΓD = 0. (IA.95)

Any candidate solution must satisfy (IA.94) and (IA.95) along with (IA.90), (IA.91), and (IA.92)
and obey the standard complementary slackness conditions on ΓW ,ΓC, and ΓD. The solution to this
problem is a piecewise-defined function defined over different ranges of the price of the durable
good. Define the following cutoffs

p∗∗1 ≡ 1+(1−κ)R−1, (IA.96)

p∗∗2 ≡ 1+δ , (IA.97)

p∗∗3 ≡
(

1+δ

δ

)
(1−κ)R−1. (IA.98)

If p≥ p∗∗1 then

C∗∗A,1 =
ηW1

1+δ
and D∗∗A,1 = 0 (IA.99)

Next suppose that p ≤ p∗∗1 and p ≥ p∗∗3. Note that this space is non-empty if and only if
κ ≥ 1−Rδ . In this case

C∗∗A,1 = 0 and D∗∗A,1 =
ηW1

(1+δ ) [p− (1−κ)R−1]
. (IA.100)

Next suppose p ≤ p∗∗1 and p ≥ p∗∗2. This space is non-empty if and only if κ ≤ 1−Rδ . In

49



this case

C∗∗A,1 =

(
p−1−δ

(p−1)(1+δ )

)
ηW1 and D∗∗A,1 =

(
δ

1+δ

)(
1

p−1

)
ηW1. (IA.101)

Finally, suppose p≤min
{

p∗∗2, p∗∗3
}

. Note that p∗∗2 ≤ p∗∗3 if and only if κ ≤ 1−Rδ . In this
case

C∗∗A,1 = 0 and D∗∗A,1 =
ηW1

p
. (IA.102)

C Proof of Propositions 2 and 3

Comparing the equilibrium and full commitment allocation with the illiquid durable good when
p≥ 1 and T = 2 requires comparing over four ranges of κ .

C-1 Case 1: κ ≤ 1−Rδ .

Note that κ ≤ 1− Rδ implies p∗2 ≤ p∗1 and p∗∗2 ≤ p∗∗1. Note also that p∗2 = p∗∗2. In
equilibrium total household expenditure at t = 1 as a fraction of wealth is

X∗1
W1

=

{
1 p≤ p∗1
1

1+ δ

2
p≥ p∗1

]
. (IA.103)

In the allocation with full commitment

X∗∗1
W1

=

{
1 p≤ p∗∗1
1

1+δ
p≥ p∗∗1

]
. (IA.104)

Dividing (IA.103) by (IA.104) gives

X∗1
X∗∗1

=


1 p≤ p∗∗1

1+δ p ∈
[
p∗∗1, p∗1

]
1+δ

1+ δ

2
p≥ p∗1

 (IA.105)

noting that κ ≤ 1 ensures that p∗∗1 ≤ p∗1 and that 1+δ ≥ 1+δ

1+ δ

2
.

Next consider the fraction of total expenditure at t = 1 that is dedicated to the durable good. In
equilibrium this fraction is

pD∗1
X∗1

=


1 p≤ p∗2(

δ

1+δ

)(
p

p−1

)
p ∈

[
p∗2, p∗1

]
0 p≥ p∗1

 . (IA.106)
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In the allocation with full commitment the share of expenditure on the durable good is

pD∗∗1
X∗∗1

=


1 p≤ p∗∗2(

δ

1+δ

)(
p

p−1

)
p ∈

[
p∗∗2, p∗∗1

]
0 p≥ p∗∗1

 . (IA.107)

Subtracting (IA.107) from (IA.106) gives

pD∗1
X∗1
−

pD∗∗1
X∗∗1

=


0 p≤ p∗∗1(

δ

1+δ

)(
p

p−1

)
p ∈

[
p∗∗1, p∗1

]
0 p≥ p∗∗1

 . (IA.108)

C-2 Case 2: κ ∈
[
1−Rδ ,1− Rδ

2

]
Note that κ ∈

[
1−Rδ ,1− Rδ

2

]
implies the following ordering p∗∗3≤ p∗∗1≤ p∗∗2 = p∗2≤ p∗1.

In equilibrium total household expenditure at t = 1 as a fraction of wealth is the same as in (IA.103).
In the allocation with full commitment it is

X∗∗1
W1

=


1 p≤ p∗∗3
p

(1+δ )[p−(1−κ)R−1]
p ∈

[
p∗∗3, p∗∗1

]
1

1+δ
p≥ p∗∗1

 (IA.109)

Dividing (IA.103) by (IA.109) gives

X∗1
X∗∗1

=


1 p≤ p∗∗3

1+δ −δ
p∗∗3

p p ∈
[
p∗∗3, p∗∗1

]
1+δ p ∈

[
p∗∗1, p∗1

]
1+δ

1+ δ

2
p≥ p∗1

 (IA.110)

noting the following inequalities:

p ∈
[
p∗∗3, p∗∗1

]
=⇒ 1+δ −δ

p∗∗3

p
≥ 1 (IA.111)

1+δ ≥ 1+δ

1+ δ

2

. (IA.112)

Next consider the fraction of total expenditure at t = 1 that is dedicated to the durable good.
In equilibrium this is the same as in (IA.106). In the allocation with full commitment the share of
expenditure on the durable good is

pD∗∗1
X∗∗1

=

{
1 p≤ p∗∗1

0 p≥ p∗∗1

]
. (IA.113)
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Subtracting (IA.113) from (IA.106) gives

pD∗1
X∗1
−

pD∗∗1
X∗∗1

=


0 p≤ p∗∗1

1 p ∈
[
p∗∗1, p∗2

](
δ

1+δ

)(
p

p−1

)
p ∈

[
p∗2, p∗1

]
0 p≥ p∗1

 . (IA.114)

C-3 Case 3: κ ∈
[
1− Rδ

2 ,1− Rδ

2+δ

]
Note that κ ∈

[
1− Rδ

2 ,1− Rδ

2+δ

]
implies the following ordering p∗∗3≤ 1≤ p∗∗1≤ p∗3≤ p∗1≤

p∗∗2 = p∗2. Since p ≥ 1 this implies that p ≥ p∗∗3 in this region. In equilibrium total household
expenditure at t = 1 as a fraction of wealth is

X∗1
W1

=


1 p≤ p∗3
2p

p+(1+δ )[p−2(1−κ)R−1]
p ∈

[
p∗3, p∗1

]
1

1+ δ

2
p≥ p∗1

 . (IA.115)

In the allocation with full commitment total household expenditure at t = 1 as a fraction of wealth
is

X∗∗1
W1

=

{ p
(1+δ )[p−(1−κ)R−1]

p≤ p∗∗1

1
1+δ

p≥ p∗∗1

]
. (IA.116)

Dividing (IA.115) by (IA.116) gives

X∗1
X∗∗1

=


1+δ −δ

p∗∗3
p p≤ p∗∗1

1+δ p ∈
[
p∗∗1, p∗3

]
1+δ

1+ δ

2

(
1− p∗3

p

) p ∈
[
p∗3, p∗1

]
1+δ

1+ δ

2
p≥ p∗1

 (IA.117)

noting the following inequalities:

p ∈
[
p∗∗3, p∗∗1

]
=⇒ 1+δ −δ

p∗∗3

p
≥ 1 (IA.118)

1+δ ≥ 1+δ

1+ δ

2

(IA.119)

p ∈
[
p∗3, p∗1

]
=⇒ 1+δ

1+ δ

2

(
1− p∗3

p

) >
1+δ

1+ δ

2

. (IA.120)

Next consider the fraction of total expenditure at t = 1 that is dedicated to the durable good. In
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equilibrium this fraction is
pD∗1
X∗1

=

{
1 p≤ p∗1

0 p≥ p∗1

]
. (IA.121)

In the allocation with full commitment the share of expenditure on the durable good is the same as
in (IA.113). Subtracting (IA.113) from (IA.121) gives

pD∗1
X∗1
−

pD∗∗1
X∗∗1

=
0 p≤ p∗∗1

1 p ∈
[
p∗∗1, p∗1

]
0 p≥ p∗1

. (IA.122)

C-4 Case 4: κ ≥ 1− Rδ

2+δ

Note that κ ≥ 1− Rδ

2+δ
implies the following ordering p∗∗3 ≤ 1 ≤ p∗3 ≤ p∗∗1 ≤ p∗1 ≤ p∗∗2 =

p∗2. Since p ≥ 1 this implies that p ≥ p∗∗3 in this region. In equilibrium total household expen-
diture at t = 1 as a fraction of wealth is given by (IA.115) and with full commitment is given by
(IA.116). In this case, dividing (IA.115) by (IA.116) gives

X∗1
X∗∗1

=



1+δ − δ

2
p∗3
p p≤ p∗3

(1+δ )− δ

2
p∗3

p

1+ δ

2

(
1− p∗3

p

) p ∈
[
p∗3, p∗∗1

]
1+δ

1+ δ

2

(
1− p∗3

p

) p ∈
[
p∗∗1, p∗1

]
1+δ

1+ δ

2
p≥ p∗1


. (IA.123)

noting the following inequalities:

p ∈
[
1, p∗3

]
=⇒ 1+δ ≥ 1+δ − δ

2
p∗3

p
>

1+δ

1+ δ

2

(IA.124)

p ∈
[
p∗3, p∗∗1

]
=⇒

(1+δ )− δ

2
p∗3
p

1+ δ

2

(
1− p∗3

p

) ≥ 1+
δ

2
≥ 1+δ

1+ δ

2

(IA.125)

p ∈
[
p∗∗1, p∗1

]
=⇒ 1+δ

1+ δ

2

(
1− p∗3

p

) >
1+δ

1+ δ

2

(IA.126)

Analysis of the share of expenditure at t = 1 that goes to the durable good is the same as in
Case 3 above (both in equilibrium and with commitment).

D Equilibrium when p = 1 and T ≥ 2

When p = 1 household members will optimally set Ci,t = 0 each period. What remains is to
study the equilibrium choice of durable consumption. I solve the model by backward induction.
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D-1 Equilibrium at T

In the final period each household member will spend all available wealth on the durable good.
Hence

D∗i,T =
WT

2
+(1−κ)Di,T−1. (IA.127)

It follows that the value function of member i when entering T is

Ui,T = ln
[

R
2
[
ΛT−1−Di,T−1−D j,T−1

]
+(1−κ)Di,T−1

]
. (IA.128)

D-2 Case I: t ≥ k∗

I start by conjecturing that in any subgame perfect equilibrium both members will spend all
remaining wealth on the durable good if κ is small enough.

Conjecture 2. The unique subgame perfect equilibrium from k until T is for both members to set

D∗i,l =
Wl

2
+(1−κ)Di,l−1 (IA.129)

where l = k,k+1, ..,T if

κ ≤ κk ≡ 1− R
2

[
∑

T−k
x=1 δ x

∑
T−k
x=0 δ x

]
. (IA.130)

I now prove Conjecture 2 by induction. Note that when k = T that (IA.130) simply requires κ ≤ 1
which holds by assumption. The analysis of the final period verifies that Conjecture 6 holds when
k = T .

Next, assume that Conjecture 2 holds for k and I will use this to establish it for k−1. By this
assumption that value function of member i at k is

Ui,k =

(
T−k

∑
x=0

δ
x

)
ln
[

Wk

2
+(1−κ)Di,k−1

]
+

(
T−k

∑
x=1

xδ
x

)
ln(1−κ) (IA.131)

Using (IA.131) I can write the problem solved by member i in period k−1 as

max
Di,k−1

lnDi,k−1 +δ

(
T−k

∑
x=0

δ
x

)
ln
[
Λk−1−D j,k−1 +

[
2(1−κ)R−1−1

]
Di,k−1

]
(IA.132)

+δ

(
T−k

∑
x=0

δ
x

)
ln

R
2
+δ

(
T−k

∑
x=1

δ
x

)
ln(1−κ)

subject to
Di,k−1 ≥ (1−κ)Di,k−2 (IA.133)
Wk−1

2
+(1−κ)Di,k−2 ≥ Di,k−1 (IA.134)

54



If κ ≤ 1− R
2 the objective (IA.132) is strictly increasing in Di,k−1 and hence the solution must be

to set Di,k−1 as (IA.134) will allow. Thus if κ ≤ 1− R
2 the equilibrium choice of Di,k−1 is

D∗i,k−1 =
Wk−1

2
+(1−κ)Di,k−2. (IA.135)

Suppose instead that κ > 1− R
2 . The Lagrangian for member i’s problem at t with ΓD,k−1 ≥ 0 and

ΓW,k−1 ≥ 0 as the multipliers on the two constraints is

max
Di,k−1

lnDi,k−1 +δ

(
T−k

∑
x=0

δ
x

)
ln
[
Λk−1−D j,k−1 +

[
2(1−κ)R−1−1

]
Di,k−1

]
+ΓD,k−1

[
Di,k−1− (1−κ)Di,k−2

]
(IA.136)

+ΓW,k−1

[
Wk−1

2
+(1−κ)Di,k−2−Di,k−1

]
.

The first order condition with respect to Di,t−1 is

1
Di,k−1

+
δ

(
∑

T−k
x=0 δ x

)[
2(1−κ)R−1−1

]
Λk−1−D j,k−1 +[2(1−κ)R−1−1]Di,k−1

+ΓD,k−1−ΓW,k−1 = 0. (IA.137)

Using (IA.137) along with the standard Kuhn-Tucker conditions gives the following best response
function for Di,k−1:

DBR
i,k−1 =


Wk−1

2 +(1−κ)Di,k−2 if D j,k−1 ≤ ρi,k−1−ρ ′i,k−1
Λk−1−D j,k−1(

∑
T−(k−1)
x=0 δ x

)
[1−2(1−κ)R−1]

if D j,k−1 ∈
[
ρi,k−1−ρ ′i,k−1,ρi,k−1

]
(1−κ)Di,k−2 if D j,k−1 ≥ ρi,k−1

 (IA.138)

where

ρ
′
i,k−1 ≡

(
T−(k−1)

∑
x=0

δ
x

)[
1−2(1−κ)R−1]Wk−1

2
(IA.139)

ρi,k−1 ≡ Λk−1−

(
T−(k−1)

∑
x=0

δ
x

)[
1−2(1−κ)R−1](1−κ)Di,k−2. (IA.140)

Observe from (IA.138) that DBR
i,k−1 is weakly decreasing in D j,k−1. By symmetry, (IA.138)

demonstrates that the largest possible value for D j,k−1 is DMAX
j,k−1 ≡

Wk−1
2 +(1−κ)D j,k−2. If

ρi,k−1−

(
T−k

∑
x=0

δ
x

)[
1−2(1−κ)R−1]Wk−1

2
≥ DMAX

j,k−1 (IA.141)

then (IA.138) implies that i will optimally spend as much on the durable good as possible for any
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feasible choice of D j,k−1. The inequality in (IA.141) can be re-written as[
Wk−1

2
+(1−κ)Di,k−2

][
1−

(
T−(k−1)

∑
x=0

δ
x

)[
1−2(1−κ)R−1]]≥ 0 (IA.142)

which holds if and only if

1≥

(
T−(k−1)

∑
x=0

δ
x

)[
1−2(1−κ)R−1]⇐⇒ κ ≤ 1− R

2

[
∑

T−(k−1)
x=1 δ x

∑
T−(k−1)
x=0 δ x

]
. (IA.143)

Observe that (IA.143) is the counterpart to (IA.130) for the case where l = k− 1. Notice that κk
is strictly increasing in k and so if κ ≤ κk then it must be that κ < κk′ if k′ > k. Hence since
Conjecture 6 is established for k = T then it must hold for k = T −1 and so on by an argument of
induction.

If κ ≤ κ1 then Conjecture 6 implies directly that the unique subgame perfect equilibrium will
have D∗i,1 =

W1
2 for both members and hence all liquid wealth is spent in the first period. Alternately,

if κ > κ1 then D∗i,1 <
W1
2 and there will be some period after t = 1 when the household will fully

exhaust its liquid wealth (this could be as late as t = T ). Define

k∗ =


max


T −

ln
[

δ−2(1−κ)R−1

δ [1−2(1−κ)R−1]

]
lnδ

 ,1
 if κ > 1− Rδ

2

1 if κ ≤ 1− Rδ

2

 (IA.144)

as the smallest k for which κ ≤ κk. Notice that k∗ ∈ {1,2, ..,T}. I have already fully established
the subgame equilibrium for the case where k∗ = 1.

D-3 Case II: t = k∗−1

Now consider the case where k∗ > 1. The value function for each member in k∗ will be the
same as given in (IA.131) and hence I can continue with my analysis of the problem described in
(IA.132), (IA.133) and (IA.134). The best response function (IA.138) applies at k∗−1. I conjecture
that the equilibrium choice of Di,k∗−1 must be on the interior section of (IA.138) so that the best
response function is

DBR
i,k∗−1 =

Λk∗−1−D j,k∗−1(
∑

T−(k∗−1)
x=0 δ x

)
[1−2(1−κ)R−1]

. (IA.145)

Since (IA.145) is symmetric for both A and B these can be solved simultaneously to give

D∗i,k∗−1 =
Λk∗−1

1+[1−2(1−κ)R−1]
(

∑
T−(k∗−1)
x=0 δ x

) . (IA.146)
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Using (IA.146) and the intertemporal budget constraint I have that Wk∗ will be

Wk∗ = RΛk∗−1

[1−2(1−κ)R−1](
∑

T−(k∗−1)
x=0 δ x

)
−1

1+[1−2(1−κ)R−1]
(

∑
T−(k∗−1)
x=0 δ x

)
 (IA.147)

Using (IA.145), (IA.147), and (IA.128) I can write the value function for each member at the start
of k∗−1 as

Ui,k∗−1 =

(
T−(k∗−1)

∑
x=0

δ
x

)
lnΛk∗−1 +CONSTk∗−1 (IA.148)

where

CONSTk∗−1 ≡

(
T−(k∗−1)

∑
x=1

δ
x

)
ln

[
R
2
[
1−2(1−κ)R−1](T−(k∗−1)

∑
x=0

δ
x

)]
(IA.149)

−

(
T−(k∗−1)

∑
x=0

δ
x

)
ln

[
1+
[
1−2(1−κ)R−1](T−(k∗−1)

∑
x=0

δ
x

)]

+δ

(
T−k∗

∑
x=1

xδ
x

)
ln(1−κ)

D-4 Case III: t < k∗−1

If k∗ ≤ 2 then my analysis so far fully describes the subgame perfect equilibrium. If however
k∗ ≥ 3 then I need to characterize the equilibrium for each t < k∗− 1. For the periods prior to
k∗−1 I make the following conjecture.

Conjecture 3. The value function of each member in periods t ≤ k∗−1 is of the form

Ui,t =

(
T−t

∑
x=0

δ
x

)
lnΛt +CONSTt (IA.150)

I will establish Conjecture 3 by induction. Observe that (IA.148) verifies this conjecture for the
case of t = k∗−1. I now assume that Conjecture 3 is true for t = k and, assuming this, prove it is
true for t = k−1. Ignoring the constant in the objective function, the problem solved my member
i at k−1 is

max
Di,k−1

lnDi,k−1 +

(
T−(k−1)

∑
x=1

δ
x

)
ln
[
Λk−1−

(
1− (1−κ)R−1)(Di,k−1 +D j,k−1

)]
(IA.151)

subject to
Di,k−1 ≥ (1−κ)Di,k−2 (IA.152)
Wk−1

2
+(1−κ)Di,k−2 ≥ Di,k−1 (IA.153)
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I conjecture that neither (IA.152) and (IA.153) will bind in equilibrium and so the best response of
i is described by the standard first order condition:

1
Di,k−1

−

(
T−(k−1)

∑
x=1

δ
x

)
1− (1−κ)R−1

Λk−1− (1− (1−κ)R−1)
(
Di,k−1 +D j,k−1

) = 0 (IA.154)

Observe that (IA.154) is symmetric for both members and hence I must have a symmetric equilib-
rium. The equilibrium level of durable consumption for both members will be

D∗i,k−1 =
Λk−1

(1− (1−κ)R−1)
(

1+∑
T−(k−1)
x=0 δ x

) . (IA.155)

Using (IA.155) in (IA.151) gives

Ui,k−1 =

(
T−(k−1)

∑
x=0

δ
x

)
lnΛk−1 +CONSTk−1 (IA.156)

which establishes Conjecture 3 by an argument of induction. Thus (IA.155) combined with the
intertemporal budget constraint fully characterizes the equilibrium durable consumption choice of
both members for all t < k∗−1.

E Full Commitment Allocation when p = 1 and T ≥ 2

The full commitment solution for the household is identical to dividing W0 between each mem-
ber in proportion to their bargain power (ηW0 to A and (1−η)W0 to B) and then allowing them
to decide how to spend that wealth on durable consumption over their lifetime. Therefore I char-
acterize the full commitment allocation by finding the consumption allocation chosen by a single
time-consistent representative agent with the same preferences as the individual household mem-
bers.

In the final period the representative agent will optimally spend all remaining wealth on the
durable good. Hence

Dr∗
T = ΛT . (IA.157)

It follows that the value function of the representative agent when entering T is

Ur,T = ln
[
ΛT−1−

(
1− (1−κ)R−1)Dr

T−1
]
+ lnR. (IA.158)

Conjecture 4. The representative agent will optimally spend all remaining wealth on the durable
good (Dr∗

t = Λt) in periods t ≥ kr for some kr ∈ {1,2, ..,T}.

Observe that Conjecture 4 is verified for kr = T . I now assume it to hold for some k≥ kr and prove
it by induction by studying k− 1. The representative agent will solve the following problem at
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k−1

max
Dr

k−1

lnDr
k−1 +

T−(k−1)

∑
x=1

δ
x ln
[
Λk−1−

(
1− (1−κ)R−1)Dr

k−1
]

(IA.159)

subject to
Dr

k−1 ≤ Λk−1 (IA.160)
Dr

k−1 ≥ (1−κ)Dr
k−2 (IA.161)

The Lagrangian for this problem is

max
Dr

k−1

(IA.162)

where λΛ ≥ 0 and λD ≥ 0 are the Lagrange multipliers on the constraints (IA.160) and (IA.161).
The first order condition with respect to Dr

k−1 is

1
Dr

k−1
− ∑

T−(k−1)
x=1 δ x (1− (1−κ)R−1)

Λk−1− (1− (1−κ)R−1)Dr
k−1
−λΛ +λD = 0 (IA.163)

I have an interior solution at k−1 if neither (IA.160) or (IA.161) which implies λΛ = λD = 0. For
now I will ignore (IA.161) and verify that it is satisfied at the proposed solution so that λD = 0. At
an interior solution (IA.163) implies

Dr
k−1 =

Λk−1

(1− (1−κ)R−1)
[
1+∑

T−(k−1)
x=1 δ x

] . (IA.164)

For (IA.160) to be satisfied at (IA.164) requires κ ≥ κ
r
k−1 where

κ
r
t ≡ 1−

R∑
T−t
x=1 δ x

1+∑
T−t
x=1 δ x

(IA.165)

If κ < κ
r
k−1 then Dr∗

k−1 = Λk−1. Notice that κ
r
t is strictly increasing in t and hence if κ < κ

r
k−1 then

κ < κ
r
t ∀t ≥ k−1. This proves immediately that if Dr∗

k−1 = Λk−1 then Dr∗
t = Λt ∀t ≥ k−1 which

along with (IA.157) establishes Conjecture 4 by an argument of induction.
If κ < κ

r
k−1 which implies Dr∗

k−1 = Λk−1 then the value function of the representative agent at
the start of k−1 is

Ur,k−1 =

(
1+

T−(k−1)

∑
x=1

δ
x

)
lnΛk−1 +

T−(k−1)

∑
x=1

x ln(1−κ) . (IA.166)

Alternately if κ ≥ κ
r
k−1 then (IA.164) holds. In this case

Λk = RΛk−1

[
∑

T−(k−1)
x=1 δ x

1+∑
T−(k−1)
x=1 δ x

]
(IA.167)
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and thus the value function of the representative agent at the start of k−1 is

Ur,k−1 =

(
1+

T−(k−1)

∑
x=1

δ
x

)
lnΛk−1 +CONSTANT. (IA.168)

Since both (IA.166) and (IA.168) have the same form as the continuation value function used
in (IA.159) then the analysis of k− 1 applies to all periods t < k− 1. To summarize the full
equilibrium depending on the magnitude of κ . If κ < κ

r
1 then Dr∗

1 = RW0 and Dr∗
t = (1−κ)Dr∗

t−1
∀t ≥ 2. Note that (IA.161) is satisfied in this case. If κ ≥ κ

r
1 then

Dr∗
t =

Λt

(1− (1−κ)R−1)
[
1+∑

T−t
x=1 δ x

] (IA.169)

for each t where κ ≥ κ
r
1. Let kr∗ denote the first period in which κ < κ

r
t . Thus (IA.169) will apply

for all t < kr∗, Dr∗
kr∗ = Λkr∗ and Dr∗

t = (1−κ)Dr∗
t−1 ∀t ≥ kr∗+ 1. Using (IA.165) I can solve for

kr∗ by finding the smallest t for which κ < κ
r
t subject to the constraint that kr∗ ∈ {1,2, ..,T}. This

gives

kr∗ = max


T −

ln
[
1− (1−κ)(1−δ )

(κ+R−1)δ

]
lnδ

 ,1
 . (IA.170)

Finally I need to check that (IA.161) is satisfied when t < kr∗. The evolution of durable consump-
tion determined by (IA.169) and the intertemporal budget constraint is

Dr∗
t

Dr∗
t−1

=
R∑

T−(t−1)
x=1 δ x

1+∑
T−t
x=1 δ x

. (IA.171)

Thus to satisfy (IA.161) requires κ ≥ κ̃r
t where

κ̃
r
t ≡ 1−

R∑
T−(t−1)
x=1 δ x

1+∑
T−t
x=1 δ x

. (IA.172)

Observe that κ̃r
t < κ

r
t and since by construction κ ≥ κ

r
t when t < kr∗ it must be that (IA.161) is

satisfied.

III Proofs for Section IV (Separate Accounts)
Many of the derivations for Section IV are contianed within the paper and hence not repeated

here. Here I present derivations to support the analysis of decisions at t = 1 for the case where
σ = 0.
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A Best Response Functions

When there is no wealth shock at all the objective function of each member is a piecewise
continuous function. The objective of member i at t = 1 is

U (Ci,1) =

{
U (1) (Ci,1) if Ci,1 ≤C′′i,1
U (2) (Ci,1) if Ci,1 ≥C′′i,1

]
(IA.173)

where

U (1) (Ci,1) =

{
U (1.1) (Ci,1) if Ci,1 ≤C′i,1
U (1.2) (Ci,1) if Ci,1 ≥C′i,1

]
(IA.174)

U (1.1) (Ci,1)≡
1+∆

2
lnCi,1 +

1−∆

2
lnC j,1

+δ

[
ln
(

W̃i,1 +W̃j,1−Ci,1−C j,1

)
+ lnR+ vHigh

2

]
(IA.175)

U (1.2) (Ci,1)≡
1+∆

2
lnCi,1 +

1−∆

2
lnC j,1

+δ

[
1+∆

2
ln
(

W̃i,1−Ci,1

)
+

1−∆

2
ln
(

W̃j,1−C j,1

)
+ lnR

]
(IA.176)

U (2) (Ci,1)≡
1+∆

2
lnCi,1 +

1−∆

2
lnC j,1

+δ

[
ln
(

W̃i,1 +W̃j,1−Ci,1−C j,1

)
+ lnR+ vLow

2

]
(IA.177)

C′i,1 ≡ W̃i,1−
1+∆

1−∆

(
W̃j,1−C j,1

)
(IA.178)

C′′i,1 ≡ W̃i,1−
1−∆

1+∆

(
W̃j,1−C j,1

)
(IA.179)

vHigh
2 ≡ 1+∆

2
ln

1+∆

2
+

1−∆

2
ln

1−∆

2
(IA.180)

vLow
2 ≡ 1+∆

2
ln

1−∆

2
+

1−∆

2
ln

1+∆

2
. (IA.181)

Note that C′i,1 < C′′i,1. The problem of member i at t = 1 is to take C j,1 as given and maximize
(IA.173). I ignore the non-negativity constraint on Ci,1 since it is easy to verify that these will be
slack at any solution because U (Ci,1) will go to negative infinity as Ci,1 approaches zero. This
implies that if C′i,1 ≤ 0 then the optimal choice of Ci,1 must be greater than C′i,1. The same applies
to the case where C′′i,1 ≤ 0. By the same argument, if j sets C j,1 ≥ W̃j,1 that i’s best response must
be to choose Ci,1 <C′i,1 anticipating the need to transfer to j at t = 2.

U (Ci,1) is a continuous function. Maximizing U (Ci,1) is complicated by the fact that it is not
strictly concave and has a discontinuous derivative at C′′i,1. Specifically, U (1) (Ci,1), U (2) (Ci,1),
U (1.1) (Ci,1), and U (1.2) (Ci,1) are all strictly concave functions. U (Ci,1) has a continuous derivative
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around C′i,1. Specifically:

∂U (1.1) (Ci,1)

∂Ci,1

∣∣∣∣∣
C′i,1

=
∂U (1.2) (Ci,1)

∂Ci,1

∣∣∣∣∣
C′i,1

=

1+∆

1−∆
(1+δ )

(
W̃j,1−C j,1

)
−δW̃i,1

C′i,1
2

1−∆

(
W̃j,1−C j,1

) . (IA.182)

which indicates that U (1) (Ci,1) is a strictly concave function with a continuous first derivative. If

∂U (1.1) (Ci,1)

∂Ci,1

∣∣∣∣∣
C′i,1

≤ 0⇐⇒C j,1 ≥C(2)
j,1 ≡ W̃j,1−

(
δ

1−δ

)(
1−∆

1+∆

)
W̃i,1 (IA.183)

then U (1) (Ci,1) must be maximized at some Ci,1 ≤ C′i,1 . Conversely if C j,1 ≤ C(2)
j,1 then U (Ci,1)

must be maximized at some Ci,1 >C′i,1.
Next consider the way the slope of U (Ci,1) behaves around C′′i,1:

∂U (1.2) (Ci,1)

∂Ci,1

∣∣∣∣∣
C′′i,1

=
1+∆

2
C′′i,1
−

δ
(1+∆

2

)2(1−∆

2

)(
W̃j,1−C j,1

) and (IA.184)

∂U (2) (Ci,1)

∂Ci,1

∣∣∣∣∣
C′′i,1

=
1+∆

2
C′′i,1
−

δ
(1+∆

2

)(
W̃j,1−C j,1

) . (IA.185)

∂U (1.2)(Ci,1)
∂Ci,1

∣∣∣∣
C′′i,1

>
∂U (2)(Ci,1)

∂Ci,1

∣∣∣∣
C′′i,1

if and only if W̃j,1−C j,1 > 0 which is necessary for U (1.2) (Ci,1)

and U (2) (Ci,1) to be relevant to the analysis. Note that since U (Ci,1) is strictly convex around C′′i,1
that this ensures that Ci,1 =C′′i,1 can never be an optimal choice. If

∂U (1.2) (Ci,1)

∂Ci,1

∣∣∣∣∣
C′′i,1

≥ 0⇐⇒C j,1 ≤C(1)
j,1 ≡ W̃j,1−

(
δ

1−δ

)(
1+∆

1−∆

)
W̃i,1 (IA.186)

then the unique maximum of U (Ci,1) must be at some Ci,1 >C′′i,1 on U (2) (Ci,1). Conversely if

∂U (2) (Ci,1)

∂Ci,1

∣∣∣∣∣
C′′i,1

≤ 0⇐⇒C j,1 ≥C(3)
j,1 ≡ W̃j,1−

(
(1+∆)δ

1+∆+δ (1−∆)

)
W̃i,1 (IA.187)

then the unique local maximum of U (Ci,1) must be at some Ci,1 <C′′i,1. Note that C(3)
j,1 >C(1)

j,1 and

C(2)
j,1 > C(1)

j,1 . When C j,1 ∈
[
C(1)

j,1 ,C
(3)
j,1

]
then U (Ci,1) has a local maximum both above and below

C′′i,1 and the optimal solution will be found by comparing the value of U (Ci,1) at each. The optimal
choice of Ci,1 will jump at the value of C j,1 where i is indifferent between the local optimum on
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U (1) (Ci,1) and U (2) (Ci,1). Observe that

U (1.1) (Ci,1)−U (2) (Ci,1) = δ

[
1+∆

2
ln
(

1+∆

1−∆

)
+

1−∆

2
ln
(

1−∆

1+∆

)]
> 0 (IA.188)

and hence the indifference point CJump
j,1 between the local maximum above and below C′′i,1 must oc-

cur between U (1.2) (Ci,1) and U (2) (Ci,1) and hence it must be that CJump
j,1 ∈

(
C(1)

j,1 ,min
{

C(2)
j,1 ,C

(3)
j,1

})
Next, the first order conditions for U (1.1), U (1.2), and U (2) characterize the potential local opti-

mum on each segment of U (Ci,1). These are:

∂U (1.1) (Ci,1)

∂Ci,1
= 0⇐⇒Ci,1 =CBR(1.1)

i,1 ≡ 1+∆

1+∆+2δ

(
W̃i,1 +W̃j,1−C j,1

)
(IA.189)

∂U (1.2) (Ci,1)

∂Ci,1
= 0⇐⇒Ci,1 =CBR(1.2)

i,1 ≡ 1
1+δ

W̃i,1 (IA.190)

∂U (2) (Ci,1)

∂Ci,1
= 0⇐⇒Ci,1 =CBR(2)

i,1 ≡ 1+∆

1+∆+2δ

(
W̃i,1 +W̃j,1−C j,1

)
(IA.191)

The final thing required to characterize i’s best response to any C j,1 is to find CJump
j,1 : the point at

which i chooses to jump from CBR(1.2)
i,1 to CBR(2)

i,1 . This is characterized by the indifference condition

U (1.2)
(

CBR(1.2)
i,1

)
= U (2)

(
CBR(2)

i,1

)
which implicitly defines CJump

j,1 as the solution to the following
condition:(

Wj,1−CJump
j,1

)δ(1− 1+∆

2 )
= Θ

(
W̃i,1 +W̃j,1−CJump

j,1

)( 1+∆

2 +δ)
(IA.192)

where Θ≡ e
1+∆

2 ln
( 1+∆

2
1+∆

2 +δ

)
+δ

[
ln
(

δ

1+∆
2 +δ

)
+vLow

2

]
−(1+δ )( 1+∆

2 ) ln
(

W̃i,1
1+δ

)
−δ

1+∆

2 lnδ

(IA.193)

No explicit analytical solution is possible.
Combining these results gives the best response function of i at t = 1:

CBR
i,1 =


CBR(2)

i,1 if C j,1 ≤CJump
j,1

CBR(1.2)
i,1 if C j,1 ∈

[
CJump

j,1 ,C(2)
j,1

]
CBR(1.1)

i,1 if C j,1 ≥C(2)
j,1

 (IA.194)

B Equilibrium consumption choices

First I prove that an equilibrium in pure strategies always exists for any set of parameters. Two
such equilibria are possible: (1) an equilibrium in which both agents anticipate that no transfers
will occur at t = 2 and (2) an equilibrium in which agents anticipate that one will transfer wealth
to the other at t = 2.

Note first that CBR
i,1 is weakly downward sloping in C j,1 and has a value defined for each possible
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C j,1 ≤ W̃i,1 +W̃j,1. It is single valued at each C j,1 apart from CJump
j,1 where it takes on two values.

Next observe that the slope of CBR
i,1 is always greater than −1:

∂CBR
i,1

∂C j,1
=


− 1+∆

2
1+∆

2 +δ
if C j,1 /∈

[
CJump

j,1 ,C(2)
j,1

]
0 if C j,1 ∈

[
CJump

j,1 ,C(2)
j,1

]
 (IA.195)

Also note that

CBR
i,1
(
C j,1 = 0

)
≤

1+∆

2
1+∆

2 +δ

(
W̃i,1 +W̃j,1−C j,1

)
(IA.196)

CBR
i,1
(
C j,1

)
= 0 if and only if C j,1 = W̃i,1 +W̃j,1. (IA.197)

This implies that there must be at least one point where the best response function of member i
intersects the best response function of j. The only complication occurs when j’s best response
function passes through the jump in i’s best response function (or vice versa). In this case two
pure strategy equilibrium exist - one which anticipates a transfer and another which does not.
In addition there also exists a third mixed strategy equilibrium in which j consumes CJump

j,1 and
i randomizes between her two best responses to this choice. To simplify the analysis I focus
on pure strategy equilibrium and assume that when two exist the household always coordinates
on the one in which no future transfers are made since this is dynamically efficient. Numerical
simulations indicate that generally members disagree over which of the two equilibrium they prefer
(the member who anticipates receiving a transfer in the equilibrium prefers the transfer inducing
equilibrium). The analysis of transfer decisions which follows is not qualitatively affected by
which pure strategy equilibrium is selected as long as each member correctly anticipates which
equilibrium the household will coordinate on.

Using (IA.194) I can solve for the equilibrium consumption choices in each of the two possible
equilibrium. In the equilibrium in which no transfer is anticipated at at t = 2 the equilibrium
consumption choice of member i at t = 1 is

C∗,NoTrans f er
i,1 =

1
1+δ

W̃i,1 (IA.198)

Conversely, in the equilibrium in which a transfer from one agent to the other is anticipated at t = 2
the equilibrium consumption choice of member i at t = 1 is

C∗,Trans f er
i,1 =

(
1+∆

2
1+∆+δ

)(
W̃i,1 +W̃j,1

)
(IA.199)

Notice that equilibrium consumption choices in the transfer equilibrium are determined only by
the household’s combined wealth and are therefore unaffected by any transfers that may occur
between household members at the start of t = 1. In order for a transfer equilibrium to exist it must
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be that either i anticipates making a transfer to j at t = 2 which requires

C∗,Trans f er
i,1 ≤ C′i,1

∣∣
C∗,Trans f er

j,1
⇔

W̃i,1

W̃j,1
≥
(

1+∆

1−∆

)(
1+δ

δ

)
(IA.200)

or that j anticipates making a transfer to i at t = 2 which requires

C∗,Trans f er
j,1 ≤ C′j,1

∣∣
C∗,Trans f er

i,1
⇔

W̃i,1

W̃j,1
≤
(

1−∆

1+∆

)(
δ

1+δ

)
. (IA.201)

It follows immediately that when

W̃i,1

W̃j,1
∈
((

1−∆

1+∆

)(
δ

1+δ

)
,

(
1+∆

1−∆

)(
1+δ

δ

))
(IA.202)

which is a strictly non-empty set, that an equilibrium in which one member anticipates transferring
wealth the other at t = 2 does not exist and hence the unique equilibrium must be for members to

choose C∗,NoTrans f er
i,1 at t = 1 and for no transfer to occur at t = 2. Define wi,1 ≡

W̃i,1

W̃ j,1
. It follows

that there exists two cutoffs

w
′
i,1 ≤

(
1−∆

1+∆

)(
δ

1+δ

)
and

w
′′
i,1 ≥

(
1+∆

1−∆

)(
1+δ

δ

)
(IA.203)

such that equilibrium consumption choices at t = 1 are

C∗i,1 =


C∗,Trans f er

i,1 if wi,1 ≤ w
′
i,1

C∗,NoTrans f er
i,1 if wi,1 ∈

[
w
′
i,1,w

′′
i,1

]
C∗,Trans f er

i,1 if wi,1 ≥ w
′′
i,1

 (IA.204)
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The resulting expected discounted utility of each member as a function of W̃i,1 and W̃j,1 is

Vi,1 =


V (1)

i = (1+δ ) ln
(

W̃i,1 +W̃j,1

)
+ v(1)i if wi,1 ≤ w

′
i,1

V (2)
i = (1+δ )

[
1+∆

2 lnW̃i,1 +
(1−∆

2

)
lnW̃j,1

]
+ v(2)i if wi,1 ∈

[
w
′
i,1,w

′′
i,1

]
V (3)

i = (1+δ ) ln
(

W̃i,1 +W̃j,1

)
+ v(3)i if wi,1 ≥ w

′′
i,1

 (IA.205)

where

v(1)i ≡ (1+δ )

[
1+∆

2
ln

1+∆

2
− ln(1+∆+δ )

]
(IA.206)

+

(
1−∆

2

)
ln
(

1+∆

2

)
+δ

[
lnR+ lnδ +

(
1−∆

2

)
ln
(

1−∆

2

)]
v(2)i ≡ δ [lnδ + lnR]− (1+δ ) ln(1+δ )

v(3)i ≡ (1+δ )

[
1−∆

2
ln
(

1+∆

2

)
− ln(1+∆+δ )

]
+

1+∆

2
ln
(

1+∆

2

)
+δ

[
lnR+ lnδ +

1+∆

2
ln
(

1−∆

2

)]

C Equilibrium transfer choices

I now characterize the equilibrium set of non-negative voluntary transfers
{

ΨA,1,ΨB,1
}

made
between member at the start of t = 1 . The wealth of member i at t = 1 is determined by their
her initial endowment net of any transfers made to or received from the other household member:
Wi,1 = RWi,0.

Without loss of generality I focus on equilibria in which there are no redundant transfers so
that at least one of ΨA,1,ΨB,1 are zero in equilibrium. As a result I characterize i’s best response to
Ψ j,1 = 0. Observe that V (1)

i and V (3)
i are invariant to transfers. If wi,1 ≤ w

′
i,1 then i can only further

lower wi,1 by making a transfer to j and hence her optimal response is to transfer nothing.
By construction V (1)

i =V (2)
i at wi,1 = w

′
i,1 because i’s best response here is characterized by her

indifference around CJump
j,1 . It must also be that V (2)

i > V (3)
i at wi,1 = w

′′
i,1 because

{
C∗,NoTrans f er

A,1 ,

C∗,NoTrans f er
B,1

}
implements a Pareto efficient equilibrium and

{
C∗,Trans f er

A,1 , C∗,Trans f er
B,1

}
is identical

to the dynamically inefficient equilibrium achieved with a single joint account. Since j is indif-
ferent around this point then it must be that i captures the full pareto improvement and is strictly
better off. It follows that if Wi,1

W j,1
> w

′′
i,1 then i will optimally transfer enough wealth to j at t = 1 to

ensure wi,1 ≤ w
′′
i,1.

Next observe that
∂V (2)

i
∂Ψi,1

= (1+δ )

[
−
(1+∆

2

)
Wi,1−Ψi,1

+
1−∆

2
Wj,1 +Ψi,1

]
(IA.207)
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and hence the value of Ψi,1 that maximizes V (2)
i is

Ψi,1 = max
{

0,
(

1−∆

2

)
Wi,1−

(
1+∆

2

)
Wj,1

}
(IA.208)

which is strictly positive if and only if

Wi,0

Wj,0
>

1+∆

1−∆
. (IA.209)

Collecting these results together gives the equilibrium set of transfers at t = 1:

{
Ψ
∗
A,1,Ψ

∗
B,1
}
=


{(1−∆

2

)
WA,1−

(1+∆

2

)
WB,1,0

}
if WA,1

WB,1
≥ 1+∆

1−∆

{0,0} if WA,1
WB,1
∈
(1−∆

1+∆
, 1+∆

1−∆

){
0,
(1−∆

2

)
WB,1−

(1+∆

2

)
WA,1

}
if WA,1

WB,1
≤ 1−∆

1+∆

 . (IA.210)

The resulting equilibrium level of wealth net of transfers for both members in t = 1 is

{
W̃ ∗A,1,W̃

∗
B,1

}
=


{1+∆

2

(
WA,1 +WB,1

)
,
(1−∆

2

)(
WA,1 +WB,1

)}
if WA,1

WB,1
≥ 1+∆

1−∆{
WA,1,WB,1

}
if WA,1

WB,1
∈
(1−∆

1+∆
, 1+∆

1−∆

){(1−∆

2

)(
WA,1 +WB,1

)
, 1+∆

2

(
WA,1 +WB,1

)}
if WA,1

WB,1
≤ 1−∆

1+∆


(IA.211)

which ensures that equilibrium consumption choices at t = 1 are C∗,NoTrans f er
i,1 for each member

and rules out the possibility of additional transfers at t = 2. This establishes Proposition 4.

IV Consecutive Consumption Choices
In the base model presented in Section I I assumed that household members simultaneously

made consumption decisions each period. This assumption creates the theoretical possibility that
household members could in any period attempt to spend more than the total amount of all house-
hold wealth. To avoid specifying arbitrary tie breaking rules to deal with such a scenario I assumed
in (6) that each member is able to spend no more than half of the household’s wealth in any pe-
riod. The purpose of this section is to show that this arbitrary assumption is not important for the
results of that model. I do this by assuming that household members make consumption decisions
consecutively within any period. This allows (6) to be replaced by a standard budget constraint
whereby each member can spend up to the full amount of remaining household wealth each time
they consume. I show that when N is large the simultaneous move equilibrium studied above is the
limiting case of the unique equilibria reached in the consecutive move setup.

A Consecutive Move Setup

Assume that the preferences of the household members is unchanged from the setup in Section
I. For brevity I focus on the case where household members consume only private consumption

67



(µ = 1) although the conclusions carry over the case where both public and private consumption
goods are valued. The timing of decisions and the budget constraint facing each member is now
as follows. The household starts the period with wealth of Wt . Without loss of generality, assume
that member A is able to decide her own level of consumption first subject to

CA,t ≤Wt . (IA.212)

Thus A is free to spend up to all of the household’s remaining wealth. After this decision is made,
the interim level of household wealth is

W̃t =Wt−CA,t . (IA.213)

Member B learns how much wealth the household has remaining and chooses her own consumption
level subject to

CB,t ≤ W̃t . (IA.214)

Thus B is able to spend up to the full amount of remaining household wealth. From one period
to the next wealth evolves in the same way as before as specified in (4). As before consumption
choices are chosen non-cooperatively and are found as subgame perfect best responses at each
point in time.

B Non-Cooperative Equilibrium Consumption Choices

The consecutive move version of the model is solved in the Appendix. The unique equilibrium
consumption choice of member’s A and B as a function of Wt are

C∗Con
A,t =

1+∆

2

1+∑
NT−t
x=1 δ

x
N

Wt and (IA.215)

C∗Con
B,t =

(
1+∆

2
1+∆

2 +∑
NT−t
x=1 δ

x
N

)(
1+∑

NT−t
x=1 δ

x
N −

(1+∆

2

)
1+∑

NT−t
x=1 δ

x
N

)
Wt .

The unique equilibrium level of total consumption in any period is

X∗Con
t =

(
1

1+∑
NT−t
x=1 δ

x
N

)(
(1+∆)∑

NT−t
x=1 δ

x
N + 1+∆

2
1+∆

2 +∑
NT−t
x=1 δ

x
N

)
Wt . (IA.216)

The equilibrium consumption choices are slightly complicated because of the Stackelberg leader
and follower dynamics within each period. This encourages A to consume slightly more to strate-
gically lower the amount of consumption from B. Apart from this within period strategic consump-
tion motive the forces governing both consumption decisions are identical to before. As the length
of each period becomes arbitrarily small (i.e. N gets large) then the magnitude of these within
period strategic incentives will diminish as well. This is established formally in the following
Proposition which is proved below.

Proposition 6. : As N → ∞ the equilibrium consumption choices of the consecutive move game
become arbitrarily close to the simultaneous move equilibrium as defined in (18) and (19). For-
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mally,

lim
N→∞

C∗Con
i,t

C∗i,t
= 1 and lim

N→∞

X∗Con
t
X∗t

= 1. (IA.217)

Proposition 6 establishes that the equilibrium studied in the simultaneous move model is not a
by-product of the arbitrary expenditure limits assumed in (6).

C Proof of Proposition 6

C-1 Equilibrium at t = NT

In the final period member B will optimally consume all remaining wealth:

C∗Con
B,NT = W̃NT . (IA.218)

Anticipating (IA.218), member A will choose CA,NT to solve

max
CA,NT

(
1+∆

2

)
lnCA,NT +

(
1−∆

2

)
ln
(
WNT −CA,NT

)
(IA.219)

subject to CA,NT ≥ 0 and (IA.220)
WNT −CA,NT ≥ 0. (IA.221)

Ignoring (IA.220) and (IA.221) since they will not bind at the optimal choice, A’s consumption
choice is characterized by the first order condition

1+∆

2
C∗A,NT

−
1−∆

2
WNT −C∗A,NT

= 0. (IA.222)

Rearranging (IA.222) and combing with (IA.218) gives the equilibrium consumption levels for A
and B in t = NT :

C∗A,NT =

(
1+∆

2

)
WNT and (IA.223)

C∗B,NT =

(
1−∆

2

)
WNT . (IA.224)

And total equilibrium consumption in t = NT is simply

X∗NT =WNT . (IA.225)

C-2 Solve for the Subgame Perfect Consumption path by Induction

I conjecture the following form for the subgame perfect household allocation.

Conjecture 5. The subgame perfect equilibrium household allocation from t until NT is propor-
tional to Wt . That is, for any period t ∈ {1, ...,NT} the subgame perfect equilibrium levels of C∗A,t
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and C∗B,t can be written as C∗t+x = gi,t+xWt for x∈ {0,1, ...,NT − t} where gi,t+x are strictly positive
constants independent of Wt .

I establish Conjecture 5 by induction. The problem that member B solves in any period t taking
W̃t as given is:

max
CB,t

(
1+∆

2

)
lnCB,t +

T N−t

∑
x=1

δ
x
N

[(
1−∆

2

)
lnCCon∗

A,t+x +

(
1+∆

2

)
lnCCon∗

B,t+x

]
(IA.226)

subject to

Wt+1 = R
1
N

(
W̃t−CB,t

)
, (IA.227)

CB,t ≥ 0, and (IA.228)

W̃t−CB,t ≥ 0. (IA.229)

Conjecture 5 implies that

T N−t

∑
x=1

δ
x
N

[(
1−∆

2

)
lnCCon∗

A,t+x +

(
1+∆

2

)
lnCCon∗

B,t+x

]
= Σt lnWt+1 + ki,t (IA.230)

where

Σt ≡
T N−t

∑
x=1

δ
x
N (IA.231)

and ki,t is a constant. In equilibrium (IA.228) and (IA.229) will not bind and hence I ignore those
constraints and verify this later. Using (IA.230) in (IA.226) and substituting in the intertemporal
budget constraint (IA.227) allows me to simplify B’s problem to:

max
CB,t

(
1+∆

2

)
lnCB,t +Σt ln

(
W̃t−CB,t

)
. (IA.232)

The first order condition is (1+∆

2

)
CB,t

− Σt

W̃t−CB,t
= 0 (IA.233)

which gives B’s best response for any given level of W̃t :

C̃∗B,t =
1+∆

2
1+∆

2 +Σt
W̃t . (IA.234)

Note that (IA.234) verifies that (IA.228) and (IA.229) are satisfied in equilibrium.
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Member A will anticipate (IA.234) and choose CA,t to solve

max
CA,t

(
1+∆

2

)
lnCA,t +

(
1−∆

2

)
lnC̃∗B,t +

T N−t

∑
x=1

δ
x
N

[(
1+∆

2

)
lnCCon∗

A,t+x +

(
1−∆

2

)
lnCCon∗

B,t+x

]
(IA.235)

subject to (IA.234),

Wt+1 = R
1
N

(
Wt−CA,t−C̃∗B,t

)
, (IA.236)

CA,t ≥ 0, and (IA.237)
Wt−CA,t ≥ 0. (IA.238)

I ignore (IA.237) and (IA.238) and verify that they are satisfied at the end. Using the analog of
(IA.228) for A and substituting (IA.236) and (IA.234) into (IA.235) I rewrite A’s problem (ignoring
constants) as:

max
CA,t

(
1+∆

2

)
lnCA,t +

((
1−∆

2

)
+Σt

)
ln
(
Wt−CA,t

)
. (IA.239)

The first order condition is (1+∆

2

)
CCon∗

A,t
−
(1−∆

2

)
+Σt

Wt−CCon∗
A,t

= 0. (IA.240)

Which gives A’s optimal consumption choice as

CCon∗
A,t =

1+∆

2
1+Σt

Wt . (IA.241)

Note that (IA.241) demonstrates that (IA.237) and (IA.238) are satisfied as conjectured. Substitut-
ing (IA.241) into (IA.234) gives B’s equilibrium consumption choice as a function of Wt :

CCon∗
B,t =

1+∆

2
1+∆

2 +Σt

(
1+Σt− 1+∆

2
1+Σt

)
Wt . (IA.242)

Adding (IA.241) and (IA.242) gives the equilibrium level of total consumption in period t:

XCon∗
t =

(
1

1+∑
T N−t
x=1 δ

x
N

)(
1+∆

2 +(1+∆)∑
T N−t
x=1 δ

x
N

1+∆

2 +∑
T N−t
x=1 δ

x
N

)
Wt . (IA.243)

Note finally that Conjecture 3 was verified about for the case of t = NT . Moreover (IA.241)
and (IA.242) demonstrate that it is true for t = NT − 1 and so on by iteration. This establishes
Conjecture 5 by induction.
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C-3 Comparison of Consecutive and Simultaneous Move Equilibria

Comparing (19) to (IA.243) gives

X∗t
XCon∗

t
=

2Σ2
t +(3+∆)Σt +1+∆

2Σ2
t +(3+2∆)Σt +1+∆

. (IA.244)

Taking the limit of this ratio as N → ∞ requires finding limN→∞
X∗t

XCon∗
t

. Since both the numerator
and denominator tend to infinity I can apply L’Hopital’s rule to get

lim
N→∞

X∗t
XCon∗

t
= lim

N→∞

4Σt +3+∆

4Σt +3+2∆
. (IA.245)

Again both the numerator and denominator tend to infinity so I can re-apply L’Hopital’s rule to get

lim
N→∞

X∗t
XCon∗

t
= lim

N→∞

4Σt +3+∆

4Σt +3+2∆
(IA.246)

= lim
N→∞

4∂Σt
∂N

4∂Σt
∂N

= 1.

Comparing the ratio of consumption choices of A and B within any period gives

CCon∗
A,t

CCon∗
B,t

=
1+∆

2 +Σt
1−∆

2 +Σt
. (IA.247)

Taking the limit of this ratio as N→ ∞ by applying L’Hopital’s rule gives

lim
N→∞

CCon∗
A,t

CCon∗
B,t

=
∂Σt
∂N
∂Σt
∂N

= 1 (IA.248)

which is the same as (18). The combination of (IA.246) and (IA.248) establishes Proposition 6.
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