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Abstract We study an aggregated marketplace where potential buyers arrive and
submit requests-for-quotes (RFQs). There are n independent suppliers modeled as
M/GI/1 queues that compete for these requests. Each supplier submits a bid that
comprises of a fixed price and a dynamic target leadtime, and the cheapest supplier
wins the order as long as the quote meets the buyer’s willingness to pay. We charac-
terize the asymptotic performance of this system as the demand and the supplier ca-
pacities grow large, and subsequently extract insights about the equilibrium behav-
ior of the suppliers. We show that supplier competition results into a mixed-strategy
equilibrium phenomenon that is significantly different from the centralized solution.
In order to overcome the efficiency loss, we propose a compensation-while-idling
mechanism that coordinates the system: each supplier gets monetary compensation
from other suppliers during his idle periods. This mechanism alters suppliers’ ob-
jectives and implements the centralized solution at their own will.
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1 Introduction

1.1 Background and motivation

Electronic markets (e-markets) have proliferated in the last decade or so as means to
efficiently aggregate supply and demand for services or goods, in an effort to reduce
search and transaction costs, improve market outcomes, and benefit both partici-
pants that supply and demand services. We study a mathematical model motivated
by such marketplaces for services or goods that are subject to congestion effects,
manifested in terms of delays until the good is delivered. The focus is on analyzing
the market dynamics and gaining insight regarding the competition across suppli-
ers when services are produced in a make-to-order manner (that is modeled via a
queueing facility) and where congestion signals are state-dependent.

As part of the dynamics of the e-market evolution, several large-scale, web-
based service sites have recently emerged. An incomplete list of examples includes
ODesk, Elance, Vworker, Freelancer.com and Guru, which are freelancing sites that
facilitate and streamline the process of hiring virtual or remote workers. In these
platforms, many small service providers (e.g., individual computer programmers)
seek work orders. Customers (e.g., employers) post job descriptions in the form of
RFQs, and have service providers bid on the work. Customers then look at previ-
ous ratings and work history of the different candidates before settling on either a
contract rate, or a pay-per hour agreement. Generally, money is escrowed by each
of the websites (intermediaries), which release the payment to the service provider
when the work is completed, while skimming a commission –typically 5-15% of
money that changes hands. In addition, sometimes intermediaries also charge a
membership fee to the parties involved. The volume of registered freelancers and
effective transactions conducted through these platforms has been growing expo-
nentially over time. Just to illustrate, the numbers of work hours per week transacted
through oDesk were 50,000 by August 2008, 100,000 by June 2009, and 450,000 by
July 2011.1 An important portion of the projects auctioned out via these markets are
complex and could be better addressed via a team as opposed to an individual. To
better serve and bid in such cases, many freelance workers are represented via agents
that pool capacity as traditional agents would do, and also provide project manage-
ment in executing the complex projects so as to best use the pooled resources. These
agents aggregate the capacity of many individual freelance providers.

In these settings, customers usually require specific skill sets, quality, and time-
liness from their providers, and account for these needs as well as for cost in their
utility function. This multidimensional assessment can be captured by a scoring in-
dex that a customer assigns to each potential provider. The bids are ranked, and the
order is then awarded to the most “desirable” service provider. In this way, the final
allocation for each work order is decided based on a reverse auction. Even though
multiple service attributes can be subsumed in the scoring function, two of the most
relevant ones are expected delay and price. Customers visiting these marketplaces

1 Data available from www.odesk.com.
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usually seek quick solutions and are willing to trade prices with waiting times. In this
regard, aggregated marketplaces like the aforementioned ones raise several interest-
ing practical and theoretical questions. In general, the role of the intermediary is
passive, neutral, and limits to pooling supply and demand in an exchange platform.
In this case: How does the system dynamics evolve as service providers (suppliers)
compete for each potential order by posting a price and a state-dependent delay esti-
mate? How should these suppliers determine their bidding strategies? Is the market
efficient under competitive behavior? If the market were inefficient, then the role of
the intermediary may become more active, in the sense of proposing a coordination
scheme to align the suppliers’ incentives. Is it possible to achieve this centralized
optimal solution? If so, how can it be implemented in practical terms?2

We make some initial progress in addressing these questions. Specifically, we
introduce a stylized mathematical model to study the aggregated marketplace in
settings characterized by high volume of transactions. The goal of our study is to
understand the dynamics and performance of the system, and gain insight on the
pricing and capacity game among suppliers. We assume that potential buyers arrive
according to a Poisson process and submit order requests, and that the suppliers
(modeled as M/GI/1 queues) compete for these requests. Initially, suppliers decide
the capacity (i.e., service rate) to offer, which is a static, long term decision. While
operating, each supplier processes orders in a first-in-first-out manner, and submits
a bid that comprises a fixed price and a target leadtime that depends on his own
queue status. In fact, a key distinction of our work is that the delay quotations are
dynamic rather than based on a steady-state assessment of the queue size. When
suppliers submit bids, they face an economic tradeoff: a high price will lead to high
revenues per order, but will reduce the total number of orders awarded, which will
cause excessive idleness and implicit revenue loss; a low price will result in many
awarded orders and large backlogs, that, in turn, will cause long delay quotations
thus increasing the full cost of the respective bid. The arriving buyer then uses a
scoring function to compute the net utility associated with her bid, and awards the
order to the lowest-quote supplier in order to maximize her own surplus (provided
that it is nonnegative).

2 There are other applications that share the same salient feature of several firms competing in
offering some type of substitutable service that is differentiated with respect to its price and delay.
Perhaps one of the most pervasive comes from the US equities market, which comprises of many
exchanges, such as the NYSE, NASDAQ, ARCA, BATS, etc. Exchanges typically function as
electronic limit order books, operating under a “price-time” priority rule, and their high-frequency
dynamics can be modeled as multi-class queueing systems. Exchanges offer a rebate to liquid-
ity providers, i.e., traders that post limit orders that “make” markets when their orders get filled,
and charge a fee to “takers” of liquidity that initiate trades using marketable orders that transact
against posted limit orders. The magnitudes of these make-take fees vary across exchanges and are
comparable to the spread plus a significant fraction of the overall trading costs. Exchanges often
change their fees and rebates in an effort to attract liquidity. Market participants employ so called
“smart order routers” that take into account real-time market data, including queue and trading rate
information, and formulate an order routing problem to trade off between rebates and a notion of
expected delay, fill probabilities, and/or expected adverse selection. Once again, prices are fixed
but delays are state dependent.
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1.2 Overview of results

This appears to be one of the first papers to study competition in queues with sub-
stitutable products or services and state dependent congestion information. The dis-
crete choice among substitutable products of potential consumers, the state depen-
dent nature of the congestion signals, and the decentralized control among suppliers
complicate the analysis of this system, rendering brute force analysis to be essen-
tially intractable.3

The first contribution is to propose a tractable way for studying the decentralized
market. As a preliminary step towards solving the capacity and pricing game, we
analyze the queueing performance of this stochastic dynamic system assuming that
the price vector is given. The solution to this problem allows suppliers to evaluate
their revenues given their prices as well as the prices of the competitors, which is
an essential subroutine in the equilibrium analysis of the supplier pricing game. So,
given a specified price vector, our first set of results characterizes the behavior of
the marketplace using an asymptotic analysis where the potential demand and the
supplier processing capacities grow large simultaneously. This asymptotic analysis
is motivated by the following observation: If this market were served by a unique
supplier (modeled as an M/GI/1 queue as well), then it would be economically
optimal for this supplier to set the price that induces the so-called “heavy-traffic”
operating regime; i.e., rather than assuming that the system is operating in the heavy
traffic regime, as is often done, this result provides a primitive economic foundation
that this regime emerges naturally since it optimizes the system-wide revenues (e.g.,
see [7] and [19]). Specifically, if Λ is the market size, then the above result states
that the economically optimal price is of the form p∗ = p̄+π/

√
Λ , where p̄ is the

price that induces full resource utilization in the absence of any congestion, and π is
a constant.

With the above fact in mind, we formulate the performance analysis sub-problem
in a novel way that becomes asymptotically tractable in settings with large capaci-
ties and large volume of transactions. Specifically, based on the above observation,
the starting point of our analysis is to write the suppliers’ price bids as perturba-
tions around the price p̄ of the form pi = p̄+ πi/

√
Λ , for a constant πi, where Λ

is viewed as a natural proxy for system size. Letting Λ grow large, we derive the
corresponding fluid and diffusion approximations. The fluid model transient analy-
sis is helpful in establishing an important state space collapse (SSC) result through
a variation of an approach developed by [8]. The SSC property establishes that the
suppliers’ dynamics are asymptotically coupled and can be described as a function

3 The distinction regarding consumer choice model is important. With partially substitutable prod-
ucts, one could model consumer choice through a multi-product demand function, where the de-
mand for one product depends on the price and delay of all products in a continuous manner. This
is not the case with perfectly substitutable products, where demand may switch from one product
to another in a discontinuous manner. For example, in a setting with two equally priced products,
all consumers will select the one with the lower delay. This would increase the delay estimate of
the faster option, causing all consumers to choose the alternative option. That is, small differences
in price and delay, may lead to dramatic differences in demand for one of suppliers.
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of the aggregate (system-wide) workload process, and, moreover, SSC implies that
a supplier is able to know his competitors’ bids by simply observing awaiting or-
ders in his own buffer. We prove a weak convergence result of the workload process
to a one-dimensional reflected Ornstein-Uhlenbeck (O-U) process, where interest-
ingly the reflection point may be away from zero depending on the suppliers’ prices.
The latter implies the nonintuitive property that the aggregate workload process can
never drain even though some of the suppliers may be idling, and this happens if the
suppliers differ in their pricing. The derivation of the diffusion model extends “stan-
dard” results to this setting with self-interested routing policies based on dynamic
information, which is of independent interest.

Second, using the asymptotic characterization of system behavior at a fixed
choice of prices and capacities, we characterize the revenue stream of each sup-
plier using the steady state properties of the reflected O-U process. This is then used
to study the resulting pricing game. We find that the pricing game does not admit a
pure strategy equilibrium. We specify the structure of the supporting mixed strategy
equilibria where suppliers randomize over their pricing decisions. We also prove
that the second-order efficiency loss of the decentralized solution can be arbitrarily
large. It is worth noting that our approximate analysis of the supplier game is inter-
nally consistent in the sense that the lower order price perturbations that essentially
capture the supplier pricing game do not become unbounded, but rather stay finite.
In essence, all suppliers choose to operate in the asymptotic regime we identified
and used in our analysis. The framework of studying the appropriate asymptotic
formulation of the aggregated market in the context with self interested buyers and
state dependent congestion information, and using the derived diffusion to study the
supplier game is novel. Such problems had not been studied in the literature be-
fore, in part due to their inherent complexity, and their proposed roadmap advanced
seems to be of broader interest.

Third, the discrepancy between the centralized solution and the decentralized
equilibrium calls for the development of a mechanism to coordinate the marketplace,
in the sense that all suppliers would self-select to price according to the centralized
solution. Our proposal relies on a transfer pricing scheme that compensates suppliers
during idle periods. The existence of the intermediary in the motivating examples
described above provides the natural support to implement it.

1.3 Literature review

Our work touches on three related bodies of literature: 1) Economics of queues,
2) Competitive models in queueing contexts, and 3) Approximation schemes to an-
alyze complex queueing models.

The literature that studies pricing in the context of single-server queues dates
back to [23]. The demand model that we consider here is inspired by [21]: There
is a single class of potential customers that arrive according to a Poisson arrival
process, each having a private valuation that is an independent draw from a general
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distribution, and a delay sensitivity parameter that is common across all customers.
[22] extends that model to multiple customer types, and [1] extends it to a revenue
maximization setting. In the context of queueing models with pricing and service
competition, starting from the early papers by [16] and [18], customers are com-
monly assumed to select their service provider on the basis of a “full cost” that
consists of a fixed price plus a waiting cost. In both [16] and [18], competition is
modeled in a duopoly setting where firms operate as M/M/1 queueing systems. Re-
laxations of the early papers include [17], which studies a variant of [18] in which
the providers are modeled as symmetric M/GI/1 systems. [15] generalizes [17] for
arbitrary number of service providers. [3] treats the price and waiting time cost as
separate firm attributes that can be traded off differently by each arriving customer.
These papers focused on customers making decisions based on steady-state perfor-
mance measures.

Our use of asymptotic approximations and heavy traffic analysis to study the
supplier game is motivated by the results of [7] and [19], who showed that in large
scale systems the heavy traffic regime is the one induced by the revenue maximiz-
ing price. Our work implicitly assumes the validity of the heavy traffic regime in
deriving its asymptotic approximation (as opposed to proving it as in the two papers
above). The equilibrium pricing behavior of the competing suppliers supports the
rationale of this assumption in the sense that no supplier wishes to price in a way
that would deviate from that operating regime. The derivation of our limit model
makes heavy use of the work by [20] on queues with state dependent parameters,
and of the framework developed by [8] for proving state space collapse results. We
also use technical results from [5] and [26] in our analysis. However, the combina-
tion of all our model features does not fit neatly the technical requirements of the
aforementioned papers, as shown in the proofs contained in the online appendix.

A queueing paper that studies a model that is similar to our in a heavy traffic
asymptotic regime is [24]. The key differences are the following: a) [24] assumes
strictly convex delay cost functions as opposed to linear, b) it does not consider
pricing (or some term that could account for its effect in the routing rule), and c)
it does not allow for admission control decisions that can turn away users when
the system is congested. The latter is captured by the behavior of self-interested
users that differ in their valuations, and as a result will choose not join the market if
the full cost exceeds their value. Taken together, these three elements necessitate a
new analysis that leads to some insights that differ than what was observed in [24].
Perhaps the most notable difference is the fact that as a result of the pricing game,
the workload process will not reflect at the origin, but instead it will reflect at some
strictly positive quantity.

Recent papers accounting for congestion pricing include [11], which studies two
types of contractual agreements in oligopolistic service industries. [4] appeals to an
asymptotic analysis to study a competitive game of a queueing model, and propose
a general recipe for relating the asymptotic outcome to that of the original system.
They show that the pricing decisions and service level guarantees result in respec-
tively first-order and second-order effects on the suppliers’ payoffs. More recently,
[2] studies a large-scale marketplace with a moderating firm and numerous service
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providers. [2] also uses a static measure of the waiting time standard (usually the
expected value or some percentile of the steady state distribution).

The remainder is organized as follows. In §2, we describe the model details.
Next, §3 derives the asymptotic characterization of the marketplace behavior, and
§4 characterizes the equilibrium behavior of the supplier pricing game. Finally, §5
includes our concluding remarks. All the proofs and more details of the analysis can
be found in the technical report [10].

2 Model

2.1 Description of the market

We consider an aggregated marketplace where a homogeneous product (e.g., com-
puter programming hours) is exchanged. The market functions as follows:
Order arrivals: Potential buyers arrive to the marketplace according to a Poisson
arrival process with intensity Λ , and submit requests-for-quotes (RFQs). Each RFQ
corresponds to the procurement of one unit of the product. Each buyer has a private
valuation v for her order that is an independent draw from a general, and continu-
ously differentiable distribution F(·). Buyers are delay sensitive and incur a cost c
per unit of delay. Thus, buyers are homogeneous with respect to delay preferences,
and heterogeneous with respect to valuations (though symmetric across the common
c.d.f. F(·)). A buyer that arrives at time t initiates a RFQ process to procure one unit
of the product.
Suppliers: The market is served by a set of suppliers N = {1, . . . ,n}. Each supplier
i is modeled as an M/GI/1 queue with an infinite capacity buffer managed in a First-
In-First-Out fashion. Service times at supplier i follow a general distribution with
mean 1/µ

′
i and standard deviation σi. Let µ̂ := ∑i∈N µ

′
i/Λ be the (normalized) ag-

gregated service rate of the market. We assume that the capacity vector µ
′ ≡ {µ ′i}’s

is common knowledge. This fact can also be sustained by information provided by
intermediary entities like the ones discussed in §1.
Market mechanism: Suppliers compete for this request by submitting bids that com-
prise a price pi and a target leadtime di(t). We assume that the price component of
the bid is state-independent, i.e., supplier i always submits the same price bid pi for
all orders. The leadtime component of the bid submitted by each supplier i is state-
dependent and equals the expected time it would take to complete that order; cf. (6)
later on. We are assuming here that the supplier always submits a truthful estimate
of the expected delay di(t). In fact, in the presence of a market intermediary, the
misreport of expected delays is discouraged through the display of past experiences
of buyers with a given supplier, e.g. through publicly available ratings and reviews.
This revealed information acts as a threatening device to favor the honest disclosure
of suppliers’ availabilities.
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On their end, buyers are price and delay sensitive, and for each supplier i they
associate a “full cost” given by pi+cdi(t), where the delay sensitivity parameter c is
assumed to be common for all buyers. Upon reception of the bids, the buyer awards
her order to the lowest cost supplier, provided that her net utility is positive, i.e.,
v≥mini∈N {pi+cdi(t)}; otherwise, the buyer leaves without submitting any order.
Whenever a tie occurs, the order is awarded by randomizing uniformly among the
cheapest suppliers.4

Given vectors p = (p1, . . . , pn), and d(t) = (d1(t), . . . ,dn(t)), the instantaneous
rate at which orders enter this aggregated market is given by

λ (p,d(t)) = Λ F̄(min
i
{pi + cdi(t)}). (1)

Focusing on the right-hand-side of the above expression, we note that the buyers’
valuation distribution F(·) determines the nature of the aggregate demand rate func-
tion.5 Let x = mini pi and, with slight abuse of notation, write λ (x) in place of

λ (p,0), where 0 is the vector of zeros. We further define ε(x) =−dλ (x)
dx

x
λ (x)

. The

expression ε(x) can be regarded as the price elasticity of the demand rate, as it mea-
sures the proportional change of demand rate in response to the price change. We
will make the following intuitive economic assumption:

Assumption 1 λ (p,0) is elastic in the sense that ε(x)> 1 for all price vectors p in
the set {p : 0≤ λ (p,0)≤ ∑

n
i=1 µ

′
i} and x = mini pi.

The above assumption implies that in the absence of delays, a decrease in the
minimum price would result in an increase in the market-wide aggregated revenue
rate p ·λ (p,0).6 Of course, this would increase the utilization levels of the suppli-
ers and lead to increased congestion and delays, thereby moderating the aggregate
arrival rate λ (p,d(t)).

Let A(t) be the cumulative number of orders awarded to all the competing sup-
pliers up to time t,

A(t) = N
(

Λ

∫ t

0
F̄(min

i∈N
{pi + cdi(s)})ds

)
, (2)

4 We could also allow other tie-breaking rules, and it can be verified that our results are not prone
to the specific choice of tie-breaking rules.
5 For example, if v ∼U [0,Λ/α], then the demand function is linear, of the form λ (x) = Λ −α x,
where x = mini pi + cdi(t); if v∼ Exp(α), then the demand is exponential, with λ (x) = Λ e−αx.
6 This implication follows directly from the economics literature. When ε(x)> 1, the proportional
increase of demand rate is larger than the proportional decrease of price. As the revenue is the
product of price and demand rate, the aggregated revenue rate ends up being higher. Suppose
further that there are no congestion effects, there exists a central planner that could select a common
price p and an aggregate capacity µ̂. Under a linear capacity cost hµ̂ and the arrival rate Λ , the
solution to the problem maxp,µ̂ {pλ (p,0)− hΛ µ̂ : 0 ≤ λ (p,0) ≤ Λ µ̂} results in a capacity
decision that satisfies the above assumption.
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where N(t) is a unit rate Poisson process and the equality holds only in distribution.
To represent the cumulative number of orders for each individual supplier, let

J (t)≡ {i ∈N : pi + cdi(t)≤ p j + cd j(t),∀ j ∈N } (3)

as the set of cheapest suppliers at time t. Further, define ΞJ (t) as the random
variable that assigns the orders uniformly amongst the cheapest suppliers. That is,

ΞJ (t) = i with probability
1

|J (t)|
if i ∈J (t), where |J (t)|> 0 is the cardinality

of J (t), and ΞJ (t) = i with zero probability otherwise. For the ease of the exposi-
tion, we will assume that J (t) and ΞJ (t) are defined as continuous processes for
all t ≥ 0, even if no actual arrival occurs at that time. This allows us to write the
cumulative number of orders awarded to supplier i, denoted by Ai(t), as

Ai(t) =
∫ t

0
11{ΞJ (s) = i}dA(s), (4)

where 11{·} is the indicator function. Note also that A(t) = ∑i∈N Ai(t).
Supplier dynamics: Let Qi(t) denote supplier i’s number of jobs in the system (i.e.,
in queue or in service) at time t, and Ti(t) denote the cumulative time that supplier
i has devoted into producing orders up to time t, with Ti(0) = 0. Let Yi(t) denote
the idleness incurred by supplier i up to time t. Note that Ti(t)+Yi(t) = t for each
supplier i; moreover, Yi(t) can only increase at a time t when the queue Qi(t) is
empty. Let Si(t) be the number of supplier i’s service completions when working
continuously during t time units, and Di(t) = Si(Ti(t)) be the cumulative number of
departures up to time t. The production dynamics at supplier i are summarized in
the expression:

Qi(t) = Qi(0)+Ai(t)−Di(t). (5)

Given this notation, then

di(t) =
Qi(t)+1

µ
′
i

, (6)

is the expected sojourn time of the new incoming order, given that it gets awarded to
supplier i and the current queue length is Qi(t). Under our modeling assumptions,
supplier i will therefore bid (pi,di(t)), where di(t) is given by (6). Each supplier
knows his own system queue length Qi(t), but is not informed about his competitors’
queue lengths.

2.2 Problems to address

We study three problems related to the market model described above:

1. Performance analysis for a given p and µ
′
: Given a fixed price vector p and

a vector of processing capacities µ
′
, the first task is to characterize the system

performance, i.e., to characterize the behavior of the queue length processes Qi(t)
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at each supplier, and calculate the resulting revenue streams for each supplier. A
supplier’s long-run average revenue is

Ωi(pi, p−i)≡ pi · lim
t→∞

Si(T (t))
t

, (7)

where p−i ≡ (p1, . . . , pi−1, pi+1, . . . , pn) denotes other suppliers’ price decisions.
Our goal, therefore, is to analyze the performance of relevant system dynamics
that leads to a tractable representation of these long-run average revenues.

2. Characterization of market equilibrium: The above problem serves as an input
to study the competitive equilibrium that characterizes the supplier capacity and
pricing games, both of which are one-shot games where each supplier selects
his service rate and static price, successively. We further show that the capac-
ity selections constitute the first-order effects on the suppliers’ payoffs and the
pricing decisions are of second order; thus, we can conveniently decouple the
equilibrium analysis into two separate stages. For the first-stage, capacity game,
since the capacities (service rates) are assumed to be publicly observable, we
adopt the Nash equilibrium as our solution concept. For the second-stage, pricing
game, the suppliers may be uninformed about the queue lengths of the competi-
tors, which may potentially lead to information incompleteness. However, as we
will show, the suppliers’ competitive behavior is insensitive to this knowledge;
consequently, we adopt again the standard Nash equilibrium (under complete in-
formation) as our solution concept. Given the revenue specified in (7), a Nash
equilibrium {p∗i } requires that p∗i = argmaxpi Ωi(pi, p∗−i), ∀i ∈N .

3. Market efficiency and market coordination: Our objective here is to characterize
the efficiency loss:

max
p

{
∑

i∈N
Ωi(pi, p−i)

}
− ∑

i∈N
Ωi(p∗i , p∗−i), (8)

i.e., the difference between the revenue of a system where a central planner would
control the pricing decision of each supplier (i.e., the first best solution), and the
sum of the revenues collected in the competitive framework. If the market equi-
librium is inefficient, we would like to specify a simple market mechanism that
coordinates the market and achieves the first best solution identified above. Such
a mechanism could specify, for example, the rules according to which orders are
allocated and payments are distributed among the suppliers.

3 Asymptotic analysis of marketplace dynamics

This section focuses on the first problem described in §2. Despite the relatively sim-
ple structure of the suppliers’ systems and the customer/supplier interaction, it is
still fairly hard to study their dynamics due to the state-dependent delay quotations
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and the dynamic allocation of orders. Our approach is to develop an approximate
model for the market dynamics that is rigorously validated in settings where the
demand volume and processing capacities of the various suppliers are large. In this
regime, the market and supplier dynamics simplify significantly, and are essentially
captured through a tractable one-dimensional diffusion process. This limiting model
provides insights about the structural properties of this market, and provides a vehi-
cle within which we are able to analyze the supplier game and the emerging market
equilibrium. This is pursued in the next section.

3.1 Background: Revenue maximization for an M/M/1
monopolistic supplier

As a motivation for our subsequent analysis, this subsection will summarize some
known results regarding the behavior of a monopolistic supplier modeled as an
M/M/1 queue that offers a product to a market of price and delay sensitive cus-
tomers. The supplier posts a static price and dynamically announces the prevailing
(state-dependent) expected sojourn time for orders arriving at time t, which is given
by d(t) = (Q(t)+ 1)/µ . The assumptions on the customer purchase behavior are
those described in the previous section. Given p and d(t), the instantaneous demand
rate into the system at time t is given by λ (t) = Λ F̄(p+ cd(t)). The supplier wants
to select p to maximize his long-run expected revenue rate.

It is easy to characterize the structure of the revenue maximizing solution in
settings where the potential market size Λ and the processing capacity µ grow large.
Specifically, we will consider a sequence of problem instances indexed by r, where
Λ r = r and µr = rµ; that is, r denotes the size of the market. The characteristics of
the potential customers, namely their price sensitivity c and valuation distribution
F(·), remain unchanged along this sequence. Let p̂ = argmax pF̄(p), and p̄ be the
price such that relation Λ rF̄(p̄) = µr holds. That is, neglecting congestion effects,
p̂ is the price that maximizes the revenue rate and p̄ is the price that induces full
resource utilization, and both of these quantities are independent of r. Assumption 1
implies that p̂ < p̄ (or equivalently, Λ rF̄(p̂) > µr) thus accentuating the tension
between revenue maximization and the resulting congestion effects. [7] showed that
the revenue maximizing price, denoted by p∗,r, is of the form

p∗,r = p̄+π
∗/
√

r+o(1/
√

r), (9)

where π∗ is a constant independent of r. Moreover, the resulting queue lengths Qr(t)
are of order

√
r, or in a bit more detail, the normalized queue length process Q̃r(t) =

Qr(t)/
√

r has a well defined stochastic process limit as r→∞. Since the processing
time is itself of order 1/r, the resulting delays are of order 1/

√
r. Following [19],

the delays are moderate in absolute terms (of order 1/
√

r) but significant when
compared to the actual service time (of order 1/r). If the supplier can select the
price and capacity µ , the latter assuming a linear capacity cost, then the optimal
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capacity choice is indeed such that p̂ < p̄ (where p̄ is determined by µ), i.e., making
the above regime the “interesting” one to consider. Finally, we note that the above
results also hold for the case of generally distributed service times ([7]).

3.2 Setup for asymptotic analysis

Given a set of suppliers characterized by their prices and capacities pi,µ
′
i , we pro-

pose the following approximation:

1. Define the normalized parameters µi = µ ′i/Λ for every supplier i.
2. Define p̄ to be the price such that Λ F̄(p̄) = ∑i∈N µ ′i . Define πi =

√
Λ(pi− p̄) so

that the prices pi can be represented as pi = p̄+πi/
√

Λ .
3. Embed the system under consideration in the sequence of systems indexed by r

and defined through the sequence of parameters:

Λ
r = r, µ

r
i = rµi, ∀i ∈N , cr = c, v∼ F(·), (10)

and prices given by pr
i = p̄+πi/

√
r for all i.

Given the preceding discussion, one would expect that the market may operate in
a manner that induces almost full resource utilization, and where the underlying set
of prices takes the form assumed in item 3) above. This would be true if the market
were managed by a central planner that could coordinate the supplier pricing and
capacity decisions. The approach we pursue is to embed the system we wish to study
in the sequence of systems indexed by r and described in (10), and subsequently
approximate the performance of the original system with that of a limit system that
is obtained as r→ ∞, which is more tractable. Note that for r = Λ in (10), where
Λ denotes the market size of the potential order flow as described in the previous
section, we recover the exact system we wish to study. If Λ is sufficiently large, then
the proposed approximation is expected to be fairly accurate.

The remainder of this section derives an asymptotic characterization of the per-
formance of a market that operates under a set of parameters (p,µ ′) that are embed-
ded in the sequence (10).

3.3 Transient dynamics via a fluid model analysis

The derivation of the asymptotic limit model (specifically, Proposition 2) will show
that the following set of equations

Q̄i(t) = Q̄i(0)+ Āi(t)− D̄i(t),∀i ∈N , (11)

Āi(t) =
∫ t

0

1
|J (t)|

11{i ∈J (t)}Λ F̄(p̄)ds,∀i ∈N , (12)
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D̄i(t) = µiT̄i(t),∀i ∈N , (13)∫ t

0
Q̄i(s)dȲi(s) = 0,∀i ∈N , (14)

T̄i(t)+ Ȳi(t) = t,∀i ∈N , (15)

W̄ (t) = ∑
i∈N

Q̄i(t)
µi

. (16)

captures the market’s transient dynamics over short periods of length 1/
√

r. This
subsection studies the transient evolution of (11)-(16) starting from arbitrary initial
conditions.

In (11)-(16), the processes Q̄, Ā, D̄, T̄ ,Ȳ are the fluid analogues of Q,A,D,T,Y
defined in §2, and W̄ is the fluid analog of the system workload W . Equation (11)
keeps track of the queue sizes. Equation (12) indicates how the arrivals are routed
to these servers: An arrival walks away if her valuation is sufficiently low; oth-
erwise, she joins server i based on the routing rule specified in §2. From Equa-
tion (12), the orders get awarded to the various suppliers at a rate Λ F̄(p̄) =∑i∈N µ ′i ,
i.e., F̄(p̄) = ∑i∈N µi (as indicated by the aggregate counting process N(F̄(p̄)t)).
Equation (14) demonstrates the non-idling property: Ȳi(t) cannot increase unless
Q̄i(t) = 0. Equation (15) is a time-balance constraint. Finally, Equation (16) estab-
lishes the connection between the total workload and the queue lengths.

The next proposition establishes that starting from any arbitrary initial condition,
the transient evolution of the market (as captured through (11)-(16)) converges to
a state configuration where all suppliers are equally costly in terms of the full cost
of the bids given by (price + c × delay). This is, of course, a consequence of the
market mechanism that awards orders to the cheapest supplier(s), until their queue
lengths build up so that their full costs become equal. Simultaneously, expensive
suppliers do not get any new orders and therefore drain their backlogs until their
costs become equal to that of the cheapest suppliers. From then onwards, orders are
distributed in a way that balances the load across suppliers. This result is robust with
respect to the tie-breaking rule that one may apply when multiple suppliers share the
same full cost.

Proposition 1 Let Q̄, Ā, D̄, T̄ , Ȳ ,W̄ be the solution to (11)-(16) with max{|Q̄(0)|, |W̄ (0)|}≤
M0 for some constant M0. Then for all δ > 0, there exists a continuous function
s(δ ,M0)< ∞ such that

max
i, j∈N

∣∣∣∣∣
(

πi + c
Q̄i(s)

µi

)
−
(

π j + c
Q̄ j(s)

µ j

)∣∣∣∣∣< δ , ∀s > s(δ ,M0). (17)
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3.4 State-space collapse and the aggregate marketplace behavior

The next result shows that the transients studied above appear instantaneously in the
natural time scale of the system, and as such the marketplace dynamics evolve as if
all suppliers are equally costly at all times.

We use the superscript r to denote the performance parameters in the r-th sys-
tem, e.g., Ar

i (t), Sr
i (t), T r

i (t), and Qr
i (t). The (expected) workload (i.e., the time

needed to drain all current pending orders across all suppliers) is defined as W r(t) =

∑i∈N
Qr

i (t)
µr

i
.

Motivated by the discussion in §3.1, we will optimistically assume (and later on
validate) that the supplier queue lengths are of order

√
r, and accordingly define the

re-scaled queue length processes for all suppliers according to

Q̃r
i (t) =

Qr
i (t)√

r
. (18)

The corresponding re-scaled expected workload process is given by W̃ r(t)=
√

rW r(t)=

∑i∈N
Q̃r

i (t)
µi

.

Define Z̃r(t) = π̄ + c̄W̃ r(t), where π̄ = ∑i∈N πi/n and c̄ = c/n. Z̃r(t) can be
regarded as a proxy for the average of the second-order terms of suppliers’ bids

since Z̃r(t) =
1
n ∑

i∈N

(
πi + c

Q̃r
i (t)
µi

)
. Note that the first-order term, p̄, is common

for all suppliers, and can be omitted while comparing suppliers’ bids.

Proposition 2 (STATE SPACE COLLAPSE) Suppose πi + c
Q̃r

i (0)
µi

= π̄ + c̄W̃ r(0) in

probability, ∀i ∈N . Then, for all τ > 0, for all ε > 0, as r −→ ∞,

P

{
sup

0≤t≤τ

max
i, j∈N

∣∣∣∣∣
(

πi + c
Q̃r

i (t)
µi

)
−

(
π j + c

Q̃r
j(t)

µ j

)∣∣∣∣∣> ε

}
−→ 0,

P

{
sup

0≤t≤τ

max
i∈N

∣∣∣∣∣
(

πi + c
Q̃r

i (t)
µi

)
− Z̃r(t)

∣∣∣∣∣> ε

}
−→ 0.

The proof applies the “hydrodynamic scaling” framework of [8], which is intro-
duced in the context of studying the heavy-traffic asymptotic behavior of multi-class
queueing networks. Our model falls outside the class of problems studied in [8], but
as we show in the online appendix, his analysis can be extended to address our
setting in a fairly straightforward manner.
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3.5 Limit model and discussion

Proposition 2 shows that the supplier behavior can be inferred by analyzing an ap-
propriately defined one-dimensional process Z̃r(t) that is related to the aggregated
market workload. This also implies that although each supplier only observes his
own backlog, he is capable of inferring the backlog (or at least the full cost) of all
other competing suppliers.

The next theorem characterizes the limiting behavior of the one-dimensional pro-
cess Z̃r(t), and as a result also those of W̃ r(t) and Q̃r(t).

Theorem 1. (WEAK CONVERGENCE) Suppose πi+c
Q̃r

i (0)
µi

= π̄+ c̄W̃ r(0) in prob-

ability, ∀i ∈ N . Then Z̃r(t) weakly converges to a reflected Ornstein-Unlenbeck
process Z̃(t) that satisfies

Z̃(t) = Z̃(0)− γc
∫ t

0
Z̃(s)ds+Ũ(t)+

c
√

σ2 + µ̂

µ̂
B(t), (19)

where B(t) is a standard Brownian motion, Ũ(0) = 0, Ũ(t) is continuous and
nondecreasing, and Ũ(t) increases only when Z̃(t) = π̂ . The parameters are γ =

f (p̄)/F̄(p̄), and σ ≡
√

∑i∈N σ2
i . In addition, W̃ r(t)⇒ 1

c̄
(Z̃(t)− π̄), and Q̃r

i (t)⇒
µi

c
(Z̃(t)−πi), ∀i ∈N .

The process Ũ(t) is the limiting process of Ũ r(t)≡ c
µ̂

∑
i∈N

µiỸ r
i (t) (defined in the

proof of Theorem 1), which can be regarded as the aggregate market idleness of the
system.

This theorem characterizes the limiting marketplace behavior under a given price
vector p. The market exhibits a form of “resource pooling” across suppliers. Given
that Z̃(t)≥ π̂ , it follows that W̃ (t)≥ 1

c̄ maxi∈N (πi− π̄) := ζ . This says that unless
all the suppliers submit the same price bid, the aggregate workload in the market-
place will always be strictly positive and at a given time t, some suppliers will never
incur any idleness. The intuition for this result is the following. When the queue
of the most expensive supplier(s) gets depleted, and this supplier(s) starts to idle,
the imbalance between the aggregate arrival rate and service rate force suppliers to
build up their queue lengths instantaneously. Consequently, suppliers that price be-
low π̂ never deplete their queue lengths asymptotically. γ, that controls the speed
of the reversion of the aggregate workload process, is extracted from the customer
valuation distribution. γ measures the sensitivity of the demand function to changes
to the full price ”π + cd(t)”, and it is proportional to the demand elasticity at p̄.

To summarize, in the limit model, the suppliers’ queue length processes follow
from Q̃i(t) =

µi

c
(Z̃(t)−πi), ∀i ∈N , where Z̃(t) is defined through (19). The next

section will use this result as an input to study the suppliers’ pricing game.



16 Ying-Ju Chen, Costis Maglaras, and Gustavo Vulcano

3.6 A numerical example

To demonstrate the system dynamics, we consider a system with two M/M/1
servers, delay sensitivity parameter c = 0.5, and arrival rate of buyers Λ = 1.
The valuation v of each customer is assumed to follow an exponential distribu-
tion with mean 0.1. The aggregate and individual service rates are respectively
µ̂ = e−1.3, µ1 = 0.8µ̂, and µ2 = 0.2µ̂ . Moreover, suppose the price parameters are

π1 =−1,π2 =−2, and therefore π̄ =
π1 +π2

2
=−1.5.

We run simulations using Arena (a discrete-event simulation software) and at
places supplement it with Matlab to compute the relevant parameters. The Arena
model is illustrated in the online appendix.

In Figures 1 and 2, we illustrate the workload trajectories for r = 30 and r = 80,
respectively, for one replication. Given these parameters, the respective boundaries
are 0.365 and 0.224 for r = 30 and r = 80. Note that our mathematical statement is
established on the steady-state workload process. We can either perform a very long
run (say with 600,000 arrivals in expectation) and break each output record from the
(single) run into a few large batches. Alternatively, we can run many replications and
identify appropriate warm-up and run-length times (for example 3,000 replications,
each of which generates roughly 200 arrivals). We find that both approaches lead
to very similar statistical outcomes, and hence we report only the former. When
r = 80 and the simulation time is 600,000/80 units, we find that 92.93% of time the
system workload is above the boundary 0.224. When r = 30 (and the corresponding
simulation time is 600,000/30 units), however, this proportion goes down to 71.22%.
This suggests that our mathematical result of asymptotically negligible time below
boundary is more applicable when the scaling factor is large.
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Fig. 1 An instance of workload process when r =
30.
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Fig. 2 An instance of workload process when r =
80.
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4 Competitive behavior and market efficiency

In this section, we discuss the equilibrium behavior of suppliers in the capacity and
pricing games described in §2. We use the performance characterization of §3 and
cast the suppliers’ prices as “small” deviations around the market clearing price p̄.
This distinction results in a first-stage capacity game that affects the first-order rev-
enues, and a second-stage, pricing game, that adjusts prices around the first-order
price. Then, we briefly discuss the centralized solution that maximizes the aggregate
payoffs. Next, we characterize the non-cooperative behavior of suppliers under the
competitive environment. Finally, we propose a coordination scheme that achieves
the aggregate payoff under the centralized solution, and describe how this coordina-
tion scheme can be implemented in the original system.

4.1 Suppliers’ first-order payoffs and the capacity game

Let Rr
i (t) denote supplier i’s cumulative revenue. Since the pricing is static, supplier i

earns Rr
i (t) = (p̄+

πi√
r
)Sr

i (t−Y r
i (t)), where Sr

i (·) is the counting service completion

process, and Y r
i (t) is the cumulative idleness process for supplier i. The next lemma

shows that the “first-order” revenues of the suppliers only depend on the first-order
price term p̄ and the service rates {µi}’s.

Lemma 1. Rr
i (t)
r → p̄µit, as r→ ∞,∀i ∈N .

Lemma 1 demonstrate that the capacity choice (µi) has a first-order effect on the
suppliers’ revenues. If we attach an appropriate capacity cost ci(µi) to the suppli-
ers, the capacity game can be explicitly posted. In the centralized system, a central
planner decides the service rates (capacities) to maximize the net revenue:

max
{µi}

{
∑

i
µi p̄(∑

i
µi)−∑

i
ci(µi)

}
. (20)

This centralized solution can be obtained via a two-stage problem in which we first
find the optimal allocation for each individual to minimize the aggregate cost:

C(µ̂) = min
{µi}

{
∑

i
ci(µi),s.t. ∑

i
µi = µ̂, µi ≥ 0, ∀i

}
, (21)

and then optimize over the aggregate service rate via maxµ̂{µ̂ p̄(µ̂)−C(µ̂)| µ̂ ≥ 0}.
In a Nash equilibrium {µ∗i }’s, supplier i chooses a capacity such that

µ
∗
i = argmax

µi

{
µi p̄(µi +∑

j 6=i
µ
∗
j )− ci(µi)

}
, (22)
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where p̄ = (F̄)−1(∑i µi/λ ) is the price that induces the full resource utilization.
Furthermore, if µ̂ p̄(µ̂) is concave in µ̂ and ci(µi) is convex in µi, ∀i,7 there exists a
pure-strategy Nash equilibrium in the capacity game. Based on this existence result,
we can characterize the pure-stra tegy equilibrium from the best responses of sup-
pliers against others’ strategies. Specifically, a Nash equilibrium{µ∗i }n

i=1 satisfies

µ
∗
i p̄
′
(∑

i
µ
∗
i )+ p̄(∑

i
µ
∗
i )− c

′
i(µ
∗
i ) = 0, ∀i. (23)

It can be verified that in the decentralized (Nash) equilibrium, each supplier
intends to build a capacity µ∗i higher than the centralized solution. This over-
investment result follows from the ignorance of the negative externality a supplier
brings to the entire system, as a supplier may benefit from over-investment since
this allows him to capture a higher market share. This is reminiscent of the demand-
stealing effect in the classical Cournot competition.

4.2 Suppliers’ second-order payoffs and the pricing game

To study the suppliers’ pricing game we will focus on the second order correction

around Rr
i (t) defined as rr

i (t)≡
1√
r
(Rr

i (t)− r p̄µit),∀i ∈N . The limiting processes

of these corrected terms are characterized in the following lemma.

Lemma 2. rr
i (t)⇒ ri(t), as r → ∞, ∀i ∈ N , where ri(t) := µiπit + p̄σiBs,i(t)−

µi p̄Ỹi(t) and Ỹi(t) is the limiting process of Ỹ r
i (t) as r→ ∞.

Instead of using the revenue functions {Ωi(pi, p−i)}’s defined in (7), we will
study the suppliers’ pricing game based on their (second-order) revenues given by

Ψi(πi,π−i)≡ lim
t→∞

ri(t)
t

= µi(πi− p̄E[Ỹi(∞)]), (24)

where π−i≡ (π1, . . . ,πi−1,πi+1, . . . ,πn), and (with some abuse of notation) E[Ỹi(∞)] :=
limt→∞

Ỹi(t)
t . Define hi as the (steady-state) proportion of the market idleness in-

curred by supplier i, i.e.,
E[Ỹi(∞)] = hiE[Ũ(∞)], (25)

where we again denote by E[Ũ(∞)] := limt→∞
Ũ(t)

t the long-run average of the
aggregate idleness Ũ(t) specified in Theorem 1.

Dividing (19) by t and letting t→ ∞, we obtain that

E[Ũ(∞)] = lim
t→∞

Ũ(t)
t

= γcE[Z̃(∞)] = γcβ
φ(π̂/β )

1−Φ(π̂/β )
, (26)

7 These assumptions are commonly adopted in revenue management, although in some context the
arrival rate is used instead of the service rate, which makes no difference in heavy traffic regime,
see e.g. [13].
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where

β =

√
c(µ̂ +σ2)

2γ µ̂2 , (27)

and the closed-form expression follows from the fact that the reflected Orstein-
Uhlenbeck process Z̃(t) has the stationary distribution as a truncated Normal ran-
dom variable ([9, Proposition 1]).8 We do not derive the closed-form expressions of
{hi}’s since they are not needed for our equilibrium analysis.

Let J = { j|π j = π̂}, where π̂ ≡maxi∈N πi, denote the set of the most expensive
suppliers (allowing for ties). From Theorem 1 we have that Z̃(t) ≥ π̂ for all t ≥ 0

and that Q̃r
j(t)⇒

µ j

c
(Z̃(t)−π j)> 0, for all t ≥ 0, ∀ j /∈ J. It follows that Ỹi(t) = 0 for

all t ≥ 0, and therefore h j = 0, ∀ j /∈ J. Given (24) and (25), we obtain the suppliers’
second-order long-run average revenue functions as follows:

Ψi(πi,π−i) =

{
µiπi−µi p̄hiγcβ

φ(π̂/β )
1−Φ(π̂/β ) , i f i ∈ J,

µiπi, otherwise.
(28)

4.3 Centralized system performance

In the centralized version of the system, a central planner makes the price decisions
π ≡ (π1, . . . ,πn) in order to maximize the total aggregated revenue:

max
π

{
∑

i∈N
µiπi− p̄γ µ̂β

φ(π̂/β )

1−Φ(π̂/β )
: πi ≤ π̂

}
, (29)

where we have applied ∑i∈J µihi =
µ̂

c to combine all the penalties imposed on the
most expensive suppliers.

For convenience, we define L (π̂)≡ p̄γ µ̂β
φ(π̂/β )

1−Φ(π̂/β )
as the revenue loss that

the system suffers if π̂ is the highest price offered. The optimal pricing decisions are
summarized in the following lemma:

Lemma 3. In a centralized system, all prices πi’s are equal. The optimal static price
is πC := argmaxπ [µ̂π−L (π)].

8 We can verify that using their notation, the Z̃(t) process corresponds to the following parameters:
a = γc,m = 0, and the process has only a left reflecting barrier π̂ .
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4.4 Competitive equilibrium

In a decentralized (competitive) system, each supplier is maximizing his own payoff,
Ψi(πi,π−i), in a non-cooperative way: maxπi Ψi(πi,π−i). Recalling the definition of
L (π̂), we can rewrite the supplier’s payoff in (28) as

Ψi(πi,π−i) = µiπi−µihi
c
µ̂

L (π̂)11{i ∈ J}] (30)

In the following we characterize the equilibrium behavior. We will split our discus-
sion in two cases, depending on whether suppliers are endowed with homogeneous
or heterogeneous service rates.

4.4.1 Homogeneous service rate case

We first consider the case where the service rates are the same across suppliers,
i.e., µi = µ j ≡ µ, ∀i, j ∈ N , and focus on symmetric equilibria. Define π∗ =
argmaxπ [µπ −L (π)] and Ψ ∗ ≡ µπ∗−L (π∗). Note that we are charging all the
idling penalty to a single supplier. In this way, a price π∗ guarantees a lower bound
for the payoffΨi(πi,π−i). Hence,Ψ ∗ is the payoff that any supplier can guarantee for
himself, i.e., his minmax level. We further let π :=Ψ ∗/µ = π∗−L (π∗)/µ < π∗ and
observe that choosing price π < π is a dominated strategy. Thus, π can be regarded
as a lower bound of suppliers’ rational pricing strategies.

Although a standard approach is to look for a pure-strategy Nash equilibrium, in
the next proposition we show that none exists. Instead, we shall focus on the mixed-
strategy competitive equilibrium. Let G(π) denote the mixing cumulative probabil-
ity distribution of a supplier’s pricing strategy π . The next proposition characterizes
the structure of these mixing probabilities.

Proposition 3 With homogeneous rates, there exists a unique symmetric equilib-
rium in which all suppliers randomize continuously over [π,π∗], and every supplier
gets Ψ ∗. The randomizing distribution is G(π) = [ µ(π−π)

L (π) ]1/(n−1),∀π ∈ [π,π∗].

The reason for not having any pure-strategy equilibrium is intuitively due to the
discontinuity of suppliers’ revenue functions. This creates an incentive for the cheap
suppliers to increase their prices all the way to π̂; however, they would also avoid
to reach π̂ when themselves become the most expensive and incur a discontinu-
ous penalty. Note that the range over which the price is randomized is completely
determined by the individual’s problem. In all generic cases, no tie of the highest
static price may occur. In other words, the market idleness process is contributed
by only one supplier. Moreover, any tie of two prices takes place with probability
zero, which is in contrast to the centralized system where prices are always equal.
Therefore, our homogeneous service model suggests that price dispersion can be
regarded as a sign of incoordination. Also note that in equilibrium, the expected
payoff of a supplier is identical to the case where he carries the entire market idle-
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ness, and hence he receives on average the minmax level. Competitive behavior
drives away the possibility of extracting additional revenues.

Having characterized the competitive equilibrium, we now turn to the market ef-
ficiency issue. Define ΠC ≡ maxπ̂ {µ̂π̂−L (π̂)} as the aggregate (second-order)
revenue under the centralized solution and Π ∗ as the aggregate revenue among sup-
pliers in the unique competitive equilibrium. The next proposition shows that the
efficiency loss can be arbitrarily large when the number of suppliers explodes.

Proposition 4 Suppose that the service rates are homogeneous. For any given ag-
gregate service rate µ̂ , for any given constant M, there exists a sufficiently large
number NM such that |ΠC−Π ∗|> M, ∀n > NM .

Proposition 4 shows that as the number of suppliers grows, the competitive be-
havior among the suppliers may result in an unbounded efficiency loss. This demon-
strates a significant inefficiency due to the market mechanism and it therefore calls
for the need of a coordination scheme, as we investigate in §4.5. Note that this state-
ment is asymptotic in the sense of the number of suppliers, which is different from
the case in §3, and it is particularly relevant in the context of the large-scale systems
discussed in §1. By restricting ourselves to the case of fixed aggregate service rate,
we can then illustrate that the efficiency loss that results from the market idleness
term also plays a pivotal role.

Note also that the first-order aggregate revenues of the centralized solution and
the competitive equilibrium coincide; nevertheless, this is by construction of the
asymptotic regime specified in §3.

4.4.2 Heterogeneous service rate case

Now we consider the scenario where suppliers are endowed with different ser-
vice rates. We again first define a global maximizers π∗1 , π∗2 ,..., π∗n , if supplier
i (1 ≤ i ≤ n) is the one who proposes the highest price solely; i.e., we define
π∗i = argmaxπi [µiπi−L (πi)] and Ψ ∗i ≡ µiπ

∗
i −L (π∗i ) as the global maximum rev-

enue that supplier i can achieve as J = {i}. Next we let π i =Ψ ∗i /µi and recall that
choosing price π < π i is a dominated strategy for supplier i. The following proposi-
tion characterizes the relevant properties of an equilibrium needed for our purpose.
Gi(·) denotes the mixing distribution that supplier i adopts in equilibrium.

Proposition 5 Suppose suppliers are endowed with heterogeneous service rates.
Then in a competitive equilibrium,

• All Gi(·)’s have the same left endpoint (denoted by s) of their supports. Moreover,
s≥maxi∈N π i.

• Suppliers’ expected payoffs are proportional to their service rates {µi}’s.
• If n = 2 and µ1 > µ2, then there exists a unique equilibrium in which supplier i’s

revenue is µiπ1, i = 1,2. The equilibrium mixing probabilities are respectively
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G2(π) =
µ1(π−π1)

L (π)
,∀π ∈ [π1,π

∗
1 ], G1(π) =

µ2(π−π1)

L (π)
,∀π ∈ [π1,π

∗
1 ), (31)

and G1(π
∗
1 ) = 1. G1(π) = G2(π) = 0,∀π ≤ π1.

The first result on left endpoints is not surprising. This comes directly from an
analogous argument for Proposition 3. The second result captures the ex ante differ-
ence between suppliers’ payoff function: higher service rate brings higher equilib-
rium payoff. When we restrict to the duopoly setting, we know perfectly the range
over which suppliers randomize their prices, and we can obtain closed-form expres-
sions for their expected payoffs. They randomize the prices over the same range,
and the supplier with a higher service rate tends to set a lower price: his mixing
distribution stochastically dominates the other’s in the usual, first-order sense. This
implies that when a supplier has a capacity advantage, he can afford to price lower
to capture more customers.

4.4.3 Numerical results

In this section, our goal is to compare the performance between the centralized
solution and the competitive equilibrium. We consider a system with n M/M/1
servers, delay sensitivity parameter c = 0.5, and arrival rate of buyers Λ = 1.
The valuation v of each customer is assumed to follow an exponential distribu-
tion with mean 0.1, and p̄ is set such that the effective arrival rate P(v ≥ p̄)
matches the total service rate µ̂ . As an example, if we let µ̂ = e−1.3, then p̄ can
be obtained as follows: Λe−10p̄ = µ̂ ⇔ p̄ ≈ 0.13. The other relevant parameter is
γ = f (p̄)/(1−F(p̄)) = 10. Note that as we scale according to Λ = r and µ̂ = µ̂r, p̄
stays unchanged.

The next two figures compare the centralized solution and the competitive equi-
librium. Take n = 2 and assume µ̂ = µ1 + µ2 = e−1.3. Without loss of general-
ity, we assume that supplier 1 has a higher capacity and let a ≡ µ1

µ̂
∈ (0.5,1)

denote the heterogeneity of service rates between these two suppliers. Figure 3
demonstrates the mixing distributions of supplier 1 under a competitive equilib-
rium with different values of a. Figure 4 presents the upper and lower bounds of
the price for the mixing distributions. Note that the mixing distribution may have
a point mass at the upper bound π∗1 , in which case the mixing distribution jumps
to 1 at π∗1 (e.g., a = 0.57,0.64,0.71 in Figure 3). Although the mixing distribu-
tions of supplier 2 have no point mass, the comparison of the mixing distributions
across different degrees of heterogeneity is qualitatively similar and therefore is
omitted. Combining Figure 3 and Figure 4, there is no unambiguous prediction for
the suppliers’ pricing decisions when the capacity heterogeneity increases. The in-
crease of the heterogeneity, a, has two effects. First, it mitigates the competition
between the suppliers due to the difference of capacities. This might induce higher
prices. Second, the increase of a also increases the variance of the service time
(since σ = (( 1

aµ̂
)2 +( 1

(1−a)µ̂ )
2)1/2 is increasing in a ∈ (0.5,1)). This increases the
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magnitude of the second-order price through the parameter β . Since the second-
order price is negative, it implies that the suppliers would set a lower price when
the variance is higher. Because of these two conflicting forces, no clear ranking
of the mixing distribution can be obtained (as seen in Figure 3), and the bounds
are not monotonic (in the same direction) as the degree of heterogeneity increases
(see Figure 4). Note also that in the centralized solution, only one price is set:

πC ≡ argmaxπ

{
µ̂π− p̄γ µ̂β

φ(π/β )

1−Φ(π/β )

}
∈ [4.5,6.0] when a∈ [0.5,0.71]. Since

πC is strictly positive, the prices in the competitive equilibrium are significantly
lower than the price under the centralized control.
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Finally, we investigate how the number of suppliers affects the efficiency gap be-
tween the centralized solution and the competitive equilibrium. To this end, we fo-
cus on the case with homogeneous suppliers. This allows us to fully characterize the
equilibrium pricing strategies and the suppliers’ expected (second-order) revenues.
We first assume µ̂ = e−1.3 and increase n, the number of suppliers. The individual
service rate is µi = µ̂/n, ∀i ∈N . As demonstrated in Figure 5, the range of prices
becomes more negative when more suppliers participate in the market, due to a
more severe competition among suppliers. In Figure 6, we draw the expected aggre-
gate (second-order) revenue of the market, ∑i∈N Ψi(πi,π−i), and vary the number
of suppliers. We find that the expected aggregate revenue decreases when there are
more suppliers due to the increasing price competition (as presented in Figure 6).
Thus, the mis-coordination problem becomes more serious when more suppliers
participate in the market.
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4.4.4 A remark on the suppliers’ participation

In characterizing the equilibrium behavior of the suppliers’ pricing game, we have
neglected the suppliers’ participation decisions. Note that the pricing decisions
{π j}’s only affect the suppliers’ second-order revenues, which are simply small
perturbations around the first-order revenues p̄µi. (as seen in Lemma 1). Thus, a
supplier is willing to participate if and only if his first-order revenue p̄µi is posi-
tive, which depends on the capacity (service rate) decisions rather than the pricing
decisions.

To study the capacity game, we can assume that each supplier incurs a cost of
capacity, ci(µi). Since the pricing decisions do not affect the first-order term, the
suppliers choose their capacities to maximize

max
µi≥0

p̄µi− ci(µi), (32)

where p̄ is endogenously determined through F̄(p̄)=∑ j∈N µ j, i.e., p̄= F̄−1(∑ j∈N µ j).
The function F̄−1(∑ j∈N µ j) can be interpreted as the inverse demand function,
since it represents the customers’ effective arrival rate given the aggregate capacity
∑ j∈N µ j. Notably, the above capacity game does not involve any stochastic term.

Moreover, according to [25, Corollary 1], this capacity game has a unique equi-
librium if the following conditions are satisfied: 1) µF̄−1(µ) is concave in µ; 2)
ci(µi) is weakly convex in µi; and 3) there exists a sufficiently large µ∗ such that
µF̄−1(µ)− ci(µ) is decreasing in µ when µ > µ∗. The first condition is related to
the price elasticity of the demand, the second condition implies a diseconomy of
scale for the capacity investment, and the third condition simply ensures that the
aggregate market payoff never explodes. These conditions are widely adopted in
many surplus sharing games, which contains the celebrated Cournot competition as
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a special case, to ensure that the competitive equilibrium is well-behaved (see [25]
and the references therein).

Finally, a supplier is willing to participate in the market whenever in equilibrium
maxµi≥0 p̄µi− ci(µi) ≥ 0. If we consider a special case in which the marginal cost
of capacity is constant, i.e., ci(µi) = ciµi, ∀µi, it is verifiable that only the suppliers
that are more cost efficient will participate, ie., the ones for whom ci < p̄.

4.5 Coordination scheme

The above competitive equilibrium analysis reveals that each supplier receives an
expected payoff lower than what he would obtain under the centralized solution.
This implies that the centralized solution Pareto dominates all decentralized equi-
libria. Thus, implementing a coordination scheme results in no conflict of interests,
even though the suppliers may be ex ante heterogeneous with respect to service
rates. In addition, as the market size grows, the competitive behavior among sup-
pliers may result in an unbounded efficiency loss. This demonstrates a significant
inefficiency due to the market mechanism and motivates the search for a coordina-
tion scheme.9

4.5.1 Sufficient condition for coordination

We will first study the suppliers’ behavior if they were “forced” to share the penalty,
or revenue loss, that arises due to the market idleness. Under this scheme, supplier
i’s payoff is

Ψ
PS

i (πi,π−i)≡ µiπi−
µi

µ̂
L (max

j∈N
π j), (33)

where the superscript PS refers to penalty sharing according to the service rates.
The first term µiπi is the gross revenue supplier i earns by serving customers, and
the second term

µi

µ̂
L (max

j∈N
π j) corresponds to his penalty share that is proportional

to his service rate µi. Note that this scheme is budget-balanced, i.e., no financing
from outside parties is required. Let

{
πPS

i
}′ s denote the equilibrium prices under

this sharing scheme. Under this sharing scheme, the centralized solution can be
achieved.

Proposition 6 Under the penalty sharing schemes that satisfy (33), {πPS
i = πC,∀i∈

N } is the unique equilibrium.

9 It is worth mentioning that the mixed-strategy equilibrium is studied mainly to demonstrate the
discrepancy between the centralized system and the decentralized market equilibrium. It is con-
ceivable that the implementation or identification of such a mixed-strategy equilibrium requires
fairly sophisticated communication and consensus among the suppliers. Nevertheless, the Pareto
dominance result justifies why such a coordination scheme is required and desired irrespective of
the implementation issue of the mixed-strategy equilibrium.
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Under the PS scheme, a supplier’s objective is in fact an affine function of the
aggregate revenue (29). Hence, this coordination mechanism eliminates the wrong
incentives of suppliers, regardless of the number of suppliers and their service rates.
Since in both the competitive and the coordinated equilibria the suppliers’ expected
payoffs are proportional to their service rates, all suppliers have a natural incentive
to join.

4.5.2 “Compensation-while-idling” mechanism that achieves coordination

The natural question is whether we can implement a penalty-sharing mechanism
based on observable quantities. We now show that this is achievable through an
appropriate set of transfer prices between suppliers when one or more suppliers are
idling.

Let ηi j be the transfer price per unit of time from supplier i to supplier j when
supplier j is idle in the limit model, with ηii = 0. The second-order revenue process
for a supplier i under this compensation scheme becomes

r̃PS
i (t) = r̃i(t)+ δ̃i(t), (34)

where

r̃i(t) ≡ µiπit + p̄σiBs,i(t)−µi p̄Ỹi(t), (35)

δ̃i(t) ≡ ∑
j∈N , j 6=i

η jiỸi(t)− ∑
j∈N , j 6=i

ηi jỸj(t). (36)

According to (35), the three terms correspond to his revenue from serving cus-
tomers. In (36), δ̃i(t) corresponds to the net transfers for supplier i : ∑ j∈N , j 6=i η jiỸi(t)
is the compensation he receives from other suppliers during the idle period, and
∑ j∈N , j 6=i ηi jỸj(t) is the cash outflow to other suppliers while compensating their
idleness.

Given (34), supplier i’s long-run average revenue can be expressed as

Ψ̃i(πi,π−i) ≡ lim
t→∞

1
t
[r̃i(t)+ δ̃i(t)] (37)

= µiπi−µi p̄E[Ỹi(∞)]+ ∑
j∈N , j 6=i

η jiE[Ỹi(∞)]− ∑
j∈N , j 6=i

ηi jE[Ỹj(∞)].

The next proposition specifies a set of transfer prices that implement the PS
scheme.

Proposition 7 The transfer prices

ηi j =
µiµ j

µ̂
p̄,∀i 6= j, i, j ∈N , and ηii = 0,∀i ∈N , (38)

implement the PS rule, i.e., Ψ̃i(πi,π−i) =Ψ PS
i (πi,π−i).
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The transfer prices proposed in Proposition 7 essentially eliminate the imbalance
between the current share of the market idleness incurred by an individual supplier
and his required share (

µi

µ̂
L (max

j∈N
π j)). Given these transfer prices, every supplier’s

objective is aligned with the centralized system (i.e., the objective is Ψ PS
i (πi,π−i) in

(33)), and thus all suppliers are induced to set prices equal to πC.
Proposition 7 shows that we are able to achieve coordination since given any

chosen prices, we can align the suppliers’ objectives with the planer’s objective. To
implement this compensation scheme in the original system, we can simply request
each supplier make transfers according to (38). This mechanism can be implemented
and monitored by the intermediary in the market.

Note that the coordination scheme is independent of the static prices {πi}’s; it
only requires the information of the service rates {µi : 1≤ i≤ n}, which are publicly
available in our model. In fact, to facilitate the coordination scheme, the market
intermediary needs to have access to the current queue lengths, and should be able
to perfectly observe the idleness of suppliers.

4.6 Simulation results

To close the loop, we shall return to the original system described in §3.2 and see
how the competitive equilibrium and coordination scheme fare. To this end, we
again run simulations using the Arena model illustrated in Figure A1 of §3.6. The
parameters are the same as those in §4.4.3: c = 0.5, Λ = 1, µ̂ = e−1.3, and the
valuation v is exponentially distributed with mean 0.1.

Mixing distributions of prices. Compared with §3.6, a new challenge arises:
we cannot arbitrarily assign prices, because now the suppliers determine their com-
petitive prices as equilibrium outcomes. We shall use the results from §4.4.3 as
inputs to our Arena model for both homogeneous and heterogeneous cases of sup-
pliers. We note that the equilibrium pricing strategy is described by a continuous
distribution without simple expressions (see Propositions 3 and 5). Thus, the usual
inverse-transform method fails to apply (because the inverse of distribution function
is not known). Furthermore, the acceptance-rejection method is also not suitable for
this problem, because it requires an explicit expression of density function that is
not available. Our treatment follows from a similar idea to Figure 3. We first dis-
cretize them and record the cumulative distribution at discrete points. We choose
the mesh sufficiently small and make linear interpolation to replicate approximately
the original continuous distribution.

Second-order revenues. In terms of suppliers’ profits, we focus exclusively on
the pricing game in which the second-order correction around Rr

i (t) defined as

rr
i (t) ≡

1√
r
(Rr

i (t)− r p̄µit),∀i ∈ N . Note that given µ̂ = e−1.3, p̄ ≈ 0.13. When

there are two suppliers (n = 2), we let a≡ µ1

µ̂
∈ (0.5,1) denote the heterogeneity of
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service rates between these two suppliers. We examine two scenarios: in the homo-
geneous case a = 0.5, these two suppliers are endowed with the same service rate
(capacity). In the heterogeneous case, we choose a = 0.71.

Regarding the tie-breaking rule, here we examine two rules: the smallest index
first rule by which supplier 1 gets the priority, and the random priority rule by which
customers choose between tied suppliers with equal probabilities. For the random
priority rule, we can revise the conditions inside the ”Decide Suppliers” module
in Figure A1. Specifically, we add a ”two-way by chance” module to rout the cus-
tomers randomly with 50-50 chances when there is a tie. For all the following sim-
ulations, we conduct 1,000 replications, each of which takes the warm up of 120
arrivals and regular simulation of 600 arrivals in expectation. The scaling factor r is
fixed at 1,000. The confidence level is set at 5% when we make the statistical state-
ments of hypothesis testing. We use two-sample-t two-tailed tests when we compare
across different scenarios and paired-t tests when comparing between the two sup-
pliers within each scenario.

Revenue comparison: Symmetric case. First, we consider two symmetric sup-
pliers (a= 0.5) and compare the suppliers’ second-order revenues in the competitive
equilibrium and under the coordination scheme. We find that the average difference
of suppliers 1’s and 2’s revenues in these two scenarios are statistically significant.
For supplier 1, the estimated revenue difference is 0.758 whereas the 95% confi-
dence interval is 0±0.00419. Similarly, supplier 2’s estimated revenue difference
0.76 and 0.76 falls outside ±0.00421. Therefore, the coordination scheme indeed
leads to higher expected revenues for both suppliers.

Revenue comparison: Asymmetric case. Second, we consider two asymmet-
ric suppliers (a = 0.71). In this case, the coordination scheme again yields higher
expected revenues for both suppliers that are statistically significant. The estimated
revenue improvements for suppliers 1 and 2 are 0.992 and 0.351 respectively, and
they fall outside the 95% confidence intervals ±0.0026 and ±0.00284. We can also
compare the two suppliers’ revenues. Naturally, their (second-order) revenues are
different due to heterogeneous service rates. Using paired-t tests, we observe that
the revenue differences are statistically significant in both the competitive and coor-
dinated scenarios (-0.435 and 0.206 on average, and their corresponding confidence
intervals are ±0.00295 and ±0.00488.

Tie-breaking rule. Third, we can also examine the impact of tie-breaking rule.
For this matter, we use the symmetric supplier case as illustration. We first start with
the competitive equilibrium and compare the two tie-breaking rules: smallest index
first and random rules. For the competitive equilibrium we fail to reject the null
hypothesis, i.e., the suppliers’ revenues are statistically indistinguishable under the
two rules. In contrast, under the coordination scheme the tie-breaking rule matters
substantially. The estimated revenue difference is 0.0857 and it falls outside the 95%
confidence interval ±0.00323.

The above discrepancy can be explained intuitively. In the competitive equilib-
rium, both suppliers randomize their prices. Thus, the chance of seeing an actual tie
is infinitesimal (zero probability in theory). Therefore, the tie-breaking rule rarely
comes in action. However, under the coordination scheme, both suppliers are in-
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duced to set prices at πC. Because their service rates are identical, often times ties
actually happen and the priority rule goes in favor of supplier 1. In this case, random
tie-breaking ensures the fair routing between suppliers and it leads to statistically
significant consequences. Further to the above observation, we run additional com-
parisons between the two suppliers. Under the smallest index first rule, supplier 1
earns on average 0.176 more than supplier 2, which is outside the 95% confidence
interval ±0.00308. Under the random priority rule, this difference is negligible (-
0.000792 on average).

To summarize, our simulations suggest that (1) the coordination scheme is effec-
tive in both homogeneous and heterogeneous scenarios, and this benefit applies to
all suppliers; (2) tie-breaking rules are inconsequential when suppliers adopt ran-
domized pricing, but they do matter when instead deterministic prices are chosen.

5 Conclusions

We study an oligopolistic model in which suppliers compete for buyers that are
both price and delay sensitive. We apply both fluid and diffusion approximations
to simplify the multi-dimensional characteristics of the decoupled suppliers into a
single-dimensional aggregated problem. Specifically, we establish the “state space
collapse” result in this system: the multi-dimensional queue length processes at the
suppliers can be captured by a single-dimensional workload process of the aggre-
gate supply in the market, which can be expressed explicitly as a reflected Ornstein-
Unlenbeck process with analytical expressions. Based on this aggregated workload
process, we derive the suppliers’ long-run average revenues and show that the sup-
pliers’ competition results in a price randomization over bounded ranges, whereas
under the centralized control suppliers should set identical and deterministic prices.

To eliminate the inefficiency due to the competition, we propose a novel compensation-
while-idling mechanism that coordinates the system: each supplier gets monetary
transfers from other suppliers during his idle periods. This mechanism alters sup-
pliers’ objectives and implements the centralized solution at their own will. The
implementation only requires a set of static transfer prices that are independent of
the suppliers’ prices and the queueing dynamics such as the current queue lengths
or the cumulative idleness. Its simplicity is an appealing feature to be considered for
practical implementations in intermediary platforms such as online exchanges.
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APPENDIX

Ying-Ju Chen∗ Costis Maglaras † Gustavo Vulcano‡

Notation. We use the following notation throughout the paper. We say that f (x) =
o(g(x)) when f (x)/g(x)→ 0 when x→ ∞, and that f (x) = g(x) to state the fact
that f (x) = g(x)+ o(

√
x) or f (x) = g(x)+ o(1/

√
x). Similarly, f (x) = op(g(x)) if

f (x)/g(x)→ 0 in probability. We say that f (x) = O(g(x)) if f (x)/g(x)→ a, for
a constant a > 0 and define f (x) = Op(g(x)) as the counterpart of convergence in
probability. For any integer k > 0, and for any y∈ Rk, we define |y| := max{|y j|, j =
1, ...,k} as its maximum norm. For any function f : R+ → Rk and constant L > 0,
we define || f (·)||L := sup 0≤t≤L| f (t)|. For any sequence {ar,r ∈ N}, ar → α if for
any δ > 0, there exists rδ such that |α − ar| < δ , whenever r > rδ . The function
φ(·) denotes the standard normal density, and Φ(·) its corresponding cumulative
distribution function (c.d.f.).

A1 Schematic descriptions of the simulation model

We run simulations using Arena and the model is illustrated in Figure A1, where we
assign the (randomly generated) valuation as an ”attribute” to each customer. In the
module ”Decide Suppliers”, we compare the customer’s valuation and the full price
(i.e., the price plus the expected waiting time) of each supplier. This determines
whether a customer should balk (when the valuation is too low), and when not balk-
ing, which supplier to go to. Regarding the tie-breaking rule, we use the smallest
index first rule: when a customer feels indifferent between suppliers 1 and 2, she
joins supplier 1 by default. Other modules are self-explanatory. Arena software al-
lows us to record the frequencies our specified variable (such as system workload)
falls into distinct intervals. Thus, we can record the proportion of time the system
workload falls below the boundary and above.
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Fig. A1 The simulation model in Arena.

A2 Proofs of main results

Proof of Proposition 1

Define κi(t) = πi +c
Q̄i(t)

µi
,∀i ∈N as the total cost supplier i submits for the buyer

at epoch t, and κ(t) = [κ1(t), ...,κn(t)]. Let J̄(t)⊆N be the set of suppliers tied as
the cheapest at time t and J̄c(t) ≡N \ J̄(t) be its complement. In this continuous
fluid limit model, we can imagine that buyers arrive in a continuous manner and
are routed to the cheapest supplier(s) accordingly. Given that this routing process is
continuous, oscillations, that would be a core feature of the discrete buyer setting,
will never occur. Critically, the buyers in our fluid limit model are not counted one
by one; rather, they are infinitesimally small.
We hereby formalize the above statement. Define the function

g(κ(t)) = max
i, j∈N

(κi(t)−κ j(t)) = max
i∈N

κi(t)− min
j∈N

κ j(t). (A1)

Note that g(κ(t)) is nonnegative, and g(κ(t)) = 0 if and only if κi(t) = κ j(t), ∀i, j ∈
N . When g(κ(t)) > 0, the arrivals will not be routed to the most expensive sup-
plier at time t, and the cheapest supplier accumulates customers. We will show that
g(κ(t)) can be used as a Lyapunov function to prove that |κi(t)− κ j(t)| → 0 as
t→ ∞, and subsequently conclude the statement of the proposition.
Note that as long as not all suppliers receive new orders, the aggregate arrival rate,
that equals ∑i∈N µi, is always higher than the aggregate service rate of servers that
tie as the cheapest ones. That is, ∑i∈N µi > ∑ j∈J̄(t) µ j for all t before the resource
pooling regime (if it exists). Let k ∈ J̄(t) be an arbitrary cheapest supplier. We now
claim that for any time epoch, the following equality holds:

κ̇k(t) =
c
µk

µk

∑i∈J̄(t) µi

[
∑

i∈N
µi− ∑

i∈J̄(t)

µ j

]
, (A2)



Design of an aggregated marketplace under congestion effects 3

where ∑i∈N µi−∑i∈J̄(t) µ j is the imbalance between the aggregate arrival rate and

aggregate service rate for those cheapest suppliers, and
µk

∑i∈J̄(t) µi
is the proportion

of customers routed to supplier k; the term c
µk

simply accounts for the sensitivity of
κk(t) on the queue length increase.
We prove Equation (A2) by contradiction. Suppose, on the contrary, that (A2) is
violated at some time for some supplier in the cheapest suppliers’ set. Let

t1 := inf{t|t, κ̇k(t) 6=
c
µk

µk

∑i∈J̄(t) µi

[
∑

i∈N
µi− ∑

i∈J̄(t)

µ j

]
, f or some k ∈ J̄(t)} (A3)

be the time right after which violation occurs and (with abuse of notation) let
k be such a supplier. There are two cases for this violation: Case 1) κ̇k(t1) <
c

µk

µk
∑ j∈J̄(t1)

µ j

[
∑i∈N µi−∑ j∈J̄(t1) µ j

]
and Case 2) κ̇k(t1)> c

µk

µk
∑ j∈J̄(t1)

µ j

[
∑i∈N µi−∑ j∈J̄(t1) µ j

]
.

Consider the first case. Recall J̄(t1) is the set of suppliers tied as the cheapest at time
t1 and define ε1 := mini∈J̄c(t1) κi(t1)−min j∈J̄(t1) κ j(t1) as the mimimum difference
between those {κ j(t1)}’s inside and outside J̄(t1) at time t1. If ε1 = 0, the problem is
non-existent and we have already reached the resource pooling regime. Thus, below
we consider the case ε1 > 0.
Because mini∈J̄c(t1) κi(t1)−min j∈J̄(t1) κ j(t1)> 0, the inequality κ̇k(t1)< c

µk

µk
∑ j∈J̄(t1)

µ j

[
∑i∈N µi−∑ j∈J̄(t1) µ j

]
is strict, and {κk(t)}’s are all continuous functions, we can find a sufficiently small
δ < ε1

c(1+∑i∈N µi/min j∈N µ j)
such that 1) the sets J̄(t)⊆ J̄(t1), for all t ∈ [t1,t1+δ ), and

2) κ̇k(t)< c
µk

µk
∑i∈J̄(t) µi

[
∑i∈N µi−∑i∈J̄(t) µ j

]
, for all k ∈ J̄(t), for all t ∈ [t1,t1 +δ ).

Consider any i1 ∈ J̄c(t1) and j1 ∈ J̄(t1). For t ∈ [t1,t1 +δ ), we note that

κi1(t)−κ j1(t)

= πi1 + c
Q̄i1(t)

µi1
−

{
π j1

+ c
Q̄ j1

(t)

µ j1

}

≥ πi1 + c
Q̄i1(t)−δ µi1

µi1
−

{
π j1

+ c
Q̄ j1

(t)+δ ∑i∈N µi

µ j1

}

≥ πi1 + c
Q̄i1(t)

µi1
−

{
π j1

+ c
Q̄ j1

(t)

µ j1

}
− cδ

{
1+

∑i∈N µi

µ j1

}

≥ ε1− c
ε1

c(1+∑i∈N µi/min j∈N µ j)

{
1+

∑i∈N µi

µ j1

}
> 0.

Therefore, within the time window [t1, t1 +δ ), no supplier in J̄c(t1) will join the set
of cheapest suppliers. This suggests that all the arrivals will be routed to J̄(t1) within
the time window [t1, t1 +δ ) and J̄(t)⊆ J̄(t1) for t ∈ [t1,t1 +δ ).
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Now we focus on the set J̄(t1). Because κ̇k(t1)< c
µk

µk
∑ j∈J̄(t1)

µ j

[
∑i∈N µi−∑ j∈ �J (t1)

µ j

]
,

there must exist another supplier l in J̄(t1) such that κ̇l(t)> c
µl

µl
∑ j∈J̄(t1)

µ j

[
∑i∈N µi−∑ j∈J̄(t1) µ j

]
.

To see this, recall that the aggregate arrival rate is ∑i∈N µi during [t1,t1 +δ ), which
is always higher than ∑ j∈J̄(t1) µ j, the aggregate service rate of servers that tie as
the cheapest ones in J̄(t). Since no supplier in J̄c(t1) receives any arrival during
[t1, t1 + δ ), the queue length accumulation rate is at least ∑i∈N µi−∑ j∈J̄(t1) µ j (if
J̄(t) is strictly smaller than J̄(t1), then the queue length accumulation rate can only
go higher). If for all l ∈ J̄(t1)\{k}, κ̇l(t)≤ c

µl

µl
∑ j∈J̄(t1)

µ j

[
∑i∈N µi−∑ j∈J̄(t1) µ j

]
, then

the queue length accumulation of each l is

Q̄l(t)≤
µl

c

{
c
µl

µl

∑ j∈J̄(t1) µ j

[
∑

i∈N
µi− ∑

j∈J̄(t1)

µ j

]}
=

µl

∑ j∈J̄(t1) µ j

[
∑

i∈N
µi− ∑

j∈J̄(t1)

µ j

]
.

Likewise, for supplier k we have Q̄k(t) <
µk

∑ j∈J̄(t1)
µ j

[
∑i∈N µi−∑ j∈J̄(t1) µ j

]
. Thus,

the aggregate queue length accumulation among all suppliers is

Q̄k(t)+ ∑
l∈J̄(t1)\{k}

Q̄l(t)+ ∑
i∈J̄c(t1)

Q̄i(t)

<
µk

∑ j∈J̄(t1) µ j

[
∑

i∈N
µi− ∑

j∈J̄(t1)

µ j

]
+ ∑

l∈J̄(t1)\{k}

{
µl

∑ j∈J̄(t1) µ j

[
∑

i∈N
µi− ∑

j∈J̄(t1)

µ j

]}
+0

< ∑
i∈N

µi− ∑
j∈J̄(t1)

µ j,

which leads to a contradiction.
Given that κ̇l(t)> c

µl

µl
∑ j∈J̄(t1)

µ j

[
∑i∈N µi−∑ j∈J̄(t1) µ j

]
, we derive the corresponding

κl(t) as follows (l ∈ J̄(t1)\{k}):

κl(t) > κl(t1)+
c
µl

µl

∑ j∈J̄(t1) µ j

[
∑

i∈N
µi− ∑

j∈J̄(t1)

µ j

]
(t− t1)

= πl + c
Q̄l(t1)

µl
+

c
µl

µl

∑ j∈J̄(t1) µ j

[
∑

i∈N
µi− ∑

j∈J̄(t1)

µ j

]
(t− t1)

= πk + c
Q̄k(t1)

µk
+

c
∑ j∈J̄(t1) µ j

[
∑

i∈N
µi− ∑

j∈J̄(t1)

µ j

]
(t− t1),

where the last equality comes from the fact that both suppliers k and l belong to
J̄(t1). On the other hand, for supplier k we have:
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κk(t) < κk(t1)+
c
µk

µk

∑ j∈J̄(t1) µ j

[
∑

i∈N
µi− ∑

j∈J̄(t1)

µ j

]
(t− t1)

= πk + c
Q̄k(t1)

µk
+

c
∑ j∈J̄(t1) µ j

[
∑

i∈N
µi− ∑

j∈J̄(t1)

µ j

]
(t− t1).

Thus, κl(t)> κk(t), for all t ∈ [t1,t1 +δ ). However, this implies that supplier l shall
never receive any arrival during [t1,t1+δ ), and its queue length can only drop during
[t1,t1 +δ ). This leads to a contradiction.
The second case, κ̇k(t) > c

µk

µk
∑ j∈J̄(t1)

µ j

[
∑i∈N µi−∑ j∈J̄(t1) µ j

]
, is the mirror image

of the above. In this case, we must be able to find another supplier l ∈ J̄(t1) such
that κ̇l(t)< c

µl

µl
∑ j∈J̄(t1)

µ j

[
∑i∈N µi−∑ j∈J̄(t1) µ j

]
. Otherwise, the queue length accu-

mulations will be violated within the set J̄(t1). However, we can then observe that
κk(t)> κl(t) in a small time window and supplier k shall never receive any arrival.
This implies that κ̇k in that small time window is strictly negative and leads to a
contradiction. Collectively, Equation (A2) must hold.
Next, we return to the proposed Lyapunov function g(κ(t)). We shall prove that
there exists a lower bound for the depreciation rate of g(κ(t)). We observe that
d
dt (maxi∈N κi(t)) is non-positive, because those suppliers in J̄c(t) do not receive
arrivals and their queue lengths can only depreciate. On the other hand, Equation

(A2) shows that
d
dt

(
min
j∈N

κ j(t)
)
≥ 0, because ∑i∈N µi−∑i∈J̄(t) µ j > 0 and there-

fore the derivative is always non-negative. Thus, ġ(κ(t)) = d
dt (maxi∈N κi(t))−

d
dt

(
min j∈N κ j(t)

)
is strictly negative and |ġ(κ(t))| > |κ̇k(t)| = κ̇k(t), where k ∈

J̄(t). We have

|ġ(κ(t))| ≥ κ̇k(t)=
c
µk

µk

∑i∈J̄(t) µi

[
∑

i∈N
µi− ∑

i∈J̄(t)

µ j

]
≥ c

∑i∈N µi−min j∈N µ j

[
∑

i∈N
µi− ∑

i∈J̄(t)

µ j

]
.

(A4)
From ∑i∈N µi − ∑i∈J̄(t) µ j ≥ min j∈N µ j as long as J̄(t) 6= N , we then have

|ġ(κ(t))| ≥
cmin j∈N µ j

∑i∈N µi−min j∈N µ j
. Note that this lower bound is independent of

epoch t and is strictly positive; the tie-breaking rule does not matter due to the con-
tinuity of queue length processes. To wit, our argument to establish Equation (A2)
does not hinge on any specific tie-breaking rule. Thus, the above result applies to
all tie-breaking rules. When J̄(t) =N , the system has reached the resource pooling
regime.

Let 4κ be such that πl + c
Q̄l(0)

µl
+4κ = max

i∈N
{πi + c

Q̄i(0)
µi
}. In words, 4κ

is the amount of cost that supplier l has to add so that his κl(0) ties the maxi-
mum initial cost. Because the imbalance of proposed costs is decreasing in t at
a guaranteed rate, the κi(t)’s will become equal before time s∗(Q̄(0),W̄ (0)) =
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4κ(∑i∈N µi−min j∈N µ j)

cmin j∈N µ j
. Thus, g(κ(t)) = 0, ∀t ≥ s∗. The next step needed is

to bound 4κ as a function of M0. Call it 4(M0). Then for any δ > 0, s∗(δ ,M0) ≤

s∗(M0) =
4(M0)(∑i∈N µi−min j∈N µ j)

cmin j∈N µ j
. This completes the proof for the conver-

gence of fluid model. ut

Proof of Proposition 2

The proof builds on the framework advanced by [8]. To facilitate exposition we
will follow [8] very closely, stating and addressing the differences and the required
modifications.
A brief sketch of the proof is as follows. Step 1. Hydrodynamic limits: Lemmas
A1-A5 will establish that appropriately scaled processes that focus on the system
behavior over order 1/

√
r time intervals satisfy the fluid equations (11)-(16). Step 2.

Convergence of diffusion scaled processes: Combining the above with Proposition
1, we will establish that the supplier queue length process is close to the “balanced”
state configuration for all time t; i.e., the short transient digressions are not visible
in the natural time scale of the system.
Step 1:
The hydrodynamic scaling we adopt here is the following (cf. [8, Equation (5.3)]):
For m = 1,2, ...,b

√
rτc,

Qr,m(t) =
1√
r

Qr(
1√
r

t +
1√
r

m),

Ar,m(t) =
1√
r
[Ar(

1√
r

t +
1√
r

m)−Ar(
1√
r

m)],

Dr,m(t) =
1√
r
[Dr(

1√
r

t +
1√
r

m)−Dr(
1√
r

m)],

T r,m(t) = T r(
1√
r

t +
1√
r

m)−T r(
1√
r

m),

Y r,m(t) = Y r(
1√
r

t +
1√
r

m)−Y r(
1√
r

m),

X r,m(·) = (Qr,m(·),Ar,m(·),Dr,m(·),T r,m(·),Y r,m(·)),

where Qr,Ar,Dr,T r, and Y r are all n-dimensional vectors. Note that for cumulative
processes Ar(·),Dr(·),T r(·), and Y r(·), the associated hydrodynamic scale processes
Ar,m(t),Dr,m(t), and T r,m(t),Y r,m(t), account for the cumulative changes between

[
1√
r

m,
1√
r

t +
1√
r

m]. On the contrary, Qr,m(t) only keeps record of the values at
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epoch
1√
r

t+
1√
r

m. The scaling 1√
r is used to ensure that the scaled processes admit

meaningful limits as r→ ∞.
We now analyze the processes introduced above and provide probabilistic bounds.
This essentially is equivalent to [8, Proposition 5.1]. For ease of notation, let us
define Qr,m(t) = {Qr,m

i (t)}. The routing indicator is Ii(Qr,m(t)) = 1 if ΞJ̄( 1√
r t+ 1√

r m) =

i, and 0 otherwise. Note that
√

rQr,m
i (t) = Qr

i (
1√
r

t +
1√
r

m) is the queue length of

supplier i at epoch
1√
r

t +
1√
r

m. Therefore,

p̄+
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

= p̄+
πi√

r
+ c

Qr
i (

1√
r t + 1√

r m)+1

µr
i

(A5)

is simply the total cost submitted by supplier i since
Qr

i (
1√
r t + 1√

r m)+1

µr
i

is the delay

quotation. We further define

Jr
i (Q

r,m
i (t)) = P

{
v≥ p̄+

πi√
r
+ c
√

rQr,m
i (t)+1
rµi

}
,∀i ∈N (A6)

as the probability that at time epoch
1√
r

t +
1√
r

m, the valuation of a new arrival, v,

exceeds the total cost submitted by supplier i. The following lemma establishes the
probability bounds.

Lemma A1 Fix ε > 0, L > 0, and τ > 0. For r large enough,

P
{

max
m<
√

rτ

max
i∈N
||Ar,m

i (t)−
∫ t

0
Λ

rIi(Qr,m(u))Jr
i (Q

r,m
i (u))du||L > ε

}
≤ ε, (A7)

P
{

max
m<
√

rτ

max
i∈N
||Dr,m

i (t)−µiT
r,m

i (t)||L > ε

}
≤ ε, (A8)

P

{
max

m<
√

rτ

max
i, j∈N

||
(

πi + c
Qr,m

i (t)
µi

)
−

(
π j + c

Qr,m
j (t)

µ j

)
||L > ε

}
≤ ε. (A9)

The next lemma shows that the hydrodynamic processes are “nearly Lipschitz con-
tinuous.”

Lemma A2 Fix ε > 0, L > 0, and τ > 0. There exists a constant N0 such that for r
large enough,

P

{
max

m<
√

rτ

sup
t1,t2∈[0,L]

|X r,m(t2)−X r,m(t1)|> N0|t2− t1|+ ε

}
≤ ε. (A10)
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The above two lemmas imply that the measure of “ill-behaved” events is negligible
for the hydrodynamic scaled processes. Note that (A9) only shows the convergence
in probability for one particular instance. Nevertheless, the ultimate state space col-
lapse requires an aggregation/ integration over all instances, and continuous integra-
tions over measure-zero events could lead to non-trivial consequences.
Let N0 denote the constant required in Lemma A2 and focus on the complement
of these ill-behaved events. We can choose a sequence ε(r) decreasing to 0 suffi-
ciently slowly such that the inequalities (A9), (A8), and (A10) still hold. For such a
sequence ε(r), we define

Kr
0 =

{
max

m<
√

rτ

sup
t1,t2∈[0,L]

|X r,m(t2)−X r,m(t1)| ≤ N0|t2− t1|+ ε(r)

}
,

Kr
1 =


maxm<

√
rτ maxi∈N ||Ar,m

i (t)−
∫ t

0 Λ rIi(Qr,m(u))Jr
i (Q

r,m
i (u))du||L ≤ ε(r);

maxm<
√

rτ maxi∈N ||Dr,m
i (t)−µiT

r,m
i (t)||L ≤ ε(r)

maxm<
√

rτ maxi, j∈N ||
(

πi + c Qr,m
i (t)
µi

)
−
(

π j + c
Qr,m

j (t)
µ j

)
||L ≤ ε(r);

 ,

Kr = Kr
0 ∩Kr

1.

Note that the set Kr contains those events that possess our desired properties. The
next step is to show that when r is sufficiently large, we can restrict our attention
to these well-behaved events. This is parallel to [8, Proposition 5.2, Corollary 5.1].
and follows from Lemmas A1 and A2.

Lemma A3 P(Kr)→ 1, as r→ ∞.

Let E be the space of functions x : [0,L]→ R5 that are right continuous and have left
limits. Define E

′
= {x ∈ E : |x(0)|< M0, |x(t2)−x(t1)|< N0|t2− t1|,∀t1, t2 ∈ [0,L]},

where M0 is a fixed constant. Let Er
0 = {X r,m(·,ω),m <

√
rτ,ω ∈ Kr} denote the

sets of well-behaved events and E0 = {Er
0,r ∈ R+} is the collection of these sets.

We next show that the set of candidate hydrodynamic limits is “dense” in the state
space: when r is sufficiently large, the vector of processes X r,m(·,ω) is close to some
cluster point of E0. A function X̂ is said to be a cluster point of the functional space
E0 if for all δ > 0, there exists a Xδ ∈ E0 such that ||X̂−Xδ ||L < δ .

Lemma A4 Fix ε > 0,L > 0, and τ > 0. There exists a sufficiently large r(ε) such
that for all r > r(ε), for all ω ∈ Kr and for all m = 1,2, ...,b

√
rτc, ||X r,m(·,ω)−

X̂(·)||L < ε, for some X̂(·) ∈ E0∩E ′ with X̂(·) being a cluster point of E0.

The above lemma follows closely from [8, Proposition 6.1]. Given that all hydrody-
namic scale processes have a close-by cluster point, it remains to study the behavior
of these cluster points. The next step proves that all these cluster points are in fact
solutions to the deterministic fluid equations (11)-(16) (cf. [8, Proposition 6.2]).

Lemma A5 Fix L > 0 and τ > 0. Let X̂(·) be an arbitrary cluster point of E0 over
[0,L]. Then X̂(·) satisfies the fluid equations (11)-(15).
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Step 2:
Combining the above results with Proposition 1, we will now establish the desired
state space collapse property for the supplier queue length processes. Let us first fix
constants η ,ξ ,ε > 0. By Lemma A3, there exists a sufficiently large r(ξ )> 0 such
that P(Kr)> 1−ξ for all r > r(ξ ).
Take L = s(ε,M0) + 1 where s(·, ·) was defined in Proposition 1. Let r(η) be

sufficiently large such that
L√
r
< η whenever r > r(η). Now we consider the

diffusive scaled processes in the time interval [ L√
r ,τ]. For all ς ∈ [

L√
r
,τ], let

mr(ς) = min{m ∈ N+ : m <
√

rς < m + L} = max{d
√

rς − Le,0} and τ
′
r(ς) :=

√
rς −mr(ς). Thus, ς =

1√
r

[
τ
′
r(ς)+mr(ς)

]
. Straight-forward algebra shows that

Q̃r
i (ς) =

1√
r

Qr
i (ς) =

1√
r

Qr
i

(
1√
r

τ
′
r(ς)+

1√
r

mr(ς)

)
= Qr,mr(ς)

i (τ
′
r(ς)). From the

definition of τ
′
r(ς), if r > r(η), for all ς ∈ [

L√
r
,τ], we have

τ
′
r(ς)=

√
rς−mr(ς)=

√
rς−max{d

√
rς−Le,0}≥

√
rς−(

√
rς−L−1)=L−1= s(ε,M0).

(A11)
This implies that the convergence of fluid scale process can be applied at time ς ∈
[

L√
r
,τ] when r > r(η). Moreover, mr(ς)≤

√
rς ≤

√
rτ by construction. Therefore,

the convergence of hydrodynamic scale processes is valid here for all ς ∈ [
L√
r
,τ]

as well.

We now verify that the imbalance between πi + c
Q̃r

i (ς)

µi
and π j + c

Q̃r
j(ς)

µ j
is upper

bounded (note that the additional terms {1/µr
i }’s in the suppliers’ bids have been

taken into account in Lemma A1 through (A9)):

max
i, j∈N

|
(

πi + c
Q̃r

i (ς)

µi

)
−

(
π j + c

Q̃r
j(ς)

µ j

)
|

≤ max
i, j∈N


|
(

πi + c Qr,mr(ς)
i (τ

′
r (ς))

µi

)
−
(

πi + c Q̂i(τ
′
r (ς))

µi

)
|+ |

(
πi + c Q̂i(τ

′
r (ς))

µi

)
−
(

π j + c Q̂ j(τ
′
r (ς))

µ j

)
|

+|
(

π j + c Q̂ j(τ
′
r (ς))

µ j

)
−
(

π j + c
Qr,mr(ς)

j (τ
′
r (ς))

µ j

)
|


≤ 2max

i∈N
|

(
πi + c

Qr,mr(ς)
i (τ

′
r(ς))

µi

)
−

(
πi + c

Q̂i(τ
′
r(ς))

µi

)
|

+ max
i, j∈N

|

(
πi + c

Q̂i(τ
′
r(ς))

µi

)
−

(
π j + c

Q̂ j(τ
′
r(ς))

µ j

)
|.
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From Lemmas A1 and A4, for fixed L,τ,ξ , η , and ε > 0, there exists a sufficiently
large r(L,τ,ξ , η ,ε)>max{r(ξ ),r(η)} such that for all r > r(L,τ,ξ , η ,ε),ω ∈Kr,
for all ς ∈ [ L√

r ,τ], we have

max
i∈N
|

(
πi + c

Qr,mr(ς)
i (τ

′
r(ς))

µi

)
−

(
πi + c

Q̂i(τ
′
r(ς))

µi

)
| ≤ ε

3
, (A12)

and maxi, j∈N |

(
πi + c

Q̂i(τ
′
r(ς))

µi

)
−
(

π j + c Q̂ j(τ
′
r (ς))

µ j

)
| ≤ ε

3 . This implies that

maxi, j∈N |
(

πi + c
Q̃r

i (ς)

µi

)
−
(

π j + c
Q̃r

j(ς)

µ j

)
| ≤ ε

3 +
ε

3 +
ε

3 = ε. Note that P(Kr)→ 1

as r→∞, i.e., the state space collapse holds in probability (the additional term 1/µr
i

is of order 1/r and therefore does not affect the result as demonstrated in Lemma
A1). We can then choose appropriate L,τ,ξ , η , and ε such that the proposition is
established. ut

Proof of Theorem 1

We start with a sketch of the proof, and then provide the details for each part.
Step 1. Write down the equation of W r(t). Recall that the workload process is

W r(t) = ∑i∈N
Qr

i (t)
µr

i
, where Qr

i (t) = Qr
i (0) + Ar

i (t)− Sr
i (T

r
i (t)), and the scaled

workload process W̃ r(t) =
√

rW r(t). We first apply strong approximations ([14,
Theorem 5]) on the cumulative arrival process routed to each supplier and the ser-
vice requirement processes, and then the state space collapse result to derive the ex-
pression of W r(t) as a function of the total arrival process Ar(t). Note that potential
buyers that find it costly to purchase and choose not to purchase are automatically
left out from the effective arrival process.
Step 2. Fluid model properties of cumulative idleness and aggregate market demand.
Let Y r

i (t) = t − T r
i (t) denote the market idleness, where T r

i (t) is the cumulative
work completion for supplier i up to time t, and Λ r(t) be the aggregate arrival rate
into the market. We will prove that Y r

i (t) → 0, in probability, u.o.c.,∀i ∈N , and
Λ r(t)

r
→ ( ∑

i∈N
µi)t, u.o.c.

Step 3. Use strong approximations and oscillation inequalities to bound Ũ r(t) and
W̃ r(t). In this step, we approximate W̃ r(t) using the reflection maps (ϕ,ψ) (similar
to the framework in [26]) and apply Lemma 7 in [5] to bound the market idleness
Ũ r(t) and workload W̃ r(t).
Step 4. Establish the weak convergence of Z̃r(t). Having established the conver-
gence for individual idleness process, we now focus on the process W̃ r(t). We will
follow [20] and use Gronwall’s inequality to bound the difference of W̃ r(t) from an-
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other process that has the “desirable” limit, and then apply convergence together
lemma to establish the weak convergence. The weak convergence of Q̃r(t) fol-
lows immediately from the state space collapse result and the convergence together
lemma.

Complete Proof of Theorem 1

Step 1:

From Proposition 2, we have πi + c
Q̃r

i (t)
µi

= π̄ + c̄W̃ r(t)+ op(1), ∀i ∈ N . In the

sequel we can simply focus on those events in which state space collapse arises.
Recall that the queue length process can be rewritten as Qr

i (t) = Qr
i (0)+Ar

i (t)−
Sr

i (t−Y r
i (t)), where Sr

i (·) is the cumulative service completions when the underlying
random service times are i.i.d. with mean 1

rµi
and standard deviation σi

r . Then,

πi + c
Q̃r

i (t)
µi

= π̄ + c̄W̃ r(t)+op(1),

⇒ πi + c
Q̃r

i (0)
µi

+ c
Ar

i (t)√
rµi
− cSr

i (t−Y r
i (t))√

rµi
= π̄ + c̄W̃ r(t)+op(1).

Rearranging the above equation, we see that

Ar
i (t)√

r
=

µi

c
[π̄ + c̄W̃ r(t)]+

Sr
i (t−Y r

i (t))√
r

− µiπi

c
− Q̃r

i (0)+op(1), (A13)

and therefore the aggregate market demand Ar(t)≡ ∑i Ar
i (t) satisfies

Ar(t)√
r

=
∑i∈N µi

c
[π̄+ c̄W̃ r(t)]+ ∑

i∈N

Sr
i (t−Y r

i (t))√
r

−∑i∈N µiπi

c
− ∑

i∈N
Q̃r

i (0)+op(1).

(A14)
Next we focus on the demand and service time processes. A strong approximation
([14, Theorem 5]) for the Poisson process N(·) allows us to rewrite Ar(t)=N(Λ r(t))
as

Ar(t) = Λ
r(t)+Ba(Λ

r(t))+O(logrt), (A15)

where Λ r(t) =
∫ t

0 λ r(mini∈N [p̄+ πi√
r +c

√
rQ̃r

i (s)+1
rµi

])ds is the arrival rate of aggregate
market demand, and Ba(·) is a standard Brownian motion and the subscript “a”
stands for “arrival.”
Similarly, according to [12], we can apply strong approximation to service comple-
tion process t−Y r

i (t) (which is a random time) and represent the renewal process
Sr

i (·) as

Sr
i (t−Y r

i (t)) = µ
r
i t−µ

r
i Y r

i (t)+
√

rσiBs,i(t−Y r
i (t))+O(logr[t−Y r

i (t)]), (A16)
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where Bs,i(·) is the standard Brownian motion associated with supplier i’s service
time distribution, and the subscript “s” stands for “service.” 1 Note that Ba(t) and
{Bs,i(t)}’s describe distinct Brownian motion processes and they are mutually inde-
pendent. The service rate is of order r, and therefore the Brownian motion is scaled
by
√

r.

From Proposition 2 we have that mini∈N

{
πi + c

Q̃r
i (t)
µi

+ c
1
µr

i

}
= π̄ + c̄W̃ r(t)+

op(1), ∀t, and P(
W̃ r(t)√

r
> 0)→ 0, uniformly in t. Therefore, the arrival rate can be

expressed as

λ
r
(

min
i∈N

{
p̄+

πi√
r
+ c
√

rQ̃r
i (s)+1
rµi

})
= λ

r
(

p̄+
π̄ + c̄W̃ r(s)√

r
+op(

1√
r
)

)
= λ

r(p̄)− λ r(p̄)
′

√
r

[π̄ + c̄W̃ r(s)]+op(
√

r) = ∑
i∈N

µ
r
i −
√

r( ∑
i∈N

µi)
f (p̄)
F̄(p̄)

[π̄ + c̄W̃ r(s)]+op(
√

r),

where the second equality follows from a first-order Taylor expansion at p = p̄ and
the last equality follows from the fact that p̄ induces full resource utilization and the
definition of λ r(·). With this expression, the cumulative rate of aggregate market
demand Λ r(t) becomes

Λ
r(t) = ( ∑

i∈N
µ

r
i )t−

√
r( ∑

i∈N
µi)

f (p̄)
F̄(p̄)

∫ t

0
[π̄ + c̄W̃ r(s)]ds+op(

√
rt). (A18)

Combining (A14), (A15), (A16), and (A18), and for γ ≡ f (p̄)
F̄(p̄)

, we obtain

1√
r

{
( ∑

i∈N
µ

r
i )t− ( ∑

i∈N
µi)γ

∫ t

0
[π̄ + c̄W̃ r(s)]ds

}
+

Ba(Λ
r(t))√
r

+op(1)

=
∑i∈N µi

c
[π̄ + c̄W̃ r(t)]+

∑i∈N µr
i√

r
t− ∑i∈N µr

i√
r

Y r
i (t)+ ∑

i∈N
σiBs,i(t−Y r

i (t))−
∑i∈N µiπi

c
− ∑

i∈N
Q̃r

i (0).

We can rearrange the equation as follows:

∑i∈N µi

c
[π̄ + c̄W̃ r(t)] =−( ∑

i∈N
µi)γ

∫ t

0
[π̄ + c̄W̃ r(s)]ds+

√
r ∑

i∈N
µiY r

i (t)+
∑i∈N µiπi

c
+ ∑

i∈N
Q̃r

i (0)

1 More specifically, Corollary 5.5 of Chapter 7 in [12] ensures the existence of a probability space
in which a Poisson process N and a Brownian motion B exist such that

sup
t≥0

|N(t)− t−B(t)|
log(2∨ t)

< ∞, a.s. (A17)

See also [20, §7.2, p. 268] for a similar treatment.
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+
Ba(Λ

r(t))√
r

− ∑
i∈N

σiBs,i(t−Y r
i (t))+op(1).

Recall that Z̃r(t) = π̄ + c̄W̃ r(t), µ̂ ≡ ∑i∈N µi, and Ỹ r
i (t) =

√
rY r

i (t),∀i ∈ N .

From the assumption of initial queue lengths πi + c
Q̃r

i (0)
µi

= π̄ + c̄W̃ r(0), ∀i ∈N ,

we obtain Q̃r
i (0) =

µi

c
(Z̃r(0)− πi), and therefore that ∑i∈N Q̃r

i (0) =
µ̂

c
Z̃r(0)−

∑i∈N µiπi

c
.

Using these substitutions, we get that

µ̂

c
Z̃r(t)=−µ̂γ

∫ t

0
Z̃r(s)ds+ ∑

i∈N
µiỸ r

i (t)+Z̃(0)+[
Ba(Λ

r(t))√
r

− ∑
i∈N

σiBs,i(t−Y r
i (t))]+op(1).

(A19)
Defining Ũ r(t) =

c
µ̂

∑
i∈N

µiỸi(t) as the “total market idleness,” we conclude that

Z̃r(t)= Z̃(0)−γc
∫ t

0
Z̃r(s)ds+Ũ r(t)+

c
µ̂

[
Ba(Λ

r(t))√
r

− ∑
i∈N

σiBs,i(t−Y r
i (t))

]
+op(1).

(A20)
Step 2:
In this section, we will establish the convergence of scaled copies of Λ r(t) and Y r

i (t)
according to

Λ r(t)
r
→ µ̂t, inprobability, u.o.c. (A21)

Y r
i (t)→ 0, inprobability, u.o.c.,∀i ∈N . (A22)

First we prove (A21). From (A18), we have
Λ r(t)

r
= µ̂t− µ̂γ√

r

∫ t

0
Z̃r(s)ds+op(

1√
r
),

where the last term vanishes in the limit. From Proposition 2, we know that for any

fixed constant C, P(supt≤T W̃ r(t) > C)→ 0, and hence P(supt≤T
W̃ r(t)√

r
> ε)→

0, ∀ε > 0. Moreover,
µ̂γ√

r

∫ t

0
Z̃r(s)ds=

µ̂γ√
r
[π̄t+c

∫ t

0
W̃ r(s)ds]→ 0, in probability, u.o.c.,

as r→ ∞, because the first term inside the brackets is a constant and the integral is

uniformly bounded by ε
√

r. Therefore,
Λ r(t)

r
→ µ̂t, inprobability, u.o.c., which

completes the proof of (A21).
Next we show (A22) by contradiction. Suppose that there exists a supplier i such that
Y r

i (t)0 u.o.c., then we can find a constant ε1 > 0 and a sequence (rk, tk) such that
rk→∞ as k→ ∞ and Y rk

i (tk)> ε1, ∀k. Along this sequence, due to the nonnegativity
of Ỹ r

j (t)’s and the scaling
√

r for Ỹ r
i (t), we obtain Ũ rk(tk) >

√
rk(cµiε1/µ̂). Thus,

as k→ ∞, Ũ rk(tk)→ ∞. From (A20), this implies that Z̃rk(tk)→ ∞, and therefore
that W̃ rk(tk)→ ∞. This, however, contradicts the fact that for all T > 0, ε > 0, there
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exists a constant C such that P(supt≤T
˜W r(t)>C)< ε. This completes the proof of

(A22).
Step 3:
We can rewrite (A20) as Z̃r(t) = Z̃r(0)− γc

∫ t
0 Z̃r(s)ds + Ũ r(t) + Ṽ r(t), where

Ṽ r(t) =
c
µ̂
[
Ba(Λ

r(t))√
r

− ∑
i∈N

σiBs,i(t−Y r
i (t))]. Recalling that

Λ r(t)
r
→ µ̂t a.e. and

Y r
i (t)→ 0 in probability, we can apply the invariance principle of Brownian motion

and convergence together lemma to obtain

Ba(Λ
r(t))√
r

D=Ba(
Λ r(t)

r
)⇒Ba(µ̂t)D=

√
µ̂Ba(t), ∑

i∈N
σiBs,i(t−Y r

i (t))⇒ ∑
i∈N

σiBs,i(t)D=σBs(t),

(A23)

where σ ≡
√

∑i∈N σ2
i and Ba,Bs are independent standard Brownian motions.

Thus, Ṽ r(t)⇒ c
µ̂
[
√

µ̂Ba(t)−σBs(t)]D=
c
µ̂

√
σ2 + µ̂B(t), where B(t) is a standard

Brownian motion and the second expression follows again from the invariance prin-
ciple. Since Ỹ r

i (t) is nonnegative, non-decreasing, and continuous, we have Ũ r(t) is
continuous, non-decreasing, and Ũ r(t)≥ 0.
Now we quote a technical lemma:

Lemma A6 Let εr be a real-valued sequence such that εr→ 0 as r→ ∞, and ζ ≡
1
c̄ maxi (πi− π̄). Then,

∫ t
0 11{|W̃ r(s)−ζ |> εr}dŨ r(s) → 0 in probability, u.o.c.

Motivated by the result in Lemma A6, we will rewrite Ũ r(t) in two parts as follows:

Ũ r(t) =
∫ t

0
11{|W̃ r(s)−ζ |> ε

r}dŨ r(s)︸ ︷︷ ︸
Ũr

ε (t)

+
∫ t

0
11{|W̃ r(s)−ζ | ≤ ε

r}dŨ r(s)︸ ︷︷ ︸
Ũr

ζ
(t)

.

(A24)
Note that Ũ r

ζ
(·),Ũ r

ε (·) are nonnegative, continuous, and nondecreasing. Moreover,
Ũ r

ε (t)→ 0, as r→ ∞ in probability, u.o.c., and supt≤T |Ũ r
ζ
(t)−Ũ r(t)| → 0 in prob-

ability. Define now the process V (t) =
c
µ̂

√
σ2 + µ̂B(t), and consider the auxiliary

process R̃(t) defined as follows: R̃(t) = R̃(0)− γc
∫ t

0 R̃(s)ds+V (t)+U(t), where
U(t) is continuous and nondecreasing, U(0) = 0, and U(t) increases only when
W̃ (t) hits ζ , i.e., only when R̃(t) = π̄ + c̄ζ = maxi∈N πi ≡ π̂ . Note also that π̂ can
be regarded as the lower reflecting barrier of the limiting process of R̃(t). We later
on show that this coincides with the limit of Ũ r(t). By construction, R̃(t) has the
behavior of the hypothesized limit for Z̃r(t) specified in Theorem 1.
Let X̃(t) = R̃(t)− π̂ . Then,

X̃(t) = X̃(0)− γc
∫ t

0
[X̃(s)+ π̂]ds+V (t)+U(t)≡ ϕ(X̂(t)), (A25)

where ϕ(·) is the reflection operator ([20]) and X̂(t) is defined by X̂(t) = X̃(0)−
γc
∫ t

0 [X̃(s)+ π̂]ds+V (t).
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The remaining goal is to show that Z̃r(t) converges to R̃(t). Recall that Z̃r(t) =
Z̃r(0)−γc

∫ t
0 Z̃r(s)ds+Ṽ r(t)+Ũ r

ζ
(t)+Ũ r

ε (t), Z̃r(t)= Z̃r(0)−γc
∫ t

0 Z̃r(s)ds+Ṽ r(t)+

Ũ r
ζ
(t)+Ũ r

ε (t), and define H̃r(t) = Z̃r(t)− π̂ and its primitive process Ĥr(t) as fol-
lows: Ĥr(t) = Ĥr(0)− γc

∫ t
0 [H̃

r(s)+ π̂]ds+Ṽ r(t), and H̃r(t) = Ĥr(t)+Ũ r(t).
The key remaining element of the proof is to show that H̃r(s)⇒ X̃(t) in distribu-
tion, which will imply the weak convergence of Z̃r(t) to R̃(t). From Lemma A6
and Proposition 2, for any sequence εr > 0, s.t. εr → 0 as r → ∞, there exists a
sequence δ r > 0 where δ r ↓ 0 and r̄ large enough such that for all r > r̄, we have
P(infs≤t W̃ r(s)≥ ζ − εr) = 1−δ r. Let Ω(εr) be the set of sample paths for which
infs≤t W̃ r(s)≥ ζ − εr. Note that P(Ω(εr)) = 1−δ r→ 1 as r→ ∞.
In the sequel we will use Lemma 7 of [5]. We first observe that ∀ω ∈Ω(εr), W̃ r(t)≥
ζ − εr⇔ Z̃r(t)≥ π̂− c̄εr⇔ H̃r(t)≥−c̄εr, and, similarly, W̃ r(s)> ζ + εr implies
H̃r(s) > c̄εr. If we define Hr

1(t) = H̃r(t)+ c̄εr, Hr
2(t) = Ĥr(t)+ c̄εr, and focus on

the event ω ∈Ω(εr), then Hr
1,H

r
2,Ũ

r satisfy the following conditions:

Hr
1(t)=Hr

2(t)+Ũ r(t),Hr
1(t)≥ 0,Ũ r(·) nondecreasing; Ũ r(0)= 0,

∫ t

0
11{Hr

1(s)> 2c̄ε
r}dŨ r(s)= 0,

(A26)
where the last equation follows from a simple transformation H̃r(s) > c̄εr ⇔
Hr

1(s) > 2c̄εr. Since H̃r, Ĥr,Ũ r all are right continuous and have left limits in
[0,T ], ∀T > 0, these processes Hr

1,H
r
2,Ũ

r fit the conditions of Lemma 7 in [5].
Thus, if we define ψ(X(t)) = sup{X(s)− : 0≤ s≤ t} where X− = max(0,−X), and
ϕ(X) ≡ X −ψ(X) is the regulated process of X , we obtain from Lemma 7 of [5]
that ψ(Hr

2(t))≤ Ũ r(t)≤ ψ(Hr
2(t))+2c̄εr.

Recall that ψ(·) is nonincreasing and Lipschitz continuous with unity constant, and
Hr

2(t) = Ĥr(t)+ c̄εr. It follows that

ψ(Ĥr(t))− c̄ε
r ≤ Ũ r(t)≤ ψ(Ĥr(t))+2c̄ε

r, (A27)

which in turn implies ϕ(Ĥr(t))−2c̄εr ≤ H̃r(t)≤ ϕ(Ĥr(t))+ c̄εr.
Step 4:
Subtracting Ĥr(t) by the auxiliary process X̂(t), we obtain

Ĥr(t)− X̂(t) =−γc
∫ t

0
[H̃r(s)− X̃(s)]ds+V r(t)−V (t)+op(1),

⇒ |Ĥr(t)− X̂(t)| ≤ γc
∫ t

0
|H̃r(s)− X̃(s)|ds+ |V r(t)−V (t)+op(1)|,

where the last inequality follows from the triangle inequality. Recall that ϕ(·) is
Lipschitz continuous and let K denote the Lipschitz constant. Thus, using (A27), this
inequality can be rewritten as |Ĥr(t)− X̂(t)| ≤ γcK

∫ t
0 |Ĥr(s)− X̂(s)|ds+ |V r(t)−

V (t)+op(1)|+2γc2εrt.
From the strong approximation for V r(t), we have that for any sequence vr > 0,vr ↓
0, there exists r large enough such that
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sup
t≤T
|V r(t)−V (t)| ≤ vr, w.p. 1−θ

r, (A28)

where θ r ↓ 0 as r→ ∞. In the sequel we concentrate on sample paths in Ω(εr) for
which (A28) holds, i.e., we consider only ω ∈ Ω(εr,vr) ≡ Ω(εr)∩Ω(vr), where
Ω(vr) is the set of sample paths for which supt≤T |V r(t)−V (t)| ≤ vr. The measure
of Ω(εr,vr) is more than 1−δ r−θ r. Then,

|Ĥr(t)− X̂(t)| ≤ γcK
∫ t

0
|Ĥr(s)− X̂(s)|ds+ vr +2γc2

ε
rt ≤ (vr +2γc2

ε
rT )eγcKT ,

(A29)
where the second inequality follows from Gronwall’s inequality and the fact that
t ≤ T .
From the Lipschitz continuity of ϕ(·), (A25), and (A29), we get that |H̃r(t)−
X̃(t)| ≤ K(vr +2γc2εrT )eγcKT +2c̄εr. Let r→∞, sequences εr,vr,δ r,θ r all vanish
and therefore we conclude that

sup t≤T |H̃r(t)− X̃(t)| → 0 inprobability. (A30)

From (A30), the fact that Z̃r(t) = H̃r(t)+ π̂ , and the convergence together theorem,
it follows that Z̃r(t) converges to R̃(t), which is the desired result identified in The-
orem 1. The weak convergence of the queue length processes follows immediately
from the convergence of Z̃r(t) and the state space collapse result of Proposition 2.
ut

Proof of Proposition 3

We will follow [6] to prove this result. Let s̄ and s denote respectively the essential
upper and lower bounds of G(·)’s support. That is, G(π) = 0,∀π < s,0 ≤ G(π) <
1, ∀π ∈ (s, s̄), and G(π) = 1,∀π ≥ s̄. If the support is not bounded above, we can
simply set s̄ = ∞. We further let α(π) denote the mass probability a supplier puts
on price π .
First we observe that s ≥ π, ∀i ∈ N . To see this, if a supplier chooses π∗, his
expected payoff is at least µπ∗ −L (π∗) = Ψ ∗ = µπ. Thus, choosing any price
π < π yields an expected payoff no more than µπ < µπ = Ψ ∗, and therefore is
strictly dominated. Moreover, α(s) = 0, i.e., no supplier is expecting to be the most
expensive while placing s. We verify the latter by contradiction: Suppose α(s) >
0, and that a supplier selects s. He will become the most expensive supplier (and
therefore shares the penalty) when all other suppliers also select s, which occurs with
probability [G(s)]n−1. When this occurs, all n suppliers share the penalty equally,
and therefore the supplier’s expected payoff is

µs− 1
n
L (s)[G(s)]n−1 < µs. (A31)
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Since G(s) is strictly positive, we are subtracting a positive amount in the LHS. Now
suppose that a supplier deviates and chooses a price s− ε while other suppliers set
prices at s. Thus, his expected payoff is µ(s− ε) (without any penalty incurred).
When ε is small enough, µ(s− ε) is strictly higher than the LHS of (A31). This
implies that the supplier will always intend to undercut the price by a sufficiently
small ε .
We now define Ψi(π) as the expected payoff of supplier i if he places price π , and Ψ e

i
his equilibrium payoff. We claim that the suppliers get equal payoffs in equilibrium,
i.e., Ψ e

i = Ψ e
j = µs, ∀i, j ∈ N . The proof is as follows. Under a mixed-strategy

equilibrium, a supplier should get the same payoff from all strategies on which he
places positive probabilities. Hence Ψ e

i =Ψi(s) = µs, ∀i ∈N .
Next, we characterize the support. Suppose that α(s̄) > 0. Then transferring the
weight α(s̄) to a price just below it will be a profitable deviation. Therefore α(s̄) =
0. Given that, when a supplier places price s̄, with probability one he will be the
sole most expensive supplier and hence carries the entire market idleness. Thus, if
s̄ 6= π∗, his payoff would be

Ψi(s̄) = µ s̄−L (s̄)< µπ
∗−L (π∗) = µπ ≤ µs, (A32)

where the strict inequality follows from that π∗ is the unique maximizer of µπ −
L (π). This leads to a contradiction, since Ψ e

i = µs, ∀i ∈N . Thus, s̄ = π∗. Finally,
since

µs =Ψ
e

i =Ψi(π
∗) = µπ

∗−L (π∗) = µπ, (A33)

we conclude that s = π .
Having characterized the support, we now show that the suppliers will randomize
continuously over the entire support. We first claim that there is no point mass in
(π,π∗). Suppose this is not true. Then there exists a price π ∈ (π,π∗) such that each
supplier puts a point mass on π . Following the argument in Lemma 10 of [6], it
pays for a supplier to transfer a ε-neighborhood mass above π to a δ -neighborhood
below π , and thus this cannot be an equilibrium.
Now we show that G is strictly increasing in the entire support. If the claim is false,
there must exist an interval (π1,π2) such that G(π1) = G(π2). Since [G(π)]n−1 (i.e.,
the probability that a supplier quoting π becomes the most expensive supplier) does
not change in (π1,π2), by moving a small mass from slightly below π1 to π2, a
supplier is strictly better off. That is, the supplier charges a higher price π , with a
smaller probability of becoming the most expensive. This contradicts the assump-
tion that G(π) is an equilibrium strategy, and therefore G must be strictly increasing.
Combining all above, in a symmetric equilibrium suppliers randomize continuously
in the support. Finally, we derive the closed-form expression for G(π). Since G(π)
is strictly increasing in the entire support, π is involved in supplier i’s equilibrium
strategy. Therefore a supplier should get the same payoff for all such π’s (otherwise
he would not be willing to play the equilibrium strategy). Thus, For all π ∈ [π,π∗],

Ψ
e

i = µs =Ψi(π) = µπ−L (π)[G(π)]n−1,∀π ∈ [π, π̄∗], (A34)
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where the last equality follows from that with probability [G(π)]n−1 supplier i will
become the most expensive one. Rearranging the above equation, we obtain the
expression for G(π).
Finally, the above derivations also imply that no pure-strategy equilibrium exists,
because the formulation actually allows for probability mass in G(π). As we verify
here, there always exist profitable deviations in such a scenario. This completes the
proof. ut

Proof of Proposition 4

Given µ̂ (and other relevant parameters such as c and σ ), L (π) is a known function
and therefore ΠC is a fixed constant independent of n, the number of suppliers.

From Proposition 3, Π ∗ = nΨ ∗, where Ψ ∗ = maxπ [µπ −L (π)] = maxπ [
µ̂

n
π −

L (π)]. The function L (π) is strictly convex and positive, and therefore Ψ ∗ can be
obtained via the first-order condition. When n is sufficiently large, the maximizer

π∗ = argmaxπ [
µ̂

n
π −L (π)] is arbitrarily small. Thus, for a given number M, we

obtain that there exists a number such that π∗ < min{−M−ΠC

µ̂
,

ΠC

µ̂
} whenever

n > NM . When n > NM, the difference between the aggregate revenues under the
centralized and decentralized systems is then

|ΠC−Π
∗|=Π

C−Π
∗=Π

C−nmax
π

[
µ̂

n
π−L (π)]>Π

C−n
µ̂

n
π
∗=−µ̂π

∗+Π
C >M.

(A35)
This completes the proof. ut

Proof of Proposition 5

Let si and s̄i denote respectively the essential lower and upper bounds of Gi(·)’s
support, and αi(π) is the probability mass supplier i puts at point π . Let Ψi(π,G−i)
be the expected payoff of supplier i when he plays π and other suppliers adopt the
mixing probabilities G−i. Let Ψ e

i be his expected payoff in equilibrium.
Since quoting a price below π i is a dominated strategy for supplier i, we have si≥ π i.
Moreover, the lower bounds of supports for Gi(·)’s must be equal. If this is not the
case, a supplier with the lowest si would refuse to put any positive weight on prices
between his lower bound and the highest lower bound max j∈N s j. Combining the
above, we know that si := s≥max j∈N π j,∀i ∈N .
Now we claim that if a supplier plays s, with probability 1 he will not be the most
expensive supplier. That is, there exist i, j such that αi(s) = α j(s) = 0. If this is not
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true, then transferring some weight to a neighborhood just below s will be profitable
for some supplier.
Since at least two suppliers put zero mass at s, and every supplier may place s in
equilibrium, we have

Ψi(s,G−i) = µis−L (s)×0 = µis, (A36)

which results in Ψ e
i = µis, ∀i ∈N .

We now focus on the two-supplier case. The following lemma provides some re-
lations of π∗1 ,π

∗
2 and π1,π2, which are needed for characterizing the equilibrium

mixing probabilities.

Lemma A7 If µ1 > µ2, then π∗1 > π∗2 and π1 > π2.

We now return to the proof of Proposition 5. Note that the upper bounds of the
supports for both G1 and G2 must be the same. We argue by contradiction: If this
is not true, then we have either s̄1 > s̄2, or s̄2 > s̄1. Consider the first case. Note
that when supplier 1 places a price π ∈ (s̄2, s̄1], he will carry the entire market idle-
ness. If π∗1 < s̄1, then transferring some distribution weight in (s̄2, s̄1] downwards to
max(π∗1 , s̄2) is a profitable deviation for supplier 1. If π∗1 > s̄1 , then he would like
to transfer all the weight in (s̄2, s̄1] upwards to π∗1 . Thus s̄1 > s̄2 is impossible. Sim-
ilarly, one can show that the other case never occurs as well. Therefore s̄1 = s̄2 = s̄.
Given that there are only two suppliers, both suppliers do not put a point mass on
the common upper bound simultaneously, otherwise a mass transfer from s̄ to its
lower neighborhood will be profitable for either supplier. Thus, at most one supplier
puts probability zero on s̄. Suppose α1(s̄) = 0. Then

Ψ2(s̄,G−2) = µ2s̄−L (s̄)≤Ψ
∗

2 = µ2π2 < µ2π1 ≤ µ2s, (A37)

which contradicts the equilibrium condition. Hence, from the strict inequality in
between the extremes, α1(s̄)> 0 and consequently α2(s̄) = 0. Moreover,

Ψ1(s̄,G−1) = µ1s̄−L (s̄)≤ µ1π
∗
1 −L (π∗1 ) = µ1π1 ≤ µis =Ψ1(s,G−1), (A38)

and the only chance for equalities to hold is that s̄ = π∗1 and s = π1. This determines
the common support.
In the interior, no hole and no point mass should be placed for both suppliers, oth-
erwise one can construct a profitable weight transfer. Thus, both G1,G2 increase
continuously in [π1,π

∗
1 ). Finally, since in equilibrium a supplier should obtain the

same expected payoff at any point in [π1,π
∗
1 ], we have

Ψ1(π,G−1) = µ1π−G2(π)L (π) = µ1π1 =Ψ1(π1,G−1),∀π ∈ [π1,π
∗
1 ],

⇒ G2(π) =
µ1(π−π1)

L (π)
,∀π ∈ [π1,π

∗
1 ].

Similarly,
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Ψ2(π,G−2) = µ2π−G1(π)L (π) = µ2π1 =Ψ2(π1,G−2),∀π ∈ [π1,π
∗
1 ),

⇒ G1(π) =
µ2(π−π1)

L (π)
,∀π ∈ [π1,π

∗
1 ),

and α1(π
∗
1 ) = 1− µ2(π

∗
1 −π1)

L (π)
. This completes the proof. ut

Proof of Proposition 6

From the PS rule, we can define Π PS
i (πi,π−i) = µiπi− µi

µ̂
L (max j∈N π j) = µi[πi−

1
µ̂

L (max
j∈N

π j)] as the revenue for supplier i when other suppliers select π−i. Note

that supplier i always benefits from raising his price infinitesimally if it has not
been the highest. Thus, in equilibrium all suppliers must submit the same price. The

derivative of Π PS
i with respect to πi becomes

∂Π PS
i (πi,π−i)

∂πi
= µi[1−

1
µ̂

L
′
(max

j∈N
π j)11{πi =

max
j∈N

π j}].

Recall from Lemma 3 that πC = argmaxπ{µ̂π−L (π)} and therefore 1− 1
µ̂
L
′
(πC)=

0. Imposing symmetry and plugging π j = πC,∀ j∈N , we obtain
∂Π PS

i (πi,π−i)

∂πi
|π j=πC ,∀ j∈N =

µi

[
1− 1

µ̂
L
′
(πC)

]
= 0, where the second equality follows from the definition of

πC. Therefore, every supplier setting price πC is the symmetric equilibrium under
this sharing rule. The uniqueness follows from the strict convexity of L (·). ut

Proof of Proposition 7

Given the transfer prices {ηi j = µiµ j/(µ̂ p̄), i, j ∈ N }, supplier i’s second-order
revenue becomes

r̃PS
i (t) = µiπit + p̄σiBs,i(t)−µi p̄Ỹi(t)+ ∑

j∈N , j 6=i
η jiỸi(t)− ∑

j∈N , j 6=i
ηi jỸj(t)

= µiπit + p̄σiBs,i(t)− p̄
µi

µ̂
∑

j∈N
µ jỸj(t)

= µiπit + p̄σiBs,i(t)−µi p̄
1
c

Ũ(t),
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where we recall that Ũ(t) =
c
µ̂

∑
j∈N

µ jỸj(t). Thus, supplier i’s long-run average

second-order revenue is Ψ̃i(πi,π−i) = µiπi−µi
p̄
c E[Ũ(∞)] = µiπi−

µi

µ̂
L (max

j∈N
π j) =

Ψ
PS

i (πi,π−i). ut

Proof of Lemma 3

Since the second term in (29) is independent of the lower static prices πi, i /∈ J, at op-
timality these {πi}′s should all be equal, i.e., πi = π̂, ∀i∈N . Thus, the problem re-

duces to a single-parameter maximization problem: maxπ̂

{
µ̂π̂− p̄γ µ̂β

φ(π̂/β )

1−Φ(π̂/β )

}
.

Recall that
φ(z)

1−Φ(z)
is the hazard rate of standard normal distribution and hence it

is increasing and convex ([27, §5]).2 Thus, πC is well-defined and unique. ut

A3 Proofs of auxiliary lemmas in Sections 3 and 4

Proof of Lemma 1

Recall that using the strong approximation theorem ([14, Theorem 7]), the service
time process of supplier i can be expressed as follows:

Sr
i (t) = µ

r
i (t−Y r

i (t))+
√

rσiBs,i(t−Y r
i (t))+O(logrt), (A39)

where Bs,i is the associated Brownian motion with standard deviation σi, and Y r
i

is the corresponding idleness process. Recall that Rr
i (t) = (p̄+

πi√
r
)Sr

i (t). Thus, as
r→ ∞,

Rr
i (t)
r

=
1
r
(p̄+

πi√
r
)
[
rµi(t−Y r

i (t))+
√

rσiBs,i(t−Y r
i (t))+O(logrt)

]
→ p̄µit,

(A40)
after removing the lower-order terms. ut

Proof of Lemma 2

Recalling the expression Rr
i (t) = (p̄+ πi√

r )S
r
i (t) from Lemma 1, we have

2 We thank Ramandeep Randhawa for bringing this reference to our attention.
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1√
r
{Rr

i (t)− r p̄µit}

=
1√
r

{
(p̄+

πi√
r
)
[
µ

r
i t−µ

r
i Y r

i (t)+
√

rσiBs,i(t−Y r
i (t))+O(logrt)

]
− r p̄µit

}
=

1√
r
{
√

r[µiπit + p̄σiBs,i(t−Y r
i (t))−µi p̄Ỹ r

i (t)]

+σiπiBs,i(t−Y r
i (t))−µiπiỸ r

i (t)+O(logrt)}.

From Qr
i (t) = Qr

i (0) + Ar
i (t)− Sr

i (t −Y r
i (t)), the idleness process can be repre-

sented as Y r
i (t) = t − [Sr

i ]
−1 (Qr

i (0)+Ar
i (t)−Qr

i (t)) , where [Sr
i ]
−1 is well-defined

since Sr
i (·) is monotonically increasing. Since Ar

i (t), Qr
i (t) both converge according

to Theorem 1, the convergence Ỹ r
i (t) =

√
rY r

i (t) to the limiting process Ỹi(t) then
follows from Theorem 1 and the convergence together theorem. Moreover, since
Y r

i (t)→ 0 as r→ ∞ from the proof of Theorem 1, we get that

rr
i (t) =

1√
r
(Rr

i (t)− r p̄µit)⇒ µiπi + p̄σiBs,i(t)−µi p̄Ỹi(t), as r→ ∞. ut

Proof of Lemma A1

Our first goal is to show that the scaled arrival process Ar,m
i (t) has an upward jump

if and only if Ii(Qr,m(t)) = 1 and p̄ +
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

≤ v, where v is the

customer’s willingness to pay, where the routing indicator clearly specifies which
supplier should get a new buyer if her valuation is higher than the full price.
To this end, we shall consider two events

{ p̄+
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

≤p̄+
π j√

r
+ c

√
rQr,m

j (t)+1

rµ j
} (A41)

and

{ p̄+
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

≤ v}. (A42)

We recall the definition of Qr,m(t) and establish the following equivalence:

p̄+
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

≤p̄+
π j√

r
+ c

√
rQr,m

j (t)+1

rµ j

⇔ p̄+
πi√

r
+ c

Qr
i (

1√
r t + 1√

r m)+1

µr
i

≤p̄+
π j√

r
+ c

Qr
j(

1√
r t + 1√

r m)+1

µr
j

,

where we recall Qr,m
i (t) =

1√
r

Qr
i (

1√
r

t +
1√
r

m) and
Qr

i (
1√
r t + 1√

r m)+1

µr
i

is simply

the expected delay a buyer encounters when joining the queue i at epoch
1√
r

t +
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1√
r

m. Thus, (A43) implies that the total cost submitted by supplier i is less than that

by supplier j.

Similarly, if p̄+
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

≤ v, we obtain

p̄+
πi√

r
+ c

Qr
i (

1√
r t + 1√

r m)+1

µr
i

= p̄+
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

≤ v. (A43)

Therefore, if p̄ +
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

≤p̄ +
π j√

r
+ c

√
rQr,m

j (t)+1

rµi
, ∀ j 6= i, and

p̄ +
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

≤p̄ +
π j√

r
+ c

√
rQr,m

j (t)+1

rµi
, ∀ j < i, and p̄ +

πi√
r
+

c
√

rQr,m
i (t)+1
rµi

≤ v, then Ar
i (

1√
r

t +
1√
r

m), the arrival process routed to server i

at time epoch
1√
r

t +
1√
r

m, has an upward jump. But this implies that Ar,m
i (t) =

1√
r

[
Ar

i (
1√
r

t +
1√
r

m)−Ar
i (

1√
r

m)

]
also increases since Ar

i (
1√
r

m) is unchanged.

Therefore, the scaled arrival process Ar,m
i (t) has an upward jump if and only if

Ii(Qr,m(t)) = 1 and p̄+
πi√

r
+ c
√

rQr,m
i (t)+1
rµi

≤ v. Thus, the variation associated

with Ar,m
i (t) for a specific supplier i is upper bounded by the variation associated

with the counting process of the aggregate arrivals, and this bound applies uniformly
to all the suppliers i ∈N . Consequently, we obtain that

r max
i∈N
||Ar,m

i (t)−
∫ t

0
Λ

rIi(Qr,m(u))Jr
i (Q

r,m
i (u))du||L ≤ ||N(t)− t||Lr, (A44)

where N(t) represents the counting process of the arrivals and we have applied

0≤ r
∫ t

0
Λ

rIi(Qr,m(u))Jr
i (Q

r,m
i (u))du≤ Lr,∀t ∈ [0,L]. (A45)

Note that in the above discussions, we have applied the tie-breaking rule that the
buyer chooses the supplier with the smallest index. This is inconsequential as it is
also the buyer’s best response and thus can be sustained as an equilibrium.
We can now establish the probability bound based on the above inequality:

P
(

max
m<
√

rτ

max
i∈N
||Ar,m

i (t)−
∫ t

0
Λ

rIi(Qr,m(u))Jr
i (Q

r,m
i (u))du||L > ε

)

≤
b
√

rτc

∑
m=1

P
{
||Ar,m

i (t)−
∫ t

0
Λ

rIi(Qr,m(u))Jr
i (Q

r,m
i (u))du||L > ε

}
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≤
b
√

rτc

∑
m=1

P
{

1
r
||N(t)− t||Lr > ε

}

≤
b
√

rτc

∑
m=1

ε

L2r

≤ b
√

rτc 1
L2r

ε,

where in the third second inequality we have applied [8, Proposition 4.3].
The proof for the departure process is similar to the above argument, and therefore
we only present the major steps here. Consider the term Dr,m

i (t)− µiT
r,m

i (t). From
the definition of hydrodynamic scaling, we have

Dr,m
i (t)−µiT

r,m
i (t)

=
1√
r
[Dr

i (
1√
r

t +
1√
r

m)−Dr
i (

1√
r

m)]−µ
r
i

[
T r

i (
1√
r

t +
1√
r

m)−T r
i (

1√
r

m)

]
=

1√
r

{
Sr

i (T
r

i (
1√
r

t +
1√
r

m))−Sr
i (T

r
i (

1√
r

m))−µ
r
i T r

i (
1√
r

t +
1√
r

m)+µ
r
i T r

i (
1√
r

m)

}
=

1√
r

{
[Sr

i (T
r

i (
1√
r

t +
1√
r

m))−µ
r
i T r

i (
1√
r

t +
1√
r

m)]− [Sr
i (T

r
i (

1√
r

m))−µ
r
i T r

i (
1√
r

m)]

}
,

where Sr
i (·) is the service completion process. Therefore, The probability bound

P
{

max
m<
√

rτ

max
i∈N
||Dr,m

i (t)−µiT
r,m

i (t)||L > ε

}

≤ P

(
max

m<
√

rτ

max
i∈N

{
|| 1√

r

[
Sr

i (T
r

i (
1√
r t + 1√

r m))−µr
i T r

i (
1√
r t + 1√

r m)
]
||L

+|| 1√
r [S

r
i (T

r
i (

1√
r m))−µr

i T r
i (

1√
r m)]||L

}
> ε

)

≤
b
√

rτc

∑
m=1

∑
i∈N

P

{
1√
r ||
[
Sr

i (T
r

i (
1√
r t + 1√

r m))−µr
i T r

i (
1√
r t + 1√

r m)
]
||L

+ 1√
r ||[S

r
i (T

r
i (

1√
r m))−µr

i T r
i (

1√
r m)]||L

> ε

}

≤ nb
√

rτcC1
ε

r
,

where C1 is an appropriate constant independent of r.

Finally, we consider the imbalance of πi + c
Qr,m

i (t)
µi

and π j + c
Qr,m

j (t)

µ j
. The imbal-

ance can be expressed as

πi + c
Qr,m

i (t)
µi
−

(
π j + c

Qr,m
j (t)

µ j

)

= πi + c
1√
r Qr

i (
1√
r t + 1√

r m)

µi
−

(
π j+c

1√
r Qr

j(
1√
r t + 1√

r m)

µ j

)
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= πi +
√

rc
Qr

i (
1√
r t + 1√

r m)+1

rµi
−

(
π j +
√

rc
Qr

j(
1√
r t + 1√

r m)+1

rµ j

)
− c√

r
(

1
µi
− 1

µ j
)

=
√

r

(
p̄+

πi√
r
+ c

Qr
i (

1√
r t + 1√

r m)+1

rµi

)
−
√

r

(
p̄+

π j√
r
+ c

Qr
j(

1√
r t + 1√

r m)+1

rµ j

)

+
c√
r
(

1
µi
− 1

µ j
).

Therefore,

||πi + c
Qr,m

i (t)
µi
−

(
π j + c

Qr,m
j (t)

µ j

)
||L

≤
√

r||

(
p̄+

πi√
r
+ c

Qr
i (

1√
r t + 1√

r m)+1

rµi

)
−

(
p̄+

π j√
r
+ c

Qr
j(

1√
r t + 1√

r m)+1

rµ j

)
||L

+
c√
r
| 1
µi
− 1

µ j
|.

Note that
(

p̄+ πi√
r + c

Qr
i (

1√
r t+ 1√

r m)+1

rµi

)
−
(

p̄+ π j√
r + c

Qr
j(

1√
r t+ 1√

r m)+1

rµ j

)
is simply the

imbalance of the total cost submitted by suppliers i and j. The probability bound can
then be obtained as follows:

P

{
max

m<
√

rτ

max
i, j∈N

||
(

πi + c
Qr,m

i (t)
µi

)
−

(
π j + c

Qr,m
j (t)

µ j

)
||L > ε

}

≤ P

maxm<
√

rτ

√
r maxi, j∈N ||
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p̄+ πi√

r + c
Qr
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1√
r t+ 1√

r m)+1
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)
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(

p̄+ π j√
r + c

Qr
j(

1√
r t+ 1√

r m)+1

rµ j
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||L

> ε− c√
r |

1
µi
− 1

µ j
|


≤
b
√

rτc
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m=1

P

maxi, j∈N ||
(

p̄+ πi√
r + c

Qr
i (

1√
r t+ 1√

r m)+1

rµi

)
−
(

p̄+ π j√
r + c

Qr
j(

1√
r t+ 1√

r m)+1

rµ j

)
||L

> 1√
r

(
ε− c√
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1
µi
− 1

µ j
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
≤
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√
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1
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ε− c√
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≤ C2b
√

rτc
√

r
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ε− c√

r
| 1
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)
,

where the third inequality follows from a similar argument to bound the routing
process, and C2 is an appropriate constant that is independent of r. This bound is
arbitrarily small when r is sufficiently large and ε is small. This completes the proof.
ut
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Proof of Lemma A2

The proof is similar to that of [8, Proposition 5.2], and therefore we only discuss the
main steps. Consider first Ar,m(t). Without loss of generality, let us assume t2 > t1.
We have that

Ar,m
i (t2)−Ar,m

i (t1) =
1√
r
[Ar

i (
1√
r

t2 +
1√
r

m)−Ar
i (

1√
r

m)]− 1√
r
[Ar

i (
1√
r

t1 +
1√
r

m)−Ar
i (

1√
r

m)]

=
1√
r
[Ar

i (
1√
r

t2 +
1√
r

m)−Ar
i (

1√
r

t1 +
1√
r

m)],

and therefore

Ar,m
i (t2)−Ar,m

i (t1)=
1√
r

N

(∫ 1√
r t2+ 1√

r m

1√
r t1+ 1√

r m
Λ

rIi(Qr(t))P(v≥ min
j∈N

{
p̄+

π j√
r
+ c

Qr
j(t +m)+1

µr
j

}
)dt

)
,

(A46)
where N(·) is the counting process of a unit-rate Poisson. Note that the arrival rate is

bounded Λ rIi(Qr(t))P(v ≥ min j∈N

{
p̄+

π j√
r
+ c

Qr
j(t +m)+1

µr
j

}
) ≤ r. Therefore,

the mean of Ar,m
i (t2)−Ar,m

i (t1) is
1√
r
× r× (

1√
r

t2−
1√
r

t1) = t2− t1. This implies

that Ar,m
i (t) is nearly Lipschitz continuous with unit constant. Similarly, we can also

show that the scaled processes {Dr,m
i (t), i∈N } are also nearly Lipschitz continuous

with Lipschitz constants {µi}’s. This parallels [8, Proposition 5.2] and hence the
details are omitted.
We now consider {Qr,m

i (t), i ∈ N }. Recall that the queueing dynamics Qr
i (t) =

Qr
i (0)+Ar

i (t)−Dr
i (t),∀i ∈N , we obtain that

|Qr,m
i (t2)−Qr,m

i (t1)| = |
1√
r
[Qr

i (
1√
r

t2 +
1√
r

m)−Qr
i (

1√
r

t1 +
1√
r

m)]|

≤ 1√
r
|Ar

i (
1√
r

t2)−Ar
i (

1√
r

t1)|+
1√
r
|Dr

i (
1√
r

t2)−Dr
i (

1√
r

t1)|.

From the above discussions on Ar
i and Dr

i , {Q
r,m
i (t), i∈N } are also nearly Lipschitz

continuous with constant maxi∈N {µi}+1. The Lipschitz continuity of T r,m
i (t) and

W r,m
i (t) can be established similarly. ut

Proof of Lemma A4

Although the routing in our model depends on the queue length processes {Qr,m
i (t), i∈

N }, the Lipschitz continuity of X r,m
i from Lemma A3 and the definition of Kr lead

to this lemma immediately according to [8, Proposition 4.1]. ut
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Proof of Lemma A5

This follows from [8, Proposition 6.2]. The idea is to approximate the cluster point
X̂(·) by a sequence of {X r,m(·)}, and then take r to the infinity. Specifically, let us
consider, for example, the queue length dynamics:

Q̂i(t) = Q̂i(0)+
∫ t

0
Λ̂Ii(Q̂(u))du− D̂i(t),∀i ∈N . (A47)

We now show that this equation is indeed satisfied by the cluster point X̂(·). We first
find a sequence of {X r,m(·)} that converges to X̂(·). We then obtain

|Q̂i(t)− Q̂i(0)+
∫ t

0
Λ̂Ii(Q̂(u))du− D̂i(t)|

≤ |Q̂i(t)−Qr,m
i (t)|+ |Q̂i(0)−Qr,m

i (0)|

+|D̂i(t)−Dr,m
i (t)|+ |

∫ t

0
Ii(Q̂(u))du−

∫ t

0
Ii(Qr,m(u))du|

+|Qr,m
i (t)−Qr,m

i (0)+
∫ t

0
ΛIi(Qr,m(u))du−Dr,m

i (t)|

= |Q̂i(t)−Qr,m
i (t)|+ |Q̂i(0)−Qr,m

i (0)|+ |D̂i(t)−Dr,m
i (t)|+ |

∫ t

0
Ii(Q̂(u))du−

∫ t

0
Ii(Qr,m(u))du|.

Since Ii(·) is a continuous function, |
∫ t

0 Ii(Q̂(u))du−
∫ t

0 Ii(Qr,m(u))du| is bounded.
Moreover, all other terms are bounded by construction, and therefore |Q̂i(t)−
Q̂i(0)+

∫ t
0 Λ̂Ii(Q̂(u))du− D̂i(t)| → 0 as r→ ∞. Likewise, other fluid equations can

be verified as well. ut

Proof of Lemma A6

First we will show that there exists a constant r0 such that W̃ r(s)≥ ζ − εr in proba-
bility, ∀r > r0. The proof is by contradiction.
We let m = argmax j∈N π j to denote the supplier with the highest static price and
i /∈ argmax j∈N π j in the sequel. In the following all the inequalities refer to the
inequalities “in probability,” and we omit this indication for convenience. Suppose
W̃ r(s)< ζ − εr, then

∑
j 6=m

Q̃r
j(s)

µ j
< ζ − ε

r− Q̃r
m(s)
µm

≤ ζ − ε
r. (A48)

Now since εr is given, we can define ηr =
c

2(n−2)
ε

r > 0 and ηr ↓ 0 because εr ↓ 0.

If for all r we can find a pair i, j ∈N such that π j +
Q̃r

j(s)

µ j
≤ πi +

Q̃r
i (s)
µi
−η

r, then
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letting r→ ∞ we have found a sequence that contradicts Proposition 2. Thus from
now on we assume that

π j +
Q̃r

j(s)

µ j
> πi +

Q̃r
i (s)
µi
−η

r, ∀ j 6= i,m; i, j ∈N . (A49)

Combining Equations (A48) and (A49), we obtain

ζ − ε
r > ∑

j 6=m

Q̃r
j(s)

µ j
≥ (n−1)

Q̃r
i (s)
µi

+
1
c ∑

j 6=i,m
(πi−π j)−

n−2
c

η
r

⇒ Q̃r
i (s)
µi
≤ 1

n−1
[ζ − ε

r− 1
c ∑

j 6=i,m
(πi−π j)+

n−2
c

η
r].

The proposed cost by supplier i is upper bounded by:

πi + c
Q̃r

i (s)
µi

≤ πi +
c

n−1

{
1

c/n

[
πm−

1
n ∑

k∈N
πk

]
− ε

r− 1
c ∑

j 6=i,m
(πi−π j)+

n−2
c

η
r

}

≤ πi +
c

n−1

[
n
c

πm−
1
c ∑

k∈N
πk−

1
c ∑

j 6=i,m
(πi−π j)

]
− c

n−1

(
ε

r− n−2
c

η
r
)

By our choice of ηr, the last term is strictly negative. The other terms can be com-
bined such that

πi + c
Q̃r

i (s)
µi
≤ 1

n−1
[(n−1)πi +nπm− ∑

j∈N
π j− (n−2)πi + ∑

j 6=i,m
π j]−

c
2(n−1)

ε
r

= πm−
c

2(n−1)
ε

r.

Since the queue length can never be negative, we conclude that

πi + c
Q̃r

i (s)
µi
≤ πm + c

Q̃r
m(s)
µm

− c
2(n−1)

ε
r, (A50)

which contradicts Proposition 2 if we let r→ ∞. since costs proposed by supplier i
and m are different. Thus, W̃ r(s)≥ ζ − εr, ∀r ≥ r0.
The next thing is to show that Q̃r(s)> 0 in probability if W̃ r(s)≥ ζ + εr. We again
prove this by contradiction. Suppose that there exists i such that Q̃r

i (s) = 0. If i /∈
argmax j∈N π j, then

πm + c
Q̃r

m(s)
µm

≥ πm > πi = πi + c
Q̃r

i (s)
µi

, (A51)

which contradicts the state space collapse while r→∞. So it suffices to consider the
case Q̃r

m(s) = 0.
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Recall the definition of ηr and apply state space collapse, we have

π j +c
Q̃r

j(s)
µ j
≤ πi + c

Q̃r
i (s)
µi

+
ηr

c
,∀ j 6= m,

⇒
Q̃r

j(s)

µ j
≤ 1

c
(πi−π j)+

Q̃r
i (s)
µi

+
ηr

c
,∀ j 6= m.

Note that Q̃r
m(s) = 0 implies ζ + εr ≤ W̃ r(s) = ∑ j 6=m

Q̃r
j(s)

µ j
, and therefore

ζ +ε
r ≤ 1

c ∑
j 6=i,m

(πi−π j)+(n−1)
Q̃r

i (s)
µi

+
(n−2)

c
η

r,

⇒ Q̃r
i (s)
µi
≥ 1

n−1
[ζ − 1

c ∑
j 6=i,m

(πi−π j)]+ ε
r− (n−2)

c
η

r.

The cost proposed by supplier i is lower bounded by

πi+c
Q̃r

i (s)
µi
≥ πi+

c
n−1

[
1

c/n
πm−

1
c/n

1
n ∑

k∈N
πk−

n−2
c

πi+
1
c ∑

j 6=i,m
π j]+c(εr− (n−2)

c
η
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(A52)
After some manipulation, the above inequality can be rewritten as

πi + c
Q̃r

i (s)
µi
≥ πm +

c
2

ε
r = πm + c

Q̃r
m(s)
µm

+
c
2

ε
r, (A53)

where the last equality follows from Q̃r
m(s) = 0. This, however, contradicts Propo-

sition 2, and hence
eQr(s)> 0 if W̃ r(s)≥ ζ + εr in probability. ut

Proof of Lemma A7

Let us define Ψ ∗(µ) = maxπ {µπ−L (π)} . Consider two service rates µ1 and µ2,
and assume without loss of generality that µ1 > µ2. By definition the maximizer for
supplier with µ1 is π∗1 , i.e., Ψ ∗(µ1) = µ1π∗1 −L (π∗1 ). From the optimal condition,
we have

Ψ
∗(µ2) = max

π
{µ2π−L (π)} ≥ µ2π

∗
1 −L (π∗1 ) = µ1π

∗
1 −L (π∗1 )+π

∗
1 (µ2−µ1) =Ψ

∗(µ1)+π
∗
1 (µ2−µ1)

⇔Ψ
∗(µ2)≥Ψ

∗(µ1)+π
∗
1 (µ2−µ1),∀µ1,µ2.

Also, from the Envelope Theorem, ∂Ψ∗(µ1)
∂ µ1

= π∗1 . Note that the above inequality
holds for arbitrary pair of µ1,µ2, and hence Ψ ∗(µ) is convex in µ .
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Since Ψ ∗(µ) is convex, its derivative π∗i (µ) is increasing in µ , and therefore π∗1 ≥
π∗2 . The strict monotonicity follows immediately from the first-order condition of
maxπ {µπ−L (π)} . Moreover, π(µ)=Ψ ∗(µ)/µ can be regarded as the average of

the derivative over [0,µ], i.e.,
Ψ ∗(µ)

µ
=

1
µ

∫
µ

0

∂Ψ(v)
∂v

dv, by the strict monotonicity

of π∗(µ), it is also monotonic. Therefore, π1 := π(µ1)> π2 := π(µ2). ut


