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Abstract

We study a capacity sizing problem in a service system that is modeled as a single-class
queue with multiple servers and where customers may renege while waiting for service. A
salient feature of the model is that the mean arrival rate of work is random (in practice this is
a typical consequence of forecasting errors). The paper elucidates the impact of uncertainty on
the nature of capacity prescriptions, and relates these to well established rules-of-thumb such
as the square root safety staffing principle. We establish a simple and intuitive relationship
between the incoming load (measured in Erlangs) and the extent of uncertainty in arrival rates
(measured via the coefficient of variation) which characterizes the extent to which uncertainty
dominates stochastic variability or vice versa. In the former case it is shown that traditional
square root safety staffing logic is no longer valid, yet simple capacity prescriptions derived via
a suitable newsvendor problem, are surprisingly accurate.

1 Introduction

Background and motivation. Motivated by telephone call center applications, this paper focuses

on the general problem of capacity sizing in service systems under parameter uncertainty. In the

case of call centers, one natural manifestation of this uncertainty is prediction errors associated

with forecasted load. In the language of operations research, this implies that the arrival rates

are uncertain, which stands in contrast to the bulk of literature that assumes all model primitives

are known with certainty, and “noise” is restricted to stochastic variability in realizations; see the

literature review in section 2.

Determining appropriate processing capacity is a key decision in the management of many mod-

ern service systems. The choice of capacity level is often made to strike the “right” balance between

basic operating costs (e.g., personnel, infrastructure etc), and customer experience (e.g., waiting
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times, abandonments etc). Most academic studies attribute congestion-related effects to stochastic

variability in customer arrivals and service requirements, and this view is often echoed by practi-

tioners. As a consequence, a typical rule-of-thumb for capacity planning involves: i) setting a “base

capacity” to match mean demand, computed using arrival and service rate parameters; and ii)

augmenting that by a “safety capacity” that hedges against variability in realized arrivals/services.

To make this more concrete, consider a single class multi-server queue with infinite waiting room,

and where customers are processed according to the order of their arrival. Arrivals follow a Poisson

process with rate λ and services are exponentially distributed with rate µ. Then, the capacity

prescription alluded to above is given by C = λ/µ + β
√

λ/µ for some constant β (i.e., this is

the prescribed number of servers, ignoring integrality constraints). The second term represents the

variability hedge, and takes the familiar form of the square-root safety staffing principle which dates

back to the seminal work of Erlang (1917). Roughly speaking, since a Poisson random variable has

variance equal to its mean, then the second term above is exactly of the same order as stochastic

fluctuations in this system. The decision variable β dictates the amount of hedging, and is a result

of a “second order” optimization problem that seeks a suitable trade-off between staffing costs and

quality-of-service. This form of staffing gives rise to the so-called Quality and Efficiency Driven

(QED) regime that has been extensively studied in the literature; see the recent survey paper by

Gans, Koole and Mandelbaum (2003) for more on this regime, and the literature review in section

2 for a sample of papers, many of them quite recent, that formulate and study such problems.

The square-root-rule is predicated on precise knowledge of the mean behavior of stochastic prim-

itives, in particular, arrival and service rates. However, in most settings one encounters in practice

such key parameters must be inferred or forecasted based on available data, and hence can be quite

“noisy.” Empirical findings in recent literature have corroborated the presence of such parameter

uncertainty; see, e.g., Brown, Gans, Mandelbaum, Sakov, Shen, Zeltyn and Zhao (2005) for an

empirical study in a call-center setting. Below is an illustrative example, suggestive of this phe-

nomenon, that uses data from a moderate sized European retail banking call center. Focusing on

the time slot of 8 – 10 AM, we use 52 weeks of data to compute estimates of the mean number of

arriving calls for each day of the week in this time slot (λ̂) along with their coefficient of variation

(defined as the ratio of standard deviation to the mean, namely, CV [empirical] = σ̂λ/λ̂). Table 1

presents the estimates for the mean and coefficient of variation, along with an estimate of the latter

that assumes the underlying arrival process is Poisson (CV [Poisson] = 1/
√

λ̂). Note that the ob-

served values of coefficient of variation tend to be much greater than under the Poisson assumption.

One possible explanation for this discrepancy is the presence of ambiguity in the arrival rate itself.

This leads to the following natural question:

What is the appropriate hedge in setting capacity levels under parameter uncertainty,

and how does this relate to the square-root-rule?
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Day of Week Mean no. of arriving calls CV [empirical] (%) CV [Poisson] (%)

Mon 943 26.5 3.3

Tue 824 22.3 3.5

Wed 807 26.5 3.5

Thu 778 28.5 3.6

Fri 767 33.5 3.6

Sat 293 61.8 5.8

Sun 139 148.1 8.5

Table 1: Data from a telephone call center. Mean number of call arrivals in the time slot 8

– 10AM in 2004. CV [empirical] is a direct estimate of the coefficient of variation (in %) based on

the data, and CV [Poisson] is estimated assuming the underlying arrival process were Poisson.

A recent stream of work, initiated by Harrison and Zeevi (2005), addresses the question of ca-

pacity planning under parameter uncertainty by proposing the following model: assuming that

uncertainty effects dominate stochastic fluctuations, one can ignore the latter and formulate a

suitable newsvendor problem of capacity planning. The hedge in this case focuses on parameter

uncertainty and not variability. In section 3 we consider a widely used stylized model of a tele-

phone call center and a prototypical problem of capacity planning, and develop the aforementioned

newsvendor approximation and its solution. Our main goal is to examine the salient properties of

this solution and shed light on its relationship to the square-root safety staffing principle. (Further

discussion contrasting the present paper with the work of Harrison and Zeevi (2005) is postponed

to Section 2.)

Main findings and key qualitative insights. Our analysis gives rise to a simple rule of

thumb that identifies two regimes: an uncertainty-dominated regime where there is no tangible

benefit from a variability hedge as prescribed by the square-root rule; and a variability-dominated

regime where there may be potential benefits from introducing an additional variability hedge. In

particular, despite the crude and simple logic underlying the newsvendor formulation alluded to

above, the uncertainty hedge embodied in its solution is extremely accurate. These statements are

buttressed with analytical results as well as extensive numerical experiments.

To give a flavor of these findings, let us first explain what is meant by “extremely accurate” in

speaking of the newsvendor-based solution: if one plugs this solution into the actual system, then

the resulting performance is almost indistinguishable from the best achievable performance. (The

latter is associated with the optimal solution to the original capacity planning problem, which can

rarely be computed analytically.) The mathematical statement that underlies this observation is

perhaps even more striking. In systems with a high level of parameter uncertainty, the gap between
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the performance of the newsvendor-based solution and that of the optimal solution does not scale

up as one increases the volume of work flowing through the system. This is surprising in light of the

rather “crude” method used to derive the newsvendor-based solution, and considering that ignoring

variability effects typically results in performance that deteriorates when the arrival rate scales up:

for example, in the absence of a variability hedge the optimality gap is expected to double when

the magnitude of arrival rate quadruples (see further discussion and intuition in Section 4).

If arrival rates were known then one would expect the accuracy of the newsvendor-based solution

to deteriorate. In that case, it becomes optimal to operate the system in the QED regime where the

square-root “safety capacity” corrections become pertinent. Indeed, we analytically prove that if

the coefficient of variation of the (random) arrival rate Λ is larger than a threshold proportional to
√

1/EΛ, as is the case for the example in Table 1, then we are in the uncertainty-dominated regime.

There we show that the performance of the newsvendor-based prescription cannot be improved

upon in any significant manner. If the coefficient of variation is smaller than that threshold, then

the optimality gap characterizing the newsvendor-based solution is proportional to
√

EΛ, the square

root of the mean arrival rate. This is the variability-dominated regime mentioned above, and it

is here that the square-root “safety capacity” corrections may contribute to further improving

performance.

Remainder of the paper. The next section surveys related literature. Section 3 describes the

capacity planning problem and the proposed solution. The main findings of the paper are com-

municated in two sections: numerical results that illustrate the key insights, as well as underlying

intuition, are presented in section 4; and the theoretical foundations are derived in section 5. The

robustness of the main findings are presented in section 6. Some concluding remarks and future

research directions are covered in section 7. Proofs are relegated to Appendix A and B. Further

numerical results are presented in Appendix C.

2 Literature Review

Origins and scope of the square-root rule. As alluded to earlier, the bulk of the literature on

capacity planning in service operations focuses on the (more traditional) case where all pertinent

system parameters are fixed and given. This line of work dates back to Erlang (1917), who was the

first to suggest the square-root safety capacity rule in the context of his study of circuit-switched

telephony. Much of the literature relevant to the present paper is more recent and by and large

motivated by telephone call centers, where capacity planning translates into staffing decisions.

Good recent surveys are contained in Gans et al. (2003) and Aksin, Armony and Mehrotra (2007).

The variability hedge interpretation and intuition underlying the square-root rule have already
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been discussed briefly in section 1; see Kolesar and Green (1998) for further discussion in the

context of a constraint satisfaction capacity planning problem. Halfin and Whitt (1981) provide

a more rigorous foundation that builds on a diffusion approximation. Their work was the first

to formally identify and characterize the QED operating regime in the context of an M/M/N

queue; for this reason it is also referred to as the Halfin-Whitt regime. The square-root rule has

since been extended and applied in a variety of settings that go beyond the basic Erlang formulas.

Representative examples include Jennings, Mandelbaum, Massey and Whitt (1996) that treat the

case of time-varying arrival rates and Garnett, Mandelbaum and Reiman (2002) that deals with the

same model as Halfin and Whitt (1981) with the addition of customers reneging according to an

exponential patience distribution (i.e., the M/M/N +M model). Extensions to the case of general

reneging distributions are treated in Mandelbaum and Zeltyn (2009) and Bassamboo and Randhawa

(2009). The paper by Borst, Mandelbaum and Reiman (2004) is among the first to consider an

optimization problem that seeks to balance personnel costs and customer delays. Gurvich, Armony

and Mandelbaum (2008) covers the case of multiple customer classes and therefore deals with both

staffing and dynamic assignment of incoming work to servers; see also Gurvich and Whitt (2009).

Gans et al. (2003, Section 4.1.1) provides a detailed discussion of the square-root safety rule in the

context of call center staffing, and further pointers to related literature.

Identifying and modeling parameter uncertainty. Whitt (1999) is among the first papers

to flag the issue of arrival rate (demand) uncertainty. As indicated earlier, in many service opera-

tions it is natural to view forecast errors as a proxy for this uncertainty; see, e.g., Jongbloed and

Koole (2001) who propose a method to compute forecast intervals and demonstrate risks of using

point estimates. Chen and Henderson (2001) provide empirical evidence of uncertainty in arrival

rates and discuss modeling implications. Using empirical data from a banking call center, Brown

et al. (2005) execute a detailed empirical study that, among other things, covers also arrival rate

properties. Steckley, Henderson and Mehrotra (2009) investigate the presence of forecast errors

in service systems and provide empirical evidence that these errors can dominate fluctuations due

to stochastic variability. Avramidis, Deslauriers and L’Ecuyer (2004) suggest stochastic models to

capture this uncertainty and test these using empirical data. The recent work of Maman (2009)

also finds empirical evidence of this uncertainty in both call center applications as well as health

care operations, and discusses performance implications (see also further discussion in section 5).

The results displayed in Table 1 are consistent with most of the empirical observations made in the

aforementioned papers.

Capacity planning under parameter uncertainty and relations to the present paper.

Despite the empirical evidence of potentially significant “noise” in arrival rate estimates, the stream

of literature that deals with capacity planning in such settings, including some of the work cited

in the previous paragraph, is in a relatively nascent stage. Harrison and Zeevi (2005) is among the
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first studies to propose a staffing method in queueing models with multiple customer classes and

server pools. Their approach is based on reducing the original capacity optimization problem to a

multi-dimensional newsvendor problem (see also Robbins and Harrison (2007) for a computational

oriented study). The logic underlying this reduction germinates in viewing stochastic variability as a

“lower order” effect in comparison with parameter (demand) uncertainty. The method can therefore

be viewed as crafting a stochastic fluid model of the original stochastic network. Bassamboo,

Harrison and Zeevi (2006) and Bassamboo and Zeevi (2009) are examples of subsequent work that

treat a joint staffing and dynamic call assignment problem, and use historical call records to create

a data-driven implementation of the basic method, respectively.

The present paper is most closely connected to the work of Harrison and Zeevi (2005). In

particular, the newsvendor formulation and its fractile solution that we discuss in the next section

are special cases of that studied in Harrison and Zeevi (2005) which allows for temporal variation

in arrival rates, and treats general parallel server-type network models. The purpose of our present

paper is to conduct a more detailed investigation of the efficacy of the newsvendor prescription of

Harrison and Zeevi (2005). To that end, we focus on a more restricted queueing model, namely one

with only a single customer class and single server pool, trading off generality for tractability. In

particular, unlike Harrison and Zeevi (2005) which centers almost exclusively around a numerical

study, our work establishes theoretical properties of the newsvendor-based prescription, which in

turn allows us to elucidate its connection with the extant square-root rule.

There are two other studies that focus on the single-class/single-pool setting and are related to

our work. The first is that of Whitt (2006b) that discusses staffing levels in a call center subject

to arrival rate uncertainty and absenteeism of servers. The focus of that paper is primarily on

numerical investigation of a fluid-based prescription, building on Whitt (2006a) that develops fluid

approximations for a G/GI/s+GI queue. The other reference is the M.S. thesis of Maman (2009)

that is concerned with demand uncertainty and its implications in call centers and healthcare

operations. Her work provides further empirical evidence of the “over-dispersion” observed in

actual arrival patterns relative to a Poisson distribution, and suggests adjusting the square-root

rule to a power that is greater than a 1/2 based on the excess variability one observes in the data.

The main thrust of her work is quite distinct from ours: it does not focus on the newsvendor-based

prescription and the study of its theoretical properties, but rather seeks to directly adjust the

existing square-root rule to account for added variability. (It will be conducive to postpone further

comments on this work to section 5, at which point our main results have been presented.)
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3 The Capacity Planning Problem and An Approximate Solution

Problem formulation. We consider customers that arrive to a service system with b statistically

identical servers. Customer arrivals are modeled using a doubly stochastic Poisson process: the

arrival rate Λ is itself a random variable with distribution F and mean denoted by λ; and conditioned

on Λ, the arrival process is a homogenous Poisson process with that rate. Customers have service

requirements that are i.i.d. exponential random variables, independent of the arrival process and

rate, with mean 1/µ. Customers are processed in the order in which they arrive and servers do

not idle when there is work waiting to be processed. When all servers are busy, arriving customers

wait in an infinite capacity buffer. A customer may abandon the system while waiting for the

commencement of service. Specifically, each customer is endowed with an exponentially distributed

“impatience” random variable τ that has mean 1/γ; the customer will abandon the system when

his waiting time in queue reaches a total of τ time units. This description corresponds to an

M/M/b + M queueing model, where the arrival rate is itself random.

There is a cost associated with customers waiting in queue, as well as with each abandoning

customer. The holding cost is incurred at a rate h per customer per unit time spent waiting in

queue, while the cost of abandonment is p per customer. The system manager decides the capacity

level b, i.e., the number of servers, to minimize the system cost. The cost of staffing each server

is c per unit time. (For convenience we normalize the length of the planning horizon to unity.)

Denoting the number of customers in the system in steady state by the random variable N , the

total expected customer cost in steady state is given by (h + pγ)E[N − b]+, where E denotes the

expectation operator. Thus, the optimization problem is: find b ≥ 0 that minimizes

Π(b) := (h + pγ)E[N − b]+ + cb. (1)

In the above, and in what follows, we ignore integrality constraints, and assume for simplicity that

b is real-valued. Let b∗ denote the minimizer and Π∗ := Π(b∗) the corresponding minimum cost.†

An approximate solution. Despite apparent simplicity, it is not possible to get an exact so-

lution to (1); this stems from the difficulty in characterizing the distribution of N , which depends

intricately on the capacity level b. While one can clearly solve this optimization problem numeri-

cally, we will propose a different approach based on an approximation of the objective function in

(1). Following Harrison and Zeevi (2005), the main idea is to ignore stochastic variability in cus-

tomer arrivals and service requirements, and instead focus on the uncertainty in the arrival rate. In

this relaxation, customers arrive in the form of fluid at the rate of Λ per unit time. The processing

capacity is fixed at µb. Thus, the difference in these two rates should equal the rate of customer

abandonment. Thus the approximate rate of abandonment is E[Λ − µb]+. An exact expression

†Noting that E[N − b]+ is convex, we obtain that Π is a convex function, and thus has a well defined minimizer.
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for the rate of abandonment is obtained by multiplying the expected steady state queue-length by

the abandonment rate γ, and yields γE[N − b]+. Equating these two expressions, we obtain the

approximation for the expected steady-state queue-length

E[N − b]+ ≈ 1

γ
E[Λ − µb]+.

Using this approximation, the optimization problem (1) reduces to:

min
b≥0

{

Π̄(b) := (p + h/γ)E[Λ − µb]+ + cb
}

. (2)

This is an instance of the familiar newsvendor problem: optimize over processing capacity bµ

(where b is the decision variable), with a unit capacity cost of c/µ and a unit sales price of p+h/γ.

Thus, we obtain the newsvendor-based prescription as the standard critical fractile solution

b̄ =
1

µ
F̄−1

(

c/µ

p + h/γ

)

, (3)

where F is the cumulative distribution function of Λ, F̄ := 1 − F denotes the corresponding tail

distribution function, and F̄−1 denotes its generalized inverse, i.e., F̄−1(y) = inf{x ∈ R+ : F̄ (x) ≤
y}. Note that if the cost of a unit of capacity is prohibitively high, in particular higher than the

unit penalty charge (c/µ > p+h/γ), then it follows that the optimal solution to (2) does not install

any capacity. This is consistent with (3).

Discussion and main objectives. The prescription defined above was originally proposed

by Harrison and Zeevi (2005) (see also Whitt (2006b)). Our main objective in what follows is to

elucidate salient features of this prescription, draw connections with the extant square-root safety

staffing principle, and extract more general qualitative insights that pertain to the management of

service operations under parameter uncertainty. Before proceeding to uncover some of the rather

surprising characteristics of the newsvendor-based prescription, it is worth pointing out that this

approach is predicated on logic that is quite different from most antecedent work in the area of

queueing and service systems. In particular, the critical fractile solution embodies within it an

uncertainty hedge that is proportional to the standard deviation of the arrival rate distribution F

(see Proposition 2 in section 5). In contrast, the more traditional variability hedge, which underlies

the square-root rule, prescribes a safety capacity which is, roughly speaking, proportional to the

standard deviation of stochastic fluctuations in the arrival process.

4 Main Results: Numerical Illustration and Intuition

In this section we highlight the essence of our main findings via illustrative numerical examples,

and discuss the intuitive foundations that underlie them. Section 5 will then formalize this and

provide theoretical justification.
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4.1 Illustration of the main findings

In all numerical examples considered in this section, we take the cost parameters to be c = 1/3

and p = h = 1, and set the mean service time to 1 and the mean impatience time to 1/3. In this

manner the aggregate penalty cost p + h/γ and the cost of capacity ensure a non-trivial solution.

(Appendix C provides further evidence via more extensive numerical results, which have been cut

out of the main text for brevity.)

Performance of the newsvendor-based prescription: Deterministic versus uncertain

arrival rates. We consider two numerical examples. In the first, the arrival rates Λ follow a

uniform distribution, and for illustrative purposes we focus on three cases: U [25, 50], U [50, 100],

and U [200, 400]. The realization of this random variable will then govern the mean of the arrival

(Poisson) process. The results for this setting are summarized in Table 2.

Arrival rate Optimal solution Prescription Difference

distribution b∗ Π∗ b̄ Π(b̄) |b∗ − b̄| Π(b̄) − Π∗ (Π(b̄)−Π∗)
Π∗

U[25,50] 46 17.34 43 17.49 3 0.15 0.9%

U[50,100] 89 33.13 87 33.20 2 0.07 0.2%

U[200,400] 351 127.08 350 127.08 1 0.007 0.006%

Table 2: Performance of the newsvendor-based prescription: uncertain arrival rates.

Comparison of the optimal (b∗) and prescribed (b̄) capacity levels along with their respective per-

formance. Arrival rates follow a uniform distribution with a coefficient of variation of 19.2%.

It will be useful to contrast these results with a more traditional setting where the arrival rate is

deterministic, and this is summarized in Table 3. Specifically, we consider cases where the arrival

rate deterministically takes the values 37.5, 75, and 300, i.e., the arrival rate is set to be the mean

of the uniform distributions considered above.

Arrival rate Optimal solution Prescription Difference

λ b∗ Π∗ b̄ Π(b̄) |b∗ − b̄| Π(b̄) − Π∗ (Π(b̄)−Π∗)
Π∗

37.5 42 15.94 37 17.67 5 1.73 10.9%

75 83 29.64 75 31.60 8 1.96 6.6%

300 316 109.01 300 112.4 16 3.39 3.1%

Table 3: Performance of the newsvendor-based prescription: deterministic arrival rates.

Comparison of the optimal (b∗) and prescribed (b̄) capacity levels along with their respective per-

formance. Arrival rates are deterministic.
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Before discussing the results in these tables, let us first briefly explain the computational details.

For the case with uncertainty, our proposed newsvendor prescription calls for the computation of b̄

given in (3), which is straightforward (for the case without uncertainty b̄ = λ/µ). The performance

of this solution, Π(b̄), is then assessed using the characterization of the steady-state distribution in

the underlying Markov chain, conditional on the arrival rate. The expected penalty costs are then

computed using numerical integration. The optimal capacity b∗ which minimizes Π(·) in (1) was

computed numerically by evaluating the objective function for a large set of capacity levels, and

utilizing the convexity of the objective function. This also gives the best achievable performance,

Π∗ = Π(b∗). Deterministic arrival rates are clearly a special case of the above.

What stands out in Table 2 is the remarkable accuracy and performance of the newsvendor-

based capacity prescription. In particular, the capacity levels prescribed by our newsvendor logic

(b̄) are extremely close to the optimum (b∗) and the difference in performance is always below 0.15,

i.e., a 0.9% optimality gap. The results presented in the table are in fact indicative of a more

general phenomenon; we will shortly provide an intuitive explanation, which is then made rigorous

in section 5.

In contrast, the results in Table 3, present an optimality gap that is increasing as the magnitude

of the arrival rate increases. In particular, when the arrival rate quadruples from 75 to 300, the

corresponding optimality gap is seen to approximately double. Moreover, the difference between

the optimal capacity level b∗ and the newsvendor-based prescription b̄ seems to diverge as well as

the volume of arrivals increases. Specifically, the optimal capacity level is consistently larger than

b̄; the difference β := b∗− b̄ can be identified as the safety capacity, stemming from the “variability

hedge” alluded to in section 1. A more careful look at these differences reveals that they are roughly

equal to square-root the arrival rate (i.e., β ≈ 1 ·
√

λ). This is exactly what one would expect based

on the square-root safety staffing rule, which is applicable in the setting of deterministic arrival

rates: the base capacity b̄ is augmented by a safety capacity that is proportional to
√

λ.

4.2 Intuition

To build intuition, it will be convenient to restrict attention in this section to the case where the

abandonment rate γ equals the service rate µ, and the cost of queueing and abandonments h+pγ is

normalized to unity. (Our main theoretical results will make this intuition rigorous for the general

case.)

Connection with the square-root rule. With the above choice of parameters, the number

of customers in the system is identical to that in an infinite server queue with service rate µ.

Consider first the case where the arrival rate is deterministic, i.e., Λ = λ. The steady-state distri-

bution of the number-in-system is then Poisson with mean λ/µ, and the expected queue-length is
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E[Poisson(λ/µ)−b]+. Using the normal approximation for a Poisson distribution (see, e.g., Kolesar

and Green (1998) for a similar application) we get the following expression for the cost of a capacity

level b:

Π(b) ≈ E[Normal(λ/µ, λ/µ) − b]+

= (λ/µ − b)+ + K
√

λ/µ exp

(

−(λ/µ − b)2

2(λ/µ)

)

+ cb,
(4)

which follows by taking the expectation of the truncated normal distribution. Here K is a finite

positive constant whose exact value is not pertinent to the arguments below.

Given the above, we have that b̄ = λ/µ. Let β = b− b̄ denote the corresponding safety capacity.

Then, optimizing (4) over b is equivalent to optimizing

−min{β, 0} + K
√

λ/µ exp

(

− β2

2(λ/µ)

)

+ cβ,

over β, which yields β∗ ≈ C1

√

λ/µ, where the constant C1 can be solved for explicitly and expressed

in terms of K and c; we omit the details. Thus, the optimal capacity satisfies b∗ ≈ b̄ + C1

√

λ/µ.

It follows that

Π(b∗) ≈ cλ/µ + C2

√

λ/µ

= Π(b̄) − C3

√

λ/µ,

for positive constants C2, C3 that can be explicitly identified. The first term on the right-hand-side

is the performance of the newsvendor-based prescription b̄. Thus, the above provides a simple

derivation of the square-root rule and its performance: both safety capacity and the gap in perfor-

mance, namely Π(b̄)−Π(b∗), grow proportionally to
√

λ/µ, i.e., the square-root of the system load

measured in Erlangs. This is one of the main observations present in Table 3.

Performance of the newsvendor-based prescription. We now turn to the case where the

arrival rate Λ is a random variable. Returning to (4), and using the tower property of conditional

expectations, we arrive at

Π(b) ≈ cb + E[Λ/µ − b]+ + KE

[

√

Λ/µ exp

(

−(Λ/µ − b)2

2(Λ/µ)

)]

(5)

= Π̄(b) + KE

[

√

Λ/µ exp

(

−(Λ/µ − b)2

2(Λ/µ)

)]

,

where the expectation above is with respect to Λ. The sum of the first two terms on the right-

hand-side of (5) is exactly the objective function in our proposed newsvendor problem, and the

capacity choice that optimizes this sum is exactly b̄, the newsvendor-based prescription. Hence, the

performance of b̄ is directly linked to the accuracy of the proposed newsvendor objective function
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Π̄(·) vis-à-vis the actual objective function Π(·). The accuracy gap can therefore be expressed as

follows:

∆(b) := Π(b) − Π̄(b)

≈ KE

[

√

Λ/µ exp

(

−(Λ/µ − b)2

2(Λ/µ)

)]

. (6)

The results given in Table 2 indicate that the above accuracy gap is very small, and in particular

does not grow as the mean arrival volume grows. To see how this follows from (6), note that for any

fixed capacity level b, the uncertainty in the arrival rate implies that Λ/µ will never exactly equal

b. In particular, when it is significantly above/below b, corresponding to overloaded/underloaded

scenarios, the accuracy gap ∆(b) will be dominated by the exponentially decaying term on the right-

hand-side of (6). The critically loaded case, i.e., when realizations of Λ fall in “close proximity”

to b, only occurs with “low” probability. Taking expectations, it then follows that ∆(b) remains

bounded as the mean demand level increases. Finally, since the approximation error introduced

by using the newsvendor model in lieu of the original performance function is clearly “negligible”

(with regard to its dependence on mean arrival rate), it follows that the minimizer of Π(b), namely

b∗, is essentially obtained by minimizing the newsvendor-part of the right-hand-side of (5). This

explains why b∗ and b̄ are almost indistinguishable in the results displayed in Table 2, and indicates

that square-root staffing corrections to b̄ will have barely noticeable impact on performance.

4.3 What happens under moderate uncertainty?

The results discussed above explain the performance of the newsvendor-based solution in the case

where uncertainty is “dominant” relative to variability. This raises the question of what happens

in the case where arrival rate uncertainty is more “modest.”

To investigate this further, we perform another numerical experiment, in which we vary the level

of uncertainty in the arrival rate and study the performance of the newsvendor-based prescription.

The choice of parameters is identical to previous examples, only here we select several uniform

distributions that reflect decreasing levels of uncertainty: this is implemented by shrinking their

support. The results are displayed in Table 4. Note that as the uncertainty in the arrival rate

decreases, the optimality gap associated with the newsvendor-based prescription increases. Never-

theless, the optimality gap is still seen to be quite small for cases where the coefficient of variation

exceeds 5%.

Referring to (6), this performance can be seen to depend on two system measures: the amount

of uncertainty in the arrival rate relative to the mean, and the offered load. The first measure is

the coefficient of variation of the arrival rate CV , where CV = σ/λ, with λ = EΛ denoting the

mean arrival rate and σ the standard deviation. The second measure is the offered load given by
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Arrival rate Optimal solution Prescription Difference

Distribution CV (%) b∗ Π∗ b̄ Π(b̄) |b∗ − b̄| Π(b̄) − Π∗ (Π(b̄)−Π∗)
Π∗

Λ ∼ U[0,300] 57.73 224 88.34 225 88.34 1 0 0%

Λ ∼ U[125,175] 9.62 165 59.06 162 59.16 3 0.10 0.2%

Λ ∼ U[135,165] 5.77 162 57.40 157 57.78 5 0.38 0.7%

Λ ∼ U[140,160] 3.85 162 56.78 155 57.42 7 0.64 1.1%

Λ ∼ U[145,155] 1.92 161 56.40 152 57.73 9 1.33 2.4%

Λ = 150 0 161 56.26 150 58.25 11 1.99 3.5%

Table 4: Performance of the newsvendor-based prescription: impact of uncertainty

magnitude. Comparison of the optimal (b∗) and prescribed (b̄) capacity levels, along with their

respective performance.

E = λ/µ Erlangs. Notice that if the CV is on the order of 1/
√
E =

√

µ/λ, then the third term on

the right-hand-side of (5) behaves essentially as if the arrival rate were deterministic: the accuracy

gap is then anticipated to be proportional to the square-root of the load.

Main qualitative insight. The above results suggest the following rule of thumb. If the

coefficient of variation of the arrival rate has larger magnitude than 1/
√
E , then the newsvendor-

based prescription (3) has a very accurate performance. Square-root safety capacity corrections are

anticipated to offer limited improvements here. In the other case, where the coefficient of variation

of the arrival rate is of smaller magnitude than 1/
√
E , one may benefit from refining (3) using a

square-root staffing approach. (Note that in Table 4, we have E = 150, and hence 1/
√
E ≈ 8%.)

We remark that arrival rate uncertainty, and the coefficient of variation, are in many cases a

consequence of forecasting methods: for example, uncertainty corresponds naturally to prediction

confidence intervals.

5 Main Results: Theoretical Foundations

Preliminaries. As described earlier, we consider a system with arrivals that follow a doubly

stochastic (Poisson) process with constant and random rate Λ such that λ := EΛ > 0, and standard

deviation σλ < ∞. Our goal is to study the accuracy of the prescription (3), and we carry this out

in a regime where the mean arrival rate λ is large. (This is characteristic of many modern service

operations, given considerations of economies-of-scale.) To this end, we index various quantities

with a subscript λ, for example, the distribution of the arrival rate will be denoted Fλ, its coefficient

of variation CVλ = σλ/λ and the offered load Eλ = λ/µ. The corresponding optimization problem
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is: choose b ≥ 0 to minimize

Πλ(b) := (h + pγ)E[Nλ − b]+ + cb, (7)

where Nλ denotes the number of customers in system in steady-state. We denote the optimal

value of the objective function by Π∗
λ. The newsvendor-based capacity prescription is given by the

solution to (7), namely,

b̄λ =
1

µ
F̄−1

λ

(

c/µ

p + h/γ

)

. (8)

For ease of exposition in the foreground of the paper, we make the following technical assumption

on the arrival rates. (Appendix A contains an extension of our main theoretical results that are

derived under a more general yet slightly less eye pleasing condition.)

Assumption 1. The arrival rate for the system indexed by λ can be expressed as Λ = λ + σλX,

where X is a random variable with zero mean, unit variance, and a bounded density function.

To further ease notation in the front matter, it will be useful to define the following convention

which, among other things, allows us to suppress wherever possible the fact that we are dealing

with sequences indexed by λ (the statements and proofs given in Appendix A and B will be more

explicit and make no attempt to obscure this fact). Given any two non-negative finite-valued real

number sequences {uλ}, {vλ}, we say that uλ ≫ vλ if uλ/vλ increases without bound as λ → ∞.

We say that a sequence {uλ} is bounded away from zero if lim infλ→∞ uλ > 0. We write uλ = O(vλ)

to mean uλ/vλ is bounded (i.e., lim supλ→∞ uλ/vλ < ∞). Writing uλ = O(1) simply means that

uλ is bounded as λ → ∞. Finally, we write uλ ≍ vλ if uλ/vλ is bounded from above and away from

zero, that is, 0 < lim infλ→∞ uλ/vλ ≤ lim supλ→∞ uλ/vλ < ∞.

Performance of the newsvendor-based prescription: deterministic arrival rates. We

investigate the performance of the prescription (8) and how it is impacted by the interplay between

arrival rate uncertainty and stochastic variability. As a baseline, we begin with the deterministic

case that has been widely studied in the literature. In this case, the prescription equals λ/µ, i.e.,

the capacity is set to be the offered load.

Proposition 1 (Deterministic baseline case). If the arrival rate is deterministic, i.e., CVλ = 0,

the capacity level b̄λ = λ/µ is O(
√
Eλ)-optimal. That is,

Πλ(b̄λ) = Π∗
λ + O(

√

Eλ).

Proposition 1 characterizes the effects of stochastic variability and is consistent with the vast

literature on capacity planning in queueing systems with deterministic arrival rates. This result

states that for the deterministic case, the newsvendor prescription, which sets the capacity exactly

equal to the offered load, has an optimality gap proportional to the square-root of the offered load
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measured in Erlangs. That is, as the arrival rate increases the optimality gap increases proportional

to the square-root of the arrival rate. For example, if the arrival rate roughly quadruples, the opti-

mality gap should roughly double in magnitude. This behavior is consistent with the observations

in Table 3.

Performance of the newsvendor-based prescription: uncertainty versus variability.

Having established the deterministic baseline case, we now turn to a setting where there is un-

certainty in the arrival rates, and study how this affects the performance of the newsvendor pre-

scription. The following theorem, which is the main result of the paper, precisely characterizes the

interaction between uncertainty and stochastic variability.

Theorem 1 (Uncertainty versus stochastic variability).

(a) (Uncertainty-dominated regime.) If the coefficient of variation of the arrival rate satisfies

CVλ ≫ 1/
√
Eλ, then the newsvendor prescription (8) is O(1/CVλ)−optimal. That is,

Πλ(b̄λ) = Π∗
λ + O(1/CVλ).

(b) (Variability-dominated regime.) If the coefficient of variation of the arrival rate satisfies

CVλ ≪ 1/
√
Eλ, then the newsvendor prescription (8) is O(

√
Eλ)−optimal. That is,

Πλ(b̄λ) = Π∗
λ + O(

√

Eλ).

(c) If the coefficient of variation of the arrival rate satisfies CVλ ≍ 1/
√
Eλ (i.e., variability and

uncertainty are balanced), then the newsvendor prescription (8) is O(
√
Eλ)−optimal. That

is, Πλ(b̄λ) = Π∗
λ + O(

√
Eλ).

Parts (a) and (b) above characterize two very different operating modes: the former is char-

acteristic of systems in which mean demand forecasting involves errors that dominate stochastic

variability; the latter case corresponds to systems where prediction accuracy is quite sharp, and

hence the dominant effect is stochastic variability. Regime (c) is one where both effects are com-

parable in magnitude.

The performance accuracy of the newsvendor-based prescription in the variability dominated

regime is similar to what one sees in the absence of uncertainty, i.e., the case studied in Proposi-

tion 1. When uncertainty dominates, the optimality gap is proportional to the reciprocal of the

coefficient of variation. This makes the prescription more accurate compared to the case studied in

Proposition 1. In other words, arrival rate uncertainty improves the performance of the newsvendor-

based prescription! The intuition has already been spelled out in the previous section, though in

a simpler and more restricted setting: the optimality gap is bounded by a term similar to (6),
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thus for any realized arrival rate there will be an imbalance between capacity and demand. This

implies that stochastic fluctuations are secondary in their effect on costs, and hence the newsvendor

prescription has a cost that is within O(1/CVλ) of optimal. The proof of the theorem makes this

intuition rigorous at the level of generality studied in this section.

Best case performance of the newsvendor-based prescription: O(1)− optimality. The

above discussion suggests that the newsvendor prescription becomes progressively more accurate,

in terms of performance, as the arrival rate tends to be more uncertain. Pushing this logic to the

extreme, when the coefficient of variation of the arrival rate is approximately a constant, i.e., it

does not depend on the volume of work, we expect the optimality gap to be bounded regardless of

the volume of work flowing through the system. The following result makes this precise.

Theorem 2 (O(1)−optimality). If the coefficient of variation of the arrival rate is bounded away

from zero, then the newsvendor prescription (8) is O(1)−optimal. That is,

Πλ(b̄λ) = Π∗
λ + O(1).

This type of accuracy and strong notion of optimality is somewhat unexpected given the fairly

crude nature of the newsvendor-based logic. To understand what is driving this order-1 accuracy,

the reader should refer back to the previous section. Recapping the key ideas, note that for any

fixed capacity level the realized arrival rate will result in the system being either: underloaded

(offered load lower than capacity); overloaded (offered load exceeding capacity); or critically loaded

(offered load approximately equal to capacity). In the underloaded and overloaded cases, stochastic

fluctuations become secondary effects: these are precisely the settings where the exponential term

in (6) dominates. (See also Bassamboo and Randhawa (2009) for a similar observation in overloaded

M/M/N + G systems with deterministic arrival rates.) The critically loaded cases will result in

degraded performance, but under Assumption 1 for any reasonable uncertainty and sufficiently large

λ, this occurs with low probability. This is the key observation explaining the remarkably accurate

performance of the newsvendor prescription. In contrast, in cases where the arrival rate can be

predicted with high accuracy, then, roughly speaking, for almost all realizations of the arrival rate

the system is critically loaded and Proposition 1 applies; this is the variability-dominated regime.

Interpretation of the newsvendor prescription and relation to the square-root rule.

The newsvendor-based prescription can be thought of as consisting of a component catering to the

mean demand or offered load Eλ, and a safety capacity component to hedge against uncertainty.

This decomposition is made precise in the following result.

Proposition 2 (Newsvendor prescription decomposed into base and safety capacities).

If the newsvendor-based capacity prescription b̄λ in (8) is bounded away from zero, then

b̄λ = Eλ + O (EλCVλ) .

16



This result shows that the capacity prescription consists of a base capacity equal to the offered

load Eλ, and a safety capacity that is proportional to EλCVλ, i.e., the product of the offered load

and the coefficient of variation of the arrival rate (which equals σλ/µ). As an illustration, consider

the case where the standard deviation of the arrival rate is of the form λα for 0 < α < 1, that is,

the arrival rate can be expressed as follows: Λ = λ + λαX. In this case, the capacity prescription

(8) equals Eλ + O(λα). This should be contrasted with conventional square-root staffing methods

which prescribe investing in a base capacity level equal to the offered load and a safety capacity

that is proportional to the square-root of the offered load. Clearly when α > 1/2, the uncertainty

hedge dominates the safety capacity considerations. Recent work of Maman (2009, p. 28) studies

such models of arrival rate uncertainty and analyzes capacity levels of the form λ +O(λα), looking

at their impact on expected queue-lengths, probability of waiting and other related performance

indicators (though it does not study any capacity optimization problem). That work also finds

empirical support for the case of α > 1/2; what we refer to as the uncertainty-dominated regime.

Main qualitative insight revisited. Theorem 1 provides justification for the rule of thumb

described in the previous section: for a given system compute the coefficient of variation of the

arrival rate and compare it to the reciprocal of the square-root of the mean load (measured in

Erlangs). In the uncertainty-dominated regime, where the coefficient of variation dominates, the

newsvendor based prescription is guaranteed to have an excellent performance. In the opposite case,

i.e., in the variability-dominated regimes, the newsvendor prescription still performs reasonably well

(see numerical results in previous section), but it is here that extra safety capacity may improve

performance further by suitably hedging stochastic variability.

6 Robustness of Results

The goal in this section is to establish the robustness of the results derived thus far. In particular,

we will develop bounds on how much one can deviate from the newsvendor capacity prescription

without any significant loss in performance. Then, we discuss how the newsvendor-based approach

can be applied to systems with general service and abandonment distributions, and illustrate its

performance using numerical examples.

6.1 Sensitivity of the newsvendor-based prescription

So far we have been assuming that the prescription (3) can be implemented as is, whereas in prac-

tice numerous constraints might introduce slight deviations in the way it is put in place. (Examples

include shift constraints, training requirements to be completed by the employees, etc.) To this

end, the key observation is that arrival rate uncertainty contributes to “flattening” the objective
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Figure 1: Robustness of the newsvendor prescription b̄.

function, and hence small deviations from the newsvendor-based prescription do not lead to signifi-

cant degradation in performance. This is illustrated in Figure 1 in which we study the performance

of different capacity levels for arrival rates Λ ∼ U [25, 50], U [50, 100], and U [200, 400]. Notice that

indeed for large mean arrival rates, the objective function is flatter around the prescription. Harri-

son and Zeevi (2005) have also noted such flatness in their numerical studies, but did not provide

supporting theory.

A closer inspection of Figure 1 reveals that for capacity levels that are within approximately
√
Eλ of the prescription, the performance deterioration is minimal. This latter observation has a

theoretical basis that is made precise in the following result:

Proposition 3. If b̄λ is bounded away from zero, then for any perturbation |sλ| = O(
√
Eλ), the

corresponding cost is O
(

min
{

1
CVλ

,
√
Eλ

})

-optimal. That is, for any staffing level bλ = b̄λ + sλ,

Πλ(bλ) = Π∗
λ + O

(

min

{

1

CVλ
,
√

Eλ

})

.

Comparing this result with Theorem 1, we find that deviations from the prescription that are of

the order of square-root of the system load do not adversely affect the order of the optimality gap.

This provides the system manager some leeway in selecting an appropriate capacity levels (so as to

ensure near-optimal performance).

6.2 The case of general service and abandonment distributions

Problem formulation. We extend the basic model by considering the case where the service

time and abandonment distributions need not be exponential. This setting is less amenable to
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analysis and we will only derive the corresponding newsvendor-based prescription and investigate

its performance via numerical experiments.

Let F and G denote the service and impatience time (or abandonment) distributions, respectively.

We assume that the abandonment distribution has a density g which is strictly positive on [0,∞).

We now characterize the objective function. Fix the capacity at some level b and denote the number

of customers in the system in steady state by N(b). Then, as in the Markovian system, the customer

holding cost equals hE[N(b) − b]+. Let α(b) denote the mean number of customer abandonments

per unit time at capacity level b. Analogous to (1), the capacity planning problem can be stated

as follows:

min
b≥0

hE[N(b) − b]+ + pα(b) + cb. (9)

An approximate solution. We use a fluid-based approach to compute a capacity prescription

for this system. As in the exponential distribution case, the net rate of customer abandonments can

be approximated as α(b) ≈ E[Λ − µb]+. However, approximating the queue-length requires more

care, and the rate-based analysis described earlier does not suffice. Whitt (2006a) undertakes such

an analysis, and finds that the queue-length can be approximated as follows: E[N(b) − b|Λ]+ ≈
1
γ ΛĜ([1 − µb/Λ]+); where Ĝ(·) ≡ Ge ◦ G−1 = Ge(G

−1(·)) with Ge(x) = γ
∫ x
0 Ḡ(y)dy denoting the

stationary excess cdf and G−1 denoting the inverse of the distribution function G. Note that this

approximation depends on the service time distribution only via its mean, while it depends on the

entire impatience distribution.

Using these approximations for the expected queue-length and the rate of customer abandon-

ments in (9), we obtain the following:

min
b≥0

Π(b) ≈ min
b≥0

[

h

γ
E

[

ΛĜ([1 − µb/Λ]+)
]

+ pE[Λ − µb]+ + cb

]

. (10)

Let b̄ denote a minimizer of the above. Notice that this optimization problem reduces to (2) for

exponentially distributed service and impatience times. Further, it depends on the service time

distribution only via its mean. Thus, if the impatience distribution is exponential, we recover the

optimization problem (2) and the corresponding prescription equals (3).

Numerical study of accuracy. We next perform a numerical study to investigate the accuracy

of the prescription b̄, and the impact of arrival rate uncertainty on its performance. For this study,

we consider four distributions, the unit mean lognormal distribution (with a variance of 4) and the

unit mean Erlang-2 distribution for the service times, and the lognormal distribution (with mean

1/3 and variance 4/9) and Erlang-2 distribution with mean 1/3 for the abandonment times. (These

distributions were also used in the numerical study in Whitt (2006a); see Brown et al. (2005) for

some empirical evidence.) The cost parameters are set equal to those in the experiments for the

Markovian system, that is, c = 1/3, h = 1 and p = 1.
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Arrival rate Optimal solution Prescription Difference

Distribution CV (%) b∗ Π∗ b̄ Π(b̄) |b∗ − b̄| Π(b̄) − Π∗ (Π(b̄)−Π∗)
Π∗

Abandonment distribution is Erlang and Service distribution is Lognormal

Λ ∼ U[0,300] 57.7% 234 90.49 237 90.54 3 0.05 0.06%

Λ ∼ U[125,175] 9.6% 168 59.56 168 59.56 0 0 0%

Λ ∼ U[145,155] 3.8% 163 56.57 154 58.13 9 1.56 2.8%

Λ = 150 0 163 56.23 150 59.79 13 3.55 6.3%

Abandonment and Service distributions are both Erlang

Λ ∼ U[0,300] 57.7% 235 90.44 237 90.45 2 0.007 0.008%

Λ ∼ U[125,175] 9.6% 168 59.21 168 59.21 0 0 0%

Λ ∼ U[145,155] 3.8% 161 56.13 154 57.38 7 1.25 2.2%

Λ = 150 0 161 55.91 150 59.13 11 3.22 5.8%

Table 5: Performance of the newsvendor-based prescription under general abandon-

ment and service time distributions. The abandonment distribution is Erlang-2 (mean 1/3)

and the service distribution is Erlang-2 (mean 1) and Lognormal (mean 1 and variance 4). The

table compares the optimal (b∗) and prescribed (b̄) capacity levels along with their respective per-

formance.

For each experiment, we optimize (9) and study the performance of the prescription b̄ for four dif-

ferent arrival rate distributions: Λ ∼ U [0, 300], U [125, 175], U [145, 155], and deterministic Λ = 150.

In each scenario, the optimal capacity is computed by estimating the cost at different capacity levels

and performing a search over a large set of capacity levels (as before). Discrete event simulations

are used to estimate the mean queue-length and mean number of abandonments. For the case

where the arrival rate is distributed according to a uniform distribution, the cost is estimated by

a numerical integration in the sense that we divide the interval into 100 equally spaced points,

and estimate the cost with arrival rate corresponding to each point on the grid, and then take a

weighted sum. For a fixed arrival rate, the performance parameters are estimated using an average

over 10 runs, where each run consists of 450, 000/EΛ time units. For the case with a determinis-

tic arrival rate, the performance is estimated using an average over 10 runs, where each run now

consists of 1, 500, 000/EΛ time units. The half-width of the 95% confidence interval was observed

to be less than 0.5% in each setting. The results are displayed in Tables 5 and 6 for Erlang-2 and

lognormal abandonment distributions respectively. Note that the prescription b̄ does not depend

on the service distribution.

These results are very similar to those obtained for the Markovian system in Table 4. As in
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Arrival rate Optimal solution Prescription Difference

Distribution CV (%) b∗ Π∗ b̄ Π(b̄) |b∗ − b̄| Π(b̄) − Π∗ (Π(b̄)−Π∗)
Π∗

Abandonment and Service distributions are both Lognormal

Λ ∼ U[0,300] 57.7% 211 85.70 211 85.70 0 0 0%

Λ ∼ U[125,175] 9.6% 164 58.93 160 59.03 4 0.10 0.2%

Λ ∼ U[145,155] 3.8% 161 56.68 152 57.82 9 1.14 2%

Λ = 150 0 161 56.45 150 57.98 11 1.53 2.7%

Abandonment distribution is Lognormal and Service distributions is Erlang

Λ ∼ U[0,300] 57.7% 210 85.64 211 85.65 1 0.01 0.01%

Λ ∼ U[125,175] 9.6% 163 58.81 160 58.88 3 0.07 0.1%

Λ ∼ U[145,155] 3.8% 161 56.56 152 57.62 9 1.06 1.9%

Λ = 150 0 159 56.43 150 57.99 9 1.56 2.8%

Table 6: Performance of the newsvendor-based prescription under general abandon-

ment and service time distributions. The abandonment distribution is Lognormal (mean 1/3

and variance 4/9) and the service distribution is Erlang-2 (mean 1) and Lognormal (mean 1 and

variance 4). The table compares the optimal (b∗) and prescribed (b̄) capacity levels along with their

respective performance.

Table 4, we find that when the CV exceeds 1/
√
E ≈ 8%, which is indicative of the uncertainty-

dominated regime, the newsvendor-based prescription performs exceptionally well, and the accuracy

of the prescription and its performance deteriorates as the uncertainty in the arrival rate decreases.

7 Discussion and Future Work

This paper studies a capacity sizing problem in a queueing system with parameter uncertainty. We

focus on systems with a single class of customers and a single pool of servers, where the arrival

rate of the customers is the uncertain parameter. We believe that the results derived in this paper

are pertinent to many other settings beyond those discussed thus far, and we now discuss such

applications and avenues for future work.

(a) Dynamic control implications in queueing networks: An important direction for future

work is to analyze a more general network consisting of multiple customer classes and multiple

server pools. In such systems, apart from deciding capacity levels, one also needs to determine

routing rules that dictate how the arriving customers will be handled by the servers. In follow-
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up work, Bassamboo, Randhawa and Zeevi (2009), we construct a simple quasi-static control

policy that is driven by similar logic to the one that underlies the capacity prescriptions

studied in the present paper. In particular, when the alluded policy is paired with the

newsvendor-based capacity prescription, the resulting performance is nearly optimal in the

uncertainty-dominated regime. This suggests that uncertainty in the arrival rate plays a

significant role not only in simplifying capacity prescriptions, but also in solving optimal

control problems.

(b) Single server systems: With a view towards call center applications, this paper focuses on

many server systems where the decision variable is the number of operators/servers. One can

construct a similar capacity sizing problem in the context of a single server system, with the

speed of the server as the capacity decision. In this case, the expected queue-length equals

E[N − 1]+ (as there is only one server) and the cost of capacity is cµ, where µ is the server’s

processing rate. Thus, the optimization problem is min{(pγ+h)E[N−1]++cµ : µ ≥ 0}, which

is analogous to (1). Under parameter uncertainty, the newsvendor-based capacity prescription

for this system is again analogous to (3) and given by

µ̄ = F̄−1

(

c

p + h/γ

)

.

There are two pieces of evidence that suggest that this prescription would perform extremely

well. First, are numerical experiments reported on in Appendix C.2. Second, recent work

Bassamboo and Randhawa (2009, Section 5) proves that for the single server system operating

in the overloaded regime, the fluid model is O(1)-accurate. A detailed analysis of this system

with the aim of deriving an analog of Theorem 1 is beyond the scope of the present paper.

(c) Connections to inventory systems: This paper studies a newsvendor-based prescription

for capacity planning in queueing systems, and thus there is an immediate connection to static

inventory systems. Furthermore, a similar analysis can be performed for dynamic inventory

systems where product demand arrives in form of a Poisson process (with uncertain rate) and

there are exogenous delivery lead times. In such systems, the optimization problem is to find

the base stock level that minimizes expected holding and backorder costs (see Chapters 6 and

7 of Zipkin 2000).

Analyzing inventory systems with lead times requires characterizing the customer demand

that arrives during the length of one lead time; denote this quantity by D. Assuming sufficient

capacity, these systems are modeled as M/G/∞ queueing systems. Thus, for a realized

customer arrival rate λ, in steady-state D has a Poisson distribution with mean λ times the

mean lead time. Denoting the base stock level by b, one obtains the mean backorder level as

E[D− b]+ and the firm’s optimization problem can then be written as min{αE[D− b]+ +βb :
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b ≥ 0}, for some coefficients α, β ≥ 0 that depend on the per-unit backordering and holding

costs. This optimization problem is identical to the one studied in this paper, (see (2))

and thus the analysis in our paper extends to this setting. In particular, the newsvendor

prescription derived in (3) will be subject to an analog of Theorem 1.

A base stock policy entails placing orders/producing units every time the inventory level

drops below the base stock level. In the presence of ordering costs or set up times, it may be

optimal to produce multiple units in a batch if the inventory level decreases. Such policies

are referred to as (r, q) policies in Zipkin (2000). Analyzing these policies is an interesting

avenue for future work.

(d) Lack of knowledge of demand distribution: In this paper, we assume that the demand

arrival rate distribution is known to the system manager. If the demand distribution needs

to be estimated from demand data, then there is a further source of error to be dealt with;

see for example Bassamboo and Zeevi (2009) for a possible data-driven approach to that

problem. Our view of uncertainty in arrival rates is closely tied in to forecasting errors

and their implications on system design and management. A careful characterization of the

interplay between forecasting errors and the performance of the corresponding newsvendor

prescription makes for an important future study and this paper hopefully provides a good

starting point for such pursuits.
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A Proofs of Theorems

We state and prove a general version of Theorem 1 below. Theorem 2 follows from Theorem 1 by

noting that if the coefficient of variation is bounded away from zero, we have 1/CVλ = O(1).

A generalization of Theorem 1. We consider a sequence of systems indexed by their mean

arrival rate λ. Consistent with the notation introduced in the paper, we denote the distribution

of the random arrival rate by Fλ, its density by fλ, and its standard deviation by σλ. Focusing

on the optimization problem in (7), and the corresponding prescription b̄λ in (8), we next present

a general version of Theorem 1 that does not impose any assumptions on the sequence of arrival

rates. For this purpose, we introduce the following function:

Mλ(y) := sup
x∈[y−

√
λ log λ,y+

√
λ log λ]

{

λfλ(x) ∨ 1
}

, for y ∈ R+. (11)

We then have the following result whose proof will be given shortly thereafter.
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Theorem 3 (Generalization of Theorem 1).

(a) If 1/Mλ(b̄λµ) ≫ 1/
√
Eλ, then the newsvendor prescription (8) is O(Mλ(b̄λµ))−optimal. That

is, Πλ(b̄λ) = Π∗
λ + O(Mλ(b̄λµ)).

(b) If 1/Mλ(b̄λµ) ≪ 1/
√
Eλ, then the newsvendor prescription (8) is O(

√
Eλ)−optimal. That is,

Πλ(b̄λ) = Π∗
λ + O(

√
Eλ).

(c) If 1/Mλ(b̄λµ) ≍ 1/
√
Eλ, then the newsvendor prescription (8) is O(

√
Eλ)−optimal. That is,

Πλ(b̄λ) = Π∗
λ + O(

√
Eλ).

Discussion and Relation to Theorem 1. Theorem 3 states that the accuracy of the prescrip-

tion b̄λ obtained in (8) depends on the distribution of the arrival rate, as well as the prescription

b̄λ itself. In particular, the accuracy of the fluid-based prescription depends on the behavior of the

density of the arrival rate in the vicinity of the prescribed capacity, as captured by the function Mλ.

Note that if Assumption 1 holds, then X has a bounded density. This implies that fλ(x) = O(1/σλ),

hence Mλ(b̄λµ) = O(1/CVλ). So, indeed Theorem 3 reduces to Theorem 1 under Assumption 1.

Proof of Theorem 3. We first prove the result for the case µ = γ, and then use that to address

the case of µ 6= γ. Put q̄λ(b) := E[Λ−µb]+/γ and Π̄λ(b) := (pγ +h)q̄λ(b)+ cb for any capacity level

b.

Step 1. The case of µ = γ.

The following lemma derives a bound on the expected queue-length, and is the main driver

behind the proof of the theorem.

Lemma 1. If µ = γ, then for any non-negative real-valued sequence of capacity levels {bλ}, the

expected queue length is lower bounded as E[Nλ − bλ]+ ≥ q̄λ(bλ). Further, if bλ = O(λ), then the

expected queue length is upper bounded as E[Nλ − bλ]+ ≤ q̄λ(bλ) + O(min
{

Mλ(bλµ),
√
Eλ

}

).

For ease of exposition, the proof of this and other lemmas are postponed to just after this proof.

Lemma 1 immediately gives us the following relation for any sequence of capacity levels {bλ} such

that bλ = O(λ):

Π̄λ(bλ) ≤ Πλ(bλ) ≤ Π̄λ(bλ) + O(min{Mλ(b̄λµ),
√

Eλ}). (12)

It then follows that

Πλ(b̄λ)
(a)

≤ Π̄λ(b̄λ) + O(min{Mλ(b̄λµ),
√

Eλ})
(b)

≤ Π̄λ(b∗λ) + O(min{Mλ(b̄λµ),
√

Eλ})
(c)

≤ Πλ(b∗λ) + O(min{Mλ(b̄λµ),
√

Eλ}),
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where: (a) follows by applying the upper bound in (12) for b̄λ noting that b̄λ = O(λ); (b) follows

by noting that b̄λ minimizes Π̄λ; and finally (c) follows by applying the lower bound in (12) for b∗λ.

This completes the proof of Theorem 3 for the case µ = γ.

Step 2. The case of µ 6= γ.

We begin by rewriting the objective function in terms of the rate at which customers abandon,

Aλ(b) = γE[Nλ − b]+, rather than the queue-length. Then, the original optimization problem can

be written as

min
b≥0

(p + h/γ)Aλ(b) + cb. (13)

We first consider the case µ > γ. Consider a sequence of systems with the same parameters

as that under consideration except that its abandonment rate and service rate equal µ; that is,

systems in this sequence have a higher abandonment rate compared to the original sequence. We

refer to this sequence as Sequence II, and our original sequence as Sequence I. We will use the

superscript I, II to make explicit the systems to which various quantities are associated with. For

systems in Sequence II, we choose the cost parameters to be the following: the server cost remains

c; the penalty cost remains p; and the holding cost is set to hµ/γ. That is, systems in Sequence

II have µII = µ, γII = µ, cII = c, pII = p, and hII = hµ/γ. This choice leads to the following

optimization problem analogous to (13):

min
b≥0

(pII + hII/γII)AII
λ (b) + cIIb = min

b≥0
(p + h/γ)AII

λ (b) + cb.

Comparing the underlying Markov chains of systems in sequences I and II for the same mean arrival

rate λ, we observe that the number of customers in system in steady state is (stochastically) greater

in the system in Sequence I, i.e., N II
λ (b) ≤st N I

λ(b) for λ > 0.∗ Thus, we obtain E[b − N II
λ (b)]+ ≥

E[b − N I
λ(b)]+ for λ > 0. That is, the expected number of servers that are idle in steady state is

larger in the system in Sequence II. Noting that the rate at which customers abandon can also be

written as

Aℓ
λ(b) = E[Λ − µ(b − [b − N ℓ

λ(b)]+)], for ℓ ∈ {I, II},

we obtain AII
λ (b) ≥ AI

λ(b) for all λ > 0 and any capacity level b ≥ 0.

This argument gives us the bound ΠI
λ(b) ≤ ΠII

λ (b) for all λ > 0 and b ≥ 0. As the abandonment

rate equals the service rate for systems in Sequence II, we can apply the results of Theorem 3 for the

case µ = γ as established in Step 1 to Sequence II to obtain that minb≥0 ΠII
λ (b) ≤ minb≥0 Π̄II

λ (b) +

O(min
{

Mλ(b̄λµ),
√
Eλ

}

), where Π̄II
λ (b) = (p + h/γ)q̄λ(b) + cb. Note that Π̄II

λ (·) = Π̄λ(·) and we

obtain

ΠI
λ(b∗λ) = min

b≥0
ΠI

λ(b) ≤ min
b≥0

ΠII
λ (b) ≤ Π̄λ(b̄λ) + O(min{Mλ(b̄λµ),

√

Eλ}). (14)

∗For any two non-negative real valued random variables X and Y , we say X ≥st Y if P(X > x) ≥ P(Y > x) for

all x ≥ 0.
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We now compute the lower bound. To do so, we construct Sequence III that consists of systems

with the same arrival rate distribution and abandonment rate as those in Sequence I. However, the

service rate now equals the abandonment rate. That is, both the service rate and abandonment

rate now equal γ. The cost of a server in these systems is cγ/µ, and the holding and penalty costs

are the same as in Sequence I. That is, systems in Sequence III have µIII = γ, γIII = γ, cIII = cγ/µ,

pIII = p, and hIII = h. Thus, the optimization problem is given by:

min
b≥0

(pIII + hIII/γIII)AIII
λ (b) + cIIIb = min

b≥0
(p + h/γ)AIII

λ (b) +
cγ

µ
b. (15)

We now use the following result which follows from a straightforward Markov chain analysis.

Lemma 2. The rate at which customers abandon Aλ(k) in an M/M/k + M system with service

rate α/k for some α > 0 and k ∈ N is decreasing in k.

This result gives us the bound AIII
λ (bµ/γ) ≤ AI

λ(b) for all λ > 0 and b ≥ 0. Thus, we have

ΠIII
λ (bµ/γ) ≤ ΠI(b). Applying Theorem 3 for the case µ = γ as established in Step 1 to Sequence

III, we obtain

min
b≥0

ΠIII
λ (b) = Π̄III

λ (b̄III
λ ) + O(min{Mλ(b̄III

λ γ),
√

Eλ}),

where Π̄III
λ (bµ/γ) = (p + h/γ)E[Λ − µb]+ + cb = Π̄(b), and b̄III

λ = arg minb≥0{Π̄III
λ (b)} = b̄λµ/γ,

where b̄λ = arg minb≥0{Π̄λ(b)}. Thus, we have

ΠI
λ(b∗λ) ≥ ΠIII

λ (b∗λµ/γ) ≥ min
b≥0

ΠIII
λ (bµ/γ) ≥ Π̄III

λ (b̄III
λ ) = Π̄III

λ (b̄λµ/γ) = Π̄λ(b̄λ). (16)

The result then follows by combining (14) and (16).

The case µ < γ follows in a similar fashion. Systems in Sequence II now have a lower abandon-

ment rate (which equals µ). Arguing analogous to before, we obtain that for the same capacity

level b and mean arrival rate λ, the rate at which customers abandon in systems in Sequence II is

lower than those in Sequence I, and hence ΠII
λ (b) ≤ ΠI

λ(b). Thus, we obtain

ΠI
λ(b∗λ) = min

b≥0
ΠI

λ(b) ≥ min
b≥0

ΠII
λ (b) ≥ Π̄II

λ (b̄λ) = Π̄λ(b̄λ), (17)

Next, we consider Sequence III to now obtain AIII
λ (bµ/γ) ≥ AI

λ(b) for all λ > 0 and b ≥ 0. We

again argue as before (with the inequality reversed) to obtain

ΠI
λ(b∗λ) = min

b≥0
ΠI

λ(b) ≤ min
b≥0

ΠIII
λ (bµ/γ)

(a)
= Π̄III

λ (b̄III
λ ) + O(min{Mλ(b̄III

λ γ),
√

Eλ})
(b)
= Π̄λ(b̄λ) + O(min{Mλ(b̄λµ),

√

Eλ}),

(18)

where: (a) follows by applying the results of Theorem 3 for the case µ = γ as established in Step

1 to Sequence III; and (b) follows by noting that b̄III
λ = b̄λµ/γ and Π̄III

λ (b̄III
λ ) = Π̄λ(b̄λ). The result

then follows by combining (17) and (18).
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Proof of supporting lemmas. We first state and prove the following key result that will be

used in proving Lemma 1.

Lemma 3. If µ = γ, then for any capacity level b and realized arrival rate θ > 0, denoting the

number of customers in the system in steady-state by N , we have

[

θ

µ
− b

]+

≤ E[(N − b)+|Λ = θ] ≤
[

θ

µ
− b

]+

+
√

4π/µ
√

θ exp

(

− µ

4θ

(

θ

µ
− b

)2
)

+ 1/ log 2.

Proof. Note that since µ = γ, the steady-state number of customers in the system N conditioned

on the realized arrival rate θ is independent of the number of servers and has a Poisson distribution

with mean θ/µ. Thus, applying Jensen’s inequality, the lower bound follows. For the upper bound,

we divide the argument into two cases based on the relative ranking of b and θ/µ. For convenience,

we let N θ denote the number of customers in the system in steady state when the realized arrival

rate is θ.

Case I: b < θ/µ.

We have

E[(N − b)+|Λ = θ] =

∫ ∞

b
P(N θ > x)dx

=

∫ ∞

0
P(N θ > x)dx −

∫ b

0
P(N θ > x)dx

= E[N θ] −
∫ b

0
[1 − P(N θ ≤ x)]dx

= (E[N θ] − b) +

∫ b

0
P(N θ ≤ x)dx.

We now use the Chernoff bound P(N θ ≤ x) ≤ exp
(

−µ(x−θ/µ)2

2θ

)

for all x < E[N θ] = θ/µ (see

Chapter 4 in Motwani and Prabhakar (1995)), which yields

E[N θ − b]+ ≤ θ

µ
− b +

∫ b

0
e−

µ(x−θ/µ)2

2θ dx

=
θ

µ
− b +

√

4πθ/µ

∫ b

0

√

µ

4πθ
e−

µ(x−θ/µ)2

2θ dx

≤ θ

µ
− b +

√

4πθ/µ Φ̄

(

−
√

µ

2θ

(

b − θ

µ

))

≤ θ

µ
− b +

√

4π/µ
√

θ exp

(

− µ

4θ

(

b − θ

µ

)2
)

.

The last inequality follows from the straightforward tail bound for the Normal distribution, Φ̄(x) ≤
e−x2/2. This completes the proof.

Case II: b > θ/µ.
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We again use the following Chernoff bound for a Poisson distribution,

P(N θ > x) ≤ exp

(

−µ(x − θ/µ)2

4θ

)

+ exp (−(x − θ/µ) log 2) ,

for all x > E[N θ] = θ/µ (see Chapter 4 in Motwani and Prabhakar (1995)). This gives us

∫ ∞

b
P(N θ > x)dx ≤

∫ ∞

b

[

exp

(

−µ(x − θ/µ)2

4θ

)

+ exp (−(x − θ/µ) log 2)

]

dx

=

∫ ∞

b
exp

(

−µ(x − θ/µ)2

4θ

)

dx +

∫ ∞

b
exp (−(x − θ/µ) log 2) dx

≤ K + 1/ log 2,

where we use
∫ ∞
b exp (−(x − θ/µ) log 2) dx = exp(−(b − θ/µ) log 2)/ log 2 ≤ 1/ log 2 and

K :=

∫ ∞

b
e−

µ(x−θ/µ)2

4θ dx

=
√

4πθ/µ Φ̄

(
√

µ

2θ
(b − θ/µ)

)

≤
√

4π/µ
√

θ exp

(

− µ

4θ

(

b − θ

µ

)2
)

,

where the last inequality uses bound Φ̄(x) ≤ e−x2/2. This completes the proof.

Proof of Lemma 1. For a given realization of arrival rate Λ = θ, let N θ
λ denote the number of

customers in the system in steady state. Note that since µ = γ, the steady-state number of

customers in the system is independent of the number of servers and has a Poisson distribution

with mean θ/µ. Thus, if the capacity level is bλ, then the queue length is given by [N θ
λ − bλ]+.

Noting the fact that

E[N θ
λ − bλ]+ =

∫ ∞

0
E[N θ

λ − bλ]+fλ(θ)dθ,

we apply Lemma 3 to obtain

E[N θ
λ − bλ]+ ≤

∫ ∞

0

[

θ

µ
− bλ

]+

fλ(θ)dθ +

∫ ∞

0
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ + K3,

where K1 =
√

4π/µ, K2 = µ/4 and K3 = 1/ log 2. We now show that the second term is bounded

as follows:

∫ ∞

0
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ = O(min{(Mλ(bλµ),
√

Eλ}). (19)
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To see this, start with

∫ ∞

0
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ

=

∫ bλµ−
√

λ log λ

0
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ

+

∫ bλµ+
√

λ log λ

bλµ−
√

λ log λ
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ

+

∫ ∞

bλµ+
√

λ log λ
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ. (20)

Considering the first term, we have

∫ bλµ−
√

λ log λ

0
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ

(a)

≤
(

∫ bλµ−
√

λ log λ

0
K2

1θfλ(θ)dθ

)
1
2

×
(

∫ bλµ−
√

λ log λ

0
exp

(

−2K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ

)
1
2

(b)

≤
(

K1

√
λ
)

(

exp

(

− 2K2

(bλµ −
√

λ log λ)µ2
λ(log λ)2

)
∫ ∞

0
fλ(θ)dθ

)
1
2

(c)

≤
(

K1

√
λ
)

(

exp
(

−K4(log λ)2
))

= o(1), (21)

where: K4 > 0 is a finite constant; (a) follows using the Cauchy-Schwarz inequality; (b) follows by

noting that the exponential term is increasing in θ on [0, bλµ−
√

λ log λ], and hence we can obtain

an upper bound by setting θ = bλµ −
√

λ log λ; and (c) follows by noting that bλ = O(λ).

Turning to the second term in (20), we have

∫ bλµ+
√

λ log λ

bλµ−
√

λ log λ
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ

(a)

≤ Mλ(bλµ)

λ

∫ bλµ+
√

λ log λ

bλµ−
√

λ log λ
K1

√

bλµ +
√

λ log λ exp

(

− K2

bλµ +
√

λ log λ

(

θ

µ
− bλ

)2
)

dθ

= Mλ(bλµ)

∫ bλµ+
√

λ log λ

bλµ−
√

λ log λ
K1

√

bλµ +
√

λ log λ

λ
exp

(

− K2

µ2(bλµ +
√

λ log λ)
(θ − bλµ)2

)

dθ

(b)

≤ Mλ(bλµ)

∫ bλµ+
√

λ log λ

bλµ−
√

λ log λ

K5√
λ

exp

(

−K6

λ
(θ − bλµ)2

)

dθ

(c)
= O(Mλ(bλµ)),

(22)
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where: K5, K6 > 0 are finite constants; (a) follows by using fλ(θ)λ ≤ Mλ(bλµ),
√

θ ≤
√

bλµ +
√

λ log λ

and −1/θ ≤ −1/(bλµ+
√

λ log λ); (b) follows by using bλ = O(λ); and (c) follows by noting that the

integral can be represented in terms of the probability that a normal random variable with mean

bλµ and variance λ/(2K6) lies in the interval [bλµ −
√

λ log λ, bλµ +
√

λ log λ].

Further, we can also write the second term in (20) as

∫ bλµ+
√

λ log λ

bλµ−
√

λ log λ
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ

(a)

≤
∫ bλµ+

√
λ log λ

bλµ−
√

λ log λ
K1

√

bλµ +
√

λ log λfλ(θ)dθ

(b)
= O(

√
λ), (23)

where (a) follows by bounding the exponential term by unity and using
√

θ ≤
√

bλµ +
√

λ log λ,

and (b) follows by noting that bλ = O(λ).

We finally consider the third term in (20). We have

∫ ∞

bλµ+
√

λ log λ
K1

√
θ exp

(

−K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ

(a)

≤
(

∫ ∞

bλµ+
√

λ log λ
K2

1θfλ(θ)dθ

)
1
2

×
(

∫ ∞

bλµ+
√

λ log λ
exp

(

−2K2

θ

(

θ

µ
− bλ

)2
)

fλ(θ)dθ

)
1
2

(b)

≤
(

K1

√
λ
)

(

exp

(

− 2K2

(bλµ +
√

λ log λ)µ2
λ(log λ)2

)
∫ ∞

0
fλ(θ)dθ

)
1
2

(c)

≤
(

K1

√
λ
)

(

exp
(

−K7(log λ)2
))

= o(1), (24)

where: K7 > 0 is a finite constant; (a) follows by using Cauchy-Schwartz inequality; (b) follows by

noting that the exponential term is decreasing in θ for θ > bλµ, hence we can upper bound the

expression by setting θ = bλµ +
√

λ log λ; and (c) follows by using bλ = O(λ).

Combining (21)-(24) in (20) completes the proof of (19) and using this result and the definition of

q̄λ(bλ) =
∫ ∞
0

[

θ
µ − bλ

]+
fλ(θ)dθ, the result follows. This completes the proof.

Proof of Lemma 2. Fix the arrival rate and abandonment rates at λ and γ respectively. Now,

consider System A with ka servers, each providing service at rate α/ka, and System B with kb

servers, each providing service at rate α/kb, where kb > ka. The result follows if we show that the
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rate at which customers abandon in System A is greater than that in System B. This follows by a

straightforward pathwise argument comparing the two birth-death chains, and we only provide a

sketch of the argument.

Let βi(m) and δi(m) denote the birth (arrival) and death (departure) rates respectively, at state

m in System i = A, B. (The state here refers to the number of customers in the system.) Then,

the we have βA(·) = βB(·), i.e., the two systems have the same birth rates. We now compare

the death rates. For any m ≥ 0, if there are m + ka customers in System A, then the death rate

δA(m + ka) = α + mγ = δB(m + kb), which is the death rate in System B when it has m + kb

customers. Also, note that as kb > ka, System B has a lower service rate, and thus we have

δA(ka − m) < δB(kb − m) for 1 ≤ m ≤ ka. If we construct these chains on the same probability

space, then it follows that the number of customers waiting in the queue in System A is always

greater than that in System B. This result is similar in flavor to results in Whitt (1981). Noting

that the abandonment rate is the same in the two systems, the result follows.

B Proofs of Propositions

Proof of Proposition 1. We establish the result for the case µ = γ, and the general case follows

using the bounding argument in Step 2 of the proof of Theorem 1.

For the case µ = γ, using Lemma 3 with θ = λ, we obtain the following bound on the queue-length

for any capacity level b ≥ 0:

[

λ

µ
− b

]+

≤ E[Nλ − b]+ ≤
[

λ

µ
− b

]+

+ K1

√
λ exp

(

−K2

λ

(

λ

µ
− b

)2
)

+ K3,

where K1 =
√

4π/µ, K2 = µ/4 and K3 = 1/ log 2. This bound translates to the following bound

on the objective function:

Π̄λ(b) ≤ Πλ(b) ≤ Π̄λ(b) + K ′
1

√
λ exp

(

−K2

λ

(

λ

µ
− b

)2
)

+ K ′
3, (25)

where K ′
1 = (pγ + h)K1 and K ′

3 = (pγ + h)K3. Thus, we have

Π̄λ(b̄λ) = min
b≥0

Π̄λ(b) ≤ Π∗
λ = min

b≥0
{Πλ(b)}

≤ min
b≥0

Π̄λ(b) + max
b≥0

K ′
1

√
λ exp

(

−K2

λ

(

λ

µ
− b

)2
)

+ K ′
3

= min
b≥0

Π̄λ(b) + O(
√

Eλ)

= Π̄λ(b̄λ) + O(
√

Eλ).

Applying (25) to b = b̄λ, we obtain Πλ(b̄λ) = Π̄λ(b̄λ) + O(
√
Eλ). This completes the proof.
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Proof of Proposition 2. Fix the value of the critical fractile at α = c/µ
p+h/γ . We will demonstrate

that supF∈Fλ,σλ
|b̄ − Eλ|/(EλCVλ) ≤ K < ∞ for some finite constant K > 0, where Fλ,σλ

is the set

of distribution functions with mean λ and variance σ2
λ, and b̄ = F̄−1(α)/µ is the newsvendor-based

capacity prescription. Noting that EλCVλ = σλ/µ for all distributions in the set Fλ,σλ
, we focus on

computing supF∈Fλ,σλ
|b̄ − Eλ|.

For any distribution F ∈ Fλ,σλ
, we decompose it into two additional distributions F 1 and F 2 as

follows:

F 1(x) =







F (x)
(1−α) for all x ≤ b̄,

1 otherwise,

F 2(x) =







F (x)−(1−α)
α for all x > b̄,

0 otherwise.

Thus F is a mixture distribution of F 1 and F 2, specifically F = (1 − α)F 1 + αF 2. Let (m1, σ
2
1)

and (m2, σ
2
2) denote the mean and variance of F 1 and F 2, respectively. Since F ∈ Fλ,σλ

, we have

the following:

(1 − α)m1 + αm2 = λ, (using EΛ = λ) (26)

(1 − α)(m2
1 + σ2

1) + α(m2
2 + σ2

2) = λ2 + σ2
λ, (using EΛ2 = λ2 + σ2

λ). (27)

These equations can be re-expressed as follows:

m1(σ1, σ2) = λ −

√

α(1 − α)(σ2
λ − (1 − α)σ2

1 − ασ2
2)

1 − α
(28)

m2(σ1, σ2) = λ +

√

α(1 − α)(σ2
λ − (1 − α)σ2

1 − ασ2
2)

α
. (29)

Thus, the optimization problem is equivalent to

sup
σ1,σ2≥0

|b̄ − Eλ|

s.t. b̄ ≤ m2(σ1, σ2)/µ

b̄ ≥ m1(σ1, σ2)/µ

m1(σ1, σ2), m2(σ1, σ2) ≥ 0.

(30)

It follows that the optimal solution must have b̄ = m1(σ1, σ2)/µ or b̄ = m2(σ1, σ2)/µ. Noting that

m1 is increasing in σ1, σ2, while m2 is decreasing in σ1, σ2, it follows that the optimal solution to

(30) is σ1 = σ2 = 0. Noting that m1(0, 0) = λ− σλ

√

α/(1 − α) and m2(0, 0) = λ + σλ

√

(1 − α)/α,

we obtain that

sup
F∈Fλ,σλ

|b̄ − Eλ| = max

{

√

1 − α

α
,

√

α

1 − α

}

σλ

µ
= KEλCVλ,

where K ≥ 0 is a finite constant. This completes the proof.
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Proof of Proposition 3. We prove the result for the case µ = γ. The general case follows by a

bounding argument analogous to that developed in the proof of Theorem 3, and we omit these

details.

Consider any real-valued sequence {sλ} such that |sλ| = O(
√

λ). Then, applying Lemma 1 and

Assumption 1, we obtain

Πλ(b̄λ + sλ) ≤ Π̄λ(b̄λ + sλ) + O(min{1/CVλ,
√

Eλ}). (31)

Noting that Π̄λ(·) is a convex function whose slope is bounded above by c and bounded below by

c − (p + h/γ)µ, we have that for any λ > 0

Π̄λ(b̄λ + sλ) ≤ Π̄λ(b̄λ) + c|sλ|. (32)

Now applying a Taylor series expansion around b̄λ, and noting that Π̄′
λ(b̄λ) = 0, we obtain

Π̄λ(b̄λ + sλ) ≤ Π̄λ(b̄λ) + s2
λ sup

ξ∈A
Π̄′′(ξ)/2, (33)

where A = [b̄λ, b̄λ + sλ] if sλ ≥ 0, and A = [b̄λ + sλ, b̄λ], if sλ < 0. Noting that Π̄′
λ(x) =

c − (p + h/γ)µF̄λ(µx), we obtain that

sup
ξ∈A

Π̄′′(ξ) ≤ sup
ξ∈A

(p + h/γ)µ2fλ(µξ) ≤ K1

λCVλ
, for λ sufficiently large,

where K1 > 0 is a finite constant and we use the fact that Assumption 1 implies fλ(x) = O(1/CVλ).

Using this relation in (33), we obtain

Π̄λ(b̄λ + sλ) = Π̄λ(b̄λ) + O(s2
λ/(λCVλ)).

Combining this with (32), we obtain

Π̄λ(b̄λ + sλ) = Π̄λ(b̄λ) + O
(

min{s2
λ/(λCVλ), |sλ|}

)

.

Comparing this with (31), we obtain that for |sλ| = O(
√
Eλ), Πλ(b̄λ+sλ) ≤ Π̄(b̄λ)+O(min{1/CVλ,

√
Eλ}),

and the result follows by noting that Πλ(b̄λ) = Π∗
λ + O

(

min
{

1/CVλ,
√
Eλ

})

(cf. Theorem 1).
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C Additional Numerical Results

In this section, using numerical experiments, we study the accuracy of the newsvendor-based pre-

scription in two settings: a) when the system size is small; and b) when there is a single server and

the decision variable is the rate at which this server works.

C.1 Effect of system scale

We set the system parameters identical to those in the numerical experiments of Section 4.1, i.e.,

c = 1/3, h = 1, p = 1, unit mean service times, and mean impatience time of 1/3. Table 7

displays the results for uniform arrival rate distributions with means ranging from 1.5 up to 300.

As expected, we observe a degradation in performance for small mean arrival rates, however, we

note that even for the case of U[10,20] the performance is quite good.

Arrival rate Optimal solution Prescription Difference

distribution b∗ Π∗ b̄ Π(b̄) |b∗ − b̄| Π(b̄) − Π∗ (Π(b̄)−Π∗)
Π∗

U[1,2] 3 1.43 1 5.26 2 3.83 267.8%

U[2,4] 5 2.19 3 3.33 2 1.14 52.1%

U[5,10] 11 4.32 8 5.01 3 0.71 16.4%

U[10,20] 20 7.68 17 8.01 3 0.33 4.3%

U[15,30] 29 10.95 26 11.12 3 0.17 1.6%

U[20,40] 37 14.15 35 14.26 2 0.10 0.7%

U[25,50] 46 17.34 43 17.49 3 0.15 0.9%

U[50,100] 89 33.13 87 33.20 2 0.07 0.2%

U[200,400] 351 127.08 350 127.08 1 7 × 10−3 0.006%

Table 7: Performance of the newsvendor-based prescription over different system sizes.

Comparison of the optimal (µ∗) and prescribed (µ̄) capacity levels along with their respective

performance for different system sizes. Arrival rates follow a uniform distribution with a coefficient

of variation of 19.2%.

C.2 Single server systems

In this section, we consider the setting of a single server system where the decision variable is the

service rate. In this case, the expected queue-length equals E[N − 1]+ (as there is only one server)

and the cost of capacity is cµ, where µ is the server’s processing rate. Thus, the optimization
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problem is

min
µ≥0

(pγ + h)E[N − 1]+ + cµ,

which is analogous to (1). Under parameter uncertainty, the newsvendor-based capacity prescrip-

tion for this system is again analogous to (3) and given by

µ̄ = F̄−1

(

c

p + h/γ

)

.

To test the accuracy of the above prescription, we perform a numerical study. In particular, we set

the parameters c = 2/3, p = h = 1 and the abandonment rate γ = 1. The results of this study are

depicted in Table 8. As in the many server case, we find that the newsvendor prescription performs

extremely well, and its error does not increase with system scale.

Arrival rate Optimal solution Prescription Difference

distribution µ∗ Π∗ µ̄ Π(b̄) |µ∗ − µ̄| Π(µ̄) − Π∗ (Π(b̄)−Π∗)
Π∗

U[25,50] 29.58 29.44 33.33 29.67 3.75 0.24 0.8%

U[50,100] 62.42 57.50 66.67 57.67 4.25 0.17 0.3%

U[200,400] 260.92 224.46 266.67 224.54 5.75 0.08 0.04%

Table 8: Performance of the newsvendor-based prescription for a single server system.

Comparison of the optimal (µ∗) and prescribed (µ̄) capacity levels along with their respective

performance. Arrival rates follow a uniform distribution with a coefficient of variation of 19.2%.
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