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1 Introduction

The 1987 stock market crash has generated many puzzles for financial economists. In spite of

little change in observable macroeconomic fundamentals, market prices fell 20-25% and interest

rates dropped about 1-2%. Moreover, the crash triggered a permanent shift in index option prices:

Prior to the crash, implied ‘volatility smiles’ for index options were relatively flat. Since the crash,

however, the Black-Scholes formula has been significantly underpricing short-maturity, deep out-of-

the-money S&P 500 put options (Rubinstein (1994), Bates (2000)). This feature, often referred to

as the ‘volatility smirk,’ is demonstrated in Figure 1, which shows the spread of both in-the-money

(ITM) and out-of-the-money (OTM) implied volatilities relative to at-the-money (ATM) implied

volatilities from 1985-2006. This figure clearly shows that on October 19, 1987, the volatility smirk

spiked upward, and that this shift has remained ever since.

Not only is this volatility smirk puzzling in its own right, but it is also difficult to explain

relative to the shape of implied volatility functions (IVF) for individual stock options, which are

much flatter and more symmetric (see, e.g., Bollen and Whaley (2004), Bakshi, Kapadia, and

Madan (2003), and Dennis and Mayhew (2002)). Indeed, Bollen and Whaley (2004) argue that the

difference in the implied volatility functions for options on individual firms and on the S&P 500

index cannot be explained by the differences in their underlying asset return distributions.

In this paper, we attempt to explain these puzzles while simultaneously capturing other salient

features of asset prices. In particular, we examine a representative-agent general equilibrium en-

dowment economy that can simultaneously explain:

• The prices of deep OTM put options for both individual stocks and the S&P 500 index;

• Why the slope of the implied volatility curve changed so dramatically after the crash;

• Why the regime shift in the volatility smirk has persisted for more than twenty years;

• How the market can crash with little change in observable macroeconomic variables.

We build on the long-run risk model of Bansal and Yaron (2004, BY), who show that if agents

have a preference for early resolution of uncertainty (e.g., have Kreps-Porteus/Epstein-Zin (E/Z)

preferences with elasticity of intertemporal substitution EIS > 1), then persistent shocks to the

expected growth rate and volatility of aggregate consumption will be associated with large risk

premia in equilibrium. Their model is able to explain a high equity premium, low interest rates,

and low interest rate volatility while matching important features of aggregate consumption and

dividend time series. We extend their model in two dimensions. First, we add a jump component

to the shocks driving the expected consumption growth rate and consumption volatility. These

jumps (typically downward for expected growth rates and upward for volatility) are bad news for

the agent with E/Z preferences, who will seek to reduce her position in risky assets. In equilibrium,

this reduction in demand leads to asset prices exhibiting a downward jump, even though aggre-

gate consumption and dividend are smooth. That is, in our model, the level of consumption and

dividends follows a continuous process; it is their expected growth rates and volatilities that jump.
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Since shocks to expected consumption growth rate and consumption volatility are associated with

large risk premia, jumps in asset prices can be substantial, akin to market ‘crashes.’

Our second contribution relative to BY is to allow for parameter uncertainty and learning.

Specifically, we assume the jump frequency is governed by a hidden two-state continuous Markov

chain, which needs to be filtered in equilibrium. This adds another source of risk to the economy,

namely the posterior probability of the hidden state. We show that the risk premium associated

with revisions in posterior beliefs about the hidden state can be large, as they are a source of

‘long-run risk.’ In fact, we show that it can explain the dramatic shift in the shape of the implied

volatility skew observed in 1987. If, prior to 1987, agents’ beliefs attribute a very low probability

to high jump intensities then, prior to 1987, prices mostly correspond to a no-jump Black-Scholes

type economy. However, after a jump in prices occurs as a result of the jump in expected growth

rates and volatility of fundamentals, agents update their beliefs about the likelihood (i.e., intensity)

of future jumps occurring, which contributes to the severity of the market crash and leads to the

steep skew in implied volatilities observed in the data henceforth. Because these beliefs are very

persistent, the skew is long-lived after the crash.

Although the two new features, jumps and learning, dramatically impact the prices of options,

we show that our model still matches salient features of U.S. economic fundamentals. Because

jumps impact the expected consumption growth rate and consumption volatility, but not the level

of consumption, the consumption process remains smooth in our model, consistent with the data.

Further, as noted by BY and Shephard and Harvey (1990), it is very difficult to distinguish between

a purely i.i.d. process and one which incorporates a small persistent component. Indeed, we show

that the dividend and consumption processes implied by the model fit the properties of the data

well, in that we cannot reject the hypothesis that the observed data were generated from our model.

Nonetheless, and as in BY, the asset pricing implications of our model differ significantly from

those of an economy in which dividends are i.i.d.. Specifically, the calibrated model matches the

typical level of the price-dividend ratio and produces reasonable levels for the equity premium, the

risk-free rate, and their standard deviation. In the same calibration we show that the pre-crash

implied volatility function for short-maturity index options is nearly flat, while it becomes a steep

smirk immediately after the crash. Moreover, the model predicts a downward jump in the risk-free

rate during the crash event, consistent with observation.

Finally, the model reproduces the stylized properties of the implied volatility functions for

individual stock option prices. We specify individual firm stock dynamics by first taking our

model for the S&P 500 index and then adding idiosyncratic shocks, both of the diffusive and

the jump types. We then calibrate the coefficients of the idiosyncratic components to match the

distribution of returns for the ‘typical’ stock. In particular, we match the cross-sectional average of

the high-order moments (variance, skewness, and kurtosis) for the stocks in the Bollen and Whaley

(2004) sample. We simulate option prices from this model and compute Black-Scholes implied

volatilities across different moneyness. Consistent with the evidence in Bollen and Whaley (2004),
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Bakshi, Kapadia, and Madan (2003), and Dennis and Mayhew (2002), we find an implied volatility

function that is considerably flatter than that for S&P 500 options. Bakshi, Kapadia, and Madan

(2003) conclude that the differential pricing of individual stock options is driven by the degree

of skewness/kurtosis in the underlying return distribution in combination with the agent’s high

level of risk aversion. Here, we propose a plausible endowment economy that, in combination with

recursive utility, yields predictions consistent with their empirical findings.

Related Literature: Motivated by the empirical failures of the Black-Scholes model in post-crash

S&P 500 option data, prior studies have examined more general option pricing models (see, e.g.,

Bates (1996), Duffie et al. (2000), and Heston (1993)). A vast literature explores these extensions

empirically,1 reaching the conclusion that a model with stochastic volatility and jumps significantly

reduces the pricing and hedging errors of the Black-Scholes formula.2 These previous studies,

however, focus on post-1987 S&P 500 option data. Further, they follow a partial equilibrium

approach and let statistical evidence guide the exogenous specification of the underlying return

dynamics.

Reconciling the findings of this literature in a rational expectations general equilibrium setting

has proven difficult. For instance, Pan (2002) notes that the compensation demanded for the

‘diffusive’ return risk is very different from that for jump risk. Consistent with Pan’s finding,

Jackwerth (2000) shows that the risk aversion function implied by S&P 500 index options and

returns in the post-1987 crash period is partially negative and increasing in wealth (similar results

are presented in Aı̈t-Sahalia and Lo (2000) and Rosenberg and Engle (2000)). This evidence is

difficult to reconcile in the standard general equilibrium model with constant relative risk aversion

utility and suggests that there may be a lack of integration between the option market and the

market for the underlying stocks.

Several papers have investigated the ability of equilibrium models to explain post-1987 S&P 500

option prices. Liu, Pan, and Wang (2005, LPW) consider an economy in which the endowment is

an i.i.d. process that is subject to jumps. They show that, in this setting, neither constant relative

risk aversion nor Epstein and Zin (1989) preferences can generate a volatility smirk consistent with

post-1987 evidence on S&P 500 options. They argue that in order to reconcile the prices of options

and the underlying index, agents must exhibit ‘uncertainty aversion’ towards rare events that is

different from the standard ‘risk-aversion’ they exhibit towards diffusive risk. This insight provides

a decision-theoretic basis to the idea of crash aversion advocated by Bates (2008), who considers

an extension of the standard power utility that allows for a special risk-adjustment parameter
1Among recent contributions, Bakshi et al. (1997, 2000), Bates (2000), and Huang and Wu (2004) focus on

derivatives prices alone. Pan (2002), Broadie et al. (2007), Chernov and Ghysels (2000), Jones (2003), Eraker (2004),

and Benzoni (2002) use data on both underlying and derivatives prices to fit the model.
2A related literature investigates the profits of option trading strategies (e.g., Coval and Shumway (2001) and

Santa-Clara and Saretto (2009)) and the economic benefits of giving investors access to derivatives when they solve

the portfolio choice problem (e.g., Constantinides et al. (2009), Driessen and Maenhout (2007), Liu and Pan (2003)).
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for jump risk distinct from that for diffusive risk. These prior studies assume that the dividend

level is subject to jumps, while the expected dividend growth rate is constant. Thus, in these

models a crash like that observed in 1987 is due to a 20-25% downward jump in the dividend

level.3 Moreover, their model predicts no change in the risk-free rate during the crash event. In

our setting, it is the expected endowment growth rate that is subject to jumps. Thus, in our

model dividends and consumption are smooth and the market can crash with minimal change in

observable macroeconomic fundamentals. Further, the risk-free rate drops around crash events,

consistent with empirical evidence.

Other studies explore the option pricing implications of models with state dependence in pref-

erences and/or fundamentals; see, e.g., Bansal, Gallant, and Tauchen (2007), Bondarenko (2003),

Brown and Jackwerth (2004), Buraschi and Jiltsov (2006), Chabi-Yo, Garcia, and Renault (2008),

David and Veronesi (2002 and 2009), and Garcia, Luger, and Renault (2001 and 2003). These

papers do not study the determinants of stock market crashes, the permanent shift in the implied

volatility smirk that followed the 1987 events, and the difference between implied volatility func-

tions for individual and index stock options. To our knowledge, our paper is the first to focus on

these issues.

Also related is a growing literature that investigates the effect of changes in investors’ sentiment

(e.g., Han (2008)), market structure, and net buying pressure (e.g., Bollen and Whaley (2004),

Dennis and Mayhew (2002), and Gârleanu et al. (2009)) on the shape of the implied volatility smile.

This literature argues that due to the existence of limits to arbitrage, market makers cannot always

fully hedge their positions (see, e.g., Green and Figlewski (1999), Figlewski (1989), Hugonnier et

al. (2005), Liu and Longstaff (2004), Longstaff (1995), and Shleifer and Vishny (1997)). As a

result, they are likely to charge higher prices when asked to absorb large positions in certain option

contracts. These papers, however, do not address why end users buy these options at high prices

relative to the Black-Scholes value or why the 1987 crash changed the shape of the volatility smile

so dramatically and permanently. Our paper offers one possible explanation.

Finally, the large impact that learning can have on asset price dynamics has been shown previ-

ously (e.g., David (1997), Veronesi (1999, 2000)). One important difference between these papers

and ours is that our agent learns from jumps rather than diffusions, as in Collin-Dufresne et al.

(2002), leading to different updating dynamics.

The main contribution of our paper is to explain pre- and post-1987 crash asset prices in a

rational-expectation framework that is consistent with underlying fundamentals. However, to our

knowledge this is also the first article to examine the effect of jumps in the Bansal and Yaron (2004)

economy. This has proven to be a fruitful extension of the long-run risk framework and has been

further explored by, e.g., Drechsler and Yaron (2008), Eraker (2008), and Eraker and Shaliastovich
3Barro (2006) makes a similar assumption about output dynamics. His model captures the contractions associated

with the Great Depression and the two World Wars, but it does not match the evidence around the 1987 crash, when

the output level remained smooth.
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(2008).

The rest of the paper proceeds as follows. In Section 2, we present the model and discuss our

solution approach. Section 3 shows that the model matches the relevant asset pricing facts while

being consistent with underlying fundamentals. Section 4 concludes the paper.

2 The Model

We specify the dynamics for log-consumption (c ≡ log C) and log-dividend (δ ≡ log D) as

dc =
(

µC + x− 1
2
Ω

)
dt +

√
Ω dzC (1)

dδ =
(

µD + φx− 1
2
σ2

D
Ω

)
dt + σD

√
Ω

(
ρDCdzC +

√
1− ρ2

DC
dzD

)
(2)

dx = −κxx dt + σxc

√
Ω dzc +

√
σx0 + σxΩ Ω dzx + ν̃ dN (3)

dΩ = κΩ

(
Ω− Ω

)
dt + σΩ

√
Ω

(
ρΩC dzC +

√
1− ρ2

ΩC
dzΩ

)
+ M̃ dN . (4)

These are continuous-time versions of the dividend and consumption dynamics considered in BY,

except that the predictable dividend component x and the measure of economic uncertainty Ω are

subject to jumps. The diffusive shocks {dzC , dzD , dzx , dzΩ} are uncorrelated Brownian motions,

while jumps are governed by a Poisson process dN with Prob(dNt = 1|Ft) = λt dt. The jump

intensity λt can take two possible values, λG and λB, and it transitions from one state to the other

via the dynamics:

π
(
λ

t+dt
= λB|λt = λG

)
= φGB dt

π
(
λ

t+dt
= λG|λt = λB

)
= φBG dt. (5)

Following Eraker (2000), the jump size variables ν̃ and M̃ are drawn from the distribution

π
(
ν̃ = ν, M̃ = M

)
= ξ e−ξM1{M>0}

1√
2πσ2

ν

exp

((
− 1

2σ2
ν

)[
ν −

(
ν − α

(
M − 1

ξ

))]2
)

. (6)

As in BY, changes in economic fundamentals are driven by the continuous trickling down of new

information, modeled through the diffusive shocks {dzC , dzD , dzx , dzΩ}. Jumps add an additional

source of risk to this framework and capture the notion of sudden unexpected changes in economic

fundamentals. In equation (6), ν denotes the average value of ν̃. When ν is negative, the typical

jump in the x state variable lowers the expected growth rate of the agent’s endowment. Moreover,

a jump increases economic uncertainty Ω by M̃ , whose average value is 1
ξ . If the realization of M̃

is higher than 1
ξ , then the average jump in x is reduced to

[
ν − α

(
M − 1

ξ

)]
(assuming α > 0).

Hence, α controls the level of correlation between the jump in volatility and the jump in expected

consumption growth.

We model jumps as rare events, i.e., both λB and λG are small. Yet, we specify λB = 0.035 to

be considerably larger than λG = 0.0005. Thus, the agent views the economy with λt = λB as the

‘bad’ economy and λt = λG as the ‘good’ economy.
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The agent does not observe the state of the economy directly, i.e., she does not know whether

λt = λB or λt = λG. Instead, she observes only the process {dNt}. We define the state variable

p(t) as her date-t estimate that the economy is in the good state (i.e., her prior):

p(t) ≡ π(λt = λG| dNt) . (7)

Over each interval dt, the agent updates her prior. The solution to the filtering problem with

Markov switching is studied in Liptser and Shiryaev (2001). Applying the results in their Theorem

19.6, p. 332, and Example 1, p. 333, we obtain the Bayesian dynamics for the probability of being

in a good state:4

dp = p

(
λG − λ(p)

λ(p)

)
dN +

[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]
dt , (8)

where λ(p(t)) =
[
p(t)λG + (1− p(t))λB

]
. Thus, at time t, the agent perceives the probability of a

future jump to be:

Prob(dNt = 1|Ft) = λ(p(t)) dt. (9)

Over each interval dt, the agent updates her prior according to equation (8). The first term captures

updating due to an observation of a jump (dN = 1). Since jumps are rare events, this term is zero

most of the time. However, if a jump occurs during the interval dt, the agent’s prior that the

economy is in the good state shifts by dpt = pt

(
λG−λ(p)

λ(p)

)
. This change is negative for interior

values of 0 < pt < 1, but is zero when either pt = 0 or pt = 1. Intuitively, when pt is either zero or

one, the agent knows the state for certain, and thus does not update her priors even if she observes

a jump. The second term in equation (8) captures deterministic fluctuations in the agent’s prior,

and is controlled by the Markov chain transition coefficients φGB and φBG . In our calibration, these

coefficients are small, which implies that the agent’s beliefs are very persistent. This feature helps

explain why the shift in the volatility smirk observed around the 1987 crash has persisted since

then.

For future reference it is convenient to define the state vector as Xt = (xt, Ωt, pt). Further, we

write state vector dynamics as:

dct = µC (Xt) dt + σC (Xt) dz(t)

dδt = µD(Xt) dt + σD(Xt) dz(t) + σDD(Xt) dzD(t)

dXt = µX (Xt) dt + σX (Xt) dz(t) + Γ̃ dN(t) , (10)

with the vector of independent Brownian motions z = (zc, zx, zΩ) and the vector of jump variables

Γ̃. Note that (ct, Xt) and (δt, Xt) are both Markov systems.
4For reasons of parsimony, we assume the agent learns about the state of the economy only by observing market

crashes. It is possible to allow the agent to also learn about the state of the economy by observing external signals

(see, e.g., Veronesi (2000).) Such a generalization would allow us to capture higher frequency fluctuations in option

prices, which is not our focus.
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2.1 Recursive Utility

Following Epstein and Zin (1989), we assume that the representative agent’s preferences over a con-

sumption process {Ct} are represented by a utility index U(t) that satisfies the following recursive

equation:

U(t) =
{

(1− e−βdt)C1−ρ
t + e−βdtEt

(
U(t + dt)1−γ

) 1−ρ
1−γ

} 1
1−ρ

. (11)

With dt = 1, this is the discrete time formulation of Kreps-Porteus/Epstein-Zin (KPEZ), in which

Ψ ≡ 1/ρ is the EIS and γ is the risk-aversion coefficient.

The properties of the stochastic differential utility in (11) and the related implications for asset

pricing have been previously studied by, e.g., Duffie and Epstein (1992a,b), Duffie and Skiadas

(1994), Schroder and Skiadas (1999, 2003), and Skiadas (2003). In Appendix A, we extend their

results to the case in which the aggregate output has jump-diffusion dynamics. The solution to our

model follows immediately from Propositions 1 and 2 in Appendix A. Specifically, let us define

J(t) =
(

1
1− γ

)
U(t)(1−γ).

Then, it is well-known that J(t) has the following representation:

J(t) = Et

[∫ ∞

t

f(Cs, J(s)) ds

]
, (12)

where f(C, J) is the normalized aggregator defined in Duffie and Epstein (1992), which we reproduce

in equation (A.7) of Appendix A.

For the cases ρ, γ 6= 1, Proposition 1 gives the agent’s value function as:5

J =
ec(1−γ)

1− γ
βθ I(X)θ , (13)

where we have defined θ ≡ 1−γ
1−ρ . Further, we show in Appendix A that I is the price-consumption

ratio, and satisfies the relation:

−θ = I(X)
(

(1− γ)µC (X) + (1− γ)2
||σC (X)||2

2
− βθ

)
+

DI(X)θ

I(X)(θ−1)

+(1− γ)θσC (X)σX (X)>IX(X) + I(X)λ(X)J I(X)θ, (14)

where we define the (continuous diffusion, jump, and jump-compensator) operators D,J ,J in

equations (A.13)-(A.13) in Appendix A.

2.2 Pricing Kernel and Risk-Free Rate

When ρ, γ 6= 1, Proposition 1 in Appendix A identifies the pricing kernel as

Π(t) = e
∫ t
0 ds [(θ−1)I(s)−1−βθ] βθ e−γct I(Xt)(θ−1). (15)

5Other cases with either ρ or γ equal to 1 can be treated similarly, as shown in the Appendix.
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Using Itô’s lemma, we obtain the dynamics of the pricing kernel, which identifies both the diffusion

and the jump risk-premia, as well as the risk-free rate:

dΠ(t)
Π(t)

= −rt dt− (γσC (Xt) + (θ − 1)σI (Xt)) dz(t)+J I(Xt)(θ−1) dNt−λ(Xt)J I(Xt)(θ−1) dt. (16)

Here, we have defined the diffusion-volatility of the price-consumption ratio as σI (X) = 1
I(X)IX (X)>σX (X),

and the risk-free rate via:6

r(X) = β + ρ

(
µC (X) +

||σC (X)||2
2

)
− γ(1 + ρ)

||σC (X)||2
2

− (1− θ)σI (X)>
(

σC (X) +
1
2
σI (X)

)

+λ(X)
(

θ − 1
θ

J Iθ − J I(θ−1)

)
. (17)

Note that this result reduces to the standard result for the CRRA exchange economy if ρ = γ

(i.e., θ = 1). Instead, if agents have a preference for resolution of uncertainty, then risk-aversion

affects the interest rate via the precautionary savings motive if consumption has positive volatility.

Further, if agents display a preference for early resolution (γ > ρ) and if the EIS is greater than 1

(i.e, ρ < 1), then the greater the volatility of the price-consumption ratio, the lower the equilibrium

interest rate, as agents want to divest from the risky asset because of long-run risk (this follows

since under these conditions 1− θ = γ−ρ
1−ρ > 0).

2.3 Price Dividend Ratio and Equity Premium

The stock market portfolio is a claim to aggregate dividends D(t). Thus, its value is obtained by

the standard discounted cash-flow formula:

S(t) = Et

[∫ ∞

t

Π(s)
Π(t)

D(s) ds

]
. (18)

This equation implies that the excess return on the stock is given by:7

1
dt

Et

[
dS(t)
S(t)

]
+

D(t)
S(t)

− rt = − 1
dt

Et

[
dΠ(t)
Π(t)

dS(t)
S(t)

]
. (19)

Defining the price-dividend ratio via St = Dt L(Xt) and substituting into equation (19), we obtain

a PDE for L(X) similar to that obtained for the price consumption ratio. To save on space,

we relegate this expression to equation (B.7) in Appendix B. Using the definition of the pricing

kernel, we can compute the right-hand side of equation (19) more explicitly to obtain the following

expression for the risk premium on the dividend claim:

µS(X) +
1

L(X)
− r(X) = (γσC (X) + (1− θ)σI (X))> (σD(X) + σL(X))

+λ(X)
(
J {I(X)θ−1L(X)} − J I(X)θ−1 − JL(X)

)
, (20)

6Again we only present results for the case where ρ, γ 6= 1. The other cases are treated in the Appendix.
7This follows from Itô’s lemma, the dynamics of Π(t), and the fact that Π(t)S(t)+

∫ t

0
Π(s)D(s) ds is a P-martingale.
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where we have defined σL(X) = 1
L(X)LX (X)>σX (X) as the diffusion of the price-dividend ratio.

Note that when (1 − θ) = γ−ρ
1−ρ > 0 (which holds, in particular, when agents have a preference for

early resolution of uncertainty, that is γ > ρ, and the EIS is greater than 1, that is ρ < 1), then

the higher the volatility of the price-consumption ratio, the greater the equity premium.

2.4 Pricing Options on the Market Portfolio and Individual Stocks

The date-t value of a European call option on the stock market portfolio S(t), with maturity T

and strike price K, is given by

C(S(t), X(t),K, T ) = EQ
t

[
e
− ∫ T

t
r(X(s)) ds (S(T )−K)+

]
, (21)

where the expectation is computed under the risk-neutral measure Q. The risk-neutral dynamics

of the stock price, St = Dt L(Xt) are:

dS

S
=

(
rt − 1

L(Xt)

)
dt + (σD(Xt) + σL(Xt)) dzQ(t) + σDD(Xt) dzQ

D
(t)

+JL(Xt) dNt − λQ(Xt)JL(Xt) dt . (22)

The risk-neutral dynamics for D, x, Ω, and p are given in Appendix B.4.

As in Bakshi, Kapadia, and Madan (2003), we specify return dynamics on an individual stock,
dSi
Si

, as the sum of a systematic component and an idiosyncratic component. In particular, we

assume that individual firm dynamics follow

dSi

Si
=

dS

S
+ σi dzi +

[(
eν̃i − 1

)
dNi − E

[
eν̃i − 1

]
λi dt

]
, (23)

where the market return dynamics dS
S are given in equation (22). Here, σi captures the volatility

of the idiosyncratic diffusive shock, while the diversifiable jump component has Poisson arrival

rate Ni with constant intensity λi and normally distributed jump size ν̃i ; N(µνi
, σνi

). The free

parameters (σi , λi , µνi
, σνi

) are chosen to match historical moments of the return distribution on

individual firms. By definition, the diversifiable shocks do not command a risk premium, while the

risk adjustments on the systematic component are identical to those that we have applied to price

the options on the S&P 500 index. Thus, the price of an option on an individual stock is given by

a formula similar to equation (21).8

8There might be a potential concern that the dynamics (23) for the individual firms and the dynamics (22)

for the aggregate index are not self-consistent. That is, the terminal value of a strategy that invests an amount

S(0) =
∑N

i=1 Si(0) in the index does not necessarily have the same terminal value of a strategy that invests an

amount Si(0) in each of the individual stocks, i = 1, . . . , N . However, we find in unreported simulations that the

discrepancy is negligible, i.e., S(T ) ≈ ∑N
i=1 Si(T ). Intuitively, the idiosyncratic shocks that we specify are in fact

diversifiable when the portfolio is composed of a sufficiently large number of firms.
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3 Data and Model Implications

Here, we calibrate the model coefficients to match economic fundamentals, solve the model numer-

ically, and study its asset pricing implications.

3.1 Baseline Model Coefficients

Table 1 reports the coefficients for our baseline model calibration, expressed with a yearly decimal

scaling. They are organized in seven groups, which we briefly discuss below.

1. Preferences:

We use a time discount factor coefficient β = 0.0176 and fix the coefficient of relative risk

aversion γ at 10, a value that is generally considered to be reasonable (e.g., Mehra and

Prescott (1985)). The magnitude of the EIS coefficient Ψ is more controversial. Hall (1988)

argues that the EIS is below 1. However, Guvenen (2001) and Hansen and Singleton (1982),

among others, estimate the EIS to be in excess of 1, and Attanasio and Weber (1989), Bansal,

Gallant, and Tauchen (2007), and Bansal, Tallarini, and Yaron (2006) find it to be close to

2. Accordingly, we fix Ψ = 2 in our baseline case.

2. Aggregate Consumption and Dividends:

We fix µC = 0.018 and µD = 0.025, consistent with the evidence that, historically, dividend

growth has exceeded consumption growth (Section 3.2 below). As in, e.g., BY, we set φ > 1 to

allow the sensitivity of dividend growth to shocks in x to exceed that of consumption growth.

Setting ρDC > 0 guarantees a positive correlation between consumption and dividends.

3. Predictable Mean Component, x:

Similar to BY, in the dynamics (3) we use κx = 0.2785, which makes x a highly persistent

process (if we adjust for differences in scaling and map the BY AR(1) ρ coefficient into the

κx of our continuous-time specification, we find κx = 0.2547). We decompose the shocks to

the x process into two terms that are orthogonal and parallel to consumption shocks, with

σxc > 0, σxΩ > 0, and σx0 = 0.

4. Economic Uncertainty, Ω:

In the Ω-dynamics (4), we fix Ω and σΩ at values similar to those used in BY. However, in our

calibration κΩ = 1.0484, which makes the Ω process much less persistent than the x process

(the half life of a shock is around 7-8 months). This is in contrast to the high persistence of

the volatility shocks in the BY calibration, and more akin to the calibration in Drechsler and

Yaron (2008). This feature is important in the presence of jumps to volatility, since with a

highly persistent Ω process, as in BY, volatility would remain high for years after a jump.

Finally, we allow for a negative correlation between shocks to consumption and volatility,

ρΩC < 0.
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5. Jumps:

We set λG = 0.0005 and λB = 0.035. Thus, if the jump intensity λt equals λG, a jump occurs

about once every 2000 years. In contrast, if λt = λB, the average jump time is approximately

30 years. Jumps in x have negative mean, ν < 0, i.e., the typical jump carries bad news for

the growth prospects of the economy.9 Similarly, jumps to Ω are positive and increase the

level of economic uncertainty. Finally, we set the transition probabilities φBG = 0.025 and

φGB = 0.0025. With these values, in steady state the economy is in the ‘good’ state λG with

probability φBG/(φBG + φGB) = 0.91.

6. Individual Stock Returns:

For each of the 20 stocks in the Bollen and Whaley (2004) study, we compute standard

deviation, skewness, and kurtosis by using daily return series for the sample period from

January 1995 to December 2000 (the same period considered by Bollen and Whaley). For

each of these statistics, we evaluate cross sectional averages. We find an average standard

deviation of 37.6% per year and average skewness and kurtosis of 0.12 and 7.12, respectively.

Four coefficients characterize the distribution of the idiosyncratic shocks in equation (23):

the standard deviation of the diffusive firm-specific shock, σi; the intensity of the diversifiable

jump component, λi; and the mean and standard deviation of the jump size, µνi
and σνi

.

After some experimentation, we fix the jump intensity to λi = 5, which corresponds to an

expected arrival rate of 5 jumps per year. We choose the remaining coefficients to match

the average standard deviation, skewness, and kurtosis reported above. This approach yields

σi = 0.3137, µνi
= 0.0036, and σνi

= 0.0632. To confirm that the results are robust to this

approach, we solve for σi, µνi
, and σνi

when λi takes different values in the 1-10 range. The

results are similar to those discussed below.

7. Initial Conditions:

Before the crash, the agent is nearly sure that the economy is in the good state λt = λG.

Specifically, we set pPre = 99.85%. When the agent perceives a jump in fundamentals,

she updates her prior according to equation (8). In our calibration, this yields pPost =

pPre +pPre
(

λG−λ(pPre)

λ(pPre)

)
= 90.48%. We fix the remaining state variables at their steady-state

values, x0 = ν λ/κx and Ω0 = Ω + λ/(ξκΩ).

3.2 Aggregate Consumption and Dividends

Here we demonstrate that the calibration discussed in the previous section matches the historical

data well. In Table 2, we report summary statistics for the series of yearly growth rates on aggregate
9In our calibration, jumps are extremely rare events that are typically associated with large jumps in asset prices.

This distinguishes our paper from other studies that consider higher-frequency jumps. For instance, Drechsler and

Yaron (2008) assume that jumps have mean zero and occur on average 0.8 times per year.
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consumption (Panel A) and dividends (Panel B). We focus not only on low-order moments, like

mean, standard deviation, auto- and cross-correlations, but also on higher-order moments like

skewness and kurtosis. We report empirical results for two sample periods. The first spans 80 years

of data, from 1929 to 2008, the second spans the post World War II period, from 1946 to 2008.

In addition to point estimates for these moments, we report standard errors robust with respect

to both auto-correlation and heteroskedasticity. The measure for aggregate consumption is the

real (chained 2000) yearly series of per-capita consumption expenditures in nondurable goods and

services from the National Income and Product Accounts (NIPA) tables published by the Bureau

of Economic Analysis. Following Fama and French (1988), we obtain a monthly dividend proxy by

subtracting returns without dividends from returns with dividends on the value-weighted market

index as reported by the Center for Research in Security Prices (CRSP). We sum the monthly

dividends to obtain the yearly dividend, and we deflate the yearly dividend series using Consumer

Price Index (CPI) data.

To examine the model implications, we simulate 10,000 samples of monthly consumption and

dividend data, each spanning a period of 80 years (same as the length of the 1929-2008 sample

period). We aggregate the monthly series to obtain yearly dividends and consumption, and we

compute the series of yearly growth rates ∆C
C and ∆D

D . For each of the 10,000 samples, we compute

summary statistics for these series. In the table, we report the mean value of these statistics, as well

as the 5th, 50th, and 95th percentiles. In the simulations, we use two different initial conditions.

First, we initialize the Markov chain for the λ process at λ(t = 0) = λG. That is, we assume that

at the beginning of time the economy is in the ‘good’ state. Second, we initialize λ(t = 0) = λB,

i.e., we assume that at t = 0 the economy is in the ‘bad’ state. In the table, we report the results

for each of these two cases.

In both sets of simulations, the moments of ∆C
C and ∆D

D are very close to the sample moments.

For most moments, the mean and the median computed in model simulations are essentially iden-

tical to those computed with the data. See, for instance, AC(1) for ∆C
C : it is 0.42 in the data

(1929-2008 sample), compared to a median simulated value of 0.42 when λ(t = 0) = λG, and 0.44

when λ(t = 0) = λB.

In a few cases, the median values in model simulations do not perfectly match the estimates

in the data. However, the sample estimates are in the 90% confidence interval computed from

model simulations. See, e.g., the skewness of ∆D
D . It is 0.38 in the 1929-2008 sample, a value

that falls well within the model confidence interval of [−0.20, 0.71] when λ(t = 0) = λG, and

[−0.24, 0.71] when λ(t = 0) = λB. These results reflect the fact that some statistics are imprecisely

estimated. For instance, the skewness of ∆D
D is much higher in the 1946-2008 sample, and the

standard error associated to this estimate is very high. Similarly, the model cannot match the

extreme ∆C
C skewness estimated over 1929-2008 (due to the drop in consumption during the Great

Depression), but it gets close to the −0.53 estimate for the 1946-2008 period.

There is one fact that the model does not capture well. The kurtosis of ∆D
D is 5.30 in the
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1946-2008 sample, and 9.06 in the 1929-2008 sample. Both values exceed the 4.16 upper bound in

model simulations. This may not be a serious shortcoming of the model, for two reasons. First,

kurtosis is very imprecisely estimated in the data (note the difference in point estimates across the

two sample periods and the huge standard errors). Second, it is arguably a good thing that our

results are not driven by an excess of skewness/kurtosis built in the model.

3.3 Stock Market Return and Risk-Free Rate

Before turning to option prices, we further validate our calibration by showing that the model is

also consistent with a wide range of asset pricing facts. Table 3 reports key asset pricing moments

computed with data spanning the 1929-2008 and 1946-2008 sample periods. The real annualized

total market return, (∆S
S + D

S ), is the yearly return, inclusive of all distributions, on the CRSP

value-weighted market index, adjusted for inflation using the CPI. The real risk-free rate rf is

the inflation-adjusted three-month rate from the ‘Fama Risk-Free Rates’ database in CRSP. In

computing the logarithmic price-dividend ratio, log(S/D), we consider two measures of dividends.

The first is the real dividend on the CRSP value-weighted index, which we have already discussed

in Section 3.2 above. The second is the real dividend on the CRSP value-weighted market index,

adjusted for share repurchases (Boudoukh et al. (2007)).

We solve the model numerically (Appendix C discusses the numerical approach) and simulate

10,000 samples of monthly stock market returns, risk-free rates, and price-dividend ratios, each

spanning a period of 80 years. We aggregate the monthly series at the yearly frequency. For each

of the 10,000 simulated samples, we compute summary statistics for these series. We report the

mean value of these statistics, as well as the 5th, 50th, and 95th percentiles. We repeat the analysis

with two simulation schemes. In the first set of simulations, we initialize the probability process p

at p(t = 0) = pPre, which corresponds to the pre-crash economy. In the second set, we initialize

p(t = 0) = pPost, which corresponds to the post-crash economy.

Panel A in Table 3 shows the moments for the real stock market return. The sample mean

estimate is very close to the mean in model simulations. The sample standard deviation for the

yearly return is a bit high relative to the model predictions when estimated over the 1929-2008

sample. However, the estimate computed with post World War II data falls well within the model

confidence bands, and the model matches the (annualized) monthly return standard deviation

estimate well. Moreover, the model fits the market return kurtosis accurately, both in monthly and

annual data. The sample skewness is more imprecisely estimated, but remains reasonably close to

the model predictions, especially in monthly data.

Panel B shows the mean and standard deviation of the risk-free rate. While the model matches

the mean accurately, the standard deviation is somewhat higher in the data than in the model. This

is a well known feature of the long-run risk setup. It is arguably a desirable property of the model,

rather than a weakness. For instance, Beeler and Campbell (2009, p. 8) report similar results and

note that “the data record the ex post real return on a short-term nominally riskless asset, not the
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ex ante (equal to ex post) real return on a real riskless asset. Volatile inflation surprises increase

the volatility of the series in the data, but not in the model.”10

The properties of the stock market return and the risk-free rate extend to the equity premium,

which the model matches quite well (Panel C). Finally, the model seems to underestimate the

mean level of the logarithmic price-dividend ratio (Panel D). However, when we account for share

repurchases in the measure of dividends, as in, e.g., Boudoukh et al. (2007), the sample estimate

of the price-dividend ratio is revised downward and is perfectly in line with the model predictions.

In sum, these results support two main conclusions. First, the model matches several important

asset pricing moments quite well. Second, the asset pricing moments predicted by the model pre-

and post-1987 crash are similar. Yet, we show in the next section that option prices differ quite

dramatically before and after the crash.

3.4 Option Prices

Figure 1 shows the spread of in-the-money and out-of-the-money implied volatilities relative to

at-the-money implied volatilities from 1985 to 2006. (Appendix D explains how we constructed the

implied volatility series.) Prior to the crash, 10% OTM puts with one month to maturity had an

average implied volatility spread of 1.83%. Similarly, the spread for 2.5% ITM put options averaged

−0.13% prior to the crash. On some dates the implied volatility function had the shape of a mild

‘smile’ and on others it was shaped like a mild ‘smirk’. Overall, the Black-Scholes formula priced

all options relatively well prior to the crash, underpricing deep OTM options only slightly. This

all changed on October 19, 1987, when the spread for OTM puts spiked up to a level above 10%.

Since then, implied volatilities for deep OTM puts have averaged 8.21% higher than ATM implied

volatilities. Moreover, since the crash, implied volatilities for ITM options have been systematically

lower than ATM implied volatilities, with an average spread of −1.34%.

We simulate 500,000 paths and compute option prices on the S&P 500 index, with one month

to maturity, across different strike prices. Figure 2 illustrates the results for the pre-crash economy,

i.e., p = pPre, and for the post-crash economy, i.e., p = pPost. The two plots capture the stark

regime shift in index option prices. Prior to the crash, the implied volatility function is nearly flat,

with a very mild upward tilt. In the model, the pre-crash spread between OTM and ATM implied

volatilities is 1.68%, while the spread between ITM and ATM implied volatilities is −0.06%. After

the crash, the implied volatility function tilts into a steep smirk: in the model, the spread between

OTM and ATM implied volatilities is 8.39%, while the spread between ITM and ATM implied

volatilities is −0.38%. These values closely match the numbers we find in the data.

Another important property of S&P 500 option prices, which is evident from Figure 1, is that
10Other studies have attempted to filter out the predictable component in real rate fluctuations prior to computing

its volatility. For instance, Barro (2006) finds that the annual standard deviation of the residuals from an AR(1)

process for realized real rates of return on U.S. Treasury Bills or short-term commercial paper from 1880 to 2004 is

0.018. In our calibration, the riskfree rate volatility does not exceed that value.
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the regime shift in S&P 500 options has persisted since the 1987 crash. Figure 3 demonstrates that

our model is also able to capture this empirical observation. Indeed, it shows the volatility smirk

retains a value of approximately 8% for values of p in the range of p ∈ (0, 0.95). Thus, our model

predicts that as the value of p updates via equation (8), the post-crash smirk will be persistent.

As a particular example, if we assume that no additional crashes are observed for twenty years

after the 1987 crash, equation (8) implies that the probability of being in the low jump state will

drift up to approximately p ≈ 0.94. This value of p still generates a volatility smirk of almost 8%.

Moreover, there may be additional jumps in fundamentals after the 1987 crash. If that were to

happen, the agent would revise her posterior probability down, erasing any increase in p due to

the effect of the drift. Also in this case, Figure 3 shows that lowering p below pPost would have a

minimal effect on the shape of the volatility smirk.

3.4.1 Sensitivity Analysis

We illustrate the sensitivity of the pre- and post-crash volatility functions to some key underlying

parameters:

Preferences Coefficients Figure 4 shows that when the coefficient of risk aversion is lowered

to 7.5, most of the post-crash volatility smirk remains intact. Increasing the value of γ to 12.5

steepens the post-crash smirk considerably. Most importantly, even when γ = 12.5, a value that

exceeds the range that most economists find to be ‘reasonable’ (e.g., Mehra and Prescott (1985)),

the pre-crash smirk remains relatively flat.

As noted previously, researchers have obtained a wide array of estimates for the EIS parameter

Ψ. In our baseline case, we use Ψ = 2. Figure 5 shows that even lower estimates for Ψ, such as 1.5,

still produce steep post-crash volatility smirks.

Jump Coefficients Figure 6 illustrates the effect of a one-standard-deviation perturbation of

the average jump size coefficient. Not surprisingly, the steepness of the post-crash smirk is quite

sensitive to the level of this coefficient. Lowering ν increases the steepness of the smirk, especially

in the post-crash economy.

In contrast, a change in the expected size of the jump in volatility, 1/ξ, has a limited effect on

the steepness of the smirk. This is evident from Figure 7, which shows results for ξ = ξhigh, a value

that corresponds to an average jumps size 1/ξhigh ≈ 0, and ξ = ξlow, a value that corresponds to

an average jumps size that is double the baseline case. This result is due to the low persistence

of the Ω processes in our calibration: Unlike shocks to x, shocks to Ω are short lived. Moreover,

jumps are rare events in our calibration. Thus, in sum, changing the expected volatility jump size

has little impact on the volatility smirk.
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3.4.2 Options on Individual Stocks

We now turn to the pricing of individual stock options. We simulate option prices for a typical

stock, as discussed in Section 2.4, and extract Black-Scholes implied volatilities for different option

strike prices. Figure 8 compares this implied volatility function to the volatility smirk for S&P 500

options. Consistent with the empirical evidence, our model predicts that the volatility smile for

individual stock options is considerably flatter than that for S&P 500 options.

Bakshi, Kapadia, and Madan (2003) conclude that the differential pricing of individual stock

options is driven by the degree of skewness/kurtosis in the underlying return distribution in com-

bination with the agent’s high level of risk aversion. Here, we propose a plausible endowment

economy that, in combination with recursive utility, yields predictions consistent with their em-

pirical findings. Combined with our results discussed above, this evidence is not inconsistent with

the notion that the market for S&P 500 and individual stock options, as well as the market for the

underlying stocks, are well integrated.

3.5 The Change in Stock and Bond Prices around the 1987 Crash

In our model, the 1987 crash is caused by a downward jump ν̃ in expected consumption growth x

and a simultaneous upward jump M̃ in consumption volatility Ω. Here we quantify the magnitude

of these jumps implied by our model. Prior to the crash, the stock market price-dividend ratio is

LPre = L(xPre, ΩPre, pPre), where pPre is the agent’s prior on the probability that λt = λG. In

our calibration, pPre ≈ 1. Immediately after the crash, the price-dividend ratio drops to LPost =

L(xPre + ν̃, ΩPre + M̃, pPost), where pPost is the agent’s posterior probability that λt = λG, i.e.,

according to equation (8), pPost = pPre + pPre
(

λG−λ(pPre)

λ(pPre)

)
. Similarly, the change in the risk-free

rate at the time of the crash is

∆r = rPost − rPre = r(xPre + ν̃, ΩPre + M̃, pPost)− r(xPre, ΩPre, pPre) . (24)

Using S&P 500 data, we find LPre = 32.64 and LPost = 25.96, while the change in the three-

month Treasury bill yield measured over the two weeks before and after the crash is −1.39%. The

model matches these numbers when pPre = 99.85%, pPost = 90.48%, xPre = 0.0317, ν̃ = −0.0034,

ΩPre = 0.000533, and M̃ = 0.000169.

Now, ν̃ = −0.0034 is a very small jump in x. The expected growth rate of a persistent process is

difficult to measure. Thus, it will be difficult for the econometrician to detect this jump in ex-post

dividend data. The jump in economic uncertainty, M̃ = 0.000169, is bigger relative to the long-run

mean of Ω, but in the calibration the persistence of the economic uncertainty process Ω is much

lower than the persistence of the growth process x. After a jump, the process Ω is quickly pulled

back towards its steady-state value by its drift (the half-life of a shock to Ω is around 7-8 months).

Moreover, prior to the crash the value of economic uncertainty, ΩPre = 0.000533, is not far from

the steady state value of Ω, 0.0006 (the standard deviation of a diffusive shock is 0.000068). Thus,

this jump will be hardly detectable in low-frequency dividend and consumption data as well.
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These computations show that the model explains the change in stock and bond prices around

the 1987 market crash with minimal change in fundamentals. In fact, the crash is mainly driven by

the updating of the agent’s beliefs. If we omit the effect of the jumps ν̃ and M̃ and focus only on the

effect of the change in the agent’s prior from pPre to pPost, we find L(xPre, ΩPre, pPost) = 26.70.

That is, Bayesian updating over p alone drives an 18.20% drop in prices (26.70/32.64−1 = −0.1820).

Similarly, we find r(xPre, ΩPre, pPost)− r(xPre, ΩPre, pPre) = −0.95%, which accounts for most of

the drop in the risk-free rate.

3.6 Final Thoughts

We conclude this section with two observations. First, Figure 1 conveys two main points. One,

as mentioned previously, there has been a permanent shift in the shape of the implied volatility

function due to the crash. Two, there are daily fluctuations in the shape of the smirk. This

second feature has been studied extensively in the literature. Prior contributions have shown that

these fluctuations can be understood in both a general equilibrium framework (e.g., David and

Veronesi (2002 and 2009)) and a partial equilibrium setting (e.g., Bakshi et al. (1997 and 2000),

Bates (2003), Pan (2002), and Eraker (2004)). Such high-frequency fluctuations can be captured

within the context of our model by introducing additional state variables that drive high-frequency

changes in expected dividend growth and/or volatility. However, since these daily fluctuations have

already been explained, we do not investigate such variables in order to maintain parsimony.

Second, another aspect of S&P 500 options is that expected return volatility computed under the

risk-adjusted probability measure is typically higher than expected return volatility computed under

the actual probability measure. The difference between these two expected volatility measures is

often termed the ‘variance risk premium,’ or VRP. Moreover, previous studies have shown that the

VRP fluctuates over time and predicts future stock market returns at the short/medium horizon

(Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2008)). Our model does not

capture this evidence, but it can be extended to include higher-frequency jumps (similar to Drechsler

and Yaron (2008)) or time-varying volatility-of-volatility (as in Bollerslev, Tauchen, and Zhou

(2009)). Since this is not our contribution, we point the interested reader to those studies for more

details.

4 Conclusions

The 1987 stock market crash is associated with many asset pricing puzzles. Examples include: i)

Stocks fell 20-25%, interest rates fell approximately 1-2%, yet there was minimal impact on observ-

able economic variables (e.g., consumption), ii) the slope of the implied volatility curve on index

options changed dramatically after the crash, and this change has persisted for more than 20 years,

iii) the magnitude of this post-crash slope is difficult to explain, especially in relation to the implied

volatility slope on individual firms. We propose a general equilibrium model that can explain these
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puzzles while capturing many other salient features of the U.S. economy. We accomplish this by

extending the model of Bansal and Yaron (2004) to account for jumps and learning. In particular,

we specify the representative agent to be endowed with Epstein-Zin preferences and assume that

the aggregate dividend and consumption processes are driven by a persistent stochastic growth

variable that can jump. Economic uncertainty fluctuates and is also subject to jumps. Jumps are

rare and driven by a hidden state the agent filters from past data. In such an economy there are

three sources of long-run risk: expected consumption growth, volatility of consumption growth,

and posterior probability of the jump intensity in expected growth rates and volatility. Jumps in

fundamentals, even small, can lead to substantial jumps in prices of long-lived assets because of

the updating of beliefs about the likelihood of future such jumps. In that sense, learning acts as

an amplifier of long-run risk premia associated with small persistent jumps in growth rates and

their volatility. Indeed, we identify a realistic calibration of the model that matches the prices

of short-maturity at-the-money and deep out-of-the-money S&P 500 put options, as well as the

prices of individual stock options. Further, the model, calibrated to the stock market crash of 1987,

generates the steep shift in the implied volatility ‘smirk’ for S&P 500 options observed around the

1987 crash. This ‘regime shift’ occurs in spite of a minimal change in observable macroeconomic

fundamentals.

In sum, our model points to a simple mechanism, based on learning about the riskiness of the

economy, that explains why market prices suddenly crashed with little change in fundamentals, and

why buyers of OTM put options were willing to pay a much higher price for these securities after the

crash. Of course, we acknowledge that other mechanisms probably also contributed to the crash.

For example, portfolio insurance and its implementation via dynamic hedging strategies is often

cited as a major culprit. Let us just point out that, while not directly a ‘shock to fundamentals,’ the

failure of portfolio insurance could well have contributed to deteriorating prospects for economic

fundamentals through a ‘financial accelerator’ mechanism. It is a common belief that the growth

rate of consumption and consumption volatility are tied to the strength of the financial system.

Thus, if the crash revealed that risk-sharing was not as effective as previously thought, then this

could have negatively affected investors’ expectations about the future prospects of the economy. In

this respect, further learning about economic fundamentals occurs through the experience of a crash

in prices and might result in a further drop in prices via the mechanism we describe. Explicitly

modeling this feedback mechanism between prices and economic fundamentals is outside the scope

of the present paper, but seems an interesting avenue for future research.
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A Equilibrium Prices in a Jump-Diffusion Exchange Economy

with Recursive Utility

There are several formal treatments of stochastic differential utility and its implications for asset

pricing (see, e.g., Duffie and Epstein (1992a,b), Duffie and Skiadas (1994), Schroder and Skiadas

(1999, 2003), and Skiadas (2003)). For completeness, in this Appendix we offer a simple formal

derivation of the pricing kernel that obtains in an exchange economy where the representative agent

has a KPEZ recursive utility. Our contribution is to characterize equilibrium prices in an exchange

economy where aggregate output has particular jump-diffusion dynamics (Propositions 1 and 2).

A.1 Representation of Preferences and Pricing Kernel

We assume the existence of a standard filtered probability space (Ω,F , {Ft}, P ) on which there

exists a vector z(t) of d independent Brownian motions and one counting process N(t) =
∑

i 1{τi≤t}
for a sequence of inaccessible stopping times τi, i = 1, 2, . . ..11

Aggregate consumption in the economy is assumed to follow a continuous process, with stochas-

tic growth rate and volatility, which both may experience jumps:

d log Ct = µC (Xt) dt + σC (Xt) dz(t) (A.1)

dXt = µX (Xt) dt + σX (Xt) dz(t) + Γ̃ dN(t) , (A.2)

where Xt is an n-dimensional Markov process (we assume sufficient regularity on the coefficient of

the stochastic differential equation (SDE) for it to be well-defined, e.g., Duffie (2001), Appendix B).

In particular, µX is an (n, 1) vector, σX is an (n, d) matrix, and Γ̃ is an (n, 1) vector of i.i.d. random

variable with joint density (conditional on a jump dN(t) = 1) of (ν). We further assume that the

counting process has a (positive integrable) intensity λ(Xt) in the sense that
(
N(t)− ∫ t

0 λ(Xs) ds
)

is a (P,Ft) martingale.

Following Epstein and Zin (1989), we assume that the representative agent’s preferences over

a consumption process {Ct} are represented by a utility index U(t) that satisfies the following

recursive equation:

U(t) =
{

(1− e−βdt)C1−ρ
t + e−βdtEt

(
U(t + dt)1−γ

) 1−ρ
1−γ

} 1
1−ρ

. (A.3)

With dt = 1, this is the discrete time formulation of KPEZ, in which Ψ ≡ 1/ρ is the EIS and γ is

the risk-aversion coefficient.

To simplify the derivation let us define the function

uα(x) =

{
x1−α

(1−α) 0 < α 6= 1

log(x) α = 1 .

11N(t) is a pure jump process and hence is independent of z(t) by construction (in the sense that their quadratic

co-variation is zero).
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Further, let us define

g(x) = uρ(u−1
γ (x)) ≡





((1−γ)x)1/θ

(1−ρ) γ, ρ 6= 1

uρ(ex) γ = 1, ρ 6= 1
log((1−γ)x)

(1−γ) ρ = 1, γ 6= 1 ,

where

θ =
1− γ

1− ρ
.

Then, defining the ‘normalized’ utility index J as the increasing transformation of the initial utility

index J(t) = uγ(U(t)), equation (A.3) becomes:

g(J(t)) = (1− e−βdt)uρ(Ct) + e−βdt g (Et [J(t + dt)]) . (A.4)

Using the identity J(t + dt) = J(t) + dJ(t) and performing a simple Taylor expansion we obtain:

0 = βuρ(Ct)dt− βg(J(t)) + g′(J(t)) Et [dJ(t)] . (A.5)

Slightly rearranging the above equation, we obtain a backward recursive stochastic differential

equation that could be the basis for a formal definition of stochastic differential utility (see Duffie

Epstein (1992), Skiadas (2003)):

Et[dJ(t)] = −βuρ(Ct)− βg(J(t))
g′(J(t))

dt . (A.6)

Indeed, let us define the so-called ‘normalized’ aggregator function:

f(C, J) =
βuρ(C)− βg(J)

g′(J)
≡





βuρ(C)

((1−γ)J)1/θ−1 − βθJ γ, ρ 6= 1

(1− γ)βJ log(C)− βJ log((1− γ)J) γ 6= 1, ρ = 1
βuρ(C)

e(1−ρ)J − β
1−ρ γ = 1, ρ 6= 1 .

(A.7)

We obtain the following representation for the normalized utility index:

J(t) = Et

(∫ T

t

f(Cs, J(s)) + J(T )
)

. (A.8)

Further, if the transversality condition limT→∞ Et(J(T )) = 0 holds, letting T tend to infinity,

we obtain the simple representation:

J(t) = Et

(∫ ∞

t

f(Cs, J(s))ds

)
. (A.9)

Fisher and Gilles (1999) discuss many alternative representations and choices of the utility index

and associated aggregator as well as their interpretations. Here, we note only the well-known fact

that when ρ = γ (i.e., θ = 1), then f(C, J) = βuρ(C)−βJ , and a simple application of Itô’s lemma

shows that

J(t) = Et

(∫ ∞

t

e−β(s−t)βuρ(Cs)ds

)
.
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To obtain an expression for the pricing kernel, note that under the assumption (which we

maintain throughout) that an ‘interior’ solution to the optimal consumption-portfolio choice of the

agent exists, a necessary condition for optimality is that the gradient of the Utility index is zero

for any small deviation of the optimal consumption process in a direction that is budget feasible.

More precisely, let us define the utility index corresponding to such a small deviation by:

Jδ(t) = Et

(∫ ∞

t

f
(
C∗

s + δC̃(s), Jδ(s)
)

ds

)
.

Then we may define the gradient of the utility index evaluated at the optimal consumption process

C∗(t) in the direction C̃(t):

∇J(C∗
t ; C̃t) = lim

δ→0

Jδ(t)− J(t)
δ

= lim
δ→0

Et

[∫ ∞

t

f(C∗
s + δC̃(s), Jδ(s))− f(Cs, J

δ(s))
δ

ds

]

= Et

[∫ ∞

t

fC(C∗
s , J(s))C̃s + fJ(Cs, J(s))∇J(C∗

s ; C̃s)ds

]
. (A.10)

Assuming sufficient regularity (essentially the gradient has to be a semi-martingale and the transver-

sality condition has to hold: limT→∞ Et[e
∫ T

t
fJ (Cs,Js)ds∇J(C∗

T ; C̃T ) = 0), a simple application of the

generalized Itô-Doeblin formula gives the following representation:

∇δJ(C∗
t ; C̃t) = Et

(∫ ∞

t

e
∫ s

t
fJ (Cu,Ju)du

fC(Cs, Js)C̃sds

)
. (A.11)

This shows that

Π(t) = e
∫ t
0 fJ (Cs,Js)dsfC(Ct, Jt) (A.12)

is the Riesz representation of the gradient of the normalized utility index at the optimal consump-

tion. Since a necessary condition for optimality is that ∇J(C∗
t ; C̃t) = 0 for any feasible deviation

C̃t from the optimal consumption stream C∗
t , we conclude that Π(t) is a pricing kernel for this

economy. (See Chapter 10 of Duffie (2001) for further discussion.)

A.2 Equilibrium Prices

Assuming the equilibrium consumption process given in equations (A.1)-(A.2) above, we obtain an

explicit characterization of the felicity index J and the corresponding pricing kernel Π.

For this we define, respectively, the continuous diffusion, jump, and jump-compensator operators

for any h(·) : Rn − R:

Dh(x) = hx(x)µX (x) +
1
2
trace(hxxσX (x)σX (x)>)

J h(x) =
h(x + ν̃)

h(x)
− 1

J h(x) = E[J h(x)] =
∫

. . .

∫
h(x + ν)

h(x)
(ν)dν1 . . . dνn − 1, (A.13)
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where hx is the (n, 1) Jacobian vector of first derivatives and hxx denotes the (n, n) Hessian matrix

of second derivatives. With these notations, we find:

Proposition 1 Suppose I(x) : Rn → R solves the following equation:




0 = I(x)
(
(1− γ)µC (x) + (1− γ)2 ||σC

(x)||2
2 − βθ

)
+

DI(x)θ

I(x)(θ−1) + (1− γ)θσC (x)σX (x)>Ix(x) + θ + I(x)λ(x)J I(x)θ for ρ, γ 6= 1

0 = I(x) ((1− ρ)µC (x)− β) + I(x)D log I(x) + 1 + I(x)λ(x) log
(
1 + J I(x)

)
for γ = 1, ρ 6= 1

0 = I(x)
(
(1− γ)µC (x) + (1− γ)2 ||σC

(x)||2
2

)
+DI(x)+

(1− γ)σC (x)σX (x)>Ix(x)− βI(x) log I(x) + I(x)λ(x)J I(x) for ρ = 1, γ 6= 1
(A.14)

and satisfies the transversality condition (limT→∞ E[J(T )] = 0 for J(t) defined below) then the

value function is given by:




J(t) = uγ(Ct)(βI(Xt))θ for ρ, γ 6= 1
J(t) = log(Ct) + log(βI(Xt))

1−ρ for γ = 1, ρ 6= 1

J(t) = uγ(Ct)I(Xt) for ρ = 1, γ 6= 1 .

(A.15)

The corresponding pricing kernel is:




Π(t) = e
− ∫ t

0 (βθ+
(1−θ)
I(Xs)

)ds(Ct)−γ(I(Xt))(θ−1) for ρ, γ 6= 1

Π(t) = e
− ∫ t

0
β

I(Xs)
)ds 1

(CtI(Xt))
for γ = 1, ρ 6= 1

Π(t) = e−
∫ t
0 β(1+log I(Xs))ds(Ct)−γI(Xt) for ρ = 1, γ 6= 1 .

(A.16)

Proof 1 We provide the proof for the case γ, ρ 6= 1. The special cases are treated similarly.

From its definition

J(t) = Et

(∫ ∞

t
f(Cs, J(s))

)
. (A.17)

Thus, J(Xt, Ct) +
∫ t
0 f(Cs, J(Xs, Cs))ds is a martingale. This observation implies that:

E[dJ(Xt, Ct) + f(Ct, J(Xt, Ct))dt] = 0 . (A.18)

Equivalently:
DJ(Ct, Xt)
J(Ct, Xt)

+ J J(Ct, Xt) +
f(Ct, J(Ct, Xt))

J(Ct, Xt)
= 0 . (A.19)

To obtain the equation of the proposition, we use our guess (J(t) = uγ(Ct)βθI(Xt)θ) and apply the

Itô-Doeblin formula using the fact that

f(C, J)
J

=
uρ(C)

((1− γ)J)1/θ−1J
− βθ =

θ

I(X)
− βθ (A.20)

DJ

J
= (1− γ)µC (X) +

1
2
(1− γ)2||σC (X)||2 +

DI(X)θ

I(X)θ
+ (1− γ)θσC (X)σI(X)> , (A.21)

where we have defined σI(x)> = σ
X

(x)>Ix(x)

I(x) .
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Now suppose that I(·) solves this equation. Then, applying the Itô-Doeblin formula to our

candidate J(t), we obtain

J(T ) = J(t) +
∫ T

t
DJ(s)ds +

∫ T

t
(JCσC + JXσX )dz(s) +

∫ T

t
J(s−)J I(Xs)θdN(s)

= J(t)−
∫ T

t
f(Cs, Js)ds+

∫ T

t
J(s) {(1− γ)σC (Xs) + θσI(Xs)} dz(s) +

∫ T

t
dM(s),

where we have defined the pure jump martingale

M(t) =
∫ t

0
J(s−)J I(Xs)

θ dN(s)−
∫ t

0
λ(X

s− )J(s−)J I(Xs)θ ds .

If the stochastic integral is a martingale,12 and if the transversality condition is satisfied, then we

obtain the desired result by taking expectations and letting T tend to infinity:

J(t) = E
[∫ ∞

t
f(Cs, Js) ds

]
, (A.22)

which shows that our candidate J(t) solves the recursive stochastic differential equation. Uniqueness

follows (under some additional technical conditions) from the appendix in Duffie, Epstein, and

Skiadas (1992).

The next result investigates the property of equilibrium prices.

Proposition 2 The risk-free interest rate is given by:




r(x) = β + ρ(µC (x) + ||σ
C

(x)||2
2 )− γ(1 + ρ) ||σC

(x)||2
2 −

(1− θ)σI (x)>(σC (x) + 1
2σI (xt)) + λ(x)

(
θ−1

θ J Iθ − J I(θ−1)
)

for ρ 6= 1

r(x) = β + µC (x) + ||σ
C

(x)||2
2 − γ||σC (x)||2 for ρ = 1 .

(A.23)

Further, the value of the claim to aggregate consumption is given by:
{

V (t) = C(t)I(Xt) for ρ 6= 1
V (t) = C(t)

β for ρ = 1 .
(A.24)

Thus
dVt

Vt
= µV (Xt)dt +

(
σC (Xt) + σI (Xt)1{ρ6=1}

)
dz(t) + J I(Xt)dN(t) . (A.25)

The risk premium on the claim to aggregate consumption is given by

µV (X) +
1

I(X)
− r(X) = (γσC (X) + (1− θ)σI (X))> (σC (X) + σI (X))

+λ(X)
(
J I(X)θ − J I(X)θ−1 − J I(X)

)
. (A.26)

12Sufficient conditions are:

E

[∫ T

0

J(s)2
(||(1− γ)σC (Xs) + θσI(Xs)||2

)
ds

]
< ∞ ∀T > 0 .
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Proof 2 To prove the result for the interest rate, apply the Itô-Doeblin formula to the pricing

kernel. It follows from r(t) = −E[dΠ(t)
Π(t) ]/dt that:

r(Xt) = βθ +
(1− θ)
I(Xt)

+ γµc(Xt)− 1
2
γ2||σc(Xt)||2 − DI(Xt)(θ−1)

I(Xt)(θ−1)
− λ(Xt)J I(X)θ−1 . (A.27)

Now substitute the expression for 1
I(X) from the equation in (A.14) to obtain the result.

To prove the result for the consumption claim, define V (t) = ctI(Xt). Then using the definition

of

Π(t) = e
−βθt−∫ t

0
(1−θ)
I(Xs)

ds
c−γ
t I(Xt)θ−1 ,

we obtain:

d (Π(t) V (t)) = e
−βθt−∫ t

0
(θ−1)
I(Xs)

ds
(

dJ(t)− J(t)
(

βθ +
(1− θ)
I(Xt)

)
dt

)
. (A.28)

Note that by definition we have:

dJ(t) = −f(ct, J)dt + dMt

= −J(t)
(

θ

I(Xt)
− θβ

)
dt + dMt (A.29)

for some P -martingale M . Combining this observation with (A.28), we get:

d (Π(t) V (t)) = e
−βθt−∫ t

0
(1−θ)
I(Xs)

ds (−J(t))
I(Xt)

dt + e
−βθt−∫ t

0
(1−θ)
I(Xs)

ds
dMt

= −Π(t) c(t) dt + e
−βθt−∫ t

0
(1−θ)
I(Xs)

ds
dMt . (A.30)

Thus integrating we obtain

Π(T )V (T ) +
∫ T

t
Π(s)csds = Π(t)V (t) +

∫ T

t
e
−βθ(u−t)−∫ u

t
(1−θ)
I(Xs)

ds
dMu . (A.31)

Taking expectations, letting T →∞, and assuming the transversality condition holds

(i.e., limT→∞ E[Π(T )V (T )] = 0), we obtain the desired result:

Π(t)V (t) = Et

[∫ ∞

t
Π(s) cs ds

]
. (A.32)

To derive the excess return equation, note that the martingale condition implies:

Et[
dΠ(t)V (t)
Π(t)V (t)

] +
D(t)
V (t)

dt = 0 (A.33)

Further, Itô’s lemma implies:

1
dt

Et[
dΠ(t)V (t)
Π(t)V (t)

] =
1
dt

Et

[
dΠ(t)
Π(t)

+
dV (t)
V (t)

+
dΠ(t)
Π(t)

dV (t)
V (t)

]

= µV (X)− r(X) + (γσC (X) + (1− θ)σI (X))> (σC (X) + σI (X)) +
1
dt

Et[J I(X)θ−1J I(X)]

= µV (X)− r(X) + (γσC (X) + (1− θ)σI (X))> (σC (X) + σI (X))

+λ(X)
(
J I(X)θ − J I(X)θ−1 − J I(X)

)
. (A.34)

Combining equations (A.33) and (A.34), we get the expression for the excess return on the con-

sumption claim given in equation (A.26).

24



B Application to the Three-Dimensional Model

Here we apply the general equations given in Appendix A to our three-state variable model, where

the state vector is Xt = (xt, Ωt, pt), whose dynamics are given in equations (3), (4), and (8).

B.1 Price-Consumption Ratio

The equation for the price-consumption ratio follows immediately from the dynamics of (xt, Ωt, pt)

given in equations (3), (4), and (8) and the PDE (14):

0 = I
[
(1− γ)µC + (1− γ)x− γ

2
(1− γ)Ω− βθ

]
− θIxκxx

+
θ

2

(
σx0 + (σ2

xc
+ σxΩ)Ω

)[
(θ − 1)

(
Ix

I

)2

I + Ixx

]
+ θIΩκΩ

(
Ω− Ω

)

+
σ2

Ω

2
Ωθ

(
IΩΩ + (θ − 1)

(
IΩ

I

)2

I

)
+ θ

[
(θ − 1)

(
Ix

I

)(
IΩ

I

)
I + IxΩ

]
σxcσΩρΩCΩ

+θ
[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]
Ip + (1− γ)θIxσxcΩ

+(1− γ)θIΩσΩρΩCΩ + λ(p)I J
[
Iθ

]
+ θ . (B.1)

B.2 Pricing Kernel and Risk-Free Rate

When ρ, γ 6= 1, the pricing kernel in our three factor economy is

Π(t) = e
∫ t
0 ds [(θ−1)I(s)−1−βθ] βθ e−γc I(t)(θ−1). (B.2)

Ito’s lemma gives

dΠ
Π

= −r dt + dzC

(
−γ
√

Ω + (θ − 1)
(

Ix

I

)
σxc

√
Ω + (θ − 1)

(
IΩ

I

)
σΩ

√
ΩρΩC

)

+dzx

[
(θ − 1)

(
Ix

I

) √
σx0 + σxΩ Ω

]
+ dzΩ

[
(θ − 1)

(
IΩ

I

)
σΩ

√
Ω

√
1− ρ2

ΩC

]

+dN

[
Iθ−1(x + ν̃, Ω + M̃, p + ∆p)

Iθ−1(x,Ω, p)
− 1

]
− λ(p) dtE

[
Iθ−1(x + ν̃, Ω + M̃, p + ∆p)

Iθ−1(x,Ω, p)
− 1

]
,

(B.3)

where the risk-free rate r equals:

−r(x,Ω, p) =
[
(θ − 1)I−1 − βθ

]− γ

[(
µC + x− 1

2
Ω

)]
+

1
2
γ2Ω + (θ − 1)

(
Ix

I

)
[−κxx]

+
1
2
(θ − 1)

[
(θ − 2)

(
Ix

I

)2

+
(

Ixx

I

)](
σx0 + (σ2

xc
+ σxΩ)Ω

)
+ (θ − 1)

(
IΩ

I

)[
κΩ

(
Ω− Ω

)]

+
1
2
(θ − 1)

[
(θ − 2)

(
IΩ

I

)2

+
(

IΩΩ

I

)]
σ2

Ω
Ω + λ(p) E

[
Iθ−1(x + ν̃, Ω + M̃, p + ∆p)

Iθ−1(x,Ω, p)
− 1

]

+(θ − 1)
Ip

I

[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]
− γ(θ − 1)

(
Ix

I

)
σxcΩ

−γ(θ − 1)
(

IΩ

I

)
σΩρΩCΩ + (θ − 1)

[
(θ − 2)

(
Ix

I

)(
IΩ

I

)
+

(
IxΩ

I

)]
σxcσΩρΩCΩ. (B.4)
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B.3 Price-Dividend Ratio and Equity Premium

The price of the stock market portfolio, S(t), satisfies the well-known formula

0 =
1
dt

Et [d (Π(t) S(t))] + Π(t)D(t)

=
1
dt

Et [S(t) dΠ(t) + Π(t) dS(t) + dΠ(t) dS(t)] + Π(t)D(t). (B.5)

Dividing by Π(t) and using E
[

dΠ
Π

]
= −r dt yields

0 = −rS(t) +
1
dt

Et [dS(t)] +
1
dt

Et

[
dΠ
Π

dS(t)
]

+ D(t). (B.6)

We define the price-dividend ratio L(x,Ω, p) via S(x,Ω, p, D) = DL(x,Ω, p) and substitute in

equation (B.6). Then, dividing by D we find

0 = −rL +
L

dt
Et

[
dL

L
+

dD

D
+

dD

D

dL

L

]
+

L

dt
Et

[
dΠ
Π

(
dL

L
+

dD

D
+

dD

D

dL

L

)]
+ 1. (B.7)

To solve this equation, we need the dynamics of L(x,Ω, p), which we obtain from Ito’s lemma and

the dynamics of the state vector in equations (3)-(4) and (8). Substituting in equation (B.7), we

find

0 = 1− rL + (µD + φx) L− κxxLx +
1
2
Lxx

[
σx0 + (σxΩ + σ2

xc
)Ω

]
+ LΩκΩ

(
Ω− Ω

)
+

1
2
LΩΩσ2

Ω
Ω

+LxΩσxcσΩρΩCΩ + Lp

[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]
+ σDρDC [Lxσxc + LΩσΩρΩC ] Ω

+Ω

[
σDρDCL + Lxσxc + LΩσΩρΩC

][
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

]

+(θ − 1)Lx

(
Ix

I

)
(σx0 + σxΩΩ) + (θ − 1)LΩ

(
IΩ

I

)
σ2

Ω
Ω

(
1− ρ2

ΩC

)

+λ(p) E

[(
I(θ−1)(x + ν, Ω + M, p + ∆p)

I(θ−1)(x,Ω, p)

)(
L(x + ν, Ω + M, p + ∆p)− L(x, Ω, p)

)]
. (B.8)

Next, we derive the equity risk premium, (µ − r), via the relation (µ − r) = − 1
dtE

[
dΠ
Π

dS
S

]
, which

yields

(µ− r) = −(θ − 1)
(

Ix

I

)(
Lx

L

) (
σx0 + σxΩΩ

)
− (θ − 1)

(
IΩ

I

)(
LΩ

L

)
σ2

Ω
Ω

(
1− ρ2

ΩC

)

−Ω
[
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

] [
σDρDC +

(
Lx

L

)
σxc +

(
LΩ

L

)
σΩρΩC

]

−λ(p)E

[(
I(θ−1)(x + ν, Ω + M, p + ∆p)

I(θ−1)(x,Ω, p)
− 1

)(
L(x + ν, Ω + M, p + ∆p)

L(x, Ω, p)
− 1

)]
. (B.9)

B.4 Risk-Neutral Dynamics

From the pricing kernel, we identify the following risk-neutral dynamics:

dc =
[
µC + x− 1

2
Ω + Ω

(
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

)]
dt +

√
Ω dzQ

C
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dD

D
=

[
µD + φx + ρDC σDΩ

(
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

)]
dt

+σD

√
Ω

(
ρDCdzQ

C
+

√
1− ρ2

DC
dzQ

D

)

dx =
[
−κxx + σxcΩ

(
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

)]
dt

+
[
(σx0 + σxΩ Ω) (θ − 1)

(
Ix

I

)]
dt + σxc

√
Ω dzQ

c
+

√
σx0 + σxΩ Ω dzQ

x
+ ν̃ dN

dΩ =
[
κΩ

(
Ω− Ω

)
+ σΩρΩCΩ

(
−γ + (θ − 1)

(
Ix

I

)
σxc + (θ − 1)

(
IΩ

I

)
σΩρΩC

)]
dt

+
[
σ2

Ω
(1− ρ2

ΩC
)Ω(θ − 1)

(
IΩ

I

)]
dt + σΩ

√
Ω

(
ρΩC dzQ

C
+

√
1− ρ2

ΩC
dzQ

Ω

)
+ M̃ dN

λ
Q(p) = λ(p) E

[
I(θ−1)(x + ν̃, Ω + M̃, p + ∆p)

I(θ−1)(x, Ω, p)

]
, (B.10)

where

πQ(ν̃ = ν, M̃ = M) = π(ν̃ = ν, M̃ = M) ∗ I(θ−1)(x + ν, Ω + M, p + ∆p)

E
[
I(θ−1)(x + ν̃, Ω + M̃, p + ∆p)

] . (B.11)

C Affine Approximation to the Model

To solve the model, we approximate the price-consumption ratio with an exponential affine function,

I(p, x, Ω) = eA(p)+B(p)x+F (p)Ω. (C.1)

Plugging the approximation of I into equation (B.1) and dividing by I, we find

0 = (1− γ)µc + (1− γ)x− γ

2
(1− γ)Ω− βθ − θBκxx +

θ2

2
[
σx0 +

(
σ2

xc
+ σxΩ

)
Ω

]
B2

+θFκΩ

(
Ω− Ω

)
+

(
σ2

Ω

2

)
θ2F 2Ω + θ2BFσxcσΩρΩCΩ

+θ
[−p

(
λG − λ(p)

)− pφGB + (1− p)φBG

] [
Ap + xBp + ΩFp

]

+(1− γ)θBσxcΩ + (1− γ)θFσΩρΩCΩ +
θ

I
− λ(p)

+λ(p) eθ[A(pλG/λ(p))−A(p)] eθx(B(pλG/λ(p))−B(p)) eθΩ(F (pλG/λ(p))−F (p))

×e
θB(pλG/λ(p))(ν+α

ξ
)+

σ2
νθ2

2
B(pλG/λ(p))2

(
ξ

ξ + αθB(pλG/λ(p))− θF (pλG/λ(p))

)
. (C.2)

To solve equation (C.2), we apply a continuous-time analog of the Campbell and Shiller (1988) log-

linear approximation; see, e.g., Campbell and Viceira (2002) and Chacko and Viceira (2005). We

use Taylor’s formula to expand the exponential terms in x and Ω around the points x0 ≡
(

ν
κx

)
λ(p)

and Ω0 ≡ Ω+
(

1
ξκ

Ω

)
λ(p). We then collect terms linear in x, linear in Ω, and independent of x and

Ω to obtain a system of three equations that define the functions A(p), B(p), and F (p):

0 = (1− γ)µc − βθ +
θ2

2
σx0B

2 + θFκΩΩ− λ(p) + θe−(A+x0B+Ω0F ) (1 + x0B + Ω0F )
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+ζ1(p)
[
1− θx0

(
B(pλG/λ(p))−B(p)

)− θΩ0

(
F (pλG/λ(p))− F (p)

)]

+θ
[−p(λG − λ(p))− pφGB + (1− p)φBG

]
Ap

0 = (1− γ)− θBκx − θBe−(A+Bx0+FΩ0) + ζ1(p)θ
[
B(pλG/λ(p))−B(p)

]

+θ
[−p(λG − λ(p))− pφGB + (1− p)φBG

]
Bp

0 = −
(γ

2

)
(1− γ) +

θ2

2
(
σ2

xc
+ σxΩ

)
B2 − θFκΩ +

(
σ2

Ω

2

)
θ2F 2 + θ2BFσxcσΩρΩC

+(1− γ)θBσxc + (1− γ)θFσΩρΩC − θFe−(A+Bx0+FΩ0) + ζ1(p)θ
[
F (pλG/λ(p))− F (p)

]

+θ
[−p(λG − λ(p))− pφGB + (1− p)φBG

]
Fp , (C.3)

where we have defined the function:

ζ1(p) ≡ λ(p) eθ[A(pλG/λ(p))−A(p)]eθ(ν+α
ξ
) B(pλG/λ(p))+

σ2
νθ2

2
B2(pλG/λ(p))

eθx0 [B(pλG/λ(p))−B(p)]

×eθΩ0 [F (pλG/λ(p))−F (p)]
(

ξ

ξ + αθB(pλG/λ(p))− θF (pλG/λ(p))

)
. (C.4)

We approximate the functions A(p), B(p), and F (p) with a linear combination of general Chebyshev

polynomials, and determine the coefficients of the approximation via least square minimization of

the approximation error (e.g., Judd (1998)). We extend the approximation to include Chebyshev

polynomials up to order 20 (adding higher-order polynomials does not change the solution). This

approach gives us a semi-closed-form solution to the model, which facilitates the analysis greatly.

To check the accuracy of this approach, we also solve the model via fixed-point iterations over the

price-dividend ratio I. Albeit considerably slower, this alternative method converges to a nearly

identical solution.

We continue our approximation by looking for a price-dividend ratio of the form

L(x,Ω, p ) = eAL(p)+BL(p)x+F L(p)Ω . (C.5)

We plug this expression into the price-dividend ratio equation (B.8), divide by L, and Taylor expand

the exponential terms to be linear in x and Ω around the points x0 and Ω0. We then collect terms

to obtain a system of three equations that define the functions AL(p), BL(p), and FL(p):

0 = AL
p

[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

+e−AL(p)−BL(p)x0−F L(p)Ω0(1 + BL(p)x0 + FL(p)Ω0)

+(θ − 1) e−A−Bx0−FΩ0(1 + Bx0 + FΩ0)− βθ − γµC +
1
2
(θ − 1)2B2σx0

+(θ − 1)FκΩΩ− λ(p)

+(θ − 1)Ap(p)
[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

+µD +
(BL)2

2
σx0 + FLκΩΩ + (θ − 1)BL Bσx0

+ζ2(p)
[
1− [(θ − 1)

[
B(pλG/λ(p))−B(p)

]
+ BL(pλG/λ(p))−BL(p)

]
x0

− [
(θ − 1)

[
F (pλG/λ(p))− F (p)

]
+ FL(pλG/λ(p))− FL(p)

]
Ω0]
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0 = BL
p

[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

−e−AL(p)−BL(p)x0−F L(p)Ω0BL(p)− (θ − 1) e−A−Bx0−FΩ0B − γ − (θ − 1)Bκx

+(θ − 1)Bp(p)
[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

+φ− κxBL

+ζ2(p)
[
(θ − 1)

[
B(pλG/λ(p))−B(p)

]
+ BL(pλG/λ(p))−BL(p)

]

0 = FL
p

[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

−e−AL(p)−BL(p)x0−F L(p)Ω0FL(p)− (θ − 1) e−A−Bx0−FΩ0F

+
γ(1 + γ)

2
+

1
2
(θ − 1)2B2(σ2

xc
+ σxΩ)− (θ − 1)FκΩ +

1
2
(θ − 1)2F 2σ2

Ω

+(θ − 1)Fp(p)
[
− p

(
λG − λ(p)

)
+ (1− p)φBG − pφGB

]

−γ(θ − 1)Bσxc − γ(θ − 1)FσΩρΩC

+(θ − 1)2BFσxcσΩρΩC +
(BL)2

2
(σxΩ + σ2

xc
)− FLκΩ +

(FL)2

2
σ2

Ω

+BL FLσxcσΩρΩC + σDρDC

[
BLσxc + FLσΩρΩC

]

+[σDρDC + BLσxc + FLσΩρΩC ] [−γ + (θ − 1)Bσxc + (θ − 1)FσΩρΩC ]

+(θ − 1)BL BσxΩ + (θ − 1)FL Fσ2
Ω

(
1− ρ2

ΩC

)

+ζ2(p)
[
(θ − 1)

[
F (pλG/λ(p))− F (p)

]
+ FL(pλG/λ(p))− FL(p)

]
, (C.6)

where we have defined the function ζ2:

ζ2(p) = λ(p)e(θ−1)[A(pλG/λ(p))−A(p)+[B(pλG/λ(p))−B(p)]x0+[F (pλG/λ(p))−F (p)]Ω0]

∗ eAL(pλG/λ(p))−AL(p)+[BL(pλG/λ(p))−BL(p)]x0+[F L(pλG/λ(p))−F L(p)]Ω0

∗χ(BL(pλG/λ(p)) + (θ − 1)B(pλG/λ(p)), FL(pλG/λ(p)) + (θ − 1)F (pλG/λ(p))) , (C.7)

with χ(B, F ) ≡ E
[
eBν̃+FM̃

]
= e

B(ν+α
ξ
)+

σ2
νB2

2 ξ
ξ+αB−F . Similar to A(p), B(p), and F (p), we ap-

proximate AL(p), BL(p), and FL(p) with a linear combination of general Chebyshev polynomials

of order 20, and determine the coefficients of this approximation via least square minimization of

the approximation error.

D Pre- and Post-Crash Implied Volatility Patterns

Figure 1 shows the permanent regime shift in pre- and post-1987 market crash implied volatilities

for S&P 500 options. The plot in Panel A depicts the spread between implied volatilities for S&P

500 options that have a strike-to-price ratio X = K/S − 1 = −10% and at-the-money implied

volatilities. The plot in panel B depicts the spread between implied volatilities for options that

have a strike-to-price ratio X = K/S − 1 = 2.5% and at-the-money implied volatilities.
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D.1 American Options on the S&P 500 Futures

We construct implied volatility functions from 1985 to 1995 by using transaction data on American

options on S&P 500 futures. As in Bakshi et al. (1997), prior to analysis we eliminate observa-

tions that have a price lower than $(3/8) to mitigate the impact of price discreteness on option

valuation. Since near-maturity options are typically illiquid, we also discard observations with

time-to-maturity shorter than 10 calendar days. For the same reason, we do not use call and put

contracts that are more than 3% in-the-money. Finally, we disregard observations on options that

allow for arbitrage opportunities, e.g., calls with a premium lower than the early exercise value.

We consider call and put transaction prices with the three closest available maturities. For each

contract, we select the transaction price nearest to the time of the market close and pair it with

the nearest transaction price on the underlying S&P 500 futures. This approach typically results in

finding a futures price that is time stamped within 6 seconds from the time of the option trade. We

approximate the risk-free rate with the three-month Treasury yield and compute implied volatilities

using the Barone-Adesi and Whaley (1987) pricing formula for American options.

At each date and for each of the three closest maturities, we interpolate the cross section of

implied volatilities with a parabola. This approach is similar to the one used in Shimko (1993).

In doing so, we require that we have at least three implied volatility observations, one with a

strike-to-price ratio X = K/S − 1 no higher than -9%, one with X no lower than 1.5%, and one

in between these two extremes. We record the interpolated implied volatility at X = 0 and the

implied volatility computed at the available X-values closest to -10% and 2.5%.

Then at each date and for each of the three X choices, we interpolate the implied volatility

values across the three closest maturities using a parabola. We use the fitted parabola to obtain the

value of implied volatility at 30 days to maturity. If only two maturities are available, we replace

the parabola with a linear interpolation. If only one maturity is available, we retain the value of

implied volatility observed at that maturity, provided that such maturity is within 20 to 40 days.

Trading in American options on the S&P 500 futures contract began on January 28, 1983. Prior

to 1987, only quarterly options maturing in March, June, September, and October were available.

Additional serial options written on the next quarterly futures contracts and maturing in the nearest

two months were introduced in 1987 (e.g., Bates (2000)). This data limitation, combined with the

relatively scarce size and liquidity of the options market in the early years, renders it difficult to

obtain smirk observations at the 30-day maturity with -10% moneyness. Therefore, we start the

plot in December 1985. After this date, we find implied volatility values with the desired parameters

for most trading days. Relaxing the time-to-maturity and moneyness requirements results in longer

implied volatility series going back to January 1983. Qualitatively, the plot during the period from

January 1983 to December 1985 remains similar to that for the period from December 1983 to

October 1987 (see, e.g., Bates (2000)).
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D.2 European Options on the S&P 500 Index

After April 1996, we use data on S&P 500 index European options. We obtain daily SPX implied

volatilities from April 1996 to April 2006 from the Optionmetrics database. Similar to what we

discussed in Section D.1, we exclude options with a price lower than $(3/8), a time-to-maturity

shorter than 10 calendar days, and contracts that are more than 3% in-the-money.

At each date and for each of the three closest maturities, we interpolate the cross-section of

implied volatilities using a parabola. We have also considered a spline interpolation, which has

produced similar results. We use the fitted parabola to compute the value of implied volatilities for

strike-to-index-price ratios X = K/S − 1 = −10%, zero, and 2.5%. Finally, we interpolate implied

volatilities at each of these three levels of moneyness across the three closest maturities. We use

the fitted parabola to compute the value of implied volatility at the 30-day maturity.
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Tables and Figures

Table 1: Model coefficients

The table reports the coefficients for our baseline model calibration, expressed with yearly decimal
scaling.

Preferences

γ = 10 Ψ = 2 β = 0.0176

Consumption and dividends

µC = 0.018 µD = 0.025 φ = 2.6050 σD = 5.3229 ρDC = 0.2523

Predictable mean component, x

κx = 0.2785 σxc = 0.1217 σx0 = 0 σxΩ = 0.1301

Economic uncertainty, Ω

κΩ = 1.0484 Ω = 0.0006 σΩ = 0.004 ρΩC = −0.6502

Jumps

ν = −0.035 σν = 0.0216 ξ =2100 α = 3 λG = 0.0005 λB = 0.035

Transition probabilities

φGB = 0.0025 φBG = 0.025

Idiosyncratic return shocks

σi = 0.3137 µνi = 0.0036 σνi = 0.0632 λi = 5
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Figure 1: Pre- and Post-Crash Implied Volatility Smirk for S&P 500 Options with One Month to
Maturity. The plot in Panel A depicts the spread between implied volatilities for S&P 500 options
with a strike-to-price ratio X = K/S − 1 = −10% and at-the-money implied volatilities. The
plot in Panel B depicts the spread between implied volatilities for options with a strike-to-price
ratio X = K/S − 1 = 2.5% and at-the-money implied volatilities. Appendix D explains how we
constructed the implied volatility series.
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Figure 2: The plots depict the model-implied volatility smirk pre- and post-1987 market crash for
S&P 500 options with one month to maturity. The model coefficients are set equal to the baseline
values.
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Figure 3: The plot depicts the model-implied volatility smirk as a function of the probability p the
agent assigns to be in the low-crash-intensity economy. Implied volatilities are for S&P 500 options
with one month to maturity. The model coefficients are set equal to the baseline values.
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Figure 4: The plots illustrate the sensitivity of the model-implied volatility smirk to the elasticity
of relative risk aversion coefficient γ. Implied volatilities are for S&P 500 options with one month
to maturity.
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Figure 5: The plots illustrate the sensitivity of the model-implied volatility smirk to the elasticity
of intertemporal substitution coefficient Ψ = 1

ρ . Implied volatilities are for S&P 500 options with
one month to maturity.
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Figure 6: The plots illustrate the sensitivity of the model-implied volatility smirk to the jump
coefficient ν̄. Implied volatilities are for S&P 500 options with one month to maturity.
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Figure 7: The plots illustrate the sensitivity of the model-implied volatility smirk to the jump
coefficient ξ. Implied volatilities are for S&P 500 options with one month to maturity.
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Figure 8: The plots contrast the model-implied volatility function for individual stock options to
the volatility smirk for S&P 500 index options with one month to maturity. The model coefficients
are set equal to the baseline values.
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