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RECURSIVE EQUILIBRIUM IN STOCHASTIC
OVERLAPPING-GENERATIONS ECONOMIES

BY ALESSANDRO CITANNA AND PAOLO SICONOLFI1

We prove the generic existence of a recursive equilibrium for overlapping-genera-
tions economies with uncertainty. “Generic” here means in a residual set of utilities
and endowments. The result holds provided there is a sufficient number of potentially
different individuals within each cohort.

KEYWORDS: Overlapping generations, Markov equilibrium, recursive equilibrium,
transversality theorem.

1. INTRODUCTION

THE OVERLAPPING-GENERATIONS (OLG) model, introduced first by Allais
(1947) and Samuelson (1958), is one of the two major workhorses for macro-
economic and financial modeling of open-ended dynamic economies. Follow-
ing developments in the study of two-period economies, the OLG model has
been extended to cover stochastic economies with production and possibly in-
complete financial markets. As is the consensus, in dynamic economies the
general notion of competitive equilibrium à la Arrow and Debreu, which al-
lows for prices and allocations to depend on histories of arbitrary length, is
not always fully satisfactory for a variety of reasons. Among them, it is worth
recalling at least the following two. First, from a theoretical viewpoint, when
prices have unbounded memory, the notion of rational expectations equilib-
rium is strained because of the complexity of the forecasts and the expectations
coordination involved. Second, the ensuing large dimensionality of the alloca-
tion and price sequences strains the ability of approximating solutions with
present-day computers through truncations, rendering this general notion of
equilibrium not very useful for applied, quantitative work, even in stationary
Markovian environments.

Duffie, Geanakoplos, Mas-Colell, and McLennan (1994) gave a general the-
orem for the existence of stationary Markov equilibria for OLG economies
with associated ergodic measure.2 While these equilibria help bypass the two
above-mentioned issues, they are still quite complicated as the state space con-
tains a number of past and current endogenous variables. Therefore, the con-
ceptual issue of whether it is possible to find simpler equilibria—stationary
Markov equilibria based on a minimal state space—remains open.

1We thank John Geanakoplos, Felix Kubler, David Levine, Michael Magill, Herakles Pole-
marchakis, Martine Quinzii, and three anonymous referees for useful comments. The paper was
written while the first author was visiting the Columbia Business School, whose financial support
is gratefully acknowledged.

2See, for example, also the earlier work by Spear (1985), Cass, Green, and Spear (1992), and
Gottardi (1996).
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In parallel developments, and to allow for computational work, the litera-
ture in macroeconomics and finance has focused on a simpler notion of time-
homogeneous Markov equilibrium, also known as recursive equilibrium.3 In a
recursive equilibrium, the state space is reduced to the exogenous shocks and
the initial distribution of wealth for the agents—asset portfolios from the pre-
vious period, and capital and storage levels if production is considered. The
notion of recursive equilibrium also originates in the long-standing tradition of
using recursive methods in economics (see, e.g., Stokey and Lucas (1989) and
Ljungqvist and Sargent (2000)), and is the “natural” extension of those meth-
ods to stochastic OLG models with heterogeneity. A recursive equilibrium can
be thought of as a time-homogeneous Markov equilibrium that is based on a
minimal state space.

However, no existence theorem is available for such recursive equilibria. In
fact, Kubler and Polemarchakis (2004) provided two examples of nonexistence
of recursive equilibrium in OLG exchange economies. The idea that recursive
equilibria may not exist is based on the observation that when there are mul-
tiple equilibria, the continuation of an equilibrium may depend on past eco-
nomic variables other than the wealth distribution. That is, the current wealth
distribution may not be enough to summarize the information contained in
past equilibrium prices and marginal utilities.

While this phenomenon may occur, we prove that it is nongeneric under
some qualifying condition. The argument follows from two fundamental ob-
servations.

First, we show that competitive equilibria, which are time-homogeneous
Markov over a simple state space, exist. This is the state space made of the
current exogenous state, the current wealth distribution, current commodity
prices, and marginal utilities of income for all generations except for the first
and the last (“newly born” and “eldest”). This result is similar to that obtained
by Duffie et al. (1994, Section 2.5). In fact, we even construct such equilibria
that guarantee that the Markov state space contains all the wealth distribu-
tions that can be taken to be initial conditions for competitive equilibria of
each economy considered.

Second, we show that simple Markov equilibria typically satisfy the condition
that prices and multipliers are a function of the current state and of the current
wealth distribution, provided that there is a large number of individuals within
each generation. We call these equilibria nonconfounding, while we call equi-
libria that do not satisfy that condition confounding. Clearly, nonconfounding
simple time-homogeneous Markov equilibria are recursive.

The trick we use is to find a finite system of equations that must necessarily
have a solution so that simple Markov equilibria fail to be nonconfounding.

3Examples by now abound; see, for example, Rios Rull (1996), Constantinides, Donaldson,
and Mehra (2002), Geanakoplos, Magill, and Quinzii (2004), and Storesletten, Telmer, and Yaron
(2004).
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This trick allows one to bypass the infinite-dimensional nature of the equilib-
rium set and the fact that, with overlapping generations, there is an infinite
number of individuals and an infinite number of market clearing equations,
rendering direct genericity analysis quite problematic.

Specifically, if there exists a confounding equilibrium, there is a pair of
Markov states with identical current shock and wealth distribution, but dif-
ferent multipliers or different current prices. However, the joint requirement
of equal wealth but different multipliers restricts the future prices following
the realization of the two critical Markov states to be such that individuals
with equal wealth make different choices. Since individuals have finite lives,
the latter is a restriction over finitely many future prices. Equivalently, both
the dimension of the relevant price processes and the number of wealth equal-
ities are finite. We show that with a large enough number of potentially differ-
ent individuals of the same generation (Assumption A1), typically the wealth
equalities are not satisfied, thereby establishing the generic existence of re-
cursive equilibria. Since we need to check this for all admissible—and not just
equilibrium—pairs of price processes, the number of individuals must be large.
It should be noted in passing that this is not at odds with the notion of price-
taking behavior, which is assumed in competitive models such as ours.

The notion of genericity we will use will rely also on utility perturbations and,
therefore, will only be topological. In fact, due to the infinite dimension of the
equilibrium set, we will not be able to establish local uniqueness of competitive
equilibria, whether or not it is time-homogeneous. Without this prerequisite,
the argument that essentially shows some one-to-one property of prices will
have to be made without knowing whether or not such prices are “critical”;
in fact, without knowing if they are equilibrium prices. Therefore, we will re-
sort to an argument reminiscent of Mas-Colell and Nachbar (1991), and we
will show the existence of recursive equilibria for a residual or nonmeager sub-
set of parameters, that is, a set of stationary utilities and endowments that is
dense and is the countable intersection of open and dense sets. This is a well
established notion of genericity for dynamic systems.

Our class of OLG economies has multiple goods, generations, and types
within each generation. We present first the simplest model where there are
only short-lived real—namely, numéraire—assets in zero net supply. Long-
lived assets with nonzero real payoffs and in positive net supply, production (as
in Rios Rull (1996)), and economies with individual risk are briefly discussed
at the end of the paper. Our result encompasses all these extensions and the
argument of the paper goes through unchanged. In fact, in the extensions the
Markov state space becomes richer, thereby possibly relaxing Assumption A1.

To simplify the exposition, in this paper we carry out the density part of the
argument for complete financial markets. When markets are incomplete, den-
sity proofs are much more elaborate. Hence, we leave the density analysis with
incomplete markets to a companion paper (Citanna and Siconolfi (2007)).
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Our result suggests that the notion of recursive equilibrium is coherent as
an exact concept, adding robustness to its interpretation and quantitative use.4
While the number of agents in each cohort must be large, their characteris-
tics can always be taken to be very similar for the underlying economy to have
exact recursive equilibria. We must stress that although we cannot claim that
economies with a large number of identical individuals are part of the generic
set where recursive equilibrium exists, nothing in the argument indicates oth-
erwise.5

The paper is organized as follows. Section 2 introduces the stochastic OLG
economy model. Section 3 gives the definition of the relevant notions of equi-
librium: competitive, simple Markov, and recursive. Section 4 states the main
theorem and outlines the fundamental aspects of the argument. In particular,
Section 4.1 shows existence of simple Markov equilibria, while Section 4.2 con-
tains the properties of demand that arise from a distribution of agents in two
cohorts. Section 5 discusses extensions to the basic model and related results.

2. THE MODEL

We consider standard stationary OLG economies. Time is discrete, indexed
by t = 0�1�2� � � � � There are S > 1 states of the world that may be realized
in each period. At each t, H individuals enter the economy. Each individual
h ∈ H lives G + 1 ≥ 2 periods, indexed by a = 0� � � � �G, from the youngest
(a= 0) to the oldest (a=G) age. If and when we need to make explicit that a
variable or function is of a specific individual of type h (and of age a), we use
the superscript h (and ha). At each t, C ≥ 1 physical commodities are avail-
able for consumption. The consumption bundle of an individual of age a is
xat ∈ R

C
++. Each individual h has a discounted, time-separable, von Neumann–

Morgenstern utility function with time-, state-, and age-invariant Bernoulli
utility index uh at age a. Each uh : RC

++ → R is twice continuously differen-
tiable, differentially strictly increasing, and differentially strictly concave (the
Hessian is negative definite), and satisfies the following boundary condition:
if xhac�t → 0, then ‖Duh(xat )‖ → +∞, where Duh denotes the vector of partial
derivatives. The common discount factor is δ ∈ (0�1]. At each t, endowments
are ehat ∈ R

C
++ for h ∈H and 0 ≤ a≤G.

4For their interpretation as mere computing devices, see Kubler and Schmedders (2005).
When feedback policies are examined in a recursive formulation, their interpretation is of course
strengthened by the exact, as opposed to only approximate, nature of recursivity. As we stressed
earlier, the focus on recursive equilibria can also be justified by their “simplicity” when they are
exact.

5On the other hand, if an economy with possibly many identical individuals does not have
a recursive equilibrium, independent and arbitrarily small perturbations of their characteristics
restore its existence. While Assumption A1 does not necessarily encompass the economies of
the examples constructed by Kubler and Polemarchakis (2004), in a previous paper (Citanna and
Siconolfi (2008)) we showed that such examples are nonrobust.
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At each t, there are competitive spot markets for the exchange of physical
commodities. The price vector of the C commodities is pt = (� � � �pc�t� � � �) ∈
R
C
++. Commodity c = 1 is dubbed the numéraire commodity and hereafter,

unless we say otherwise, we adopt the normalization p1�t = 1 for all t. There
are also competitive markets for trading S one-period securities in zero net
supply, with prices qt ∈ R

S . We set ψt ≡ (pt� qt).
The security payoffs dt ∈ R

S are in units of the numéraire commodity. The
portfolio of an individual of age a is θat ∈ R

S . We assume that θ−1
t ≡ θGt ≡ 0 and,

denoting with wa
t ≡ dtθ

a−1
t−1 the financial wealth of an individual of age a at t,

that w0
t = 0 for all t. Also, wa

0 = d0θ
a−1
− ∈ R is the individual initial wealth at

t = 0 for a > 0, while w0 ≡ (wha
0 )h∈H denotes the initial wealth distribution of

the economy.
Finally, we let λhat be the marginal utility of income for all (h�a); that is,

λhat =D1u
h(xat ), where D1 denotes the derivative with respect to the first entry

of the vector xat .
To define the various notions of equilibrium, all exogenous and endogenous

variables are seen as stochastic processes on a probability space 〈X �F�Pr〉�
First, the sequence of exogenous shocks is seen as a realization of the process
s̃ = (st� t = 0�1� � � �) that is constructed in a standard way through a given
S × S stochastic matrix π, where each st : X → S is F -measurable, and with
initial shock s0(χ)= s0 for some s0 ∈ S for Pr-a�a�χ. The matrix π is the time-
invariant transition of this process and π(st+1|st) = Pr{χ : st+1 = st+1(χ)|st =
st(χ)} defines the probability of shock realization st+1 given st , that is, s̃ is a
time-homogeneous, first-order Markov chain.

Endowments ehat are assumed to be affected only by current realizations of
s ∈ S and are denoted by ehas ∈ R

C
++ for h ∈H, 0 ≤ a≤G, and s ∈ S. The secu-

rity payoff dt is also only affected by the state st ∈ S and is dst , and is assumed
to give rise to a full-rank, S × S-dimensional matrix D which is then time and
history invariant. Hence, state realizations affect endowments and preferences
of all individuals of all ages and security payoffs, while time does not. Thus,
the fundamentals of our economies follow a time-homogeneous, first-order
Markov process, so that the economy is stationary.

In what follows, we keep (π�D) fixed and we identify an economy with an en-
dowment and utility profile ehas , uh, for all h ∈H� a= 0� � � � �G, s ∈ S, and dis-
count factor δ ∈ (0�1]. The endowment space E is an open subset of R

H(G+1)SC
++ .

The set U of utilities uh is the Gδ subset of ×h C 2(RC
++�R), which satisfies our

maintained assumptions and is endowed with the topology of C 2-uniform con-
vergence on compacta. The set U is a complete metric space, and, by the Baire
theorem, countable intersections of open and dense sets are dense in U . Let
Ω= E × U × (0�1] be the space of economies with the product topology.

3. EQUILIBRIUM

We give a unified view of the different notions of equilibria that we study as
Markov processes defined over a common state space. Competitive equilibria
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of an OLG economy are stochastic processes attached to an initial condition,
that is, an initial shock and a wealth distribution. In principle, the entire equi-
librium trajectory may depend on the initial condition, and its continuation
path may be history dependent. Since we are aiming at a unified treatment,
histories and initial conditions must be part of our state space.

For given χ and s̃, a history of length t is an array of shock realizations with
identical initial shock, st(χ) = (s0� s1� � � � � st)(χ). For a given process s̃, let Sts0
be the set of all possible histories of length t with initial shock s0. History st
precedes history s̄t′ and we write s̄t′ � st if there is an array of t ′ − t realizations
of shocks st′−t such that s̄t′ = (st� st

′−t). We denote with S̃s0 = ⋃
t S

t
s0

the set of
all possible histories of any length, and denote with initial shock s0, a tree with
nodes st and root s0. When all possible initial conditions need to be considered
at once, the union S̃ = ⋃

s0∈S S̃s0 of S trees with distinct roots comes into play.
Let the hyperplane W ≡ {w ∈ R

(G+1)H :wh0 = 0, for all h, and
∑

ha w
ha =

0} be the space of wealth distributions. The space of endogenous variables
Ξ = (RC

++ × R
S × R++)h�a × R

C
++ × R

S has element ξ = ((xha� θha�λha)h�a�ψ),
which comprises the vectors of consumption bundles, of portfolios, of marginal
utilities of income for all individuals of all ages, and of prices.

To define trajectories which are history and initial-condition dependent, an
array (st�w�ξ) ∈ S̃ ×W ×Ξ, specifying a history, current values of the wealth
distribution, and endogenous variables, has to be augmented with an initial
state (s0�w0� ξ0) ∈Z0 = S×W ×Ξ. The state space is then Z ⊂ S̃×W ×Ξ×
Z0, and we write z to denote a generic element of Z, write ζ for an element
of W ×Ξ, and write z0 = (s0�w0� ξ0) for an initial state. We assume that the
projection of Z on S̃ is onto, that is, no histories st are excluded.

Stochastic processes over Z are defined by specifying a transition. We
limit attention to spotless transitions, that is, at each t the process can
take as many values as realizations of the exogenous shocks. We can there-
fore identify a transition with a deterministic map T :Z → ZS such that
T(st� ζ� z0) = ((st� s)� ζs� z0)s∈S . Therefore, Pr(z′|z) = π(st+1|st) for z = (st� ·)
and z′ = ((st� st+1)� ·). We also write T = (Ts)s∈S with Ts :Z → Z and z′ =
((st� s)� ζ� z0)= Ts(z). Notice two aspects of this construction. First, the transi-
tion T leaves the initial condition unaltered. Second, the spotless nature of the
transition allows us to dispense with any additional restriction on the transition
map T such as, for instance, (Borel) measurability with respect to W ×Ξ.

The pair (Z�T) generates a family of stochastic processes z̃ = (z̃z0� z0 ∈Z0)
or simply a process, each with zz0�0(χ) = (z0� z0), zz0�1(χ) = Ts1(χ)(zz0�0(χ)),
and, recursively, zz0�t(χ) = Tst(χ)[· · ·Ts1(χ))(zz0�0(χ))] for Pr-a�a�χ. Naturally a
process z̃ generated by (Z�T) induces an endogenous variables process ξ̃ via
the natural projection, that is, ξt = projΞ zt , and we say that ξ̃ is generated by
(Z�T). Since the stochastic engine of z̃z0 is the shock process s̃, ξ̃z0 is adapted
to S̃ for all initial conditions z0.



EQUILIBRIUM IN STOCHASTIC OLG ECONOMIES 315

A process ξ̃ generated by (Z�T) is a family of competitive equilibrium
processes if, for Pr-a�a�χ and all t ≥ 0, the following conditions hold:

CONDITION H: For all h,

Duh(xhat )− λhat pt = 0 for all a�(1a)

−λhat qt + δEt

(
λh(a+1)
t+1 dt+1

) = 0 for all a <G�(1b)

ψt[(xhat − ehat )� θhat ] = dtθh(a−1)
t−1 for all z′ = T(z), all a�(1c)

CONDITION M:
∑
(xhat − ehat � θhat )= 0�

Condition M is the familiar market clearing equation. Condition H is op-
timality, that is, it is the first-order conditions for the utility maximization
problem of any individual h of age a at any t, choosing consumption and
asset portfolios facing the competitive sequential budget constraint (1c) for
τ = t� � � � �G − a. By the assumptions on uh and the Markovian structure of
the economy, time consistency is satisfied and these conditions apply to the
problem faced at any τ = t − a� � � � � t.

A competitive equilibrium is an element ξ̃z̄ from a family of competitive
equilibrium processes where z0 = z̄ = (s̄� w̄� ξ̄) for Pr-a�a�χ is a given initial
condition for the economy. Since the initial condition specifies also the values
of the endogenous variables at s̄, the same initial pair (s̄� w̄) may be associated
to multiple continuation paths, one for each distinct vector ξ̄. Equivalently, our
definition allows for multiple competitive equilibria of an economy ω starting
off at (s̄� w̄).

As is well known, the existence of a competitive equilibrium ξ̃z̄ for an econ-
omy ω restricts the choice of the initial wealth distributions w̄ to a bounded
subset Ws̄�ω of the hyperplane W , with nonempty interior

◦
W s̄�ω. Given the

boundary condition on utilities, for all economies ω and for all initial condi-
tions (s̄� w̄), w̄ ∈Ws̄�ω, the existence of a competitive equilibrium is established
using a standard truncation argument (see Balasko and Shell (1980)).

The equilibrium process ξ̃ is a Markov process, but it is not time-homoge-
neous. The focus of this paper is on a special kind of stationary, time-
homogeneous competitive equilibrium, also known as recursive equilibrium.
To study recursive equilibria, our argument will go through and use an interme-
diate notion of equilibrium that is stationary, time-homogeneous, and Markov,
and that we call simple Markov.

A simple Markov equilibrium is a family of competitive equilibrium process-
es ξ̃ generated by a pair (Z�T) that satisfies:

T(st� ζ� z0)= T(ŝt� ζ̂� ẑ0) if (st�w
ha�λha�p)= (ŝt� ŵha� λ̂ha� p̂)

for all h�a�
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A recursive equilibrium is a simple Markov equilibrium ξ̃ that satisfies:

T(st� ζ� z0)= T(ŝt� ζ̂� ẑ0) if (st�w
ha)= (ŝt� ŵha) for all h�a�

Two aspects are worth noticing. Different restrictions on the transition T
deliver different equilibrium notions. The restrictions on the map T translate
into restrictions on Z: all elements of Z satisfy the same constraints imposed
on T , thereby effectively generating a reduced state space, the subspace of
the coordinates making the transition T (potentially) injective. Thus, the re-
duced state space of a simple Markov equilibrium includes only the current
exogenous state s and, as endogenous states, wealth distribution w, commod-
ity prices p, and marginal utilities of income for all generations except for the
first and the last, λ≡ ((λha)0<a<G)h∈H : with some abuse of notation, for a sim-
ple Markov, Z is the set of vectors (s� ζ) = (s�w�p�λ). For a recursive equi-
librium, the endogenous state is only the wealth distribution w, and Z is the
set of vectors (s� ζ)= (s�w). The transition T :Z→ZS maps the current state
(s� ζ) into all its S immediate successors (s′� ζ ′). An endogenous variables func-
tion ξ :Z →Ξ completes the construction. Hence, our definition of recursive
equilibrium coincides with the usual formulation found in the literature (see,
e.g., Kubler and Polemarchakis (2004) or Rios Rull (1996)). We write Zω, Tω,
and ξω when we want to stress their dependence on the economy ω, and write
W Z
s for the s section of the projection of Z on W .6
The following notions of initial Markov state and initial state–wealth pair

will be important for the subsequent analysis. Consider a simple Markov equi-
librium of an economy ω ∈Ω. A state z̄ = (s̄� ζ̄) ∈Z is an initial Markov state if
there does not exist s ∈ S such that z̄ = Ts̄(z) for some z ∈ Z. Thus, the econ-
omy can just start from an initial Markov state, but it can never reach that state
starting from somewhere else—an initial Markov state is an extreme notion of
transient state. A pair (s̄� w̄) is an initial state–wealth pair if (s̄� w̄�p�λ) is an
initial Markov state for some (p�λ) such that (s̄� w̄�p�λ) ∈Z.

4. GENERIC EXISTENCE OF RECURSIVE EQUILIBRIA

We are going to show that under a qualifying condition onH, recursive equi-
libria typically exist and are compatible with a large set of initial conditions,
that is, of initial wealth distributions.

The qualifying condition onH, which is used below, is the following inequal-
ity.

ASSUMPTION A1: H > 2[(C − 1)
∑G

a=0 S
a + S∑G−1

a=0 S
a].

6That is,W Z
s = {w ∈W : (s�w�p�λ) ∈Z for some (p�λ)} for a simple Markov and W Z

s = {w ∈
W : (s�w) ∈Z} for a recursive equilibrium.
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Our main result is then stated as follows.

THEOREM 1: Under A1, there exists a residual subset Ω∗ of Ω such that every
economyω inΩ∗ has a recursive equilibrium. Furthermore,W Z

s�ω contains an open
and full Lebesgue measure subset W ∗

s�ω of
◦
W s�ω for all s ∈ S.

We summarize the logic and the various steps involved in proving Theo-
rem 1. We will first prove that simple Markov equilibria with a large wealth
space exist (Proposition 2 in Section 4.1). Then, using a transversality argu-
ment, we will show that the wealth distribution is typically a sufficient statistic
of the Markov states, that is, that typically a Markov equilibrium is recursive.

More precisely, we want to show that simple Markov equilibria, typically inω
and under A1, have the following injection property: if two Markov states z,
ẑ are given, with (s�w) = (ŝ� ŵ), then (p�λ) = (p̂� λ̂). We call Markov equi-
libria that satisfy this property nonconfounding. It is immediate that a simple
Markov equilibrium is nonconfounding if and only if it is a recursive equilib-
rium. Instead, a pair of Markov states z and ẑ violating this property is called
critical and the corresponding equilibrium is called confounding. We also call
an exogenous state s critical if (s� ζ1) ∈ Z and (s� ζ2) ∈ Z are critical Markov
states for a pair ζk, k= 1�2.

If (s̄� ζ1) and (s̄� ζ2) are a pair of critical Markov states, then

w1 =w2�(2)

and either

p1 �= p2(3)

or

λ1 �= λ2�(4)

Clearly, (2) and (3) or (4) cannot have a solution if (2) does not have a solution
for the H individuals of age a= 1 when (3) or (4) holds. The next step is then
to establish via perturbation methods that indeed (2) for a= 1, and (3) and (4)
cannot have a solution.

We can prove that system (2) and conditions (3) and (4) are incompatible
at a simple Markov equilibrium if they also are incompatible at prices which
are not necessarily equilibrium prices. In fact, we will only use restrictions on
prices that arise from equilibrium to put them in a compact set P(ω). Since
(w1�λ1) and (w2�λ2) are wealth and multiplier values that arise in the finite-
dimensional optimization problems ofH individuals of various ages, using sta-
tionarity and finite lives, the relevant price set P(ω) will also have finite di-
mension bounded by the right-hand side of Assumption A1. Hence we reduce
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the problem of the existence of a recursive equilibrium to the problem of es-
tablishing that generically the joint wealth differentials wh1

1 −wh1
2 that arise in

the finite-dimensional optimization problems of H individuals in two cohorts
cannot be zero in the price domain P(ω) that satisfies (3) or (4). This is done
in Section 4.2 via Propositions 3 and 4.

4.1. Existence of Simple Markov Equilibrium

Markov equilibria have a “large” wealth space when the latter is compatible
with a large set of initial wealth distributions of the competitive economy. The
next proposition states that simple Markov equilibria exist and their wealth
space is large, and also gives two properties of the initial state–wealth pairs
that will be important for the generic existence of recursive equilibria.

PROPOSITION 2: For allω ∈Ω and any subsetsOs ⊆Ws�ω, s ∈ S, (i) there exists
a simple Markov equilibrium with Os ⊂W Z

s�ω for all s ∈ S, (ii) if (s̄� w̄) is an initial
state–wealth pair, then w̄ ∈ Os̄, and (iii) for every s̄ ∈ S, there is a unique (p̄� λ̄)
such that (s̄� w̄� p̄� λ̄) is an initial Markov state.

See the Appendix for the proof.
Since Os is any subset of Ws�ω, simple Markov equilibria can be constructed

so that W Z
s�ω contains all initial conditions of the competitive economy. How-

ever, if we take Os = ◦
W s�ω, by Proposition 2(ii) we construct a simple Markov

equilibrium with initial wealth distribution contained in an open set, a precon-
dition for later perturbations. Proposition 2(iii) will later allow us to exclude
certain configurations of bad states. To get the idea of the proof of Proposi-
tion 2(i), pick an economy ω ∈Ω and consider the family of competitive equi-
libria ξ̃z , z = (s�w�ξ) ∈ Z0, with w ∈ Os. Competitive equilibria may fail to
be simple Markov because at some histories they may generate identical sim-
ple Markov states, but different values of some current endogenous variables
or different continuation paths. Consider two competitive equilibria ξ̃z̄ and ξ̃z
(with possibly z̄ = z) that generate at some histories st and ŝt′, respectively, the
same Markov state. Construct a new equilibrium by grafting ξ̃z̄ onto ξ̃z: follow
the equilibrium process ξ̃z , but modify it from ŝt′ on by using the process ξ̃z̄ as if
the history were st . Our choice for Z implies that, checking the first-order con-
ditions (1), the grafting technique still defines a competitive equilibrium. Then
if, at some histories, multiple competitive equilibria generate identical Markov
states, we can select one of them, thereby obtaining unique realizations of the
endogenous variables and of the continuation paths.

Duffie et al. (1994) proved the existence of simplified equilibria where, when
G= 1, the state space can be reduced to the current exogenous shock, the con-
sumption of the young, and their portfolio choices. For comparison, in this
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same case in our simple Markov equilibria, the state space reduces to the cur-
rent shock, the current commodity prices, and the wealth distribution of the
current old. It is this last state component that is the fundamental ingredient of
our analysis; instead, it is missing in the construction of their simplified equi-
libria. We construct a selection directly by applying the grafting technique to
the current state, making sure the previous and current equilibrium conditions
are satisfied. Duffie et al.’s construction is forward looking and therefore does
not make use of the wealth distribution of the old. Furthermore, their use of
a measurable selection argument does not allow them to control the position
of the initial state–wealth pairs—an important step of our argument (Proposi-
tion 2(ii)). Finally, their construction requires further measurability and topo-
logical assumptions on the endogenous variable functions and spaces what we
avoid.

4.2. Some Properties of the Wealth Differentials

As argued above, the existence of recursive equilibria depends on generic
properties of the joint wealth differentials of H individuals. Two such prop-
erties are of interest, depending on whether the wealth levels wh1

k for some
state k are exogenously given as initial wealth levels w̄h1

k or the wealth levels at
both states k= 1�2 result from optimization.

Observe that an individual of age a at t faces Na = ∑G−a
a′=0 S

a′ histories
st+a

′ � st before death, a = 0� � � � �G − a. Thus, to study the joint wealth dif-
ferentials, in the first case consider a tree of length G with initial node s01 ∈ S
and define over it an arbitrary finite price process ψ ∈ R

(C−1)N0++ × R
SN0 , that is,

a vector of prices (psa� qsa) at each node sa of the tree. As is well known, under
our maintained assumptions—namely, stationarity and the boundary condition
on uh—competitive (and, therefore, Markov) equilibrium prices are bounded
uniformly in st ∈ S̃ (or s ∈ S) and (w̄ha)h∈H�a>0, the exogenously given finan-
cial wealth of the economy. That is, commodity prices are uniformly bounded
above and bounded away from zero, while asset prices are uniformly bounded
and bounded away from the boundary of the no-arbitrage region. Hence, if we
think of ψ as the restriction of a simple Markov equilibrium price process to
the finite histories represented by the tree, the equilibrium nature of this price
process implies that we can take it in P(ω), a compact subset of R

(C−1)N0++ ×R
SN0

independent of w̄.
We just look at theH individuals born at s01, hence P(ω) will also satisfy the

innocuous additional restriction qsG = 0, for all terminal nodes sG: individuals
born at s01 will be old and, in the absence of arbitrage (a necessary condition
for the existence of equilibria, embedded in ψ), they will not trade on the asset
market. Individual optimization (regularity of demand) pins down all the en-
dogenous variables of these individuals as (smooth) functions of p�q, and ω.
In particular, consider all individuals of age 0 who solve at s01 their program-
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ming problem when facing the finite process ψ ∈ P(ω). Let (xh�θh)(ψ�ω) be
their optimal solution that takes values (xhasa � θ

ha
sa )(ψ�ω) at sa and let

wh1
s̄1
(ψ�ω)= ds̄θh0

s01
(ψ�ω)

be the wealth of an individual born at s01 and of age a= 1 at node s̄1 = (s01� s̄).
For given w̄ ∈ ◦

W s̄�ω, let

fs̄1(ψ�ω� w̄
1)≡ (wh1

s̄1
(ψ�ω)− w̄h1)h∈H�

Under Assumption A1, for given (ψ� w̄1), the H equations fs̄1(ψ�ω� w̄1) = 0
outnumber the unknowns. We use this to show that, for each ω ∈Ω and s̄ ∈ S,
and for generic choices of w̄ ∈ ◦

W s̄�ω, there is no such finite tree, that is, no s̄1

and no ψ ∈ P(ω), where fs̄1(ψ�ω� w̄1)= 0.

PROPOSITION 3: Let ω ∈Ω be given. For each s̄ ∈ S there is an open and full

Lebesgue measure subset W ∗
s̄�ω of

◦
W s̄�ω such that fs̄1(ψ�ω� w̄1)= 0 does not have

a solution in P(ω) for all w̄ ∈W ∗
s̄�ω and all (s01� s̄).

For the proof see the Appendix.
The proof of Proposition 3 uses a standard transversality argument through

the computation of the derivative of fs̄1 with respect to w̄1.
Continuing the analysis of wealth differentials, we now study the second

case. To this end, consider two trees of finite lengthG each with initial node s0k,
k = 1�2. Otherwise identical histories sa on the two trees may only differ in
their initial node. When we want to stress this, we denote with (k� sa) the his-
tory sa on the k tree. Consider a pair of finite price processes ψ

k
∈ P(ω) de-

fined over the two trees. With some abuse of notation, the process ψ denotes
now the pair (ψ

1
�ψ

2
) ∈ P(ω)× P(ω)= P(ω)2.

Once again, we focus on all the individuals h born at s0k, hence we can fur-
ther restrict prices in P(ω)2 to satisfy qk�sG = 0 for all terminal nodes sG and
k = 1�2. The optimizing behavior of the two cohorts (individuals born at s0k;
one for each k) is entirely determined by ψ ∈ P(ω)2 and ω. In particular, for
each k, consider all individuals of age 0 solving at s0k their programming prob-
lem when facing the finite process ψ

k
∈ P(ω). Let (xhk�θ

h
k)(ψk�ω) be their

optimal solution, taking values (xhak�sa� θ
ha
k�sa)(ψk�ω) at (k� sa), and let

wh1
k�s̄1
(ψ

k
�ω)= ds̄θh0

s0k
(ψ

k
�ω)

be the wealth of an individual born at s0k and of age a= 1 at node (k� s̄1). To
simplify the notation, hereafter we set σ ≡ (s01� s02� s̄) and let

f̂σ(ψ�ω)≡ (wh1
1�s̄1(ψ1

�ω)−wh1
2�s̄1(ψ2

�ω))h∈H
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be the wealth difference between the two age a = 1 cohorts at s̄1 = (s0k� s̄),
k = 1�2. We further restrict attention to P(σ;ω) ⊂ P(ω)2, the set of price
processes ψ that satisfy inequality (3) or induce (4) at node s̄1 among older
cohorts, given that all these cohorts’ wealth (wha

k�s̄1
for a ≥ 1) is k-invariant.

We show below that in a residual set of parameters, the system of equations
f̂σ(ψ�ω) = 0 does not have a solution for any σ and any price process in
P(σ;ω).

PROPOSITION 4: There exists a residual subsetΩ∗ ofΩ such that f̂σ(ψ�ω)= 0
does not have a solution in P(σ;ω) for all ω ∈Ω∗ and all σ .

The proof of Proposition 4 is quite elaborate, but interesting in its own. Since
it is central to our technique, reducing the whole issue to a finite-dimensional
problem, we devote Section 4.4 to explaining its logic (a perturbation argu-
ment), while details and computations are in the Appendix. Although density,
in general, is stated in the space of all parameters, the argument will show that
when G= 1, genericity is only in endowments.

Taking for granted Propositions 2–4, we are now ready to prove Theorem 1.

4.3. Proof of Theorem 1

Pick an economy ω ∈Ω∗, the set constructed in Proposition 4. Use Proposi-
tion 2(i) and (ii) to construct the state space Zω of the simple Markov equilib-
rium so that if w̄ ∈W Z

s�ω and (w̄� s) is an initial state–wealth pair, then w̄ ∈W ∗
s�ω

for all s ∈ S, the set defined in Proposition 3. We need to show that such equi-
librium is void of critical Markov states. At this junction, two possibilities arise:
Case 1, neither (s̄� ζ1) nor (s̄� ζ2) is initial Markov states; Case 2, there exists k
such that (s̄� ζk) is an initial Markov state of the economy. While in Case 1 we
just refer to the Markov states as critical, in Case 2 we add the qualification
“initial.”

CASE 1: Any simple Markov equilibrium of an economy ω ∈ Ω∗ is void of
critical pairs of Markov states. Suppose not. Pick a pair of critical Markov states
(s̄� ζk), k = 1�2. Consider the H individuals born at the node on S̃ predeces-
sor to the one where (s̄� ζk) has realized (s0k) and of age a = 1 at the critical
state.7 The (simple Markov) equilibrium price process matters to them only
as restricted to the finite histories represented by the pair of trees since they
were born, that is, as ψ ∈ P(ω)2. Thanks to the stationarity of the economy,
each pair of such trees is identified only by their initial nodes (s01� s02). The in-
dividuals’ wealth difference at age a= 1 is f̂σ(ψ�ω), defined in Section 4.2. If

7The choice of a= 1 is dictated to avoid considering combinations of critical states other than
the two studied here.
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the pair (s̄� ζk), k= 1�2, is critical, then (2), and conditions (3) and (4) corre-
spond to f̂σ(ψ�ω)= 0 for some ψ ∈ P(σ;ω) and some (s01� s02), contradicting
Proposition 4.

CASE 2: Consider now initial critical pairs of Markov states. By Proposi-
tion 2(iii), (s̄� ζ1) and (s̄� ζ2) cannot both be initial Markov states. Suppose
that (s̄� ζ2), say, is an initial Markov state of the economy where individuals of
age 0< a≤G are endowed with exogenously given financial wealth (w̄ha)h∈H .
Proposition 2(ii) guarantees that for (s̄� w̄) we have w̄ ∈ W ∗

s̄�ω. As in Case 1,
we look at the H individuals born at the node on S̃ predecessor to the one
where (s̄� ζ1) has realized, s01. Their wealth when their age is a = 1 is their
wealth at the critical state, and it is a function of the equilibrium price process
over the tree spanning their finite life, that is, of ψ ∈ P(ω). It is compared
with the exogenous wealth w̄1 of individuals of the same age at state (s̄� ζ2),
and the difference is f(s01�s̄)(ψ�ω� w̄

1), which is defined in Section 4.2. If (s̄� ζk),
k= 1�2, is an initial critical pair, then f(s01�s̄)(ψ�ω� w̄

1)= 0 for some ψ ∈ P(ω)
and some s01. However, this contradicts Proposition 3.

Hence, the Markov equilibrium we constructed is void of both initial critical
pairs and critical pairs of Markov states. Thus, the Markov states (s� ζ) ∈ Zω
are one-to-one in (s�w); equivalently, there exists a function (p�λ)(s�w) such
that each Markov state z can be written as (s�w� (p�λ)(s�w))� Equivalently,
the transition function of the simple Markov equilibrium can be decomposed
as Ts′(z)= [T rs′(s�w)� (p�λ)(T rs′(s�w))]. Thus, the recursive equilibrium of the
economyω ∈Ω∗ is the recursive state space Zr

ω and transition and endogenous
variables functions T r�ξr defined as

Zr
ω = projS×W Zω� with W Zrω

s�ω ⊃W ∗
s�ω� for all s�

T r :Zr
ω → (Zr

ω)
S�

ξr :Zr
ω →Ξ is ξr(z)= ξ(s�w� (p�λ)(s�w))�

and it has the desired properties, ending the proof. Q.E.D.

Of course, at this stage nothing is said about any regularity property of the
transition or the endogenous variables functions, an important topic for future
research.

4.4. Perturbation Analysis

In this technical subsection we prove Proposition 4. Proposition 4 asserts that
while facing different prices, at least one among H individuals will typically
have different expenses on a subset of goods—those purchased after a certain
date–event. If we look at just one individual, and put no qualification on what
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“different prices” means, this may not be true. Consider, for example, a Wal-
rasian individual with log-linear utility over three commodities. The individual
will spend the same on commodity one, even if he faces different prices for
commodities two—and three—provided that prices of commodities two and
three are such that the value of the endowment is the same. We could perturb
the utility and the endowments of this individual, but still obtain a region of
different prices, yielding the same expense on commodity one. It is clear that
we need to consider simultaneously many potentially different individuals and
that the dimension of potential difference across individuals should be larger
than the price dimension—Assumption A1.

We proceed as follows. Since openness and density are local properties, for
eachω we need to define a superset of P(ω) which is locally independent ofω.
This will allow perturbations of ω independent of prices. Then, to make the
analysis as simple as possible, we transform the price space, the individual pro-
gramming problems, and the equations f̂σ(·)= 0 into a more convenient, but
equivalent form. This first transformation suffices to prove Proposition 4 for
G= 1. However, it will not be powerful enough to carry the result for G> 1.

Local Independence of the Price Set Fromω: Pickω ∈Ω, and let Bε(ω)⊂Ω
be an open ball centered at ω for some fixed ε > 0. Under the maintained as-
sumptions, the optimal consumption-portfolio plans (xhk�θ

h
k)(ψk�ω) are con-

tinuous and then, by the strict monotonicity of preferences, there is a com-
pact set of prices P such that P(ω′)⊂ P ⊂ R

(C−1)N0++ × R
SN0 for all ω′ ∈ Bε(ω).

Hence, by the compactness of P , for all h, k, sa, and (ψ�ω′) ∈ P × Bε(ω),
xhak�sa(ψk�ω

′) ∈ X̄ ⊂ R
C
+—a compact set—and since preferences satisfy the

boundary condition, X̄ is contained in the interior of the positive cone, that
is, X̄ ⊂ R

C
++.

What is open and dense in Bε(ω) for any arbitrary such Bε(ω) is open and
dense in Ω. Therefore, to keep notation simple, hereafter we identify Ω with
the arbitrary Bε(ω).

Transforming the Programming Problems and the Price Space: In our econ-
omy, assets pay off in the numéraire commodity and their payoff matrix D is
invertible. Thus, individuals face sequentially complete asset markets. There-
fore, the sequence of budget constraints can be compressed into a single one,
getting rid of asset prices and portfolios. Hence, we change the price space to

P ′ = {
p′ ∈ R

2CN0++ :p′
1�k�s0

= 1�k= 1�2
}
�

We introduce the operator E
δ
st

, which applies to any finite process La =
(Lt+a′)G−a

a′=0 of Na histories and is defined as E
δ
st
(La) = Est {

∑G−a
a′=0 δ

a′
Lt+a′ }; for

simplicity, for a= 0 we omit the superscript from La. The programming prob-
lems of the individuals born at s0k are

max E
δ
s0k

{uh(x)} s.t. E
δ
s0k

{p′
k
(x− ehk)} = 0�(5)
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We need to reformulate the programming problems of individuals of age
a∗ = 1� � � � �G who have wealth wha∗

k�s̄1
= ds̄θ

h(a∗−1)
s0k

at s̄1 = (s0k� s̄). Since pk�s̄1
is normalized, while p′

k�s̄1
is not, the prices in the budget constraint at s̄1 for

these individuals must be divided by δπ(s̄1|s0k)p
′
1�k�s̄1 , and their programming

problem is

max E
δ
s̄1

{
uh

(
xa

∗)}
s.t. E

δ
s̄1

{ p′a∗
k

p′
1�k�s̄1

(
xa

∗ − eha∗
k

)} =wha∗
k�s̄1
�(6)

Notice that by the definition of the operator E
δ
s0k

, the coefficient that multiplies
uh(xsa) in the objective function of problem (5) coincides with the coefficient
that multiplies p′

k�sa(xsa − ehk�sa) in the budget constraint, and the same applies
(modulo changing p′

k�sa with p′
k�sa/p

′
1�k�s̄1 ) for problem (6).

By Arrow’s equivalence theorem, to each ψ ∈ P2 corresponds a unique pair
p′ ∈ P ′ such that ψ and p′ are equivalent: the consumption bundles that sat-
isfy the sequential budget constraints (1c) at ψ coincide with the consump-
tion bundles that satisfy at p′ the single budget constraint of (5) (and hence
of (6)). We take P ′ to be the set of processes p′ equivalent to price pairsψ ∈ P2,
which we refer to as Arrow prices; the two sets have obviously identical dimen-
sion 2CN0 − 2, the right-hand side of the inequality in Assumption A1. As we
took P2 to be a compact set, P ′ is also a compact subset of R

2CN0−2
++ . Also, we

take P ′(σ;ω) ⊂ P ′ to be the set of Arrow prices p′ equivalent to the prices
ψ ∈ P(σ;ω).

Transforming the Wealth Equations: We reformulate the wealth equa-
tion f̂σ(·) = 0 without making reference to portfolios. For p′ ∈ P ′(σ;ω), let
xhak�sa(p

1
k
�ω) be the optimal solutions at (k� sa) to problems (5). Then, in anal-

ogy with the form of the budget constraints (6), we get that the wealth functions
are

wh1
k�s̄1
(p′

k
�ω)= E

δ
s̄1

( p′1
k

p′
1�k�s̄1

(xh1
k (p

1
k
�ω)− eh1

k )

)

for k= 1�2, and we define the functions

f hσ (p̃
′0�ω)=wh1

1�s̄1(p
′
1
�ω)−wh1

2�s̄1(p
′
2
�ω)

and let fσ = (f hσ )h∈H . We are ready to prove Proposition 4 for G= 1.
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4.4.1. G= 1

Remember that for G = 1, the endogenous Markov state is reduced to
(w�p). If C = 1, simple Markov equilibria are already recursive. Therefore,
let C > 1 and let

P ′(σ;ω)= P ′(s̄)=
{
p′ ∈ P ′ :

∥∥∥∥
p′

1�s̄1

p′
1�1�s̄1

− p′
2�s̄1

p′
1�2�s̄2

∥∥∥∥ �= 0
}
�

and for any integer n > 0, let

P ′n(s̄)=
{
p′ ∈ P ′ :

∥∥∥∥
p′

1�s̄1

p′
1�1�s̄1

− p′
2�s̄1

p′
1�2�s̄1

∥∥∥∥ ≥ 1
n

}
�

Obviously, P ′n(s̄)⊂ P ′(s̄), and both P ′n(s̄) and P ′(s̄) are sets that are (locally)
independent of ω. Let Ωn

σ denote the subset of Ω where system fσ(p
′�ω)= 0

does not have a solution in P ′n(s̄). If Ωn
σ is open and dense in Ω, then

Ω∗ =
⋂
n>0

⋂
σ

Ωn
σ

is the intersection of a countable family of open and dense sets; therefore, it is a
residual set of Ω (hence, it contains a dense subset), where system f̂σ(p

′�ω)=
0 does not have a solution in P̄ ′(s̄) for all σ . Suppose not. Then there is ω∗ ∈
Ω∗, σ , and p′ ∈ P̄ ′(s̄) such that fσ(p′�ω∗) = 0. By definition of P ′(s̄), there
must be n̂ > 0 such that p′ ∈ P ′n̂(s̄). However, the latter implies that ω∗ /∈Ωn̂

σ ,
a contradiction.

To show that Ωn
σ is open, pick ω ∈ Ωn

σ . The compactness of P ′n(s̄) implies
that |fσ(p′�ω)| ≥ η for some η > 0 and all p′ ∈ P ′n(s̄). However, the map fσ
is continuous in all its argument and hence |fσ(p′�ω′)| > 0 for all p′ ∈ P ′n(s̄)
and ω′ in an open neighborhood of ω. Thus, the set Ωn

σ is open.
We now show that Ωn

σ is dense. It suffices to prove that the Jacobian matrix
Defσ(p

′;e�u�δ) is a surjection for all (p′� e�u�δ) ∈ P ′(s̄)×Ω (and therefore,
in P ′n(s̄)×Ω). If this is the case, by Assumption A1, dimP ′n(s̄) <H and there
are more equations than unknowns in fσ(p′�ω)= 0. Hence, by the preimage
and the transversality theorems, there is a dense subset Enσ of E (so Ωn

σ of Ω)
where fσ(p′�ω)= 0 has no solution in P ′n(s̄).

When p′ ∈ P ′n(s̄), the vectors p′
k�s̄1
� k = 1�2, are linearly independent.

Therefore, we can find an appropriate perturbation �e1
s̄ of e1

s̄ such that
p′

1�s̄1�e
1
s̄ = 1, while p′

2�s̄1�e
1
s̄ = 0. We show that D−→

e1
s̄
fσ , the directional deriva-

tive of fσ in the direction identified by the perturbation �e1
s̄ , is a surjection.

First, observe that this perturbation does not affect wh1
2�s̄1(p

′
2
�ω) and, hence,



326 A. CITANNA AND P. SICONOLFI

that D−→
e1
s̄
fσ =D−→

e1
s̄
wh1

1�s̄1 . Second, differentiate the first-order conditions to prob-
lem (5) for k= 1, drop h and k, and get

Hsa�xsa −p′T
sa�λ= 0�(7a)

∑
a

δa
∑
sa

π(sa|s0)p
′
sa�xsa = δπ(s̄1|s0)�(7b)

where Hsa is the invertible Hessian at xsa , a negative definite matrix, and
the superscript T stands for transposed. Let Qsa = p′

saH
−1
k�sap

′T
k�sa < 0 and Q =∑

a�sa δ
aπ(sa|s0)Qsa < 0. We get

�λ= δπ(s̄1|s0)

Q
�

Differentiating the map w1�s̄1(p
′
1
�ω), we obtain

�ws̄1 = (Qs̄1�λ− 1)
1

p′
1�1�s̄1

=
(
δπ(s̄1|s0)Qs̄1

Q
− 1

)
1

p′
1�1�s̄1

< 0�

The argument is concluded by observing that D−→
e1
s̄
f h

′
σ = 0 for all h�h′ with

h �= h′.
The microeconomics of the result is clear. The normality of all expenditures

p′
saxsa , a by-product of separability of utility, implies that all of them move

proportionally to, but less than, a lifetime wealth change. Thus, the change in
ws̄1 induced by the perturbation �e1

s̄ is negative, since ws̄1 = p′
s̄1
/p′

1�s̄1(x
1
s̄1

− e1
s̄ ).

4.4.2. G> 1

When G > 1, multiplier inequalities (4) must be taken into account when
defining the set of prices P ′(σ;ω). Such inequalities can be generated by price
differences across k trees arising at nodes sa with a > 1. Relative to the case
when G= 1, things are then considerably complicated by stationarity: endow-
ment or utility perturbations at one node reverberate across the trees, possibly
rendering the perturbations ineffective, that is, the derivative of the wealth
differentials is zero. Fortunately, we show below that when perturbations are
ineffective it is because the price differences are only “nominal,” that is, only
due to labeling, and do not translate to differences in multipliers. To this extent
it will be essential to identify equivalence classes of Arrow prices which deter-
mine P ′(σ�ω), making the effectiveness of the available perturbations imme-
diately apparent and P ′(σ�ω) (locally) ω-independent. We then show how to
bypass the possibility that the derivative of the wealth differentials is zero by
introducing a nesting technique.
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Creating Equivalence Classes of Arrow Prices: This section formalizes the
necessary condition for p′ ∈ P ′(σ;ω) by (a) identifying equivalence classes of
Arrow prices which determine p′ ∈ P ′(σ;ω), irrespective of ω, and (b) creat-
ing compact sets of prices where the condition holds.

(a) Identifying equivalence classes of Arrow prices. We start by making a sim-
ple, preliminary observation. Recall that by assumption, all individuals of all
ages have identical wealths at (k� s̄1), that is, wha

1�s̄1 = wha
2�s̄2 ≡ wha for all h�a.

If for all possible specifications of the economy ω′ and such wealth wha, the
(optimal) marginal utilities λha∗

1�s̄1(p
′
k
�ω′� w̄ha∗

) in problems (6) computed at
p′ are k-invariant for all h and a∗ ≥ 1, and p′

1�s̄1/p
′
1�1�s̄1 = p′

2�s̄2/p
′
1�2�s̄1 , then

p′ /∈ P ′(σ�ω). Thus, a necessary condition for p′ ∈ P ′(σ�ω) is that either
p′

1�s̄1/p
′
1�1�s̄1 �= p′

2�s̄2/p
′
1�2�s̄1 or λha∗

1�s̄1(p
′
1
�ω� w̄ha∗

) �= λha
∗

2�s̄1(p
′
2
�ω� w̄ha∗

) for some
a∗ ≥ 1, and some ω�w̄ha∗ . In the absence of restrictions on the fundamen-
tals, this necessary condition translates into p′

1�sa/p
′
1�1�s̄1 �= p′

2�sa/p
′
1�2�s̄1 for some

sa � s̄1.
However, in our economies, the cardinality indices uh are state and age in-

variant, endowments are stationary, and, by assumption, wealth is k-invariant.
The pair of price processes p′ = (p′

1
�p′

2
) can take different values at pairs

of identical nodes sa � s̄1 on the two trees, but they will still generate the
same values for λha

k�s̄1
(p′

k
�ω′� w̄ha) for all h, a, and (ω′�wha) if for each pe-

riod a≥ 1, sa � s̄1, and price realization p, the (discounted) probabilities that
p′
k�sa/p

′
1�k�s̄1 = p are independent of k and the overall wealth of individuals

(h�a∗) is k-invariant. The next example makes this point transparent.

EXAMPLE: Consider an economy withG= 3 and S = {α�β}, whereπ(s|s′)=
1
2 for all s� s′, s0k = α for all k, and s̄ = α, δ= 1, and wealth is k-invariant. Pick
p′ such that the following statements hold:

• p′
k�sa is k-invariant for a≤ 2.

• p′
1�(s2�α) = p′

2�(s2�β) = p1 while p′
1�(s2�β) = p′

2�(s2�α) = p2 for s2 = (α�α�α)� (α�

α�β) and vice versa.
• p′

1�(s2�α) = p′
2�(s2�β) = p2 while p′

1�(s2�β) = p′
2�(s2�α) = p1 for s2 = (α�β�α)� (α�

β�β).
If p1 �= p2, then p′

1
�= p′

2
. However, this difference is just a matter of rela-

beling the states and has no real consequences. Indeed, by wealth k-invariance
and k-invariance of p′

k�sa , a≤ 2, the multipliers λha∗
k�s̄1

associated to problems (6)
for individuals of age a∗ ≥ 2 are k-invariant. Furthermore, by the definition
of p′ and the assumptions on endowments and on conditional probabilities,
E
δ
s0k
(p′

k
eh) is k-invariant. The latter implies that, for all uh satisfying the main-

tained assumptions, the optimal solutions xhk, k= 1�2, to (5) satisfy the follow-
ing statements:

• xhak�sa is k-invariant for a≤ 2.
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• xh3
1�(s2�α) = xh3

2�(s2�β) while xh3
1�(s2�β) = xh3

2�(s2�α) for s2 = (α�α�α)� (α�α�β).
• xh3

1�(s2�α) = xh3
2�(s2�β) while xh3

1�(s2�β) = xh3
2�(s2�α) for s2 = (α�β�α)� (α�β�β).

It follows that λh0
k and wh1

k are k-invariant, so that the wealth invariance
condition is satisfied. Finally, λh1

k�s̄1
is k-invariant. Thus, p′ is not an element of

P ′(σ;ω) for any ω.

Next, we make the observations of this example general. By strict concavity
of uh, if p′

1�ŝa/p
′
1�1�s̄1 = p′

2�ŝa/p
′
1�2�s̄1 for two distinct histories ŝa � s̄1 and s̄a′ � s̄1

at ages a and a′, then at the optimal solution to (6), xh(a
∗+a−1)

k�ŝa = xh(a∗+a′−1)
k�s̄a

′ . This
allows us to rewrite both problems (6) by expressing prices in terms of their
distinct realizations rather than in terms of their realizations at each (k� sa),
sa � s̄1.

For p′ ∈ P ′(σ�ω), let

P
1 =

{
p ∈ R

C
++ :

p′
k�sa

p′
1�k�s̄1

= p, for some k� sa � s̄1

}

with cardinality P
1 ≤ 2

∑G−1
a=0 S

a and generic element p(�), where P
1 denotes

also the set of price indices �.
For � ∈ P

1 and a≥ 1, we define sets of histories of length a and their proba-
bility weights as

Sak(�)=
{
sa � s̄1 :

p′
k�sa

p′
1�k�s̄1

= p(�)
}
� Π[Sak(�)] =

∑
sa∈Sa

k
(�)

π(sa|s̄1)�

where Π[Sak(�)] = 0 if Sak(�)= ∅. To make the programming problems depen-
dent only on the distinct realizations of the price processes p′

k�sa/p
′
1�k�s̄1 , sa � s̄1,

define

Πk(a
∗� �)=

G+1−a∗∑
a=1

δa−1Π[Sak(�)]� a∗ ≥ 1�(8)

To make transparent the overall endowment value (as well as the effectiveness
of endowment perturbation) on the two subtrees (k� sa), sa � s̄1, define

pk+(a� s)=
∑

sa−1:(sa−1�s)�s̄1
π(sa−1� s|s̄1)

p′
k�(sa−1�s)

p′
k�1�s̄1

�

with pk+(a� s) = 0 if a = 0 or a = 1 and s �= s̄. By definition of Πk(a
∗� �) and

pk+(a� s), and by strict concavity of uh, problems (6), 1 ≤ a∗ ≤G, can be equiv-
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alently written as

max
∑
�∈P1

Πk(a
∗� �)uh(x(�)) s.t.(9)

∑
�∈P

Πk(a
∗� �)p(�)x(�)−

G∑
a=a∗

δa−a
∗ ∑

s

pk+(a� s)ehas =wha∗
k�s̄1
�

A simple inspection of problems (9) delivers the necessary condition for p′ ∈
P ′(σ�ω). Consider a pair p′ such that pk+(a� s) are k-invariant for all (a� s),
and Π[Sak(�)] are k-invariant for all � and a ≥ 1. Then, by (8), also Πk(a

∗� �)
are k-invariant for all � and a∗ ≥ 1, and then the two problems (9) are identical
at p′ and so are their optimal solutions for all (h�a∗). Thus, λha∗

k�s̄1
(p′

k
�ω�wha∗

)

are k-invariant. Hence, the necessary condition for p′ ∈ P ′(σ�ω) simply is

∥∥((
Π[Sa1(�)]

)
a��
� (p1+(a� s))a�s

) − ((
Π[Sa2(�)]

)
a��
� (p2+(a� s))a�s

)∥∥ �= 0�(NC)

Since π(sa|s̄1)= π(sa|s̄) for all sa � s̄1, inequalities (NC) are independent of s0k

and ω, and we let P ′(s̄) denote the set of p′ satisfying condition (NC).
However, since we need to perturb the map fσ , we need to make sure that

at p′ ∈ P ′(s̄), Π1(1� �) �= Π2(1� �); otherwise, individuals of age 0 at s0k may
be solving identical programming problems. Thus, consider the set P ′(s̄� δ) of
prices that satisfy the δ-dependent conditions:

∥∥(
(Π1(1� �))�� (p1+(a� s))a�s

) − (
(Π2(1� �))�� (p2+(a� s))a�s

)∥∥ �= 0�(10)

Obviously, P ′(s̄� δ) ⊂ P ′(s̄). We show below that, generically in δ, if the
inequality Π[Sa1(�)] �= Π[Sa2(�)] holds true for some �, then Π1+(1� �) �=
Π2+(1� �). The latter has two desirable implications: P ′(s̄� δ) = P ′(s̄) and,
therefore, P ′(s̄� δ) is ω-invariant in the generic set of common discount fac-
tors.

LEMMA 5: There exists an open and dense subset Ω′ of Ω such that for all
ω ∈Ω′, P ′(s̄� δ)= P ′(s̄).

See the Appendix for the proof.
(b) Creating compact sets of prices. In the analysis for G = 1, we proved

that Ω∗ is residual by defining compact regions of the price domain P ′n(s̄) ⊂
P ′(s̄). For p′ ∈ P ′n(s̄), the effective difference between p′

1
and p′

2
is size-

able, a necessary condition for establishing openness of the sets Ωn
σ . We have

to repeat that maneuver. The notion of effective price difference is embed-
ded in the definition of the set P ′(s̄) and it is precisely defined by (NC) or,
equivalently, (10). What does sizeable mean? The details are in the proof
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of the next lemma, but here is the precise idea. Since we are limiting atten-
tion to the set Ω′, for p′ ∈ P ′(s), either p1+(a� s) �= p2+(a� s) for some a� s or
Π1(1� �) �=Π2(1� �) for some �. However, the values Πk(1� �) depend on the
distinct realizations of p′

k�sa , s
a � s̄1, but not on the values p(�) of these real-

izations. Thus, differences in probabilities Πk(1� �) may coexist with distinct,
but arbitrarily close, values p(�) of price realizations. Obviously, if this is the
case and if p1+(a� s)= p2+(a� s) for all (a� s), individuals of age a= 1 face at s̄1

arbitrarily close price systems on the two trees. Thus, for ω ∈Ω′, we say that
in a subset of P ′(s̄), the difference between p′

1
and p′

2
is sizeable if the values

of either ‖(p1+(a� s))a�s − (p2+(a� s))a�s‖ or ‖p(�)−p(�′)‖ for some pair � �= �′

are uniformly bounded away from zero by some positive constant.

LEMMA 6: There exists a countable collection {P ′n(s̄)}+∞
n=1 of compact subsets of

P ′(s̄) such that (i) if p′ ∈ P ′n, the effective difference between p′
1

and p′
2

is sizeable,
(ii) P ′n(s̄)⊂ P ′n+1(s̄), and (iii)

⋃
n P

′n(s̄)= cl(P ′(s̄)).

See the Appendix for the proof.
The Nesting Technique: A direct use of the transversality theorem to obtain

fσ �= 0 requires the functions f hσ (p
′�ω) to have nonzero derivatives with re-

spect to ωh for all h and for all p′ ∈ P ′(s̄). The analysis would be relatively
straightforward if we could find perturbations that disturb the optimal solution
on one tree without affecting it on the second. Indeed, this was the essence of
the argument for G= 1. Unfortunately, for G≥ 2 these perturbations are not
available in some regions of P ′(s̄) and in these regions it can be Dωhf

h
σ = 0.

However, we are still able to show that f hσ �= 0 on P ′(s̄) for a generic set of
parameters and for some h. The argument is based on a nesting technique. We
first lay out its general mathematical structure and later we will apply it to our
problem.

Let Ω′′ be an open subset of Ω′ and let F be a finite family of real-valued
maps f hj with domain P ′(s̄)×Ω′′, with h ∈H and j = 1� � � � � J, where J denotes
also the set of indices. The maps f hj are assumed to be continuous differen-
tiable and to satisfy Dωh

′ f hj (p
′�ω)= 0 for all j and h′ �= h. Let

Ehj = {(p′�ω) ∈ P ′(s̄)×Ω′′ :Dωf
h
j (p

′�ω) �= 0 or f hj (p
′�ω) �= 0}

and

Nh
j = {(p′�ω) ∈Ehj : f hj (p

′�ω) �= 0} for all j

and define the following two conditions on the maps f hj :

CONDITION UNIVERSAL: For all h, P ′(s̄)×Ω′′ ⊂Eh1 ∪EhJ .
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CONDITION NESTING: For all h, Nh
J ∩Nh

j ⊂ ⋃
j′≤j E

h
j′−1, for all j > 1.

We call the first Condition Universal because the family satisfies a nonzero
property for all prices and parameters: at any (p′�ω) we can extract from the
family F an auxiliary system of H maps, one for each h, which are nonzero
or have nonzero derivative. We call the second Condition Nesting because it
allows us to nest the f1 functions into a cascade of auxiliary systems of maps
in F. The following result suffices for our analysis.

LEMMA 7: If F satisfies Conditions Universal and Nesting, then there exists
a dense set Ω ⊂ Ω′′ such that for all (p′�ω) ∈ P ′(s̄) × Ω̄, there exists h with
f h1 (p

′�ω) �= 0.

For the proof see the Appendix.
We sketch the reasoning. What is Ω̄? Consider the set of maps g that assign

to each individual h a function f hg(h) from F. Let fg = (f hg(h))h∈H ,

Eg =
⋂
h

Ehg(h)� and Ng =
⋃
h

Nh
g(h)�

A straightforward application of the transversality theorem implies that for
each g there exists a dense subset Ωg of Ω′′ such that for all (p′�ω) ∈ P ′(s̄)×
Ωg, either (p′�ω) /∈ Eg or fg(p′�ω) �= 0; equivalently, (p′�ω) ∈ Ng. We then
let Ω̄ = ⋂

g Ωg. Notice that by construction P ′(s̄) × Ω̄ ∩ Eg = Ng for all g. If
(p′�ω) ∈ P ′(s̄) ×Ωg, fg(p′�ω) �= 0 only if (p′�ω) ∈ Eg, but apparently noth-
ing excludes the possibility that (p′�ω) /∈ Eg. So why does Ω̄ work? Here, the
nesting technique kicks in. Condition Universal states that (p′�ω) ∈ Eg for
some g with g(h) = 1 or g(h) = J for all h. Let Hg = {h : f hg(h)(p

′�ω) �= 0}
and suppose that g(h) = J for all h ∈ Hg; otherwise, the argument is con-
cluded. Condition Nesting now states that (p′�ω) ∈ Eg′ and, hence, in Ng′ ,
for some g′ with g′(h) = g(h), for h ∈H\Hg, while g′(h) < J for h ∈Hg and
(p′�ω) ∈Nh

J ∩Nh
g′(h). Once again Condition Nesting can be applied to move to

an auxiliary system fg′ with g′ < g, and iterating finitely many times, eventually
we reach the desired conclusion that (p′�ω) ∈ Ng∗ with g∗(h) = 1 for some
h ∈Hg∗ .

We are now ready to prove Proposition 4 for G > 1. First, we exploit the
equivalence classes of Arrow prices to prove that the following family of maps
F satisfies Conditions Universal and Nesting. Define F to be the following fam-
ily of maps (remember that N0 = ∑G

a=0 S
a):

• f h1 (p
′�ω)= f hσ (p′�ω).

• f hsa(p
′�ω)= xh0

s01
(p′

1
�ω)− xhasa (p′

2
�ω), sa ∈ ⋃G

a=0 S
a.
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• f h2+N0
(p′�ω)= λh1(p′

1
�ω)− λh2(p′

2
�ω).

Put the set of nodes sa ∈ ⋃G

a=0 S
a in a one-to-one correspondence with

{2� � � � �1 +N0} and index them by j. All maps are continuously differentiable
and obviously satisfy the condition Dωh

′ f hj (p
′�ω)= 0 for all j and h′ �= h. The

following lemma proves that our choice of F also satisfies Conditions Universal
and Nesting on a dense subset Ω′′ of Ω′.

LEMMA 8: There exists an open and dense set Ω′′ ⊂Ω′ such that the family of
maps F = (f hj )j≥1 satisfies Conditions Universal and Nesting.

For the proof see the Appendix.
To gain intuition on this issue, notice three aspects of our choice. First, the

construction of P ′(s̄) (i.e., of the equivalence classes of Arrow price pairs) im-
plies that on P ′(s̄) × Ω′, either Dωf

h
1 �= 0 or Dωf

h
2+N0

�= 0; that is, it implies
Condition Universal. Second, whenever f h2+N0

�= 0, endowment or utility per-
turbations yield different changes in optimal consumption bundles across the
two trees; that is, if f h2+N0

�= 0, then eitherDωf
h
sa �= 0 or f hsa �= 0, sa ∈ ⋃G

a=0 S
a, and

Condition Nesting holds true for j > 1. Third, whenever f hsa �= 0, sa ∈ ⋃G

a=0 S
a,

the optimal bundle xhs01
(p′

1
�ω) does not appear on the second tree, thereby al-

lowing for perturbations of utilities that affect optimal solutions on the first, but
not on the second tree. These perturbations are powerful enough to show that
when f hsa �= 0, sa ∈ ⋃G

a=0 S
a, and f h2+N0

�= 0, Dωf
h
1 �= 0, that is, Condition Nesting

holds true also for j = 1.
Next, for given n, Ωn

σ denotes the subset of Ω′′ where the system of equa-
tions fσ(p′�ω) = 0 does not have a solution in P ′n(s̄), the set introduced in
Lemma 6. By the same argument provided for G = 1, Ωn

σ is open. Again, let
Ω∗ = ⋂

n>0

⋂
σ Ω

n
σ . If the sets Ωn

σ are also dense, Ω∗ is a residual set where
fσ(p

′�ω) �= 0. However, P ′n(s̄) × Ω̄ ⊂ P ′(s̄) × Ω̄ and, hence, by Lemma 7,
fσ(p

′�ω) �= 0 for all (p′�ω) ∈ P ′n(s̄) × Ω̄. Thus, Ω̄ ⊂ Ωn
σ , thereby concluding

the argument.

5. EXTENSIONS

In computational applications, utility functions are parametrically given,
most frequently in the constant relative risk aversion (CRRA) class. As al-
ready mentioned, when G = 1, Proposition 4 can be immediately established
by perturbing only the endowments, therefore covering this class. However,
when our density result is based on local utility perturbations, it does not im-
mediately cover those economies, as perturbations now have to be parametric
and cannot alter the utility functional form.

On the other hand, many of our simplifying assumptions on the economic
environments can be dropped either without altering the results or by actu-
ally sharpening them. For example, the simple demographic structure can be
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generalized going from a constant population process to any exogenous time-
homogeneous finite Markov chain only with an increased notational burden.
Utilities can be assumed to be state or age dependent, actually facilitating our
proofs. Beliefs can differ across agents. We also have assumed that financial
assets are short-lived and in zero net supply, that there is no production, and
that all risk is aggregate. Our result clearly survives all such extensions.

Long-Lived Assets: We can add long-lived assets in positive supply (i.e., Lu-
cas’ trees), storage, and even production to our model as done in Rios Rull
(1996) or Kubler and Polemarchakis (2004) without altering any of our results.
Obviously now beginning-of-period financial wealth w has to be defined to in-
clude the value of long-lived assets held by the individuals and the value of
stored commodities. The latter implies that the wealth of the individuals de-
pends on all current prices, their portfolios of long-lived assets, and the stored
amount of commodities. The state spaces of Markov and recursive equilibria
have to be expanded, since they must now include portfolios of long-lived as-
sets and amounts of stored commodities. If there is production, the capital dis-
tribution across firms also needs to be included as an endogenous state. Now,
at a critical Markov pair, not only wealths, but also portfolios of long-lived as-
sets, stored commodities, and capital must be invariant. Hence, if anything, by
adding equations, these extensions can potentially weaken the degree of het-
erogeneity needed to rule out the existence of critical pairs and critical initial
pairs of Markov states.

Idiosyncratic Risk: Recall that the issue here is not whether we can include
idiosyncratic risk in our model, rather whether this inclusion can be used to
substantially reduce the ex ante heterogeneity in Assumption A1. The results
will depend on how one models idiosyncratic shocks. We just give a hint of how
to carry out the analysis for what is the hardest case for our approach.

For each type h, there is a large number of individuals subject to individual
shocks that affect endowments (such as unemployment, accidental loss risk,
and so on). In each period the set of states of uncertainty is S × Σ, with Σ
denoting the set of individual states, and individual risks are independent and
identically distributed. Ex ante identical individuals of age 0 enter the economy
under different uninsured realizations of individual risk: this is the key feature
that can be exploited to weaken Assumption A1. The maneuver comes, how-
ever, at a cost. To perturb independently the various functions of identical indi-
viduals born at different personal states, we need a richer set of perturbations:
utilities have to be age and (aggregate) state dependent.

Competitive—and, therefore, Markov and recursive—equilibrium prices are
affected by the realizations of the aggregate, but not of the individual states.
Thus, the only exogenous variable entering the definition of a Markov state
is s ∈ S. A Markov (or recursive) state must now specify, for each type and
age, a distribution of wealth. The state space includes vectors of the form wha

σa ,
σa ∈ Σa. The definitions of confounding and nonconfounding equilibria, and
critical and initial critical pairs are identical. However, the density argument in
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Proposition 4 changes considerably and is more demanding. The essence is to
perturb independently individuals indexed by the same h, but by different σ
at birth. Since these individuals were endowed at birth with different endow-
ments, their overall wealth and, hence, their consumption plans will typically be
different. With state and age dependent utility perturbations, this is sufficient
to establish that generically the system of HΣ equations f(s01�s02�s̄) = 0 cannot
have a solution. In other words, Assumption A1 can be weakened:

ASSUMPTION A1′: HΣ> 2[C∑G

a=0 S
a − 1].

Therefore, even H = 1 is compatible with the existence of a recursive equilib-
rium if Σ is large enough, as we wanted to show.

APPENDIX

PROOF OF PROPOSITION 2: (i) Pick an economy ω ∈ Ω and any family
of subsets Os ⊂ Ws�ω, s ∈ S. Consider the family of competitive equilibrium
processes ξ̃. They are parametrized by initial states (s0�w0� ξ0). Hereafter,
let Z0 denote the projection of the initial states of the family of competitive
equilibrium processes onto the set of variables (s�w�p�λ), that is, onto
the (smaller) state space of the simple Markov equilibrium. For all z̄ =
(s̄� w̄� p̄� λ̄) ∈Z0 with w̄ ∈Os̄, select a unique competitive equilibrium, thereby
describing a family of competitive equilibria ξ̃z̄ parametrized by such elements
z̄ ∈ Z0. We call such z̄ an initial condition. The construction of the simple
Markov equilibrium is based on an observation that we state under the form of
a separate claim. For each history st , t ≥ 1, the competitive equilibrium real-
ization at st , ξz̄�st = [x�θ�λ�ψ]z̄�st , and the corresponding financial wealth dis-
tribution, wz̄�st = dst θz̄�st−1 , define a Markov state [st� (w�p�λ)z̄�st ]. We call two
competitive equilibria realizations ξz�ŝt and ξz̄�s̄t′ Markov equivalent if they gen-
erate the same Markov states (at ŝt and s̄t). Given two equilibrium processes ξ̃z̄
and ξ̃z , and a pair of histories s̄t′� ŝt ∈ S̃, t ′ > 0, such that ξz̄�s̄t′ and ξz�ŝt are
Markov equivalent, we define a binary operation [ŝt�s̄t′ ] :ΞS̃ ×ΞS̃ →ΞS̃ called
grafting and denote its result by ξ̃z[ŝt�s̄t′ ]ξ̃z̄ . It is the process defined as

{ξz[ŝt�s̄t′ ]ξz̄}st∗ =
{
ξz�st∗ for st∗ �� ŝt ,
ξz̄�s̄t′+τ for st∗ = ŝt+τ, τ ≥ 0.

Notice that the grafting operation [ŝt�s̄t′ ] can be applied to the same competi-
tive equilibrium ξ̃z at two distinct Markov equivalent histories.

CLAIM 9: For each pair of (not necessarily distinct) competitive equilibria ξ̃z
and ξ̃z̄ with Markov equivalent realizations at ŝt and s̄t′, the grafted process
ξ̃z[ŝt�s̄t′ ]ξ̃z̄ is a competitive equilibrium process that starts from the initial con-
dition z ∈Z0.
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The proof of Claim 9 is put off to the end of this argument. Claim 9 implies
that we can apply the operator [ŝt�s̄t′ ] countably many times and still obtain
a competitive equilibrium. This is what we do to construct a simple Markov
equilibrium. We build the functions T and ξ :Z → Ξ, and define the state
space Z recursively as follows.

Start from t = 0. Drop the subscript ω, consider the set Z0 and the selection
of equilibrium processes ξz̄ , z̄ ∈Z0, w̄ ∈Os̄, and start defining the endogenous
map ξ:

(i) Set ξ(z̄)≡ ξz̄ for all z̄ ∈Z0.
Moving to t = 1, the competitive equilibrium ξ̃z̄ determines ξz̄�s1 and wz̄�s1 ,

s1 = (s̄� s)� for all z̄ ∈ Z0. Therefore, it describes uniquely on Z0 the continu-
ation of z̄, that is, the S Markov states z′ = (s� ζz̄�s1), s ∈ S, and ζ = (w�p�λ),
immediately following z̄.

(ii) Set Ts(z̄)= (s� ζz̄�s1) for z̄ ∈Z0 and Z1 = ⋃
s∈S{Ts(Z0)}.

A predecessor of z′ = (s′� ζ ′) ∈ Z1 is z ∈ Z0 such that z′ = Ts′(z); z′
− ⊂ Z0

denotes the set of predecessors of z′. Predecessors may not be unique, since
the same (endogenous) state z′ can be generated by the equilibrium processes
of different initial conditions z̄. Partition the sets Z1 into (Z1a�Z1b�Z1c), three
disjoint and exhaustive subsets defined as follows:

(a) Z1a = Z0 ∩ Z1 is the set of states that are both initial and successors to
the initial conditions; (b) Z1�b = {z ∈ Z1\Z0 : #z− = 1} is the set of states with
a unique predecessor, but that are not initial conditions; and (c) Z1c = {z ∈
Z1\Z0 : #z− > 1} is the set of states with multiple predecessors, but that are
not initial conditions.

If (a), then the state z̄ is both initial condition—and ξ̃z̄ is the equilibrium
associated to it—as well as a successor of an initial condition z, and ξz is the
competitive equilibrium associated to it. Now, with s0 = s̄ and s1 = (s� s̄), ξz�s1
and ξz̄�s0 are Markov equivalent states. Apply [ŝt�s̄t ] as ξ̃z[s1�s0]ξ̃z̄ = ξ̃∗

z . From
Claim 9, ξ̃∗

z is a new competitive equilibrium starting at z and, by construction,
ξ̃∗
z has the same continuation path at s1 of ξ̃z̄ at s0 = s̄.
(iii) Thus set Ts(z̄)= (s� ζ∗

z̄�(s̄�s)) and ξ(z)= ξ∗
z̄�(s̄�s) for z ∈Z1a.

If (b), ξ̃z̄ will be the unique competitive equilibrium that has generated z′ ∈
Z1b at s1 = (s̄� s′).

(iv) Then set Ts(z′)= (s′� ζz̄�(s1�s)) and ξ(z′)= ξz̄�s1 for ζ ∈Z1b.
If (c), there may be multiple competitive values for the current endoge-

nous variables at z = (s� ζ) ∈Z1c as well as multiple continuations (s� ζz�(s1�s′)),
s′ ∈ S, depending on which competitive process ξ̃z̄ , z̄ ∈ z−, we follow. In such a
case, we first select arbitrarily one predecessor, φ(z)= (s∗� ζ∗) ∈ z−. Then, for
all z′ ∈ z−, we define the new competitive equilibrium ξ̃z′ [s′�s�s∗�s]ξ̃φ(z). Again
by Claim 9, this grafting operation uniquely defines the continuation of the
Markov state z as (ŝ� ζφ(z)�(s∗1�ŝ)), ŝ ∈ S and s∗1 = (s∗� s), determined by the com-
petitive equilibrium ξ̃φ(z).

(v) Thus, we set Tŝ(z)= ζφ(z)�(s∗1�ŝ) and ξ(z)= ξφ(z)�s∗1 for z ∈Z1c .
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By construction, the maps ξ and T are well defined functions on Z0 ∪ Z1:
each Markov state z ∈ Z0 ∪ Z1 selects a unique competitive equilibrium and,
hence, a unique continuation.

Let Z2 = ⋃
s∈S Ts(Z1) be the sets of endogenous Markov states obtained by

using operations (iii)–(v). Since each Markov state z ∈Z0 ∪Z1 selects a unique
competitive equilibrium and a unique continuation, moving to t = 3 we can
treat Z0 ∪Z1 as Z0, and Z2 as Z1, and repeat operations (iii)–(v) thereby cre-
ating sets Z3 and extending through the same operations the transition T and
the maps ξ to Z2\(Z0 ∪Z1).

Apply recursively this procedure, thereby creating sets Zt , t = 0�1� � � � � and
defining the maps T and ξ over

⋃
t≥0Zt . This describes a Markov equilib-

rium of ω ∈ Ω. Notice that the space of Markov states is Z = ⋃
t≥0Zt . Ob-

viously, Z0 ⊂ Z, and hence Os ⊂ W Z
s�ω, s ∈ S, and we have proven Proposi-

tion 2(i). Furthermore, by construction, z̄ = (s̄� w̄� p̄� λ̄) is an initial Markov
state only if z̄ ∈Z0 and z̄ /∈Zt for all t > 1. Then w̄ ∈Os (Proposition 2(ii)) and
(s̄� w̄� p̄� λ̄) ∈ Z0 for a unique choice of (p̄� λ̄), the competitive equilibrium
value taken at the initial state z̄, that is, Proposition 2(iii).

PROOF OF CLAIM 9: The argument is simple, so we just sketch it. By con-
struction, ξ̃∗

z ≡ ξ̃z[ŝt�s̄t′ ]ξ̃z̄ satisfies the market clearing conditions. Thus, it suf-
fices to check that ξ̃∗

z satisfies the first-order conditions of the individual pro-
gramming problems. However, since ξ̃∗

z coincides at st with either ξ̃z or with ξ̃z̄ ,
it satisfies the optimality conditions Duh(xha)− λhap= 0 and the budget con-
straints for all st�h�a. For the same reason, ξ̃∗

z satisfies as well the no arbitrage
equations

−λhast qst + δ
∑
s

δπ(s|st)λh(a+1)
(st �s) ds = 0� a <G(11)

for st �= ŝt and st �= ŝt−1, the immediate predecessor of ŝt , since then only
variables defined by ξ̃z or ξ̃z̄ appear. Hence, it only remains to be checked
that (11) is satisfied at ŝt and ŝt−1. The definition of Markov equivalent realiza-
tion implies that (s̄t′�λz̄�s̄t′)= (ŝt� λz�ŝt ), while the construction of ξ̃∗

z implies that
λ∗
z�ŝt = λz̄�s̄t′ = λz�ŝt . By direct inspection, the latter implies that both equations

are satisfied, thereby concluding the argument. Q.E.D.

PROOF OF PROPOSITION 3: For given ω and s̄ ∈ S, let

W̄ 1
s̄�ω = {

w̄1 = (w̄h1)h∈H : (w̄1� (w̄a)a>1) ∈ ◦
W s̄�ω for some (w̄ha)h�a>1

}
�

Given the properties of
◦
W s̄�ω, W̄ 1

s̄�ω is an open and bounded subset of R
H if

G> 1 and it coincides with
◦
W s̄�ω otherwise. Let s̄1 = (s01� s̄) (i.e., pick s01 ∈ S
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and the corresponding finite tree). For w̄1 ∈ W̄ 1
s̄�ω, f(s01�s̄)�w̄

1 :P(ω)→ R
H , where

dimP(ω) < H by Assumption A1, and there are fewer equations than un-
knowns. Furthermore, the map f(s01�s̄) is independent of w̄ha, a > 1. If G > 1,
the Jacobian matrix of the map f(s01�s̄)(·) with respect to w̄1 ≡ (w̄h1)h∈H is equal
to the identity matrix. Thus, for given ω ∈Ω, the transversality and preimage
theorems imply that for w̄ ∈W ∗

(s01�s̄)�ω
, a full Lebesgue measure subset of W̄s̄�ω,

f(s01�s̄)(p�q�ω� w̄
h1)= 0 does not have a solution in P(ω). Furthermore, since

P(ω) is compact, the natural projection onto
◦
W s̄�ω restricted to P(ω) is proper,

and W ∗
(s01�s̄)�ω

is also open.
If G= 1, then

∑
h w̄

h1 = 0. Assumption A1 now reads H > 2[C(1 + S)− 1],
which implies H − 1 > C(S + 1) − 1 = dimP(ω). Thus, drop the function
wh1
(s01�s̄)

(·) − w̄h1 from the map f(s01�s̄) for h = 1 and call f \
(s01�s̄)

the map so ob-
tained. The latter is independent of w̄11� while full-rank perturbations of it can
be obtained by perturbing independently w̄h1, h> 1. Hence, by the same argu-
ment used above, for w̄ ∈W ∗

(s01�s̄)�ω
, an open and full Lebesgue measure subset

of W̄s̄�ω, f \
(s01�s̄)

(·) = 0 (and therefore f(s01�s̄)(·) = 0) does not have a solution
in P(ω).

Now the setW ∗
s̄�ω = ⋂

s01
W ∗
(s01�s̄)�ω

is an open and full Lebesgue measure subset

of
◦
W s̄�ω that satisfies the required property. Q.E.D.

PROOF OF LEMMA 5: We want to show that there exists an open and dense
set of parametersΩ′ such that for (e�u�δ) ∈Ω′, if p′ ∈ P ′(s̄), then p′ ∈ P ′(s̄� δ).
Pick p′ ∈ P ′(s̄) and, to avoid trivialities, assume that

p1+(a� s)= p2+(a� s) for all a� s�(12)

Then there exists a and �′ such that

Π[Sa1(�′)] �=Π[Sa2(�′)]�(13)

Write expand the conditions Π1(1� �)=Π2(1� �). They are a polynomial in δ,
namely,

∑
a≥1

δa−1φ(a��)= 0�(14)

where

φ(a��)=
[ ∑
sa∈S+(a��)

π(sa|s̄1)−
∑

sa∈S2+(a��)
π(sa|s̄1)

]

=Π[Sa1(�)] −Π[Sa2(�)]�
The coefficients φ= (φ(a� �))a�� are uniquely determined by the Arrow price
pairs p′ through the determination of the sets Sak(�). Thus, the function and the
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notation φp′ are well defined. Condition (13) can be written as φp′(a� �′) �= 0�
Since the trees are finite, there are only finitely many sets Sak(�) or, equiva-
lently, there are only finitely many coefficient values φ� Let Φ be their set.
By definition of pk+(a� s), (12) implies that p′

k�s̄1
/p′

1�k�s̄1 and p′
k�s2
/p′

1�k�s̄1 for all
s2 > s̄1 are k-invariant. Thus, φ(1� �)= φ(2� �)= 0 for all � and φ ∈Φ. Now,
for ā≥ 3, let

Φ(ā)= {φ ∈Φ :φ(a��)= 0, for all � and

a < ā�φ(ā� �′) �= 0, for some �′}�
If p′ ∈ P ′(s̄) and (12) holds, then φp′ ∈ Φ(ā), for some ā ≥ 3. The equation
Π1(1� �′)=Π2(1� �′) now reads

G∑
a≥ā
δa−āφ(a� �′)= 0�

Since the coefficient for the degree-zero term is φ(ā� �′) �= 0, the latter is a
nonzero polynomial and by Theorem 14, in Zariski and Samuel (1960, Chap. I,
p. 38) the set of zeros of the polynomial is closed and has measure zero in
(0�1]� Let Ωφ be the complement of this set and let Ω(ā) = ⋂

φ∈Φ(ᾱ) Ωφ. By
construction, Ωφ and, therefore, Ω(ā) are open and dense. Finally set Ω′ =⋂

ā≥3Ω(ā) as an open and dense subset set of Ω. Most importantly, if p′ ∈
P ′(s̄), then φp′ ∈Φ(ā) for some ā; then ifω= (e�u�δ) ∈Ω′,Π1+(�′) �=Π2+(�′)
for some �′ or p′ ∈ P ′(s̄� δ). Q.E.D.

PROOF OF LEMMA 6: Each p′ ∈ P ′(s̄) uniquely determines the set of in-
dices P

1, the sets of histories of length a, Sak(�) for all k� � ∈ P
1 and a≥ 1, and

the values pk+(a� s) for all a� s. First, the possible configurations of the index
set P

1 and of histories Sak(�) are finite. Second, if two pairs of Arrow prices de-
termine the same P

1, Sak(�) for all k� � ∈ P
1, and a≥ 1, they deliver identical val-

ues forΠ[Sak(�)]. Then partition P ′(s̄) into a collection of J disjoint and exhaus-
tive subsets P ′

j(s̄), where J is the cardinality of the sets (P1� (Sak(�))k��∈P1�a≥1)
generated by the elements of P ′(s̄) and j is their indices. Two distinct price
pairs in P ′

j(s̄) determine the same sets of price indices P
1 and of states Sak(�),

but distinct values p(�). Therefore, without ambiguity denote with P
1
j the set

of price indices generated by p′ ∈ P ′
j(s̄). Define P ′n

j (s̄) as the subset of P ′
j(s̄)

that satisfies

‖p(�)−p(�′)‖ ≥ 1
n

for all � and �′ ∈ P
1
j � j = 1� � � � � J�

Then define P ′n
0 (s̄) as

∥∥(p1+(a� s)−p2+(a� s))a�s
∥∥ ≥ 1

n
�
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Finally, let

P ′n(s̄)=
J⋃
j=0

P ′n
j (s̄)�

The sets P ′n
j (s̄) are compact for all j and, therefore, so is P ′n(s̄). Lemma 5 guar-

antees that for ω ∈ Ω′ and p′ ∈ P ′n(s̄) ⊂ P ′(s̄), inequalities (10) are satisfied.
Obviously P ′n(s̄)⊂ P ′n+1(s̄) and

⋃
n P

′n(s̄)= cl(P ′(s̄)) by construction. Q.E.D.

Utility Perturbations: For the proofs that follow, we use utilities to perturb
the equations f hj = 0. To do so, we use a locally finite, linear parametrization
of the utility functions. Pick N > 1 distinct consumption bundles xj ∈ R

C
++, j =

1� � � � �N . We perturb the gradient of uh(·) around the bundles xj , j = 1� � � � �N .
For each j, pick a pair of open balls Bεi(xj), i = 1�2, centered around xj and
such that (i) ε2 > ε1 and (ii)

⋂
j cl(Bε2(xj)) = ∅. Then pick smooth “bump”

functions Φj such that Φj(x;xj) = 1 for x ∈ Bε1(xj), and Φj(x;xj) = 0 for
x /∈ cl(Bε2(xj)). For given arbitrary vectors �u= (�uj)

N
j=1 ∈ R

CN and scalar η,
define the utility function

uhη(x��u)= uh(x)+η
N∑
j=1

Φj(x;xj)
∑
c

�uj�cxc�

For any given �u, we can pick η so close to zero that uhη(·) is arbitrarily close to
uh(·) in the C 2-uniform convergence topology and it satisfies, therefore, all the
maintained assumptions. We identify a utility perturbation with the (Gateaux)
derivative of D (the derivative as a linear map of functions) at uh in the direc-
tion

∑
j Φj(x;xj)�uj , that is, with a vector �uj . Which finite set of points xj is

used depends on p′, so the derivative of uh, hence of f , is not finitely parame-
trized.

PROOF OF LEMMA 7: As a preliminary step, to apply the infinite-dimen-
sional version of transversality, we need the space of utilities to be Banach.
This is done as follows. Let X̄ ⊂ R

C
++ be the compact set defined in Section 4.4.

Recall that, thereafter, we have identified Ω with Bε(ω) for a given ω. By
construction, when (ψ�ω′) ∈ P × Bε(ω), optimal consumptions are contained
in X̄ . This is going to stay true when we move to P ′ and, in particular, to P ′(s̄).
Since density is a local property, in what follows we can identify U with the util-
ities uh restricted to the compact domain X̄ , a complete subspace of C 2(X̄�R)
when endowed with the uniform topology, and a Banach space. If a set is dense
in Ω in this topology, it is also dense when Ω is endowed with the original,
coarser topology. For simplicity, we keep the notation U , Ω, Ω′′, and f hj un-
changed.
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Let G = {g :H → {1� � � � �2+∑
a S

a}} be the set of maps that assign for each h
a map f hg(h) ∈ F. Then, for all g ∈ G , fg = (f hg(h))h∈H :P ′(s̄) × Ω′′ → R

H are
continuously differentiable and Eg are (relatively) open sets of P ′(s̄) × Ω′′.
Let φg :Eg → R

H be the restriction of fg to Eg and let Ω(g) = projΩ(Eg).
By construction, either φg �= 0 or Dφg is onto R

H , and since kerDφg is fi-
nite codimensional in R

dimP ′(s̄) ×Ω(g), φg is transversal to zero. Then, by the
parametric transversality theorem (see Abraham, Marsden, and Ratiu (1988,
Theorem 3.6.22)), φg�ω is also transversal to zero for all ω ∈ Ω∗(g), a dense
subset of Ω(g). However, since by Assumption A1, dimP <H, by the preim-
age theorem, φ−1

g�ω(0) = ∅ for ω ∈ Ω∗(g). Then Ωg = Ω∗(g) ∪ Ω′′\Ω(g) is a
dense subset of Ω′′ and so is Ω = ⋂

g Ωg. Bear in mind that by construction
Eg ∩ P ′(s̄)×Ω = Ng for all g. We now show that for all (p′�ω) ∈ P ′(s̄)×Ω,
there exists h such that f h1 (p

′�ω) �= 0� Pick any such (p′�ω). By Condition Uni-
versal, Eh1 ∪ EhJ = P ′(s̄) × Ω′′ for all h, and hence (p′�ω) ∈ Eg, and, there-
fore, (p′�ω) ∈ Ng, for some g ∈ G with g(h) = 1 or J for all h. Let Hg =
{h : (p′�ω) ∈Nh

g(h)}. By construction ofNg and Eg,Hg is nonempty. If g(h)= 1
for some h ∈ H1, then f h1 (p

′�ω) �= 0, a contradiction that concludes the ar-
gument. Otherwise, g(h) = J for all h ∈ Hg. Since (p′�ω) ∈ Nh

J , by Condi-
tion Nesting, (p′�ω) ∈Ehj(h) with j(h) < J for all h ∈H1. Let g1 ∈ G be defined
as g1(h) = g(h) for h ∈ H\Hg, while g1(h) = j(h) for h ∈ Hg. Since ω ∈ Ω,
(p′�ω) ∈Ng1 . By construction ofHg and g1, f h

g1(h)
(p′�ω)= 0 for all h ∈H\Hg.

Since (p′�ω) ∈ Ng1 , it must be that Hg1 = {h : f h
g1(h)

(p′�ω) �= 0} ⊂ Hg is non-
empty. For h ∈Hg1 , it is (p′�ω) ∈Nh

g1(h)
∩Nh

J and, therefore, Condition Nest-
ing implies that (p′�ω) ∈ Ehj′(h) for some j′(h) < g1(h). Iterating finitely many
times, the argument concludes that (p′�ω) ∈ Ng∗ for g∗ with g∗(h) = 1 for
some h ∈Hg∗. Q.E.D.

PROOF OF LEMMA 8:
Preliminary Computations. In analogy with the notation in the text, for p′ ∈

P ′, let

P = {p̂ ∈ R
C
++ :p′

k�sa = p̂, for some k� sa}

with cardinality P ≤ 2
∑G−1

a=0 S
a, generic element p̂(�), and P denoting also the

set of price indices �. For � ∈ P, we define sets of histories and probability
weights

Sk(�)= {sa :p′
k�sa = p̂(�)}� Πk(�)=

∑
sa∈Sk(�)

δaπ(sa|s0k)�
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where Πk(�)= 0 if Sk(�)= ∅ and

pk(a� s)= δa−1
∑

sa−1:(sa−1�s)

π(sa−1� s|s̄1)p′
k�(sa−1�s)

�

Given when p′
1�1�s̄1 �= p′

1�1�s̄1 , p′ ∈ P ′(s̄), p̂(�) ∈ P generates two distinct values
in the set P1: p(�1) = (p̂(�))/p′

1�1�s̄1 and p(�2) = (p̂(�))/p′
1�2�s̄1 . To keep the

two index sets consistent, use the convention � ∈ P ∩ P
1 if and only if p(�) =

(p̂(�))/p′
1�k�s̄1 for some k= 1�2.

Pick p′ ∈ P ′(s̄) and, with this notation at hand, rewrite the individual pro-
gramming problem (5) as

max
∑
�∈P

Πk(�)u
h(xk(�)) s.t.(15)

∑
�∈P

Πk(�)p̂(�)xk(�)=
∑
a�s

pk(a� s)e
ha
s �

The first-order conditions associated to problem (15) are, for � ∈ P,

Duh(xk(�))− λhkp̂(�)= 0�∑
�∈P

Πk(�)p̂(�)xk(�)−
∑
a�s

pk(a� s)e
ha
s = 0�

Drop h. We perturb the utility function around xk(�) without disturbing it
around xk(�′), �′ �= �. We denote such a perturbation by �u(�) and denote
the endowment perturbation by �eas , while (�x��λ��w) is their effect on the
variables (x�λ�w).

Differentiating the first-order conditions, we get

Hk(�)�xk(�)− p̂T (�)�λk −�u(�)= 0�(l)
∑
�∈P

Πk(�)p̂(�)�xk(�)−
∑
a�s

pk(a� s)�e
a
s = 0�(bc)

where Hk(�) is the invertible Hessian at xk(�) and the superscript T stands
for transpose. While differentiating the map wk�s̄1 , recalling that p(�) =
(p̂(�))/p′

1�k�s̄1 , we get

�wk�s̄1 =
∑
�∈P

Πk(1� �)p(�)�xk(�)−
∑
a>0�s

pk+(a� s)�eas �(W)

Define

Qk(�)≡ p̂(�)H−1
k (�)p̂

T (�)�
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SinceH−1
k (�) is a negative definite matrix, the terms Qk(·) are negative, and so

is Qk = ∑
�∈P
Πk(�)Qk(�). From equation (l), by performing elementary com-

putations, we get

�λk =
{∑

a�s

pk(a� s)�e
a
s

Qk

−
∑
�∈P

Πk(�)p̂(�)H
−1
k �u(�)

Qk

}
�

and taking into account that p(�)= (p̂(�))/p1�k�s̄1 , we get

�wk�s̄1 =Qk+�λk +
∑
�∈P1

Πk(1� �)p(�)H−1
k (�)�u(�)

−
∑
a>0�s

pk+(a� s)�eas �

where Qk+ = ∑
�∈P1 Πk+(�)(Qk(�))/p

′
1�k�s1 < 0.

Denote by λk the value λk(p′
k
�ω). By the first-order conditions of the in-

dividual problems, if Πk(�) > 0 for all k and if λ1 = λ2, then x1(�) = x2(�) at
the optimal solutions of the two programming problems. However, if λ1 �= λ2,
for any pair � and �� such that Π1(�) > 0 and Π2(��) > 0, x1(�) = x2(��) if
and only if p̂(�) = (λ1/λ2)p̂(��). Hereafter, for each � (with Π1(�) > 0), we
denote with �� the index associated to p̂(�) = (λ1/λ2)p̂(��)—and if λ1 = λ2,
�� = �. Also bear in mind that H−1

1 (�)=H−1
2 (��). We denote by �= 1 the price

equivalence class identified by p′
1�s01

and denote by �1 the price equivalence
class associated to p′

2�sa = (λ1/λ2)p
′
1�s01

. Define f�1 = x1(1)−x2(�1) and observe
that f�1 is smooth in ω if Π2(�1) > 0 or, equivalently, if λ1(p

′
1
�ω) �= λ2(p

′
2
�ω),

while f
�1
(p′�ω) �= 0 otherwise. Notice that f

�1
�= 0 if and only if fj �= 0, j =

2� � � � �
∑G

a=0 S
a, and that Dωfj =Dωf�1 for all j = 2� � � � �1 + ∑G

a=0 S
a such that

fj = 0. Therefore, the set Eh2 is just the set

Eh2 = {
(p′�ω) :

[
f h
�1

= 0 and Dωf�1 �= 0
]

or f
�1

�= 0
}
�

By taking into account that p̂(�)= (λ1/λ2)p̂(��), the derivatives of the map f�1

are

Du(�)f�1 =H−1
1 (1)p̂

T (1)p̂(�)H−1
1 (�)(16)

×
[(
λ1

λ2

)2
Π2(��)�u(�)

Q2
− Π1(�)�u(�)

Q1

]

and

Deas f�1 =H−1(1)p̂T (1)
[(
λ1

λ2

)
p2(a� s)

Q2
− p1(a� s)

Q1

]
�(17)
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Hereafter, to simplify notation, we set J = 2 +N0. We are now ready to estab-
lish Condition Universal. If, for (p′�ω) ∈ P ′(s̄) ×Ω′, either f hJ (p

′�ω) �= 0 or
f h1 (p

′�ω) �= 0, Condition Universal holds true. Hence, in the next claim we are
concerned only with the complementary case.

CLAIM 10: Suppose that (p′�ω) ∈ P ′(s̄)×Ω′ and f h1 (p
′�ω)= 0. If (s0k�p

′
k�s0k

)

is one-to-one in k, then Dωhf
h
1 (p

′�ω) �= 0; otherwise, and if f hJ (p
′�ω)= 0, then

either Dωhf
h
1 (p

′�ω) �= 0 or Dωhf
h
J (p

′�ω) �= 0.

PROOF: Drop h. We argue by contradiction, assuming that Dωf1 = 0. If
D�eas f1 = 0 for all (a� s), then

Q1+
Q1

p1(a� s)−p1+(a� s)= Q2+
Q2

p2(a� s)−p2+(a� s) for all (a� s)�(18)

Equation (18) computed at (0� s01) implies that s01 = s02. Moreover, since by
the adopted normalization p1�k�s0 = 1, it also implies that p′

k�s0
and Qk+/Qk

are k-invariant, a contradiction. Assume, therefore, that (s0k�p
′
k�s0k

) is k-
invariant and that also, by contradiction, Dωhf1 = DωhfJ = 0. If D�eas fJ = 0
for all (a� s), then (p1(a� s))/Q1 = (p2(a� s))/Q2 for all (a� s). Computed at
(0� s0), the latter implies Qk = Q for k = 1�2; computed at any other (a� s)
implies that pk(a� s) is k-invariant and we set pk(a� s) = p(a� s). Thus, since
pk(1� s̄)= δπ(s̄1|s0)p

′
k�s̄1

, it is p′
1�1�s̄1 = p′

1�2�s̄1 ≡ p′
1�s̄1 . Then Deas f1 = 0 or, equiv-

alently, equation (18) reads

Q1+
Q
p(a� s)−p1+(a� s)= Q2+

Q
p(a� s)−p2+(a� s)�

By taking into account that the first entry of pk+(1� s̄) is equal to 1, the last
equation computed at (1� s̄) implies that Qk+ =Q+ and then that

p1+(a� s)= p2+(a� s) for all a� s�(19)

We turn next to utility perturbations. For each �, pick the perturbation �u(�)
and bear in mind that since λk is k-invariant, so is xk(�) k-invariant. By
direct computation, if D�u(�)f1 = 0 (and recalling that p(�)H−1

k (�)�u(�) =
(ck(�))/p1�s̄1′ = 1/p′

1�s̄1 ), then

Π1(1� �)
p′

1�s̄1
− Π1(�)Q+

Q
= Π2(1� �)

p′
1�s̄1

− Π2(�)Q+
Q

for all ��(20)

Similarly, ifD�u(�)fJ = 0 for all �, then (Π1(�))/Q= (Π2(�))/Q for all �. These
equations and equation (20) immediately imply that

Π1(�)=Π2(�) and Π1+(�)=Π2+(�) for all ��
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The latter together with (19) contradict the assumption p′ ∈ P ′(s̄). Q.E.D.

The next lemma shows that if λh1 �= λh2 , then either f hj �= 0 or Dωhf
h
j �= 0 for

all j = 2� � � � � J− 1. In other words, it shows thatNh
J ⊂ ⋂

2≤j≤J−1E
h
j . Since, both

NJ ∩ Nj ⊂ NJ and
⋂

2≤j≤J−1E
h
j′ ⊂ ⋃

j′<j E
h
j′ for all j > 1, the claim shows that

Condition Nesting holds true for all j > 1.

CLAIM 11: Suppose that (p′�ω) ∈ P ′(s̄) × Ω′ is such that (i) f h1 (p
′�ω) = 0

and (ii) f hJ (p
′�ω) �= 0. If f hj (p

′�ω)= 0, thenDωhf
h
j (p

′�ω) �= 0 for all 1< j < J.

PROOF: Drop h. Arguing by contradiction, assume that both Dωfj = 0 and
fj(p

′�ω)= 0 for some 1< j < J. Then, by equation (17), Def�1 = 0 reads

(
λ1

λ2

)
p2(a� s)

Q2
= p1(a� s)

Q1
for all (a� s)�

Computing the latter at (0� s0) (and since p1�k�s0 = 1), we get that
(
λ1

λ2

)
1
Q2

= 1
Q1
�

Next we move to utility perturbations. Then by equation (16), D�u(�′)f�1 = 0
reads (

λ1

λ2

)
Π2(��)=Π1(�) for all ��

Summing across � and noticing the k-invariance of
∑

� Πk(�), we get λ1 = λ2,
an immediate contradiction with Claim 11(ii). Q.E.D.

The final claim establishes Condition Nesting for j = 1, thereby concluding
the argument.

CLAIM 12: There exists an open and dense subset Ω′′ of Ω′ such that if
(p′�ω) ∈ P ′(s̄)×Ω′′ and f hj (p

′�ω) �= 0 for all j ≥ 2, then Dωhf
h
1 (p

′�ω) �= 0.

PROOF: Drop h and, assume that (s0k�p
′
k�s0k

)≡ (s0�ps0) is k-invariant; oth-
erwise Claim 10 implies the thesis. Since f hj (p

′�ω) �= 0 for all j ≥ 2, it is
Π2(�1) = 0. Furthermore, since p′

k�s0k
= ps0 for all k, if Π1(�) = 0 for all

� �= 1, there must be at least two distinct indexes � �= �1 and �′ �= �1 with both
Π2(�

′) > 0 and Π2(�) > 0; otherwise, p′
k�sa = p′

1�s0
for all k and sa, contradict-

ing p′ ∈ P ′(s̄). Second, given s0k is k-invariant and given p′ = (p′
1
�p′

2
), then
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Dωf1((p
′
1
�p′

2
)�ω)= −Dωf1((p

′
2
�p′

1
)�ω). Therefore, up to a relabeling of the

two trees, there is no loss of generality in assuming thatp′
1�sa �= p′

1�s0
for some sa.

We now argue by contradiction, that is, we assume thatDωf1 = 0. IfD�eas f1 =
0 for all a� s, then equation (18) holds true and p′

1�k�s̄1 is k-invariant, thereby
implying as already argued the k-invariance of Qk+/Qk.

Thus, if D�u(�)f1 = 0, then
[
Π1(1� �)
p′

1�s̄1
− Q1+
Q1

Π1(�)

]
=

(
λ1

λ2

)[
Π2(1� ��)
p′

1�s̄1
− Q1+
Q1

Π2(��)

]
�

and summing across � and observing that
∑
Πk(�)≡Π and

∑
Πk(1� �)≡Π+

are k-invariant, it must be thatΠ+/Π = p′
1�s̄1Qk+/Qk since λ1 �= λ2. Therefore,

[
Π1(1� �)
Π+

− Π1(�)

Π

]
=

(
λ1

λ2

)[
Π2(1� ��)
Π+

− Π2(��)

Π

]
for all ��

However, since Π2(�1)=Π2(1� �1)= 0, it is

ΠΠ1(1�1)−Π1(1)Π+ = 0�(21)

Since

Π =
G∑
j=0

δj = 1 − δG+1

1 − δ �

while

Π+ =
G−1∑
j=0

δj = 1 − δG
1 − δ

(21) is a polynomial equation of degree 2G in δ of the form

(1 − δG+1)(a0 + a1δ+ · · · + aGδG−1)

− (1 − δG)(b0 + b1δ+ · · · + bGδG)≡
2G∑
j=0

tjδ
j = 0�

where

an =
∑

sn+1∈S1(n+1�1)

π(sn+1|s̄1)

and

bn =
∑

sn∈S̄1(n�1)

π(sn|s0)
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for

S̄1(n�1)= {sa :p1�sa = p1�s01� for a= n}�
We want to show that this polynomial is nonzero, that is, that tj �= 0 for some j.
By trivial computations,

tj = aj − bj for j = 0� � � � �G− 1� tG = b0 − bG�
while

tj+(G+1) = bj+1 − aj for j = 0� � � � �G− 1�

Thus, if tj = 0, for all j, then bj = bj+1, j ≥ 1. Since, by construction, b0 = 1
and tG = b0 − bG, then tj = 0 for all j if and only if bj = aj = 1 for all j. Obvi-
ously, the latter contradicts the assumption p′

1�sa �= p′
1�s0

for some sa. Since the
polynomial is nonzero, by Theorem 14 in Zariski and Samuel (1960, Chap. I,
p. 38), the set of zeros of the polynomial is closed and has measure zero in
[0�1]. Most importantly, there are only finitely many pairs of nonempty and
exhaustive subsets of the tree. Each of these pairs uniquely determines the
vectors of coefficients t of the polynomial above and we only consider pairs
that deliver a vector t with tj �= 0 for some j. The union of the zeros of such
polynomials intersected with (0�1] is the finite union of closed and measure
zero sets. Thus, its complement � is open and of full measure in (0�1]. Let
Ω′′ =Ω′ ∩ [E × U × �]. By construction, for all (p′�ω) ∈ P ′(s̄)×Ω′′, no equa-
tion (21) is satisfied or, equivalently, Dωf1 �= 0, concluding the proof. Q.E.D.
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