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Abstract 

 
People use different strategies when making choices. Modeling this choice process 

heterogeneity, however, is difficult using just the data provided by most standard choice 

experiments.  We try to capture process heterogeneity by augmenting choice models with 

variables derived from information-acquisition data gathered unobtrusively during choice tasks.  

These variables supplement standard logit specifications which identify how an individual used 

the attributes and attribute values to screen and rank alternatives in making a choice. The 

approach improves in-sample fit, prediction in a holdout sample, and residuals indicate that the 

models are providing better specified estimates of choice probabilities. 
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Introduction 

Understanding consumer choice presents many challenges.  In order to predict how 

markets make choices, we need to understand how the individuals who make up a market differ.  

One source of variance is preference heterogeneity, or how consumers differ in their tastes for 

product attributes, such as the weight given to an attribute in a trade-off process (Allenby and 

Rossi 1999; Hutchinson et al. 2000; Kamakura et al. 1996).  But consumers can also differ in the 

rules or policies they use to process such attribute preferences, a source of variance that we term 

process heterogeneity.  We know, for example, that while compensatory trade-off policies are 

often used given small choice sets, non-compensatory processes that use one attribute to 

eliminate alternatives tend to be used given larger sets (Johnson and Meyer 1984; McClelland et 

al. 1987; Payne 1976; Swait and Adamowicz 2001).  

 This paper focuses on the problem of capturing and describing process heterogeneity.   

We ask whether click-stream data describing how individuals gather information about 

alternatives in a computer-based choice experiment can improve the predictive and diagnostic 

value of choice models.  We focus on click-stream data as a source of information about 

processing differences because they can be gathered as a routine part of any computer-mediated 

choice task (such as might be conducted on the World-Wide Web), and have a long-history of 

value as a guide to the study of choice processes (e.g., Payne et al. 1993).  The methods we 

develop, however, would directly apply to other process data such as eye fixation recording or 

verbal reports.   

We first provide a background, reviewing the behavioral evidence describing process 

heterogeneity in choice.  We then examine how we might measure difference in choice 

processes.  Next, we propose a method which could be used to extract information about choice 
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processes in choice models in estimation and apply that information in prediction.  Finally, we 

provide an empirical example which demonstrates significant promise. 

Process Heterogeneity and Choice 

Describing Process Heterogeneity 

Choice processes differ across people, contexts and task environments.  Process tracing 

data such as information acquisition (measured by manual retrieval, computer acquisition, head 

and eye movements), the use of concurrent and retrospective self-reports, and memory measures, 

all indicate  that most choices result from a mélange of decision processes (see Bettman et al. 

1991 for a review).  However, this raises an interesting question:  Is there anything systematic in 

such observations of process that can increase our ability to understand, explain and forecast 

choice? 

 Many of the shifts in strategy described in the behavioral literature on choice are 

simplifications or heuristics that are used to make choices easier.  At one level these choice 

heuristics can be thought of as complete decision procedures, such as Elimination-by-Aspects 

(Tversky 1972) or a conjunctive or disjunctive rule.  However, an alternative approach, 

consistent with the idea that choice processes are opportunistic, characterizes choice at a more 

micro level, as a sequence of operations, which are applied to the information provided to the 

decision maker (Huber 1980; Johnson and Payne 1985; Payne et al. 1993). 

Prior research suggests two global classes of these heuristics, each characterized with a 

central operation: The first is screening, which employs comparisons to an external standard.  

Such screening is absolute, because if an alternative fails the comparison or does not have the 

required attribute level, it is eliminated.  This operation is a central component of many well-

known non-compensatory choice strategies including elimination-by-aspects, preference trees, 
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and conjunctive and disjunctive rules.  Such operations have been discussed as elimination 

operators or winnowing processes (Johnson and Payne 1985; McClelland et al. 1987), but they 

also can be used to ensure that a product has a certain characteristic.  The second category of 

operations makes choices by comparing relative or rank-order information about attributes.  

Rank-order comparisons are the core mechanism behind strategies such as lexicographic 

procedures, majority of confirming dimensions and additive differences.  At a more micro level, 

rank dependence has received attention as an explanatory mechanism for the departures from 

normative prescriptions from Value Maximization.  For example, Tversky and Simonson (1993) 

propose a model which uses both absolute and relative evaluation to account for phenomena such 

as the attraction effect.  Similarly, rank dependence is a major component of many descriptive 

theories of risky choice such as cumulative Prospect Theory and others (Tversky and Kahneman 

1992). 

These descriptions of choice present us with a challenge:   They are applied differently 

across people, but also are applied at different points of a single person’s choice.  For example, a 

computer buyer whose main goal is gaming may eliminate all machines without fast graphic 

boards (i.e., screen), give extra weight to computers that have the fastest processor (i.e., rank 

order), and then trade off between brand name and price.  A buyer whose main goal is word 

processing may have a minimum display size requirements (i.e., screen), and then tradeoff price 

and the kind of included software.  Modeling such choice processes suggests that we must 

identify both who uses which operation, and when they use it. 

The problem of process heterogeneity in choice models  

 While the notion that there is heterogeneity in processing rules both within tasks and 

between people may be widely-accepted among psychologists, it has been less widely embraced 
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by analysts faced with developing formal models of choice.  To understand the problem 

modeling rule heterogeneity poses for choice modelers consider a simple choice experiment in 

which a sample of consumers are asked to choose a preferred option from a number of choice 

sets.  In each set alternatives are described by a value on each of several attributes (such as 

variations in a computer’s price, size, and included software).  In applied settings, these data are 

typically analyzed by assuming that the probability that alternative i will be chosen from set C 

by decision maker q can be described by the multinomial logit model  

   
∑ ∈
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v
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iq
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eCi )|Pr(         (3) 

where the so-called deterministic component of utility is given by the linear-additive utility 

function  

viq= β’xiq       (4) 

where xiq is a vector of attributes of alternative i viewed by consumer q, and β is the associated 

parameter vector.  

 While expressions (3) and (4) offer the appeal of computational simplicity, they also 

form an unrealistic behavioral hypothesis about how a population of consumers would make 

choices.  Specifically, not only are choices assumed to be made on average by maximizing a 

linear utility function within each choice set (something that itself might be doubted), but that 

this process is common to all respondents in a sample.  If an analyst tries to estimate the 

parameters of (3) in the presence of process heterogeneity he or she thus faces a 

misspecification problem: the utility function required to recover the true choice probabilities in 

terms of (2) is of the form  

viq= β’xiq + ξiCq      (5) 
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where ξiq  is the unobserved distortion of the strict utility of alternative i in set C caused by 

decision maker q using something other than a linear-compensatory utility function to make 

choices1.   

 One approach to resolving this specification problem, of course, would be to treat ξiCq as 

simply another source of error in modeling, and estimate choice data using a random utility 

model that makes less restrictive assumptions about how the unobserved components of utility 

are jointly distributed across people and alternatives (such as the mixed logit or multinomial 

probit models; e.g., Hensher and Greene 2003).   While such an approach might (albeit not 

certainly) allow an analyst to capture the statistical consequences of process misspecification, its 

obvious downside is that it does not provide a direct description of the source of 

misspecification; that is, what the rules are that are varying in a population, and how.  To 

remedy this, several approaches to directly modeling rule variation have recently been proposed 

in the literature, but none have been completely satisfying in their solutions.  For example, 

Elrod, Johnson, and White (2005), Gilbride and Allenby (2004), and Swait and Adamowicz 

(2001) have proposed generalized choice models that recognize the existence of a mix of 

compensatory and non-compensatory choice heuristics.  Their limitation, however, is that they 

capture variation in only a small set of pre-specified heuristics (e.g., compensatory versus 

conjunctive screening rules) and are not easily estimated with normally-available analysis 

algorithms.  

Process-Augmented Choice Models 

In this paper we explore the viability of an alternative approach to dealing with the 

problem of modeling process heterogeneity. The approach allows an analyst to capture the 
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effect of a wide range of choice rules that might arise in a task within a simple multinomial logit 

framework.  The approach draws its heritage from the hybrid approaches to estimating conjoint 

models developed by Green and colleagues (e.g., Green and Krieger 1996).  Like previous 

hybrid approaches, we seek to better inform the estimation of choice models by gathering 

external data on the process that individual consumers appear to be using to make choices from 

sets.  The current approach differs, however, by using an external source of data that is gathered 

in the natural course of conducting a choice experiment on a computer: click-stream data 

measuring the frequency and sequence with which attribute information is examined by 

respondents.  These measures form the basis of a battery of auxiliary variables designed to 

capture the previously-unobserved source of variance ξiq in equation (5); that is, measurement 

errors in revealed utility accruing to consumers using heterogeneous non-compensatory choice 

rules. 

  The approach can be more formally described as follows.  Let siq be a vector of R binary 

(0,1) indicator variables that measure whether option i satisfies each of R individually-specified 

choice heuristics as defined for decision maker q.  For example, one of these rules might be, 

“eliminate if price is more than $800”.  In that case the vector element sirq would take on the 

value 1 if option i has a price higher than $800 (i satisfies the elimination rule) and 0 otherwise.  

Given a set of such measures defined for each individual, we would analyze choices using a 

multinomial logit model as in expression (4), but instead of the traditional linear-additive utility 

function defined on measured attributes as in (3), we estimate the augmented utility function  

viq= β’xiq+ γ’srq                           (6) 

where γ is a parameter vector that measures the incremental influence of the set of process 

indicators generated by the process-tracing data.  
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While there are a large number of heuristic policies that we could potentially attempt to 

measure and include in such an analysis, in this work we focus on two classes of heuristics that 

have been most widely identified in prior work:  

1. Screening-dependent rules (S-RULEs), where an option is eliminated if it either fails 

to possess a certain level of an attribute (a conjunctive rule) or fails to avoid a certain 

level (a disjunctive rule);  

2. Rank-dependent rules (R-RULEs), where an option is either accepted or eliminated 

depending on whether its value on an attribute is the best or worst in a given choice 

set. 

The vector siq thus consists of a set of binary measures of whether a given alternative satisfies 

the conditions of either a screening-dependent or rank-dependent heuristic. 

. We should emphasize that a finding of a significant effect of the process indicators in 

equation (5) provides a joint validation of three uncertain aspects of this analysis: 

 1. The ability of the process data to reveal reliable individual differences in attribute 

 processing strategies by respondents;  

 2.  The ability of the analyst to translate process-tracing data to indicators of specific 

 rules; and 

 3. The ability these indicators to explain variance in choices beyond that provided by a 

 standard linear-additive utility model calibrated on attribute values alone.  

Like in hybrid conjoint models, equation (5) reduces to a traditional part-worth utility model if 

either the external measures of attribute utilization (the process indicators) are unreliable or they 

provide no information beyond that already provided by the linear-additive model.   

Identifying Screening and Ranking Heuristics from Information-Acquisition Data 
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 Before discussing how we construct the indicators of non-compensatory processing from 

process-tracing data it is necessary to first review the nature of information acquisition data as 

typically gathered by such procedures as manual retrieval, computer acquisition, head and eye 

movements. Consider again the choice experiment in which a decision maker sequentially 

acquires information about a set of alternatives, indexed by i, described by a set of attributes, 

here indexed by j. (Such an information display is illustrated in Figure 1). Over the course of the 

task, each cell of the information display i,j is acquired Lij  times, and each decision maker 

generates a series of acquisitions marked by open
ijkt  and close

ijkt  , the times at which cell i,j is opened 

and closed on the kth (k=1,…, Lij) acquisition.  From these acquisition data we can generate a 

number of summary statistics (process measures) that reflect different decision heuristics (Ford 

et al. 1989).   

In the research presented in this paper, we focus on two classes of summary statistics: 

those that capture the amount of attention received by each piece of information, and those that 

capture the phase of the decision in which an acquisition is made (for similar measures, see Ball 

(1997), Bockenholt and Hynan (1994), and Klayman (1985)).  Here attention (tij) is simply 

defined as the total time spent looking at each cell in the information display for a given choice 

set:  

 
∑ 
=

− = 
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l 
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close
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1
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(For notational simplicity, we have suppressed s, the choice set indicator; s = 1, …, S.) Note that 

for alternatives (pooling over attributes), low levels of ti. will be associated with alternatives that 

are eliminated in the choice process, while for attributes (pooling over alternatives) high levels 

of t.j will be indicative of a feature that is used for comparing alternatives (comparison). 
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 Likewise, phase, rij is the proportion of a cell’s acquisitions that occur before the timed 

midpoint of the decision, tmid: 
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(As with the attention measure, we have suppressed the choice set indicator s for notational 

simplicity)  For alternatives (pooling over attributes), high values of ri .are indicative of an 

alternative that was eliminated early in the choice process, while low values point to an 

alternative that was retained as a basis for comparison later in the process.  In a similar way, for 

attributes, high values of r.j suggest that attribute j was used to eliminate or screen options, while 

low values suggest that the attribute was used as a basis of later comparison.  These general 

measures of attention and phase can be used to construct the rank- and screening-dependent 

process indicators in equation (5).   

 First consider the case of screening-dependent process indicators (S-RULEs).  For a 

given choice task involving S choice sets we wish to identify those attribute levels that are used 

either as a basis for a conjunctive screen (“must not have”) or disjunctive screen (“must have”).  

There are two ways that we could make this identification, using either attention data or phase 

data, yielding a family of four S-RULE measures.  

Let 
jlt be the total time spent looking at level lj of attribute j across the S choice sets (lj 

∈{1, …, Lj}, j = 1, …, J). We define a
jl + as the feature (i.e., attribute level) that received the 

greatest attention of all features (i.e., a
jl

t + = max(
jlt ), lj ∈{1, …, Lj}, j = 1, …, J) and define a

jl − as 

the feature that received the least attention (i.e., a
jl

t − = min(
jlt ), lj ∈{1, …, Lj}, j = 1, …, J). 
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Similarly, let 
jlr be the total phase for level lj of attribute j across the S choice sets (lj ∈{1, …, 

Lj}, j = 1, …, J). We define p
jl + as the feature (i.e., attribute level) with the highest total phase 

(i.e., a
jl

r + = max(
jlr ), lj ∈{1, …, Lj}, j = 1, …, J) and define p

jl − as the feature with the lowest total  

phase (i.e., a
jl

r − = min(
jlr ), lj ∈{1, …, Lj}, j = 1, …, J).  

 We define the two “must have” or “required” S-RULE variables as 

S-RULE-ReqAis = 1 if alternative i in choice set s includes feature a
jl + , 0 otherwise. 

S-RULE-ReqPis = 1 if alternative i in choice set s includes feature p
jl − , 0 otherwise. 

Similarly, we define the two “must not have” or “avoid” S-RULE variables as 

S-RULE-AvoAis = 1 if alternative i in choice set s includes feature a
jl − , 0 otherwise. 

S-RULE-AvoPis = 1 if alternative i in choice set s includes feature p
jl + , 0 otherwise. 

Attention and phase data guide the construction of rank-dependent process indicators (R-

RULEs) in a similar way.  In this case we wish to identify whether an alternative has the 

maximum or minimum value in a choice set on the attribute that is attended to the most or least 

in the whole choice process (attention), or is looked at the latest (phase).  Note that in this case 

we are thus defining the maxima and minima being defined at the level of attributes rather than 

attribute levels.  If we let 

 
∑ ∑ 
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be the total time spent looking at attribute j across the S 

choice sets, and 
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be the total phase for attribute j, we can then identify the 

following analogous family of R-RULE measures of a given alternative i. Let j* be the attribute 

that received the most attention (i.e., ),...,,max( 21*
tot
J

tottot
j tttt = ). We define two attention-based R-

RULE variables: 
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R-RULE-MaxAis = 1 if alternative i in choice set s is best on attribute j*, 0 otherwise. 

R-RULE-MinAis = 1 if alternative i in choice set s is worst on attribute j*, 0 otherwise. 

Similarly, let j+ be the attribute that tended to receive the most attention in the second 

half of the evaluation phase for each choice set (i.e., ),...,,min( 21
tot
J

tottot
j rrrr =+ ). We define two 

phase-based R-RULE variables: 

R-RULE-MaxPis = 1 if alternative i in choice set s best on attribute j+, 0 otherwise. 

R-RULE-MinPis = 1 if alternative i in choice set s is worst on attribute j+, 0 otherwise. 

 Note that a
jl + , a

jl − , p
jl + , p

jl − , j*, and j+ are determined for each individual; as such, the 

values of four S-RULE and four R-RULE variables will tend to be unique to each individual, 

even though individuals typically face exactly the same S choice sets. With this operational 

definition of the R-RULE and S-RULE variables, we have a total of 8 process proxy variables. 

Empirical Analysis: Can Process-Tracing Data Improve Model Performance? 

Overview 
 

We report the results of an empirical analysis exploring whether process measures 

enhance the descriptive and predictive performance of standard model specifications.  We first 

describe the nature of the experimental choice data that forms the focus of the analysis, and then 

describe the nature of the process data that was gathered from that experiment.  We then report 

the results of an attempt to use these data to enhance predictive validity, and compare these 

results to those obtained by traditional approaches to capturing individual differences in choice 

models. Finally, we report the results of a broader look at the way in which process data might be 

used to aid choice analysis in terms of guiding nested-model specifications and giving insights 

into the process that underlies linear-model parameters.  

Data 
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We calibrate these models using a choice experiment examining personal computers.  

Personal computers were of significant relevance to many of our respondents.  The subjects were 

fifty-nine students at an East Coast university who participated in the experiment as part of a 

course requirement.  Each subject downloaded the software, entered a pre-assigned ID number, 

and was given a description of the experiment and instructions on completing the task.2 

Respondents read instructions and practiced to familiarize themselves with the interface.  

They then made sixteen choices from sets of four hypothetical computer profiles, followed by 

two additional choices used as holdouts.  Prior research and pre-testing had shown that among 

the most important attributes were Brand, Price, RAM and Chip (processor).  Each of these 

attributes could take one of four values described in Table 1.  The sixteen choice sets were 

created using a two-stage cyclical-design procedure (see, e.g., Louviere, Hensher, and Swait 

2000).3   

Results 

We organize our findings into three sections.  We begin by testing the basic hypothesis 

that we can enhance the performance of simple choice models by including process indicators 

(i.e., the R-RULE and S-RULES variables). Because the benchmark model for comparison in 

this case is rather naive—a simple homogenous logit—the emphasis is less on comparative 

predictive performance and more on exploring the structural properties of the proposed 

approach, such as the behavior of model coefficients.  We then explore the viability of a latent-

class and random-coefficient generalization of the proposed approach designed to capture 

sources of heterogeneity left unmeasured by the process measures.  We close by comparing the 

performance of these generalizations to an alternative baseline models for non-independent 

choice processes, nested logit models. 
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The Process-Augmented Choice Model 
 
To provide an initial view of the performance of the proposed approach, we estimated a set of 

conditional logit models to the choice experiment data, where the probability that a given 

individual would choose alternative i in from choice set C was modeled by equation (3) where 

the deterministic component of the utility, viq, is specified as a linear combination of the product-

attributes and/or process indicators (i.e., the R-RULE and S-RULE variables).  Our interest 

centers on the comparative performance of three alternative specifications: one defined only in 

terms of the product attributes, one that augments these attributes with the 8 R-RULE and S-

RULE measures described above, and one defined only in terms of the 8 process indicators. 

A natural concern entering into this analysis is the possibility of inter-correlations among 

the various process indicators, something that would arise if the heuristics used by respondents 

were being redundantly measured by the R-RULEs and S-RULEs.  To explore this, we examined 

the eight process indicators to see if they provided independent information about the choice 

process.  Inter-correlations were relatively low (.2 to .4) and a factor analysis showed no 

redundant structure, indicating that these four measures play complimentary roles in modeling 

choice processes.4    

 The results of these analyses are summarized in Table 2, which reports the derived fits 

and coefficients of each of the three estimated models.  The data provide encouraging support for 

process augmentation: the basic attribute-only specification augmented with process indicators 

significantly improved the descriptive validity of the basic conditional logit model (a very 

significant improvement in fit, based on the likelihood ratio test,), with this improvement being 

driven by the emergence of five significant process indicators (two S-RULE and three R-RULE 

variables).  
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 Perhaps just as important, the resulting model coefficients revealed strong face validity.  

As one would expect, the model yields a positive sign for the significant “required” measure (S-

RULE-ReqA) and a negative sign for the significant “avoid” variable (S-RULE-AvoA).  Likewise, 

we observe significant positive coefficients for terms indicating whether an option has the 

highest relative attribute value on the attribute that is attended to latest in the choice process (R-

RULE-MaxP), and is attended to the most (R-RULE-MaxA), and negative when it has the lowest 

relative value on the attribute that is attended to the most (R-RULE-MinA) 

A Broader Class of Model Comparisons 

 The set of process indicators could enhance predictive ability by contributing information 

about three potential sources of unexplained variance in choice data: individual differences in 

preferences that exist in a sample (e.g., preference heterogeneity), aggregate mean non-linearities 

in decision rules (e.g., unspecified interactions), and individual differences in these interactions 

(process heterogeneity, or variance in functional forms).  Because the process indicators work as 

global aliases for these sources of variance, it is impossible to ferret from the above results the 

primary source of the improved fit of the process-augmented model.  But we can provide at least 

a partial answer: if the process measures are primarily capturing preference heterogeneity, a 

similar level of improvement in fit would be expected to be observed from a more general, 

attributes-only, conditional logit that allows for preference heterogeneity, such as a latent class 

form (e.g., Kamakura and Russell 1989; Wedel and Kamakura 2000).  Likewise, if the locus of 

improvement comes from capturing aggregate non-compensatory elements in the choice process, 

we should see a comparable improvement from a more general choice model that allows for 

staged processing of attributes, such as a nested logit (e.g., McFadden 1978).  
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 We might also note that the process augmented choice model we have used is restricted, 

maintaining an assumption that SDUC and RDUC variables have homogeneous effects over a 

sample.  We relax this and consider the comparative performance of a generalized version of the 

model that allows for at least segment-wise variation in these effects, a latent-class extension of 

the model given in equation (3).  

Heterogeneous extensions and model comparisons 

How does capturing process heterogeneity compare with capturing preference 

heterogeneity?  To facilitate the comparison, we estimated latent-class logit models, an 

established approach to modeling preference heterogeneity. 

In the latent-class models each individual in the sample was assumed to have a (prior) 

probability πm of being a member of one of M homogeneous segments or classes, each marked 

by a unique coefficient vector βm (see, e.g., Kamakura and Russell 1989).  Formally, for M latent 

segments, the probability that a decision maker would choose alternative j from choice set C is 

modeled by the equation:π 

∑
∑
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where viq

m = βmxiq.  

In addition to considering the in-sample fits of each class of models, we also examine the 

ability of each model to predict choice in a holdout sample.  These assessments are based on two 

choices made by participants in the study that were not used in estimation.   

We report in Table 3 the comparative model performance for the simple conditional logit 

model (i.e. 1-segment) and the 2- and 3-segment latent class models.  The table reports the 

number of parameters estimated in each model as well as five fit measures: the estimation log-
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likelihood and associated Bayesian information criterion (BIC) number, the in-sample hit rate, 

and the log-likelihood and hit rate for the hold-out sample.  First, the results show clear evidence 

that preference heterogeneity existed in the sample as implied by the increased fit of the 2- and 

3-segment attributes-only latent class models over the homogeneous (1-segment) model 

described earlier.  More importantly, however, the data also show that the simple (1-segment) 

process-augmented choice model describes this heterogeneity with a precision that is not 

dissimilar to that provided by the best attributes-only latent-class (the 2-segment solution as 

judged on the basis of BIC).  Specifically, while the 2-segment latent-class model provides a 

marginally better fit in terms of pure log-likelihood (but with five extra parameters) and the 

difference in in-sample hit-rate is a mere 1.5% (or 1.1 percentage points).  

The descriptive ability of the process-augmented model is further enhanced when we 

pool both approaches. Specifically, the overall best latent-class characterization of the data, as 

defined by in-sample log-likelihood, BIC and hit rate, is provided by a 2-segment latent-class 

process-augmented model. If we evaluate the alternative models on the basis of performance in 

the hold-out sample, the best process-augmented model — the 2-segment solution as judged on 

the basis of BIC — dominates the attributes-only latent-class model in terms of both log-

likelihood and hit rate. 

The emergence of the two-segment process-augmented model as the best apparent 

description of the data implies two important insights.  First, it suggests that in the current 

sample respondents differed not only in their preferences for alternative (something captured by 

the purely statistical models) but also in the way attribute information was being processed—

something informed by the process measures.  Second, the findings also suggest that the 

particular way in which the process indicators affect choice is not homogeneous across the 
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sample of respondents; while a homogeneous model provides a good basic account of the data, a 

generalization that allows the effects of process indicators to vary by segment offers a more 

complete account. 

Alternative Process-augmented Models and Staged Choice Formulations    

    These analyses illustrate the predictive ability of only one class of augmented process 

models.  As suggested above, process data are quite rich in structure, and it is therefore natural 

to ask whether other ways of constructing process indicators might provide an even better 

account of data.  Likewise, it is also interesting to compare the performance of the process-

augmented model to a random utility model that also explicitly allows for noncompensatory or 

staged processing of attribute information.  

 For the first of these comparisons, we estimated a choice model that augmented product 

attributes with the raw values of the process measures that were used to construct the process 

indicators above.  Two such measures were considered: the total looking time directed at a 

given alternative, and the percentage of all acquisitions for a given option that took place in the 

second half of the choice process.  Note that because these raw measures are observed only ex-

post, such a model cannot be used as a forecasting tool, but rather plays the more limited role of 

providing a sense for the upper limit of enhanced predictive ability that process measures might 

be able to provide.  

 The results of this analysis are summarized in the first three rows of Table 4.  As 

expected, not only do the raw process measures enhance the fit of a basic (attributes-only) 

choice model, but they do so beyond that indicated by the models estimated using the R-RULE 

and S-RULE process indicators. Specifically, a two-segment latent-class augmented model that 

uses the raw process measures has a BIC of 1156.5, compared to 1465.0 for the two-segment 
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attributes plus process indicators model. Hence, while the process-indicator models do a good 

job capturing unobserved process heterogeneity, it understates the potential enhancement 

carried by the raw process data. 

 Our second interest was to assess how the performance of the process-augmented model 

would compare to that of a random utility model that also captured staged processing of 

attribute information. Because the number and breadth of such models that have been suggested 

in the literature is large — for example, the staged choice models by Roberts and Lattin (1991) 

and Swait and Ben Akiva (1987), and the cutoff models by Gilbride and Allenby (2003) and 

Swait (2001) — an exhaustive comparison was beyond the scope of this paper. Hence, for 

illustrative purposes we focus on the nested logit as the most widely-used approach to 

representing choice data generated by staged processes (McFadden 1978). We estimated four 

such models, each characterizing a two-stage choice process where the option that was worst on 

one of the four attributes was first probabilistically eliminated from consideration, then a choice 

was made among the survivors by a compensatory process. These nested models can thus be 

seen as implementing a homogeneous representation of a simple screening heuristic, which the 

process-augmented model captures through the S-RULE variables. 

 These analyses offer no evidence that a nested-logit model could have provided a better 

account of the data (middle four rows of Table 4).  The fit of all four nested models to the 

estimation sample is inferior to that offered by any process-augmented or heterogeneous choice 

model.  This is reflected in a mean log-likelihood for the four representations of -740 with an in-

sample hit rate of 69.4%, compared to -669 and 74% for the single-segment process-augmented 

model described above. 
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  The limitation of these analyses, of course, is that while there may well have been 

screening rules being invoked when respondents were making choices, their structures were 

unlikely to be homogeneous across the sample.  And therein lies the argued value of the 

proposed process-augmented models; while one could, in theory, develop a heterogeneous 

system of nested representations, the process-augmented approach allows one to capture the 

information that would be carried by such an analysis at a far-lower computational cost. 

Description and Diagnostics: Other Applications of Process Data. 

We have focused on the ability of process measures to enhance the predictive 

performance of choice models by jointly capturing sources of preference and process 

heterogeneity.  But improved predictive ability is not the only goal.  While a random-coefficients 

logit calibrated just on attributes predicts about as well at the process-augmented model, we 

suspect it may not be as useful to a manager who wishes to explain and understand choice. 

We suggest that the process data could be used in at least three additional ways to 

understand heterogeneity.  First, they can be a useful supplemental descriptive statistic, adding to 

our confidence in interpreting parameters.  Second, they can help diagnose areas where a linear 

representation may be inappropriate and evaluate possible solutions. Thirdly, they could also 

serve as a basis for a-priori clustering of respondents who make choices in a similar manner. 

To illustrate, consider how the process data could be used to see if any particular product 

feature is being used in a non-compensatory fashion.  If we examine the attention and phase 

measures, which we have used to generate R-RULEs and S-RULEs, we see that Chip is the 

product attribute that seems to have the most impact upon the process data, suggesting that it is 

likely to be used in a non-compensatory fashion. 
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Consistent with this is its frequent appearance in the non-compensatory process 

indicators.  For example, we tallied how often each of the 16 attribute values was used in 

constructing each of the process indicators.  Figure 2 represents a 3 dimensional histogram 

representing the frequency with which each attribute value was used as an avoid/elimination S-

RULE, or as a required S-RULE (both based upon the attention measure).  Another way of 

looking at Figure 2 is that on the left side, it tallies the number of people for whom that feature 

tends to be a “deal breaker” and on the right side, the number of people for whom that feature 

tends to be a “must-have”.  The figure is consistent with a number of observations.  First, for the 

most part features are used in one role or the other.  Slow chips are used to eliminate, fast chips 

tend to be “must-haves” (but note that the next to highest-speed chip seems to fulfill this role 

more often.)   Second, chip is used most often as an S-RULE, although for some decision-

makers, certain brands seem to cause elimination (Acer and E-Machines) and other are “must 

haves” (Compaq and Dell).  Finally, there is great heterogeneity in this distribution:  8 of the 16 

features serve to eliminate alternatives, and 10 of the 16 serve as must haves.  This suggests that 

any aggregate change in functional form, such as interacting two variables, will capture only part 

of the non-compensatory behavior reflected in the process data. 

Most importantly, process data suggests where even a state-of-the-art choice model, 

incorporating preference heterogeneity, might not fit the data.  For example, Figure 2 suggests 

that because slow chips are used to eliminate alternatives, products containing those features will 

have predicted market shares that are biased upwards, resulting in negative residuals.  Why?  A 

compensatory model implies that other attributes, say for example, a stronger brand, will make 

up for a slower chip.  However, if the alternative is eliminated because of a slow chip, it is, at the 

individual level, likely not to be chosen, no matter what the brand the computer bears. The 
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opposite would be the case for levels used as “must-haves”, like the second fastest chip 

according to Figure 2. 

Figure 3 and Figure 4 show the distribution of the residuals for the two-segment 

attributes-only and process-augmented latent-class logit models, which provided the best 

descriptions of the data on the basis of in- and out-of-sample BIC criteria (see Table 3). In Figure 

3 there are a number of departures that indicate bias.  For example, concentrating on the product 

attribute Chip, we see that for the slowest chip, the residuals are shifted right, reflecting a bias for 

over-prediction.  In contrast, the higher levels of chip are left-skewed, reflecting under-

prediction.  Interestingly, and in addition, the variance around these predictions differs across 

levels:  Faster chips and “better” brands seem to be characterized by much small residuals than 

slow chips and “weak” brands. 

It is important to note that these biases have significant managerial significance when 

models like this are used in product design.  For a manager of Acer or E-Machines, a choice 

model calibrated just on product attributes would over-predict their brand’s success, and suggest 

that a weaker brand name might be overcome by a little more RAM. A casual examination of 

Figure 2 suggests that for at least 20% of this sample, this conclusion is erroneous. Can the 

inclusion of variables that reflect screening-dependent rules (S-RULE) and rank-dependent rules 

(R-RULE) improve the situation?  Figure 4, which shows the equivalent residual distribution for 

the model combining process and preference heterogeneity, suggests an improvement.  There are 

still some reasons for concern; for example, the variance of residuals still depends upon the level 

of some attributes, such as processor.  However, the marked skewness in Figure 3 is reduced, and 

the variance in residuals is also smaller, consistent with the improved fit of that model.  

Extended Uses of Process-Tracing Data: Process Clustering   
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Finally, while the primary focus of this paper is on the ability of process indicators to 

capture process heterogeneity, such measures can, in principle also be used as an alternative tool 

for capturing preference heterogeneity.  To illustrate this, one approach might be to use the 

process measures to define a priori decision-making segments where the parameters of a utility 

function are allowed to vary between groups.   

 We explored this idea by applying an average linkage cluster algorithm to the battery of 

subject-level mean process measures to derive a set of decision-process segments, and then 

assigned each respondent to its proximate cluster.  We then estimated an attributes-only logit 

model for each resulting cluster.  We considered 2-, 3-, and 4-segment solutions.  Note that this 

analysis is conceptually similar to the latent-class analysis reported earlier but with two 

important differences: here the segments are defined a priori based on process measures rather 

than post-hoc using the choice data, and segment membership is deterministic, not probabilistic.  

The results of this analysis are reported in the bottom four rows of Table 4.  The key finding is 

that the fit of these process-segment models is not dissimilar to that observed for the initial set of 

attributes-only latent class models (Table 3).  Although the latent-class models provide a better 

fit, recall that the latent-class solution utilizes both post-hoc segments and probabilistic 

assignment—two factors that make the fit of the process-segment models encouraging. 

Limitations, Extensions, and Conclusions 

 We have argued that heterogeneity in choice can be conceptualized as having two 

components:  That due to individual differences in tastes (preference heterogeneity) and that due 

to differences in the way choices are made (process heterogeneity).  We have shown that 

process measures, described at a finer level than in past research, can help predict choice, even 

in the presence of complete information about the alternatives.  Finally we have explored 
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alternative ways of incorporating information about the choice process into choice models.  The 

best technique seems to be a latent-class model that augments traditional product-attribute 

measures with a set of process indicators that capture the degree to which choices appear to 

involve the use of rank- and screen-dependent heuristics.  Such models improve in-sample fit, 

do a better job at predicting a holdout sample, and seem to produce less biased estimates of 

choice probabilities. 

Caveats 

 When modeling individual differences in preferences, an important question concerns 

the ability of those estimated preferences to predict choices outside the context used for 

estimation.  The parallel question applies to modeling preference heterogeneity:  How well will 

it work in other contexts?  While we have shown a minimal extension to a holdout sample, it is 

important to realize that we need to examine how well this particular technique generalizes to 

other decision environments.  Similarly, although we think these techniques apply to many 

forms of process data, such demonstrations are important goals for application. 

Future Research 

This is obviously a first step, but one that we think provides a demonstration of the 

importance of modeling process heterogeneity.  We demonstrate that principles based on 

behavioral descriptions of choice are apparently more effective than some alternative model-

based solutions.  However, more work is needed on two fronts:  First, there needs to be more 

work on alternative specifications.  Our notion of adding components to the current modeling 

technology captures some, but not all possible refinements.  In particular, uniting this framework 

with another form of comparison, reference dependence (Hardie et al. 1993; Tversky and 

Kahneman 1991) would have theoretical and managerial relevance.  Similarly, exploring the 
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ability of this technology to recover coefficients and choice processes through simulation would 

be useful. 

Likewise, one could also explore the degree to which incorporating process data might be 

helpful in resolving other kinds of specification problems in choice analysis that extend beyond 

process heterogeneity.  For example, one issue that has long plagued choice models is the 

difficulty of separating the imbedded scale parameter that arises when estimating coefficients in 

multinomial logit models from the variance of the underlying utility function (e.g. Swait and 

Louviere 1993).  To the degree that some of this variance accrues to unspecified non-

compensatory processes in choice and heterogeneity in those processes, process-augmented 

models may prove helpful in stabilizing variances across choice environments, allowing more 

meaningful cross-context comparisons of model parameters than has been the case to date.  

Conclusions 

It has been widely argued that ignoring preference heterogeneity can lead to misleading 

conclusions when studying choice (Hutchinson et al. 2000), a critique that has been offered as an 

alternative explanation  for many observed departures from rational choice theory.  However, it 

seems that the same can be said for ignoring process heterogeneity:  Not only can confirmations 

of rational choice succeed because they ignore process heterogeneity, but on a practical level, 

ignoring process can yield less accurate, and more disturbingly, biased predictions. 

It appears to us that the extant literature on potential problems of compensatory models of 

a highly heterogeneous choice process (Andrews and Manrai 1998; Johnson et al. 1989) has had 

mixed impact upon the way choices are modeled:   On one hand,  collecting choice (as opposed 

to rating) data using experimental designs has become much more prevalent in both academic 

and commercial application.  On the other hand, the primary model for analyzing such data is 
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still a compensatory linear representation, albeit one which models individual-level preference 

heterogeneity through latent class or random coefficient methods.  One reason for this limited 

impact may be the dearth of techniques that capture heterogeneity in process.  This paper 

suggests one technique, with initial promising results.  Its applicability in application is now an 

empirical question. 
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End Notes 

1Expression (2) simply states that that for any individual choice probability Pr(i|C) of the logit 
form there will always exist an alternative and set-specific residual ξiC that allows observed 
relative choice frequencies to be recovered from the linear strict utility function vi= β’xi + ξiC.  
In typical applications analysts assume E(ξiC)=0, which yields the familiar multinomial logit 
(MNL) form.  Choice processes that do not follow the MNL would generally require E(ξiC)≠0; 
for example, if a decision maker uses a rank-dependent screening rule that eliminates an option 
if it is the lowest-ranked alternative on a particular attribute in specific choice set.        
 
2 Subjects read the following: In this study, you will be asked to choose which type of computer 
you would like to purchase.  On each screen, you will see four rows and four columns.  Each 
column describes a computer on four attributes; the attributes are listed in the rows. 
Once you make a decision based on the information you have seen, click on the button along the 
bottom of the screen that corresponds to your choice.  You will be asked to confirm your 
decision before moving on to the next screen.  Assume that the four computers you see on each 
screen are identical on all but the four attributes. When you are making your choice, please 
choose the computer that you would be most likely to purchase from the set of four computers. 
 
3 The details of the procedure are as follows:  First, a base set of sixteen orthogonal computer 
profiles were generated that reflected a main-effects fraction of a 44 fractional-factorial design.  
Sixteen choice sets were then created by taking each of these profiles and then generating three 
new profiles by successively folding-over attribute levels.  For example, if the first alternative 
generated by the fractional factorial was  indicating level 1 of the first attribute, level 3 of the 
second, level 2 of the third and level 4 of the fourth, the three other profiles in the choice set 
were  [2,4,3,1], [3,1,4,2] and [4,2,1,3].  The order of the profiles in the choice set was 
randomized so it would be possible for adjacent profiles to differ by more than one increment of 
an attribute level 
 
4 The inter-correlations among process measures are sufficiently high, however, to preclude 
efficient estimation of model forms that recognize a complete set of interactions between 
process measures and product attributes.  Such models would allow measurement of the degree 
to which tendencies to screen on certain attributes is also associated with a tendency to place 
greater mean weight on that attribute in compensatory trade-offs.  This level of decomposition, 
however, does not appear easily feasible under the current approach to constructing process 
measures. 
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Table 1:  Study attributes and levels.1 

 
 

Level Brand Price RAM Chip 
1 Acer $1,750 128 Meg 1.2 GHz Pentium III 
2 E-Machines $2,000 256 Meg 1.6 GHz Pentium IV 
3 Compaq $2,250 384 Meg 1.8 GHz Pentium IV 
4 Dell $2,500 512 Meg 2.0 GHz Pentium IV 

 

                                                 
1 Values are monotonically related to values seen by respondents, but attribute values and brand names have been 
disguised. 
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Table 2: Single-Segment Conditional Logit Model Results 
 

  Attributes-only Process-Augmented Process Indicators 
Variable Coeff. p-value Coeff. p-value Coeff. p-value 
Dell 0.18 0.16 -0.19 0.18   
Acer -1.04 <.001 .-1.02 <.001   
Umax -1.22 <.001 -1.39 <.001   
Price=2250 1.22 <.001 1.29 <.001   
Price=2000 1.45 <.001 1.72 <.001   
Price=1750 1.39 <.001 1.50 <.001   
RAM=384 meg -0.60 <.001 -0.47 <.001   
RAM=256 med -0.70 <.001 -0.57 <.001   
RAM=128 meg -2.28 <.001 -2.23 <.001   
Chip=1.8 Ghz -0.84 <.001 -0.66 <.001   
Chip=1.6 Ghz -1.07 <.001 -0.94 <.001   
Chip=1.2 Ghz -2.40 <.001 -1.91 <.001   
S-RULE-ReqA  0.62 <.001 0.30 <.001 
S-RULE-ReqP  0.05 0.65 0.10 0.29 
S-RULE-AvoA  -0.40 <.001 -0.36 <.001 
S-RULE-AvoP  -0.16 0.18 -0.10 0.31 
R-RULE-MaxA  0.44            .003 -0.75 <.001 
R-RULE-MinA  -0.77 .002 -2.20 <.001 
R-RULE-MaxP  0.56 <.001 0.92 <.001 
R-RULE-MinP    -0.25 0.19 -1.29 <.001 
LL                       -736.3 -669.0 -892.1  
BIC                     1555.6  1475.1  1839.1   
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Table 3: Alternative Heterogeneous Model Fits 
 

  In-Sample Hold-Out 
Model Parameters LL BIC Hit Rate LL Hit Rate 

Attributes-only Latent Class 
1-Segment  12 -736.80 1555.8 69.4% -143.17 47.5% 
2-Segment  25 -667.21 1505.7 74.9% -138.77 51.7% 
3-Segment  38 -628.97 1518.2 78.3% -129.84 60.2% 
Process-Augmented (Attributes + Process Indicators) Latent Class 
1-Segment  20 -669.04 1475.1 73.8% -126.02 54.2% 
2-Segment  41 -592.10 1465 79.8% -114.87 61.9% 
3-Segment  62 -537.34 1499.8 81.9% -118.66 64.4% 

 

 

 

Table 4: Raw Process Measure and Nested Logit Estimation Results 
 
 

  Parameters LL BIC Hit Rate 
Attributes + Raw Process Measures Latent Class  
1-Segment 14 -542.9 1181.7 77.8% 
2-Segment 29 -478.9 1156.5 81.3% 
3-Segment 44 -437.8 1177.0 84.0% 
Nested Logit 
Pruned on Brand 13 -745.6 1580.3 69.4% 
Pruned on Chip 13 -743.2 1575.5 69.4% 
Pruned on RAM 13 -735.3 1559.7 69.4% 
Pruned on Price 13 -738.4 1565.9 69.4% 
Attributes-Only Model Using Process-Derived Segments 
2-Segment 24 -716.3 1597.0 69.0% 
3-Segment  36 -707.3 1661.2 69.4% 
4-Segment  48 -669.1 1667.0 70.7% 
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Figure 1: Computer Display 
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Elimination Conjunction

 
 

Figure 2: Distribution of Screening Dependent Utility Components (SDUCs) by Attribute 
and Level:  Min Time (Avoid/Eliminate) and Max Time (Required)
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Figure 3: Distribution of Residuals by Attribute and Attribute-Level for the Two-Segment 
Attributes-only Latent-Class Model  
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Figure 4: Distribution of Residuals by Attribute and Attribute-Level for the Two-Segment 
Process-Augmented Latent-Class Model 
 
 


