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Abstract

A monopolist offers a product to a market of consumers with heterogeneous quality prefer-

ences. Although initially uninformed about the product quality, they learn by observing past

purchase decisions and reviews of other consumers. Our goal is to analyze the social learning

mechanism and its effect on the seller’s pricing decision. Consumers follow an intuitive, non-

Bayesian decision rule. Under conditions that we identify, we show that consumers eventually

learn the product’s quality. We show how the learning trajectory can be approximated in set-

tings with high demand intensity via a mean-field approximation that highlights the dynamics

of this learning process, its dependence on the price, and the market heterogeneity with respect

to quality preferences. Two pricing policies are studied: a static price, and one with a single

price change. Finally, numerical experiments suggest that pricing policies that account for social

learning may increase revenues considerably relative to policies that do not.
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JEL Classification: D49, D83.

1 Introduction

Launching a new product involves uncertainty. Specifically, consumers may not initially know

the true quality of the new product, but learn about it through some form of a social learning pro-

cess, adjusting their estimates of its quality along the way, and making possible purchase decisions

accordingly. The dynamics of this social learning process affect the market potential and realized

sales trajectory over time. The seller’s pricing policy can tactically accelerate or decelerate learn-

ing, which, in turn, affects sales at different points in time and the product’s lifetime profitability.
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This paper studies a monopolist’s pricing decision in a market where quality estimates are evolving

according to such a learning process.

Consumers arrive at the market according to a Poisson process and face the decision of either

purchasing a product with unknown quality, or choosing an outside option. They differ in their

base valuation for the observable attributes of the product, which, together with the product

quality, determines their willingness-to-pay. These base valuation parameters are assumed to be

independently and identically drawn from a known distribution. If consumers knew the true product

quality, then the distribution of the base valuations would map directly into a willingness-to-pay

(WtP) distribution and, in turn, into a demand function that the monopolist could use as a basis

of her pricing decision.

In our model the quality is unknown, and consumers’ prevailing estimate of the unknown quality

evolves according to a social learning mechanism. Consumers who purchase the product experience

its true quality plus some small quality disturbance, which is independent and identically distributed

across purchasers. Purchasers report whether they “liked” or “disliked” the product, i.e., if their

ex-post utility was positive or negative, respectively. Consumers do not report their base valuations,

so a positive review may result from a high quality or high idiosyncratic quality preference. An

arriving consumer observes the history of purchase decisions and reviews made prior to his arrival,

combines this information with his prior quality estimate, infers the associated product quality,

and makes his own purchase decision. The sequence of purchase decisions affects the evolution

of the observable information set, and, as such, the dynamics of the market response over time.

Optimizing the monopolist’s pricing policy requires detailed understanding of the learning dynamics

and not just its asymptotic properties.

It is typical to assume that fully rational agents (consumers) update their beliefs for the unknown

quality of the product through a Bayesian analysis that takes into account the sequence of decisions

and reviews, and accounts for the fact that each such decision was based on different information

available at that time. This sequential update procedure introduces a formidable analytical and

computational onus on each agent that may be hard to justify as a model of actual choice behavior.

Instead, we postulate a non-Bayesian and fairly intuitive learning mechanism, where consumers

assume that all prior decisions were based on the same information, and under this bounded

rationality assumption, consumers pick the maximum likelihood estimate (MLE) of the quality

level that would best explain the observed sequence of positive and negative reviews (non-purchase

decisions are not observable). New reviews change the available information and the resulting MLE

over time, and, of course, the rate at which consumers choose to purchase and later on submit new

reviews about their experiences.

As a motivating example consider the launch of a new hotel. It is typically hard to evaluate

the quality of such premises without first hand experience or word-of-mouth, which explains the
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importance that online review sites such as Tripadvisor have had on the hospitality industry.1

Assume the hotel is sufficiently differentiated from its competitors to be considered a monopoly in

some category; e.g., it may be the only hotel with a private beach in the area. Suppose it offers

better services than what consumers think at first. Initially some consumers’ idiosyncratic tastes

would convince them to choose this hotel; perhaps they have strong preferences for having a private

beach. These consumers would recommend the hotel by posting a review, which, in turn, increases

future demand, as potential consumers learn that the hotel is better than previously thought.2 The

price charged by the hotel affects this learning process by controlling the number of guests who

review the hotel and their degree of satisfaction. By accounting for the learning process the hotelier

may be able to avoid a sluggish start and realize the establishment’s full potential demand faster.

This paper strives to contribute in three ways. First, in terms of modeling, by specifying a social

learning environment that tries to capture aspects of online reviews as well as the possible bounded

rationality of consumers. Second, by proposing a tractable methodological framework, based on

mean-field approximations, to study the learning dynamics and related price optimization questions

in the presence of social learning. This approach is flexible and applicable in other related settings

where the microstructure of the learning process and nature of information are different. Third, in

addressing some of the pricing questions faced by revenue maximizing sellers in such settings.

Regarding the learning mechanism, the information reported by consumers is subject to a self-

selection bias, since only consumers with a high enough base valuations purchase the product. The

intuitive MLE procedure takes into account this crucial point, and, as we show in Section 3.2, the

resulting quality estimate converges to the true product quality almost surely.

Detailed understanding of the learning trajectory is essential in optimizing the tradeoff between

learning and the monopolist’s discounted revenue objective. Second, Section 3.3 derives a mean-field

(fluid model) asymptotic approximation for the learning dynamics motivated by settings where the

rate of arrival of new consumers to the system grows large. Proposition 3 shows that the asymptotic

learning trajectory is characterized by a system of differential equations. Restricting attention to

uniformly distributed base valuations across consumers and focusing on the case where the markets

prior quality estimate is below the true quality, Section 3.4 derives the closed form transient of

the fraction of likes and dislikes over time, as well as that of the associated quality estimate. The

transient dynamics imply that the instantaneous demand function evolves over time according to an

ODE, which itself depends on the seller’s price, i.e., it emerges endogenously through the interplay

between consumer behavior and the seller’s decisions. The solution of the mean-field model gives

1According to TripAdvisor 90% of hotel managers think that review websites are very important to their business
and 81% monitor their reviews at least weekly.

2Many empirical papers found that positive consumer reviews increase sales. For example, Luca (2011) finds that
a one star increase in the average consumer review on a popular review site (on a five star scale) translates to a 5-9%
increase in sales for restaurants in Seattle, WA.
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a crisp characterization of the dependence of the learning trajectory on the price, and specifically

show that the time-to-learn decreases if the monopolist lowers her price. This result naturally

exploits the suitability of mean field approximations to characterize transient behavior of discrete

and stochastic systems. The paper illustrates that method in the context of the specific consumer

learning model described above, however, the approach is fairly general and can be used to describe

the transient learning dynamics under a broader set of micro consumer behavioral models, see Ifrach

(2012, Sections 2.2 and 3.2).

Third, we study the seller’s pricing problem under the assumption that the seller knows the true

product quality, but that the consumers do not use the seller’s price as a signal of quality. Section 4

studies the monopolist’s problem of choosing the static price that optimizes her infinite horizon

discounted revenues. Proposition 5 characterizes the optimal solution, which exists and is unique,

and lies in the interval of two natural price points: (a) the optimal price assuming that consumers

do not learn and always make purchase decisions based on their prior quality estimate; and (b) the

optimal price in a setting where consumers knew the true quality all along. The learning transient

and its speed in relation to the seller’s discount factor determines the optimal price. Intuitively, if

the learning transient is slow relative to the discounting of revenues, then she prices almost as if all

consumers made purchasing decisions based on their prior on the quality; and, if learning is fast,

then the seller’s price will approach the one that the monopolist would set if all consumers knew

the true product quality.

Lastly, Section 5.1 studies a model where the seller has some degree of dynamic pricing capa-

bility, namely she can change her price once, at a time of her choosing. In this case the monopolist

may sacrifice short term revenues in order to influence the social learning process in the desired

direction and capitalize on that after changing the price. Proposition 6 shows that when consumers

initially underestimate the true quality, the first period price is lower than the second period one.

This policy accelerates learning and increases revenues considerably. The numerical experiments of

Section 5.2 suggest that a pricing policy with two prices performs very well, and that the benefit

of implementing more elaborate pricing policies may be small.

We conclude this section with a brief literature review. The social learning literature is fairly

broad. Much of this work can be classified into two groups depending on the learning mechanism,

which is either Bayesian or non-Bayesian. Banerjee (1992) and Bikhchandani, Hirshleifer, and

Welch (1992) are standard references in economics on observational learning where each agent

observes a signal and the decisions of the agents who made a decision before him, but not their

consequent satisfaction (in fact preferences are homogeneous). Agents are rational and update their

beliefs in a Bayesian way. They show that at some point all agents will ignore their own signals

and base their decisions only on the observed behavior of the previous agents, which will prevent

further learning and may lead to herding on the bad decision.
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For social learning to be successful, an agent must be able to reverse the herd behavior of his

predecessors. Smith and Sørensen (2000) show that this is the case if agents’ signals have unbounded

strength. Goeree, Palfrey, and Rogers (2006) show that this is achieved with enough heterogeneity

in consumers’ preferences. Our Assumption 1, which is key in proving learning, is similar in nature

to that of Goeree et al. (2006).3 Social learning has been studied in great generality by Arieli and

Mueller-Frank (2014).

Several papers have considered variations of the observational learning model with imperfect in-

formation. Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) and Acemoglu, Bimpikis, and Ozdaglar

(2014) greatly contribute to the understanding of the interplay between social learning and the

structure of the social network. Acemoglu et al. (2011) identify conditions on the network un-

der which social learning is successful and, alternatively, herding may prevail. Acemoglu et al.

(2014) consider agents who can delay their decision in order to obtain information from others by

utilizing their social network. Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi (2012) consider a

model where consumers communicate over a social network and update their information in a non-

Bayesian way. They provide conditions for learning to occur in this setting. Herrera and Hörner

(2013) consider a case where agents can observe only one of two decisions of their predecessors,

which in the language of our model means that the number of no purchase decisions is not ob-

served. Instead, consumers know the time of their arrival, which is associated with the number of

predecessors who chose the unobservable option. They show that this relaxation does not change

the asymptotic learning result of Smith and Sørensen (2000).

There is a growing literature in economics that studies non-Bayesian learning mechanisms that

employ simpler and perhaps more plausible learning protocols. Ellison and Fudenberg (1993, 1995)

consider settings in which consumers exchange information about their experienced utility and use

simple decision rules to choose between actions. The nature of word-of-mouth in our paper is

similar, although we consider reviews and not utilities directly.

A few papers in the operations management literature have considered social learning. In Debo

and Veeraraghavan (2009) consumers observe private signals about the unknown value of the service

and decide whether or not to join a queue, where congestion conveys information about the value

of the service. Debo, Parlour, and Rajan (2012) study a server who chooses her service rate to

signal quality, again in a queueing context. Related applications in inventory systems and retailing

explore how stock outs or observed inventory positions may also signal product quality. The mean

field approach of this paper may be applicable in studying transient learning phenomena in these

operational settings.

Some recent papers have considered models of social learning in the presence of consumer

3See the surveys by Bikhchandani, Hirshleifer, and Welch (1998), and, more recently, by Acemoglu and Ozdaglar
(2011) for many extensions to this model.
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reviews. Ifrach, Maglaras, and Scarsini (2015) study a Bayesian model where both the quality of

the product and the reviews can assume only two possible values and they provide conditions for

learning. Besbes and Scarsini (2015) deal with a model where customers only observe the sample

mean of past reviews, and show under which conditions customers can recover the true quality of

the product based on the feedback they observe. They use stochastic approximation techniques to

obtain their results. In our model the decision rule is not fully rational, yet consumers do account

for the self-selection bias in their predecessors review, unlike other models that studied consumer

reviews (e.g., Li and Hitt (2008)). Lafky (2014) experimentally deals with the fundamental issue

of why people rate products and which biases arise in the behavior of reviewers.

The area of revenue management focuses, in part, on tactical problems of price optimization.4

It is typical therein to capture consumer response through some form of a demand function, and to

strive to optimize the seller’s pricing policy—static or dynamic—so as to maximize her profitability.

An important strand of literature in this area, which will not be reviewed here, considers an

exogenous unobservable demand function—stationary or time-varying—and designs pricing policies

under which the seller jointly learns the demand and optimizes revenues. In contrast to this

literature, we study how a demand process is formed when a new product is introduced, and

where consumer opinions evolve dynamically based on a social learning process. The resulting non-

stationary demand process is endogenous to the pricing policy, and their interplay is characterized

to optimize revenues.

Mean-field approximations have been used extensively in revenue management; perhaps the

first reference in that area is Gallego and van Ryzin (1994). More broadly, the use of mean-field

approximations that rely on an appropriate application of the functional strong law of large numbers

to study the transient behavior of stochastic processes has a fairly broad literature that we will not

review here. The particular result we will employ, due to Kurtz (1977/78), was originally derived

for studying the asymptotic behavior of Markov Chain models with process-dependent transition

parameters, used to analyze diffusion and epidemic systems.

The learning dynamics in our model give rise to a sales trajectory which, when properly inter-

preted, resembles the famous Bass diffusion model, see Bass (2004).5 Contrary to the Bass model

that specifies up front a differential equation governing social dynamics, we start with a micro

model of agents’ behavior and characterize its limit as the number of agents grows large. This limit

—given by a differential equation as well—induces a macro level model of social dynamics. The

application of mean-field approximation to our model bridges the literature on social learning and

that on social dynamics by filling the gap between the detailed micro level model of agent behavior,

and the subsequent macro level model of aggregate dynamics.

4Talluri and van Ryzin (2005) provides a good overview of that work.
5In particular, by considering a population with finite mass, and by simplifying consumers’ decisions.
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Several papers have studied pricing when agents are engaged in social learning or embedded

in a social network. Bose, Orosel, Ottaviani, and Vesterlund (2006) consider pricing in the classic

Bayesian observational learning model when a monopolist and agents are equally uninformed about

the value of the good. Campbell (2013) studies the role of pricing in the launching of a new product

in a model of social interaction that builds on percolation theory, where the latter focuses on

dynamic pricing. Candogan, Bimpikis, and Ozdaglar (2012) consider optimal pricing strategies of

a monopolist selling a product to consumers who are embedded in a social network and experience

externalities in consumption. Strategic behavior of firms and consumers in the presence of social

learning has been studied by Papanastasiou, Bakshi, and Savva (2014); Papanastasiou and Savva

(2014), where in particular study a two period problem and study the effect of the firm’s pricing

policy on consumer purchase decisions as well as the impact of early adaptor reviews on downstream

demand.

Also related is the literature on pricing of experience goods, whose quality can be determined

only upon consumption; see, e.g., Bergemann and Välimäki (1997) and Vettas (1997). Most of

these papers consider consumers that are homogenous ex-ante, i.e., before consuming the good.

Bergemann and Välimäki (1997) consider a duopoly and heterogeneous consumers on a line who

report their experienced utility, and show that the expected price path for the new product is

increasing when consumers initially underestimate the quality; our Proposition 6 is consistent with

their findings.

2 Model

2.1 The Monopolist’s Pricing Problem

A sequence of consumers, indexed by i = 1, 2, . . . , sequentially decide whether to purchase a

newly launched good or service (henceforth, the product), or choose an outside alternative. The

intrinsic quality of the product, denoted with q, is initially unknown and can take values in the

interval [qmin, qmax] with qmin ≥ 0. The quality experienced by consumer i, if he chooses to buy

the product, is subject to a random disturbance εi and given by qi := q + εi. This quality shock

reflects variability in service levels (e.g., waiting times), production defects or exogenous factors

influencing the way the product is consumed (e.g., weather).

Consumers are heterogeneous; this is represented by a parameter αi that determines consumer

i’s base valuation, e.g., that would correspond to the observable attributes of the product. His

utility from consuming the product is

ui = αi + qi − p,
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where p is the price charged by the monopolist, which, for the time being, we assume to be fixed.6

The utility derived from choosing the outside alternative is normalized to zero for all consumers.

Preference parameters, {αi}∞i=1, are i.i.d. random variables drawn from a known distribution

function F . We denote the corresponding survival function by F̄ (·) := 1 − F (·), and assume that

F has a differentiable density f , which is uniformly bounded by some constant fmax and has con-

nected support [αmin, αmax], or [0,∞). The αi can be interpreted as an idiosyncratic premium that

consumer i is willing to pay for the product. The failure rate of the quality preference distribution

is defined as h(x) := f(x)/F̄ (x). Throughout this paper we will assume that F has an increasing

failure rate (IFR), that is, h is strictly increasing for all x ≥ 0.

The quality disturbances are short-lived; they are i.i.d. random variables with mean zero and

independent of the underlying quality, as well as of the preference parameters. To simplify the

analysis, we assume that εi follows a symmetric, two-point distribution: specifically, εi takes the

values {−ε̄, ε̄} with equal probabilities 0.5. It is natural to think that the quality disturbances εi

are small relative to the magnitude of the unknown quality q. Moreover, both q and the εi’s are

expressed in the units of the consumer’s utility, e.g., in dollars.

Heterogeneity in terms of the αi’s implies that even if the product quality, q, was known, not

all consumers would make the same decision: only those with αi ≥ α∗ := p− q would purchase the

product, assuming that they are risk neutral with respect to quality disturbances. Equivalently,

only consumers with WtP α + q ≥ p would purchase; the distribution of α gives rise to a WtP

distribution α+ q for the product.

The product is launched at time t = 0, and consumers arrive thereafter according to a Poisson

process with rate Λ, independent of the product’s quality and consumers’ preference parameters.

Denote by ti the random time consumer i enters the market and makes his purchasing decision.

Consumer i does not re-enter the market regardless of his decision at ti; this assumption is reason-

able if the time horizon under consideration is not too long.

Consumers initially have some common prior conjecture on the quality of the product, q0 ∈
[qmin, qmax]. This prior conjecture could be the expected value of some prior distribution of the

quality, or could simply be consumers’ best guess given the product’s marketing campaign and

previous encounters with the monopolist in other categories.

The information transmission in our model is often called word-of-mouth communication. A

consumer i who purchased the product, truthfully reports a review about his experience with the

product, denoted by ri that takes two values: ‘like’, denoted by rL and ‘dislike’, denoted by rD. A

consumer who purchases the product reports that he likes it if his ex-post utility was nonnegative,

6The functional form of the utility function does not play a big role in the subsequent analysis. For example,
another tractable alternative would be a vertically differentiated market in which utility takes the form ui = αi ·qi−p.
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taking into account the unknown quality and quality disturbance, as well as his preference param-

eter; he reports that he dislikes it if his ex-post utility was negative. Consumers report neither

their preference parameter nor the quality disturbance they faced and, as such, reviews are not

fully informative. For example, a ‘like’ could result from a high preference parameter, the product

being of high quality or a positive quality shock (not necessarily all).7 This binary report is a

simplification of the star rating scales of online review systems. Consumers who did not purchase

the product do not report a review and are not observed. We will denote their decision by ri = rO.

We make the following assumptions on the set of feasible prices.

Assumption 1. The price p charged by the monopolist belongs to [pmin, pmax], where

(i) pmax is such that F̄ (pmax − qmin + ε̄) > 0. (Equivalently pmax < αmax + qmin − ε̄.)

(ii) pmin is such that F̄ (pmin − qmax + ε̄) < 1. (Equivalently pmin > αmin + qmax − ε̄.)

Assumption 1(i) implies that, even at the lowest possible quality level, there will always be some

consumers who choose to buy the product (this follows from pmax < αmax +qmin), and moreover, at

least some of these consumers will like the product—the latter ensures that new information about

q will enter the learning process; if this assumption is violated and pmax > αmax + qmin− ε̄, then at

q = qmin all buyers with a negative shock would dislike and all buyers with a positive shock would

like. Assumption 1(i) is similar to the “unbounded belief assumption” often used in Bayesian social

learning in the sense that it implies that some new information will enter the system over time,

which will ultimately allow the market to learn the unknown product quality. Assumption 1(ii),

states that there are always some low-WtP consumers who will dislike the product if they get

a negative disturbance realization. It is easy to verify that both conditions are satisfied if the

support of α’s is sufficiently wide relative to the unknown quality [qmin, qmax] and the magnitude

of the subsequent quality disturbances ε̄ is small.

We define the following quantities: Li :=
∑i−1

j=1 1
{
rj = rL

}
is the number of consumers who

purchase and like the product out of the first i− 1 consumers, and, similarly, Di is the number of

consumers who purchase and dislike the product. The information available to consumer i before

making his decision is

Ii = (Li, Di). (1)

The index ‘i’ itself is not observable. Before describing the evolution of information and consumers’

decision rule, we introduce the monopolist’s pricing problem, which is the main focus of this paper.

The monopolist seeks to choose a static price p to maximize her discounted expected revenue, R(p),

7This assumption is motivated by the fairly anonymous reviews that one may get online today. One possible
extension would consider a model where consumers gather two sets of information, one from a process like the one
above, and the other from a smaller set of their “friends” whose quality preferences are known with higher accuracy.
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as follows,

max
p

R(p) = max
p

E

 ∞∑
i=1

e−δti p1
{
ri(p) 6= rO

} = max
p

∞∑
i=1

E

[
e−δti pP

(
ri(p) 6= rO | Ii

)]
, (2)

where δ > 0 is the monopolist’s discount factor, and the expectation is with respect to consumers’

arrival times, the idiosyncratic quality preferences αi’s, and the sequence of quality disturbances

εi’s. The monopolist is assumed to know the true quality, the prior quality estimate, as well as

the distribution of quality preferences and disturbances. Expression (2) reveals the complexity of

the pricing problem in the presence of social learning. Consumers’ purchasing decisions influence

future revenues through the information available to successors. As such, the dynamic of the social

learning process must be understood in order to solve for the optimal price. Section 5 considers a

problem where the seller can select two prices as well as the optimal time to switch between them.

2.2 Decision Rule

We introduce a plausible non-Bayesian decision rule that consumers are assumed to employ

to decide whether to purchase the product. It is composed of two parts: consumer i (a) uses his

available information to form a quality estimate q̂i, and (b) purchases the product if and only if his

estimated utility is non-negative αi + q̂i − p ≥ 0.

In broad terms, consumers try to answer the following question: given the observed number of

likes and dislikes, the distribution of idiosyncratic quality preferences, and the distribution of the

quality shocks that affect the experienced quality, what value of intrinsic quality best explains the

observed data assuming that all past purchasers made decisions based on the same quality estimate?

The crucial simplification is that consumers disregard the fact that reviews have been submitted

sequentially, and that the information available to the respective purchasers was itself evolving over

time. Review information is typically aggregated in the form we postulate, but review aggregator

sites often allow users to expand the information set and view the sequence and timestamps of

the various reviews. Accessing this information is, however, cumbersome, and using this detailed

information is computationally hard (perhaps implausible). Our simplifying behavioral assumption

is a form of bounded rationality on the consumers’ regard. Disregarding the sequence of reviews

and processing the aggregated number of likes and dislikes, consumers are assumed to invoke a

maximum likelihood estimation (MLE) procedure to compute their quality estimate.

Under the assumption that a consumer was using the correct value for q, the probability of a
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‘like’ conditional on a purchase is

P(consumer j likes | consumer j buys, q̂j = q)

=
P(αj + qj − p ≥ 0, αj + q − p ≥ 0)

P(αj + q − p ≥ 0)

=
.5P(αj + q + ε̄− p ≥ 0, αj + q − p ≥ 0)

P(αj + q − p ≥ 0)
+
.5P(αj + q − ε̄− p ≥ 0, αj + q − p ≥ 0)

P(αj + q − p ≥ 0)

= .5 + .5
F̄ (p− q + ε̄)

F̄ (p− q)

= .5 + .5G(p− q)

where the second equality follows from Bayes’ rule and

G(x) := F̄ (x+ ε̄)/F̄ (x). (3)

Similarly, the probability of observing a dislike conditional on a purchase is

P(consumer j dislikes | consumer j buys, q̂j = q)

= 1− P(consumer j likes | consumer j buys, q̂ = q) = .5− .5G(p− q).

The likelihood of observing (Li, Di) likes and dislikes under the assumption that all consumers were

acting under the same quality estimate is

Li(q) = (.5 + .5G(p− q))Li(.5− .5G(p− q))Di .

Next, consumers introduce the effect of their prior quality estimate into their learning mechanism.

In order to do this, the prior quality estimator q0 must be transformed into a number of fictitious

reviews, L0 and D0, that are consistent with q0 under our maximum likelihood learning mechanism.

We assume that the total weight assigned to the prior estimator will be the one that is equivalent

to the expected number of positive and negative reviews over a length of time of w time units. One

can also think of 1/w as the standard error of the prior quality estimate q0, i.e., the longer the

accumulation period of prior information the more certain the consumers are about their prior.

With that in mind, we define L0 and D0 to be the expected number of like and dislike fictitious

reviews under the assumption that the quality prior q0 is equal to the true product quality as

follows:

L0 = wΛP(customer i buys & likes | q̂i = q = q0) = .5wΛ
[
F̄ (p− q0) + F̄ (p− q0 + ε̄)

]
, (4)
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and

D0 = wΛP(customer i buys & dislikes | q̂i = q = q0) = .5wΛ
[
F̄ (p− q0)− F̄ (p− q0 + ε̄)

]
. (5)

Incorporating the effect of the prior quality estimate, consumers will pick the quality estimate q̂i

in the interval [qmin, qmax] so as to maximize the weighted likelihood function defined by

L w
i (q) = (.5 + .5G(p− q))L0+Li(.5− .5G(p− q))D0+Di . (6)

It is useful to spell out the probability that consumer i will like, dislike or not purchase the

product when his quality estimate, q̂i, is different from q. Consumer i reports a positive review if

he buys the product (αi + q̂i − p ≥ 0) and has a positive experience (αi + qi − p ≥ 0), where in the

later we have to account for the disturbance εi.

P(ri = rL) = P(αi + q̂i − p ≥ 0, αi + qi − p ≥ 0)

= P(α1 ≥ p−min(qi, q̂i))

= .5F̄ (p−min(q − ε̄, q̂i)) + .5F̄ (p−min(q + ε̄, q̂i)).

Similarly, the probability of a dislike is

P(ri = rD) = P(αi + q̂i − p ≥ 0, αi + qi − p < 0)

= F̄ (p− q̂i)− .5F̄ (p−min(q − ε̄, q̂i))− .5F̄ (p−min(q + ε̄, q̂i))

and the probability of no purchase is given by

Pr(ri = rO) = P(αi + q̂i − p < 0) = F (p− q̂i).

We finish this section with few brief comments.

Price as a signal. The seller’s price conveys information about the product quality, but we

assume that consumers do not adjust their quality estimate in response to that information; likewise

the monopolist does not need to take that consideration into account.

Prior weight. All consumers assign the same weight to their common prior quality estimate.

The weight w assigned to the prior is a measure of confidence in the prior estimate in the absence

of other new information. This is analogous to the precision of prior beliefs in a Bayesian setting.

As time goes by and more reviews accumulate in the system, consumers place increasingly more
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confidence in the review information versus their prior information, which is reflected into the fact

that the effect of L0 and D0 on the weighted likelihood (6) becomes negligible as Li and Di grow.

No purchases. The MLE procedure described above can also be used to study social learning in

a model where consumers are informed on the number of previous consumers who decided not to

purchase. In that context, it is not hard to show that the quality estimator has similar properties to

the ones of the estimator that we then characterize. This is not surprising, since statistical estimates

can only improve with more information, but it is important because it shows the robustness of

our estimation procedure.

Consumer learning. Different information models and micro models of consumer behavior could

be considered. For example, consumers may only observe reviews from a random sample of their

predecessors, which grows large in an appropriate sense; or, consumers may weigh their predecessors’

reviews such that later reviews are more influential than earlier ones. The latter could also be done

by the review site that acts as an information aggregator; see Ifrach (2012, Sections 2.2 and 3.2).

3 Asymptotic learning and the associated learning transient

In this section we will establish that consumers eventually learn the true quality of the product,

and subsequently approximate the learning transient via the solution of an ordinary differential

equation derived as a mean-field limit in a large market.

3.1 The consumer’s MLE problem

Our first result characterizes the maximum-likelihood (MLE) quality estimate used by consumer

i. First, we define

li :=
L0 + Li
Bi

, di :=
D0 +Di

Bi
and Bi := L0 + Li +D0 +Di, (7)

where li denotes the prevailing fraction of likes and di denotes the prevailing fraction of dislikes for

consumer i, then we can state the following proposition.

Proposition 1. The MLE quality estimator

q̂i = argmax
{
L w
i (q) : qmin ≤ q ≤ qmax

}
, (8)
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is unique and given by

q̂i =

proj[qmin,qmax](q
∗) if li > di,

qmin if li ≤ di,
(9)

where q∗ solves the following equation

G(p− q∗) = li − di = 2li − 1. (10)

(All proofs can be found in the Appendix.) The maximum likelihood estimate q̂i has appealing

properties. Equation (10) shows that it depends on the data only through the fraction of like

reviews. Moreover, by Lemma 1 (in the Appendix) we know that the function G(p−q) is increasing

in q, which implies that the estimator is increasing in the fraction of like reviews, as one would

expect. Lemma 1 also implies that G(p − q) is invertible for every q ∈ [qmin, qmax], which means

that (10) defines a one-to-one mapping between li and q̂i. We will exploit this observation in the

subsequent analysis.

3.2 Asymptotic learning

The stochastic learning process converges in the sense that the quality estimate q̂i converges to

the true quality q almost surely. Assumption 1 implies that new information continues to enter the

system since some consumers will always choose to purchase and as a result review the product.

This, in turn, ultimately guarantees that learning is achieved.

Proposition 2. Consider the sequential learning process described in the previous section, where

consumer i estimates the prevailing quality q̂i through (9). Then, q̂i → q as i→∞ almost surely.

The above result serves as a sanity check that learning is achieved under the proposed decision

rule; this result addresses the question that underlies most of the literature on social learning

of whether agents eventually learn the true state of the world. The ultimate goal of this paper

is to study the pricing question described in the previous section for which one needs to have

a more explicit characterization of the learning transient for the underlying stochastic learning

process. This is intractable, however, as is in almost all social learning models in the literature,

both Bayesian and non-Bayesian.8 Our approach is to approximate the learning transient through

a set of intuitive and tractable ordinary differential equations.

8Typical results establish that learning is achieved (or not) as i→∞, and in some cases the rate of convergence;
see, e.g., Acemoglu, Dahleh, Lobel, and Ozdaglar (2009) for a characterization of the rate of convergence of Bayesian
social learning for some social networks.
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3.3 Approximation of learning dynamics in a large market

The proposed approximation is relevant in large market settings, and will be justified through

an asymptotic argument as the arrival rate of consumers making purchase decisions grows large,

rescaling processes so that the time scale within which information gets released and learning

evolves is the one of interest. The mean-field or fluid model approximation yields a tractable

characterization of the learning dynamics and provides insight on their dependence on the micro

model of consumer learning behavior and other problem primitives, including the seller’s price. We

comment at the end of this section on the generality of this approach.

We consider a sequence of systems indexed by n. In the n-th system consumers’ arrival process

is Poisson with rate Λn := nΛ. The state variables of the n-th system at time t is given by

Xn(t) :=
(
Ln(t), Dn(t))

)
, where Ln(t) is the number of consumers who report like by time t in the

n-th system, and Dn(t) is defined analogously. The superscript n indicates the dependence on the

arrival rate. Denote the scaled state variable X̄n(t) := Xn(t)/n and similarly for L̄n(t) and D̄n(t).

This state variable comprises the information available to the first consumer arriving after time t.

We will keep the prior initialization weight w constant, so the number of reviews associated with

the prior quality estimate will stay proportional to the fictitious number of purchasers that would

flow through the system over a fixed time window, e.g., a week.9

We carry the notation from the previous section with the necessary adjustments. Specifically,

with some abuse of notation, in the n-th system we have from (7) that

ln :=
Ln0 + Ln

Bn
=
L̄n0 + L̄n

B̄n
=: l̄n,

where Bn := Ln0 + Ln + Dn
0 + Dn and B̄n := Bn/n. Similarly, dn := (D0 + Dn)/Bn = (D̄0 +

D̄n)/B̄n =: d̄n. The fractions of likes and dislikes are independent of n, conditional on X̄n.

Similarly, q̂n(Xn(t)) is directly defined through (9) and (10). We also note that q̂n(X̄n(t)) =

q̂n(Xn(t)) through the normalized definitions of l̄n and d̄n, and, moreover, that the mapping q̂n

itself does not depend on n, that is, the same quality estimation procedure is applied throughout

the scaling that we consider, and simply evaluated at the appropriate state Xn(t).

Building on the above we define the functions γL and γD such that

γL(X̄n) := P
(
ri = rL | Ii = Xn

)
= .5

[
F̄
(
p−min(q − ε̄, q̂(X̄n))

)
+ F̄

(
p−min(q + ε̄, q̂(X̄n))

)]
,

with the interpretation that γL(X̄n) is the probability that a consumer who observes information

9It is possible to scale wn differently, of course, in which case we would need to apply the corresponding time
change in the X̄n(t) process. The above assumption simplifies the transient analysis without affecting, however, the
resulting structure and insights.
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Xn reports rL. Similarly,

γD(X̄n) := F̄
(
p− q̂(X̄n)

)
− γL(X̄n).

Note that the above expressions imply that γL and γD are independent of n.

With this notation in mind, we use a Poisson thinning argument to express the scaled state

variables as a Poisson processes with time dependent rates. Let N := (NL, ND) be a vector of

independent Poisson processes with rate 1. Then,

L̄n(t) =
1

n
NL

(
Λn
∫ t

0
γL(X̄n(s)) ds

)
,

and similarly for D̄n. The following shorthand notation is convenient,

X̄n(t) =
1

n
N

(
Λn
∫ t

0
γ(X̄n(s)) ds

)
, (11)

where γ := (γL, γD). The dependence of the state-dependent rate functions γL and γD on the state

X̄n(t) enters through the quality estimate q̂(X̄n(t)).

If the rate processes inside the expressions (11) did not depend on the state X̄n(t) itself, then

a straightforward application of the functional strong law of large numbers for the Poisson process

would yield a deterministic limit for X̄n(t) as n grew large. Our model is a bit more complex, but

because the evolution of the state X̄n(t) depends on the decisions made by all predecessors, one

would expect it to vary slowly relative to the increasing number of consumers arriving at any given

point in time. Intuitively, considering a short time interval [t, t+∆], one would expect that the large

pool of heterogeneous consumers arriving in that interval, each with a different quality parameter

α, and making decisions based on similar information given by X̄n(s) for some s ∈ [t, t+ ∆], would

lead to a deterministic but state-dependent evolution of X̄n for large n; effectively, the stochastic

nature of the decisions due to consumer heterogeneity is “averaged out” in such a setting.

This argument is made precise in Proposition 3 that derives a deterministic limiting character-

ization for the system behavior as n grows large using Kurtz (1977/78, Theorem 2.2) through a

sample path analysis based on a strong approximation argument and a subsequent application of

Gronwall’s inequality.

Proposition 3. For every t > 0,

lim
n→∞

sup
s≤t
|X̄n(s)− X̄(s)| = 0 a.s.,

16



where X̄(t) = (L̄(t), D̄(t)) is deterministic and satisfies the integral equation,

X̄(t) = Λ

∫ t

0
γ(X̄(s)) ds. (12)

To better understand (12) consider the expression for the scaled number of likes,

L̄(t) = Λ

∫ t

0
γL(X̄(s)) ds = Λ

∫ t

0
P
(
rs = rL | Is = X̄(s)

)
ds.

This means that the scaled number of ‘likes’ at t is the sum over the mass of consumers who report

a ‘like’ in each s ≤ t, and this mass depends on past reviews via X̄(·). It follows that the scaled

number of consumers that arrive by time t is Λt and that the number of people that purchased the

product and submitted a report is B̄(t) := L̄0 + D̄0 + L̄(t) + D̄(t). It is convenient to derive from

(12) the expressions for (l̄(t), d̄(t)) in the limiting (fluid) model, since these quantities determine

the decision of an arriving consumer:

l̄(t) := l(X̄(t)) =
L̄0 + L̄(t)

B̄(t)
and d̄(t) := d(X̄(t)) =

D̄0 + D̄(t)

B̄(t)
= 1− l̄(t). (13)

From the definition of (γL, γD), (10) and (13), it follows that (L̄, D̄) is absolutely continuous

and therefore differentiable almost everywhere. We refer to time t where (L̄, D̄) is differentiable as

regular. At regular points t, (L̄, D̄) satisfies the differential equations:

˙̄L(t) = .5Λ
[
F̄ (p−min(q − ε̄, q̂t)) + F̄ (p−min(q + ε̄, q̂t))

]
, (14)

and

˙̄D(t) = Λ
[
F̄ (p− q̂t)− .5

[
F̄ (p−min(q − ε̄, q̂t)) + F̄ (p−min(q + ε̄, q̂t))

]]
= ΛF̄ (p− q̂t)− ˙̄L(t), (15)

where q̂t is the maximum-likelihood estimator defined in (10) and evaluated at (l̄(t), d̄(t)).

Finally, as mentioned in the introduction, the approach of employing a mean field approximation

to characterize the transient of the social learning process can be used to study additional micro

learning models in other settings of interest. One key characteristic that underlies this approach

is that each individual consumer has a diminishing influence on the others, and as such on the

aggregate behavior, as the size of the population scales. This condition typically holds when agents

decisions depend on system aggregates. This is related to the literature on the diffusion of products,

innovation, and epidemics, often called social dynamics, that focuses on the evolution of system

aggregates, such as the fraction of adopters. The approach described above allows one to determine
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how the structure of the micro model of consumer behavior affects the aggregate learning dynamics.

3.4 Transient learning dynamics: uniformly distributed valuations

In the remainder of the paper we will assume that α ∼ U [0, ᾱ]10 and, without loss of generality,

we will normalize qmin = 0. This allows us to simplify the ODEs (14) and (15) as follows. At

regular times t, we have

˙̄L(t) = Λ

(
ᾱ+ .5 min(q − ε̄, q̂t) + .5 min(q + ε̄, q̂t)− p

ᾱ

)
and ˙̄D(t) = Λ

(
ᾱ+ q̂t − p

ᾱ

)
− ˙̄L(t),

(16)

and the quality estimator can now be written as

q̂t = p− ᾱ+
ε̄

2(1− l̄(t))
= p− ᾱ+

ε̄

2

(
1 +

L̄0 + L̄(t)

D̄0 + D̄(t)

)
. (17)

The subsequent analysis of the paper will primarily focus on the learning transient when the prior

estimate q0 initially underestimates the true quality of the product, i.e., q0 < q, and, moreover,

focus on the portion of the learning transient over which q̂t < q− ε̄ (we refer to this as “phase 1”).

When ε̄ is small, this first phase of the learning process is the most important to understand. 11

Underestimating prior (q0 < q); phase 1 of learning q̂t < q − ε̄. At times where the

prevailing quality estimate is such that q̂t < q− ε̄, the consumers who purchase with ᾱ+ q̂t− p ≥ 0

are guaranteed to have a positive ex-post utility realization since ᾱ + q − ε̄ − p ≥ ᾱ + q̂t − p ≥ 0.

As a result only like reviews will be submitted as long as q̂t < q − ε̄. In this case, the ODEs (16)

can be solved in closed form and the solutions can then be used together with (17) to characterize

the learning trajectory for q̂t. We do this in Proposition 4, which is the main result of this section.

Before presenting the result, we formally define the time-to-learn

τ := inf{t : t ≥ 0, |q − q̂t| ≤ ε̄}.

This is the time it takes q̂t to reach within ε̄ of q and it measures the duration of the learning phase.

Proposition 4. Consider the ODEs for the learning dynamics given in (16) and assume that

q0 < q. Then, for t ≤ τ ,

q̂t = p− ᾱ+ (ᾱ+ q0 − p) exp

(
t

w

)
. (18)

10It follows that F̄ (x) = 1− x/ᾱ for all x ∈ [0, ᾱ], and that G(x) = (ᾱ− x− ε̄)/(ᾱ− x) for all x ∈ [0, ᾱ− ε̄].
11The Appendix studies the case where the prior overestimates the true quality q0 > q, and also shows how to

approximate the evolution of the learning ODEs at times where q − ε̄ < q̂t < q + ε̄ for the case where ε̄ is small.
Moreover, note that equation (17) corresponds to the solution of equation (10) when l̄(t) ≤ 1 − ε̄/2ᾱ, otherwise we
have a different solution. We only consider the above solution since in the relevant cases l̄(t) is never too close to 1.
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Moreover,

τ = w log

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)
. (19)

Proposition 4 characterizes the learning transient in the underestimating case. In particular,

expression (18) describes the learning trajectory of the quality estimate q̂t for all t ≤ τ , and

expression (19) characterizes the time-to-learn as a function of the relevant model parameters, i.e.,

the market heterogeneity ᾱ, the distance q − q0 of prior quality from true quality, and the price.

First, expression (18) shows that q̂t starts at the prior estimate q0 at time 0 and it increases

monotonically to reach q − ε̄ at time τ . Moreover, the lower the prior weight w, the faster the

learning trajectory, i.e., when consumers place less weight on their prior estimate, they are more

sensitive to the review information and as a result the quality estimator is updated faster.

Furthermore, note that expression (19) can be rewritten as

w log

(
1 +

q − q0 − ε̄
ᾱ+ q0 − p

)
,

which allows us to make some interesting comparative statics observations on the learning transient.

In particular, note that the time-to-learn τ is decreasing in the maximum (or equivalently the range

of the) base valuation ᾱ, because if consumers have higher valuations, more consumers choose to

buy (and review) the product and thus information accumulates faster. Moreover, τ is increasing

in (q − q0), i.e., the more severely consumers underestimate quality, the longer it takes to learn q.

Finally, note that the time-to-learn is scaled by the prior weight w, which is a natural time scale if

we think about learning as the process of accumulating enough information to overcome the bias

of the prior estimate q0.

Before moving to the revenue maximization problem, we make one last important observation

that relates the learning process to the monopolist’s pricing decision.

Corollary 1. The time-to-learn τ is increasing in p.

This result can be explained as follows. Let

dt(p) := F̄ (p− q̂t) =
ᾱ+ q̂t − p

ᾱ
,

which denotes the instantaneous demand function at time t in our large market setting. At any

given t ≤ τ , a price increase affects the instantaneous demand function through two channels: first,

a direct channel, a higher price means a lower instantaneous demand at time t; second, through

q̂t, a higher price means a lower q̂t at time t.12 Therefore, by increasing the price, the monopolist

12This can easily be verified by differentiating (18) with respect to p and noting that, for all 0 < t ≤ τ , ∂q̂t/∂p =
1− exp (t/w) < 0.
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effectively decreases the rate at which consumers are buying (and reviewing) the product, thus

slowing down learning. Finally, using the characterization of q̂t from (18) we can rewrite dt(p), for

all t ≤ τ , as

dt(p) =

(
ᾱ+ q0 − p

ᾱ

)
exp

(
t

w

)
.

The instantaneous demand function thus takes the linear form dt(p) = at − bt · p with at = (1 +

q0/ᾱ) exp(t/w) and bt = (1/ᾱ) exp(t/w). Note that the instantaneous demand is positive for all

p ∈ [pmin, pmax], which follows directly from Assumption 1, and that both the slope bt and the

intercept at are increasing in t. Thus, when consumers initially underestimate quality (q0 < q), the

instantaneous demand and consequently the instantaneous revenue are increasing with t. Similarly,

note that as time passes and the quality estimate increases, the monopolist can achieve the same

instantaneous demand with a higher price, thus generating more revenue. In the following sections,

we will further elaborate on these insights and we will study the pricing strategy of the monopolist.

The overestimating case q0 > q and the analysis of the ODEs after time τ in the case of a

small quality disturbance ε̄ are briefly reviewed in the Appendix. In both cases the transient is

more complicated and its solution cannot be written in closed form, however, numerical solutions

are very simple to attain and one can still establish useful structural properties, such as the fact

that the quality estimate monotonically converges to the true value q from below (above) in the

underestimating (overestimating) case.

4 Static Price Analysis

In this section we solve the monopolist’s problem of choosing a static price to maximize her

revenue as given in (2). Following the analysis of the previous section, the stochastic learning

trajectory is replaced by its deterministic mean field approximation. This enables us to solve an

otherwise intractable problem. The next two sections focus on the price optimization problem,

for the case in which consumers initially underestimate quality through their prior, i.e., q0 < q.

Adapting by the mean-field approximation, we can write the seller’s discounted revenue as

R̄(p) = Λ

∫ ∞
0

e−δtπt(p) dt = Λ

(∫ τ

0
e−δtπt(p) dt+

∫ ∞
τ

e−δtπt(p) dt

)
where πt(p) = p · dt(p) denotes the instantaneous revenue function at time t, and τ is the time-

to-learn that was defined in the previous section. We assume that once the learning process has

converged to q̂τ = q − ε̄, revenues are accrued from then on according to q̂t = q for t ≥ τ . This is
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safe in our setting since ε̄ is a small quantity, and it leads to the following revenue function

R̃(p) = Λ

(∫ τ

0
e−δtπt(p) dt+

∫ ∞
τ

e−δtπ∞(p) dt

)
, (20)

where π∞(p) denotes the instantaneous revenue at the true quality (q̂∞ = q).13 The monopolist’s

revenue maximization problem can be written as

maximize
{
R̃(p) : pmin ≤ p ≤ pmax

}
. (21)

Before stating our main result, we define

pm(q0) := argmax
p∈[pmin,pmax]

{
π0(p)

}
and pm(q) := argmax

p∈[pmin,pmax]

{
π∞(p)

}
,

which are the static monopoly prices at q0 and q respectively.14 The following proposition charac-

terizes the optimal monopoly price in the presence of social learning.

Proposition 5. Consider the case q < q0. For ε̄ sufficiently small, the monopolist revenue opti-

mization problem (21) has a unique optimal solution p∗ = p∗(δ, w) that satisfies the following:

(a) p∗ ∈ [pm(q0), pm(q)].

(b) p∗(δ, w)→ pm(q) as δw → 0 and p∗(δ, w)→ pm(q0) as δw →∞ .

Proposition 5 characterizes the (unique) solution of the monopolist’s revenue maximization

problem. In particular, Part (a) states that the optimal price is straddled between two natural end

points: the price that a monopolist would charge if consumers did not engage in social learning and

based their purchase decisions only on their prior estimate q0; the price that a monopolist would

charge if consumers were fully informed of the product quality q.

Part (b) highlights the importance of the monopolist’s patience level δ and the weight w,

that consumers attach to their prior, on the optimal price with social learning. In particular, if

the monopolist is very patient (δ ≈ 0), then the optimal price is close to the price under full

information, since in this case the learning transient is short relative to the extent of revenue

discounting. However, if the monopolist is very impatient (δ � 0), then she finds it optimal to

significantly decrease her price, in the limit learning is not important and the monopolist prices as

if q̂t = q0 for all t ≥ 0. Finally, note that the prior weight w is a natural time unit that determines

the learning speed and the effect of discounting on revenues.

13Lemma 4 in the Appendix provides an intuitive characterization of the revenue function (20) and establishes a
bound on |R̃(p)− R̄(p)|, which is of order ε̄.

14Note that Assumption 1(i) implies that the constraints in the definition of pm(q) are never binding and pm(q) =
(ᾱ+ q)/2. Moreover, Assumption 1(ii) implies that the constraints in the definition of pm(q0) are not binding if and
only if (ᾱ+ q0)/2 > qmax − ε̄, which is always true for reasonable values of ᾱ and q0.
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Figure 1: Optimal Static Price and Learning Phase Duration.

In what follows, we numerically illustrate the solution to (21) for different model parameters

and derive some observations regarding comparative statics. We consider the underestimating case

(q0 < q) with a demand rate of 10 potential consumers per week. The most important parameters

in the pricing problem are the monopolist’s discount factor δ, the error in consumers prior estimate

q0 relative to the true quality, and the maximum base valuation ᾱ. As already noted, the learning

transient also scales proportionally to the weight w attached to the prior estimate.

We consider three different prior estimates q0 ∈ {.40, .20, .10}, with a prior weight of w = 10.

The true quality is q = 2, and we set the small quality disturbance term ε̄ to 5% of the true quality.

The monopolist is either patient, semi-patient, or impatient, corresponding to annualized discount

rates δ ∈ {2.5%, 7.5%, 15%}. We fix ᾱ = 4 and we think that this is a reasonable value for this

parameter, which corresponds to a maximum quality premium of 2q.15

The left plot in Figure 1 highlights how the optimal price p∗ varies with the prior q0 and the

monopolist’s patience level. The monopoly price under full information pm(q), which is normalized

to 1, and the monopolist price at q0 are also plotted in black. In line with our theoretical result,

we see that the optimal price with social learning is always between the static monopoly price at

q0 and the static monopoly price at q. Moreover, the price p∗ is closer to the static monopoly price

under full information when the monopolist is more patient and consumers’ prior estimate q0 is

15Note that if ᾱ� q then learning becomes less important.
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closer to q. On the contrary, when the monopolist is impatient, her optimal price is always closer

to the static monopoly price at q0. The right plot in Figure 1 reports the learning phase duration

τ∗ for different values of q0 and different patience levels. It always takes 5.5 to 8.5 weeks for the

quality estimate to get ε̄-close to q. This observation is not surprising, since the facts that w = 10

and q − ε̄ = 1.9 imply that τ∗ scales with

10 log

(
ᾱ+ 1.9− p∗

ᾱ+ q0 − p∗

)
,

however, the numerical results highlight that it always takes significantly longer to learn q when the

monopolist is more patient. For the parameter values considered, learning q when the monopolist

is patient always takes 15%− 25% longer than when the monopolist is impatient.

5 Two Price Analysis

Social learning implies a time varying demand process. As such, the ability to modify the price

over time is valuable. Indeed, it is common for sellers to modify the prices of their products in

proximity to their launching, for example by setting a low introductory price. Many factors and

considerations, possibly separate from social learning, can support such pricing policies. A few

examples include learning-by-doing, demand estimation, and endogenous timing of the purchasing

decision (consumers with high valuations purchase first). These considerations are not part of our

study which exclusively focuses on the impact of social learning on the dynamics of the pricing

decision, and highlights the appeal of the tractable mean field approximation of the learning phe-

nomenon to analyze the otherwise complex revenue optimization problem. For concreteness we

focus on a two period pricing problem.

5.1 Optimal Prices

Consider the situation in which the monopolist can adjust her price once. She sets an initial

price p0 until time s, then p1, and she can optimally choose (p0, p1, s) to maximize her discounted

revenue objective. In this setting, we will show that the monopolist may choose to sacrifice short-

term revenue to optimally speed up learning.

At the time of the price change consumers aggregate all information into a new prior q1 := q̂s,

i.e., the new prior equals the prevailing quality estimate at the time of the price change. Thus,

q1 = p0 − ᾱ+ (ᾱ+ q0 − p0) exp

(
s

w

)
,
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moreover consumers use the following weight for the new prior,

w1 = w + Λ

∫ s

0
F̄ (p− q̂t) dt = w

1 + Λ

(
exp

(
s

w

)
− 1

)
ᾱ+ q0 − p0

ᾱ

 .
The (q1, w1) specification incorporates the fact that the reviews before time s were under a

different price point. From time s onward the problem is analogous to the single price version

studied in the previous section. In particular, after time s the learning process evolves according

to equation (18), with initial condition q1, price p1, and prior weight w1. The expected discounted

revenue of the monopolist is given by

R̄(p0, p1, s) = Λ

(∫ s

0
e−δtπt(p0) dt+

∫ ∞
s

e−δtπt(p1) dt

)
.

As in the static price case, we study the situation in which once the learning process has

converged to q̂t = q − ε̄, revenues are accrued from then on according to q̂t = q. In this setting, it

is without loss of generality to focus the attention on policies such that s ≤ τ .16 Which leads to

the following revenue function

R̃(p0, p1, s) = Λ

(∫ s

0
e−δtπt(p0) dt+

∫ τ

s
e−δtπt(p1) dt+

∫ ∞
τ

e−δtπ∞(p1) dt

)
. (22)

This setting is the natural extension to the static price case, indeed if p0 = p1 = p one can easily

verify that the revenue function as well as the learning process would be identical to the static price

case. The monopolist solves the following optimization problem

maximize R̃(p0, p1, s)

s.t. p0, p1 ∈ [pmin, pmax] (23)

s ≤ τ,

and the following proposition provides a characterization of the optimal pricing policy.

Proposition 6. Consider the case q0 < q and assume that ε̄ is sufficiently small. Let (p∗0, p
∗
1, s
∗)

be the optimal solution to (23). Then, the optimal prices (p∗0, p
∗
1) are such that p∗0 ≤ p∗1 and

p∗1 ∈ [pm(q1), pm(q)].

Proposition 6 states that, when consumers underestimate quality, the optimal price p∗1 is al-

ways between the static monopoly price pm(q1) and monopoly price under full information, pm(q).

Moreover, the optimal price path is increasing. This supports the intuition that the monopolist

16A formal argument is provided in the Appendix.
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Figure 2: Optimal Prices and Learning Phase Duration.

has an incentive to lower the initial price in order to speed up learning.

Figure 2 displays numerical solutions to (23) for different model parameters, which provide some

additional insights on the optimal pricing policy.17 The left plot in Figure 2 shows the optimal prices

p∗1 (above) and p∗0 (below) for different priors and different monopolist’s patience levels. We clearly

see that, in the two-price case, the monopolist may find it optimal to initially price below pm(q0)

in order to speed up learning, and then switch to a price which is very close to the full information

monopoly price pm(q) in order to extract more revenues. Moreover, if the monopolist is more

patient, i.e., δ is small, then the first period price p∗0 is lower. This has interesting implications for

the speed of learning: the right plot in Figure 2 shows that a patient monopolist, who is willing

to sacrifice initial revenues by under-pricing more aggressively, achieves faster learning than an

impatient one.

5.2 Revenue Comparison of Pricing Policies

In this section we numerically compare the revenue performance of the optimal static price

policy and the optimal two prices policy. Our measure of revenue performance for a given policy

is the %-gap between the total revenue attained by using that policy and the total revenue that

the monopolist would attain in an ideal scenario in which consumers know q and the monopolist

17The choice of parameter values for the numerical experiments is the same as the one described in Section 4.
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q0 static two prior true

.40 4.25 3.13 9.86 5.30
Patient .20 6.18 4.05 12.37 7.25

.10 7.19 4.67 13.72 8.42

.40 12.05 9.21 14.66 14.05
Semi-Patient .20 15.31 11.61 18.13 18.72

.10 17.06 12.91 19.97 21.44

.40 19.32 16.29 20.41 23.64
Impatient .20 23.78 20.18 24.83 30.50

.10 26.09 22.22 27.12 34.32

Table 1: %-gap in revenues relative to full information scenario.

charges the monopoly price under full information.18 We also report revenue performances for two

benchmark policies: prior and true. For these cases, revenues are computed under the assumption

that consumers follow the learning process specified in our model, but the monopolist does not take

it into account and she charges the static price pm(q0) and the static price pm(q) respectively.

The first two columns in Table 1 show the revenue performance of the static price and of the

two prices policies respectively. The optimal two-period pricing policy performs consistently better

than the optimal static price, and the relative revenue improvement becomes more significant as

the seller’s discount factor increases. In the last two columns of Table 1 we report the revenue

performance of the prior and true policies respectively. By comparing the static price policy to

these two benchmark policies we can appreciate the effectiveness of taking social learning into

account when devising an optimal pricing policy.

Acknowledgments

The authors thank the Area Editor, the Associate Editor and the referees for their constructive

comments that helped improve this paper. The authors also thank Kostas Bimpikis and Alireza

Tahbaz-Salehi for insightful discussions, and Stefano Vaccari for his careful reading of the paper

and his corrections.

References

Acemoglu, D., Bimpikis, K., and Ozdaglar, A. (2014) Dynamics of information exchange in

endogenous social networks. Theor. Econ. 9, 41–97.

18Note that when consumers underestimate quality, the latter provides an upper bound on the revenue that can
be attained in our model by any policy.

26



URL http://dx.doi.org/10.3982/TE1204.

Acemoglu, D., Dahleh, M. A., Lobel, I., and Ozdaglar, A. (2009) Rate of convergence of

learning in social networks. In Proceedings of the American Control Conference 2009, 2825–2830.

Acemoglu, D., Dahleh, M. A., Lobel, I., and Ozdaglar, A. (2011) Bayesian learning in

social networks. Rev. Econom. Stud. 78, 1201–1236.

Acemoglu, D. and Ozdaglar, A. (2011) Opinion dynamics and learning in social networks.

Dynam. Games Appl. 1, 3–49.

Arieli, I. and Mueller-Frank, M. (2014) Learning what matters. Technical Report 2466903,

SSRN.

URL http://ssrn.com/abstract=2466903.

Banerjee, A. V. (1992) A simple model of herd behavior. Quart. J. Econom. 107, 797–817.

Bass, F. M. (2004) Comments on “A new product growth for model consumer durables”: the

Bass model. Management Sci. 50, 1833–1840.
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j=1 |yj |, and given a function y(t) of time, ẏ(t) denotes its derivative.
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Proofs of Section 3

Lemma 1. The function G(x) defined in (3) is non-increasing for all x ≤ αmax, and is strictly

decreasing for all x ∈ [αmin − ε̄, αmax − ε̄]. Equivalently, G(p − q) is non-decreasing in q for all

q ≥ p− αmax and is strictly increasing in q for all q ∈ [qmin, qmax].

Proof. First note that G(x) is a well-defined function if and only if x ≤ αmax. If x < αmin− ε̄ then

G(x) = 1. If x ∈ [αmin−ε̄, αmin) then G(x) is strictly decreasing because in this case G(x) = F̄ (x+ε̄)

and
dG(x)

dx
= −f(x+ ε̄) < 0.

If x ∈ [αmin, αmax − ε̄) we have

dG(x)

dx
=
F̄ (x+ ε̄)

F̄ (x)

(
h(x)− h(x+ ε̄)

)
< 0,

where the strict inequality follows from the assumption that α is IFR, or equivalently h(x)−h(x+

ε̄) < 0. Finally, if x ≥ αmax − ε̄, then G(x) = 0. Thus proving that G(x) is non-increasing for all

x ≤ αmax and strictly decreasing for all x ∈ [αmin − ε̄, αmax − ε̄].

A direct consequence of the above lemma is that G(p− q) is invertible for every q ∈ [p−αmax +

ε̄, p− αmin + ε̄]. This follows from the fact that G is invertible wherever it is strictly monotone.

Proof of Proposition 1. Taking logs of the weighted likelihood function in (6) yields

log(L w
i (q)) = (L0 + Li) log(.5 + .5G(p− q)) + (D0 +Di) log(.5− .5G(p− q)),

and differentiating the log-likelihood with respect to q we obtain

d

dq
log(L w

i (q)) =
L0 + Li

1 +G(p− q)
G′(p− q)− D0 +Di

1−G(p− q)
G′(p− q)

=

(
L0 + Li +D0 +Di

(1 +G(p− q))(1−G(p− q))

)
G′(p− q)(li − di −G(p− q)). (24)

Lemma 1 and Assumption 1 imply that 0 < G(p− q) < 1 for all q ∈ [qmin, qmax] and moreover

that G(p− q) is strictly increasing in q for all q ∈ [qmin, qmax]. We will now use these observations

and (24) to construct the unique optimal solution to problem (8).

First, note that 0 < G(p − q) < 1 implies that the denominator in (24) is always positive.

Since G(p − q) is strictly increasing in q, then li − di − G(p − q) is strictly decreasing in q. If
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li − di −G(p− qmin) ≤ 0, then

d

dq
log(L w

i (q)) ≤ 0 for all q ∈ [qmin, qmax],

thus q̂i = qmin maximizes the log-likelihood. If li − di − G(p − q′) > 0 for some q′ ∈ [qmin, qmax],

then
d

dq
log(L w

i (q)) > 0 for all q < q′.

This implies that the quality that maximizes the log-likelihood is the solution to

d

dq
log(L w

i (q)) = 0 ⇐⇒ G(p− q) = li − di,

given by q∗ if li − di − G(p − qmax) ≤ 0, or by qmax if li − di − G(p − qmax) > 0. Note that since

G(p− q) is strictly increasing for all q ∈ [qmin, qmax] then q̂i = q∗ is always unique in [qmin, qmax].

Summarizing the above conditions, the quality estimate that maximizes the log-likelihood can

be defined as follows: if li ≤ di then li−di−G(p−qmin) ≤ 0 and thus q̂i = qmin; otherwise, if li > di

then q̂i = proj[qmin,qmax](q
∗). To complete the proof, note that di = 1− li implies li−di = 2li−1.

The following lemma is instrumental in the proof of Proposition 2.

Lemma 2. Suppose that Assumption 1(i) holds, then
∑∞

i=1(Bi)
−2 <∞ almost surely.

Proof. The proof will proceed as follows. First, we rewrite the process {Bi, i = 1, 2, . . . } in a more

convenient form {B0 +Xi, i = 1, 2, . . . }, where B0 := L0 +D0 is the total number of initial reviews

associated to the prior q0, defined in (4) and (5), and Xi is an appropriately defined sequence

of random variables. Then, we bound from below the process {Xi, i = 1, 2, . . . } with a process

{Yi, i = 1, 2, . . . }, which is more tractable for the purpose of the analysis. Finally, we use the

Strong Approximation Theorem Glynn (1990, Theorem 5) to show that
∑∞

i=1(B0 + Yi)
−2 < ∞

almost surely and complete the proof.

Note that Assumption 1(i) implies that for all i there exists an η > 0 such that for all admissible

p the following is true:

P(i-th customer buys | Ii−1, p) ≥ P(i-th customer buys | qmin, p) ≥ 2η,

where Ii is defined as in (1). Thus, we can rewrite Bi in the form Bi = B0 +
∑i

j=1 χj(ηj), where

χj is a Bernoulli random variable with success (i.e., purchase) probability ηj > η for all j, and ηj

depends on Ij and the price p. Let Xi =
∑i

j=1 χj for all i = 1, 2, . . . .

Next, define the random variables ξj = χj(ηj) · υ(η/ηj), where the random variable υ(η/ηj) is

Bernoulli with success probability η/ηj , independent of χj . That is, ξj is a random sample of the
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customers that purchased. It is easy to verify that the distribution ξj is Bernoulli with success

probability η and that ξj is independent of ξk for all j 6= k. Let Yi =
∑i

j=1 ξj and note that, by

construction, Yi +B0 ≤ Xi +B0 = Bi for all i = 1, 2, . . . .

Finally, the Strong Approximation Theorem Glynn (1990, Theorem 5) implies that there exist

a probability space that supports a standard Brownian motion W and a sequence Y ′i such that

{Y ′i : i ≥ 1} D
= {Yi : i ≥ 1}, and

Y ′i = i · η + σηW (i) +O(log i) a.s.,

and W (·) is a standard Brownian motion. (The symbol
D
= denotes equality in distribution.) In the

sequel we write Yi instead of Y ′i . Rewriting the above expression we have that

Yi = (i) ·

(
η + ση

W (i)

i
+O

(
log i

i

))
a.s.

From the strong law of large numbers for the standard Brownian motion we know that W (i)/i→ 0

a.s., which implies that, for any ε > 0, there exists a constant M1 > 0 such that W (i)/i < ε for all

i > M1 and almost all sample paths. Similarly, there exists a constant M2 > 0 such that the error

term O(log(i)/i) < M2 for all i = 1, . . . . It follows that there exists a constant M3 > 0 such that

∞∑
i=1

(B0 + Yi)
−2 =

∑
i≤M1

(B0 + Yi)
−2 +

∑
i>M1

(B0 + Yi)
−2 < M1 ·B−2

0 +
∑
i>M1

M3

i2
<∞ a.s.

Noting that Bi ≤ B0 +Yi for all i = 1, 2, . . . implies that
∑∞

i=1(Bi)
−2 ≤

∑∞
i=1(B0 +Yi)

−2 completes

the proof.

Proof of Proposition 2. We study the evolution of li, and relate it to q̂i using (10). It is easy to

verify that li evolves according to the stochastic recursion

li = proj[lmin,lmax]

[
li−1 + (Bi)

−1
(
L0 + Li−1 + 1

{
ri−1 = rL

}
− (L0 + Li−1)Bi/Bi−1

)]
= proj[lmin,lmax]

[
li−1 + (Bi)

−1
(

(1− li−1)1
{
ri−1 = rL

}
− li−11

{
ri−1 = rD

})]
,

where lmin = 0.5(1+G(p−qmin)) and lmax = 0.5(1+G(p−qmax)). Setting Yi = (1−li)1
{
ri = rL

}
−

li1
{
ri = rD

}
, the iterative process can be rewritten as

li = proj[lmin,lmax]

[
li−1 + (Bi)

−1Yi−1

]
,

32



which is equivalent to the recursion

li = li−1 + (Bi)
−1Yi−1 + (Bi)

−1Zi−1,

where the projection term Zi−1 := li − li−1 − (Bi)
−1Yi−1.

This stochastic recursion process belongs to the class of processes studied in Kushner and Yin

(2003). We next show that the assumptions of (Kushner and Yin, 2003, Chapter 5, Theorem 2.1)

hold and then identify the equilibrium point of the process using a Lyapunov function. For this

purpose, it is useful to define the maximum likelihood quality estimate as a function of the fraction

of likes

q̂(li) := p−G−1(2li − 1),

and note that Lemma 1 implies that G−1(2li − 1) is well-defined for all li ∈ [lmin, lmax].

Assumption (A.2.1). By subadditivity of the absolute value, it follws that

|Yi| ≤ (1− li)1
{
ri = rL

}
+ li1

{
ri = rD

}
∀i,

and thus

|Yi|2 ≤ (1− li)21
{
ri = rL

}
+ l2i 1

{
ri = rD

}
+ 2(1− li)li1

{
ri = rL

}
1
{
ri = rD

}
= (1− li)21

{
ri = rL

}
+ l2i 1

{
ri = rD

}
≤ 1 ∀i,

since
{
ri = rL

}
and

{
ri = rD

}
are mutually exclusive. It then follows that supiE|Yi|2 ≤ 1 <∞.

Assumption (A.2.2). We have that

E[Yi | l0, Yj , j < i] = (1− li)P(ri = rL)− liP(ri = rD)

= .5
[
F̄
(
p−min(q + ε̄, q̂(li))

)
+ F̄

(
p−min(q − ε̄, q̂(li)))

)]
− liF̄

(
p− q̂(li)

)
= .5

[
F̄
(
p−min(q̂(li), q + ε̄)

)
+ F̄

(
p−min(q̂(li), q − ε̄)

)
− F̄

(
p− q̂(li) + ε̄

)
− F̄

(
p− q̂(li)

)]
where the last equality follows by substituting

li = .5(1 +G(p− q̂(li))) = .5

(
1 +

F̄ (p− q̂(li) + ε̄)

F̄ (p− q̂(li))

)
.

Thus, we can define the function

g(li) := E[Yi | l0, Yj , j < i], (25)
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which is measurable since F (·) is measurable. Finally, note that the above derivation implies that

finite difference bias terms βi = 0,∀i, which follows from the fact that the distribution function F

is known.

Assumption (A.2.3) follows from the fact that F is continuous.

Assumption (A.2.4) is shown in Lemma 2.

Assumption (A.2.5) is immediate since βi = 0,∀i, as the proof of Assumption (A.2.2) shows.

Before applying the theorem it is useful to further decompose li as follows. First note that

Yi := g(li) + M̄i, where the function g(li) is the drift function that we defined in (25) and M̄i is a

martingale difference noise given by

M̄i = (1− li)1
{
ri = rL

}
− li1

{
ri = rD

}
− g(li).

Then, it is straightforward to see that

li = li−1 + (Bi)
−1g(li−1) + (Bi)

−1Zi−1 + (Bi)
−1M̄i−1.

Now we can apply (Kushner and Yin, 2003, Chapter 5, Theorem 2.1), to conclude that li

converges almost surely to the set of locally asymptotically stable points of the ODE l̇ = g(l) that

we denote with S. We next show that the ODE has a unique locally asymptotically stable point

denoted by l∗ := .5(1 + G(p − q)). For that purpose we define the candidate Lyapunov function

V (l) = (l − l∗)2. We need to show that V̇ (l) = ∇V (l)g(l) < 0 for all l ∈ [0, 1]/{l∗} and V̇ (l∗) = 0.

See Khalil (2002) for details on Lyapunov stability. Thus, we have to show that g(l) > (<)0 when

l < (>)l∗ (or equivalently when q̂(l) < (>)q).

Case 1: l < l∗ (or equivalently q̂(l) < q). In this case min(q̂(l), q + ε̄) = q̂(l) and g(l) =

.5
[
F̄ (p − min(q̂(l), q − ε̄)) − F̄ (p − q̂(l) + ε̄)

]
. In addition, −min(q̂(l), q − ε̄) ≥ −q̂(l) + ε̄. If

q̂(l) ≤ q − ε̄, then g(l) = .5
[
F̄ (p− q̂(l))− F̄ (p− q̂(l) + ε̄)

]
> 0, since F̄ is a decreasing function. If

q > q̂(l) > q − ε̄, then g(l) = .5
[
F̄ (p− q + ε̄)− F̄ (p− q̂(l) + ε̄)

]
> 0, since q̂(l) < q. We conclude

that g(l) > 0 in this case.

Case 2: l > l∗ (or equivalently q̂(l) > q). In this case g simplifies to

g(l) = .5
[
F̄
(
p−min(q̂(l), q + ε̄)

)
+ F̄

(
p− q + ε̄

)
− F̄

(
p− q̂(l) + ε̄

)
− F̄

(
p− q̂(l)

)]
,

which can be shown to be negative, using −min(q̂(l), q + ε̄) > −q̂(l) and that F̄ is decreasing.

We conclude that V̇ (l) < 0 at all points l 6= l∗. It is easy to verify through the above expressions

that at l = l∗ and q̂(l) = q we get that V̇ (l∗) = 0. Also, by construction V (l∗) = 0, which establishes
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that S = {l∗} and that li → l∗ almost surely. Applying the continuous mapping theorem, we get

that q̂i → q almost surely, which completes the proof.

Lemma 3. (a) For all x, y, z ∈ R we have

|min(x, y)−min(z, y)| ≤ |x− z| and |max(x, y)−max(z, y)| ≤ |x− z|.

(b) For x1, x2 ≥ a > 0 and y1, y2 ≥ b > 0∣∣∣ x1

x1 + y1
− x2

x2 + y2

∣∣∣ ≤ 1

a
(|x1 − x2|+ |y1 − y2|).

Proof. (a) Minimum operator: If x, z ≥ y or x, z ≤ y this holds trivially. If x ≤ y and z ≥ y then

|min(x, y) −min(z, y)| = |x − y| = y − x ≤ z − x = |x − z|. For the maximum operator take −x,

−y, and −z.

(b) From the triangular inequality,∣∣∣ x1

x1 + y1
− x2

x2 + y2

∣∣∣ ≤ ∣∣∣ x1

x1 + y1
− x1

x1 + y2

∣∣∣+
∣∣∣ x1

x1 + y2
− x2

x2 + y2

∣∣∣
=

x1

x1 + y1

∣∣∣ y1 − y2

x1 + y2

∣∣∣+
y2

x1 + y2

∣∣∣x1 − x2

x2 + y2

∣∣∣
≤ 1

a
(|x1 − x2|+ |y1 − y2|).

Proof of Proposition 3. Throughout this proof, to reduce the notational burden and without loss

of generality, we rescale time such that Λ = 1. We verify the conditions of Theorem 2.2 of Kurtz

(1977/78). First we note that Xn(t) ∈ Z2
+, X̄n(t) = Xn(t)/n ∈ {k/n | k ∈ Z2

+} as required. To

satisfy the conditions of the theorem we validate the construction (12) and then show that the

following inequalities hold

γ(x) ≤ Γ1(1 + |x|) and |γ(x)− γ(y)| ≤ Γ2|x− y| (26)

for x, y ∈ R2 and x, y ≥ [L0, D0] componentwise, and for some finite constants Γ1 and Γ2.

The integral form of X̄n(t) in (12) follows from Poisson arrivals and Poisson thinning of the

35



standard Poisson process N . For example, L̄n(t) can be written in the form,

L̄n(t) =
1

n

∫ t

0
1
{
rs = rL | X̄n(s)

}
dAn(s)

=
1

n
NL

(∫ t

0
P
(
rs = rL | X̄n(s)

)
ds

)

=
1

n
NL

(∫ t

0
γL
(
X̄n(s)

)
ds

)
,

where An is a Poisson process with rate n and, with some abuse of notation, rs is a review given

by a consumer arriving at time s. The second equality follows by splitting the Poisson process

into likes, dislikes, and outside options; the probability with which an arriving consumer submits

one of these reviews depends on his quality preference and on his observable information Xn(s).

The Poisson thinning property guarantees that the process that counts only those consumers who

like the product is still Poisson with rate proportional to the probability of liking the product.

Similarly, this can be shown for Dn(t).

Finally, focusing on the rate conditions required for Theorem 2.2 of Kurtz (1977/78). The first

inequality in (26) holds for Γ1 = 1 since γk are probabilities for k = L,D. We derive the last

inequality there for γL in two steps. First, we observe that γL(Xn(t)) depends on Xn(t) through

q̂(Xn(t)). It follows from Lemma 3(a) and the fact that the density of α is uniformly bounded by

fmax that γL is Lipschitz continuous in q ∈ [qmin, qmax]. Second, we show that q̂(x) is Lipschitz

continuous in x = Xn(t). Lemma 3(b) for a = L0 and b = D0 establishes that q∗, defined in (10),

is Lipschitz continuous in x = Xn(t). The projection operator of q∗ onto [qmin, qmax] preserves the

Lipschitz property. Similarly, one can show that γD is Lipschitz continuous, which establishes that

γ is Lipschitz. Finally, invoking Theorem 2.2 of Kurtz (1977/78) we complete the proof.

Proof of Proposition 4. The ODEs (16) reduce to

˙̄L(t) = Λ

(
ᾱ+ q̂t − p

ᾱ

)
and ˙̄D(t) = 0,

noting that D̄(t) = 0 and plugging (17) into the expression for ˙̄L(t) yields a linear ODE for L̄(t),

i.e., ˙̄L(t) =
Λε̄

2ᾱ
(1 + L̄0/D̄0 + L̄(t)/D̄0). This equation is readily solvable in closed form, and the

particular solution with initial condition L̄0 is given by

L̄(t) = (L̄0 + D̄0)

[
exp

(
Λε̄

2ᾱD̄0
t

)
− 1

]
. (27)
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The trajectory for q̂t can now be obtained by replacing (27) and D̄(t) = 0 into (17), which yields

q̂t = p− ᾱ+
ε̄

2

(
L̄0 + D̄0

D̄0

)
exp

(
Λε̄

2ᾱD̄0
t

)
,

and the time-to-learn can be calculated by setting q̂τ = q − ε̄ and then solving for τ , which yields

τ =
2ᾱD̄0

Λε̄
log

2(ᾱ+ q − ε̄− p)
ε̄

(
D̄0

L̄0 + D̄0

) .

Rewriting (4) and (5) for α uniformly distributed we get that

L̄0 =
wΛ(ᾱ+ q0 − p− ε̄/2)

ᾱ
and D̄0 =

wΛε̄

2ᾱ
,

and plugging them in q̂t and τ yields

q̂t = p− ᾱ+ (ᾱ+ q0 − p) exp

(
t

w

)
and τ = w log

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)
.

In the sequel, we provide a sketch for the solution of the ODE’s derived in the main body of

the paper for the cases not considered in Proposition 4.

Overestimating prior (q0 > q); phase 1 of learning q̂t > q + ε̄. The following proposition

characterizes the trajectories for L̄(t) and D̄(t) in this case. From these one can easily obtain the

trajectory for q̂t by using (17).

Proposition 7. Consider the ODEs for the learning dynamics given in (16) and assume that

q0 > q. Then, for t ≤ τ ,

L̄(t) = Λ

(
ᾱ+ q − p

ᾱ

)
t, (28)

and D̄(t) is defined implicitly by

(
1 +

L̄(t) + D̄(t)

L̄0 + D̄0

)ᾱ+q−p(
1 +

(ε̄/2)L̄(t)− (ᾱ+ q − p)D̄(t)

(ε̄/2)L̄0 − (ᾱ+ q − p)D̄0

)ε̄/2
= 1. (29)
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Proof. (Sketch only.) In this case the ODEs (16) reduce to

˙̄L(t) = Λ

(
ᾱ+ q − p

ᾱ

)
and ˙̄D(t) =

Λ

ᾱ

p− ᾱ+
ε̄

2

(
1 +

L̄0 + L̄(t)

D̄0 + D̄(t)

)
− q

 .
It can be easily verified that the solution for L̄(t) with initial conditions L̄0 is given by (28), and

substituting it into the ODE for dislikes yields

˙̄D(t) =
Λ

ᾱ

[
ε̄

2
+
ε̄

2

(
ᾱ+ q − p

ᾱ

)
Λt

D̄0 + D̄(t)
+
ε̄

2

L̄0

D̄0 + D̄(t)
− (ᾱ+ q − p)

]
.

Which is an ODE of the form

˙̄D(t) = a+ b
t

D̄0 + D̄(t)
+ c

1

D̄0 + D̄(t)
,

where

a =
Λ

ᾱ

(
p− ᾱ− q +

ε̄

2

)
, b =

Λ2ε̄

2ᾱ2
(ᾱ+ q − p), c =

Λε̄L̄0

2ᾱ
.

The above ODE may be converted into an equation with separable variables by setting

Z(t) =
bt+ c

D̄0 + D̄(t)
, that is, D̄(t) =

bt+ c

Z(t)
− D̄0.

In fact, we have

˙̄D(t) =
b

Z(t)
− bt+ c

Z(t)2
Ż(t), which implies that Ż(t) = (bZ(t)− aZ(t)2 − Z(t)3)

(
1

bt+ c

)
.

This equation for Z(t) is solvable, which, in turn, leads to the solution for D̄(t) given in (29).

Phase 2 of learning q− ε̄ < q̂t < q+ ε̄. In this case the ODEs are less tractable, nonetheless we

will establish a useful structural property for q̂t in Proposition 8, and then provide an approximation

of the q̂t trajectory when ε̄ is small.

Proposition 8. Assume that q − ε̄ < q̂t0 < q + ε̄ for some t0 > 0. Then, q̂t → q as t → ∞.

Moreover, if q̂t0 < q then q̂t is strictly monotonically increasing for all t ≥ t0, otherwise, if q̂t0 > q

then q̂t is strictly monotonically decreasing for all t ≥ t0.
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Proof. (Sketch only.) The ODEs (16) reduce to

˙̄L(t) =
Λε̄

4ᾱ

(
1 +

L̄0 + L̄(t)

D̄0 + D̄(t)

)
+

Λ

2ᾱ
(ᾱ+ q − ε̄− p), (30)

˙̄D(t) =
Λε̄

4ᾱ

(
1 +

L̄0 + L̄(t)

D̄0 + D̄(t)

)
− Λ

2ᾱ
(ᾱ+ q − ε̄− p). (31)

It follows from Assumption 1 that p < ᾱ− ε̄, which implies that ˙̄L(t) > 0 for all t, moreover, using

equation (17) for q̂t, it is easy to see that ˙̄D(t) > 0 if and only if q̂t > q− ε̄. These, coupled with the

fact that L(t0) and D(t0) are strictly positive, imply that L̄(t) and D̄(t) are positive and increasing

for all t ≥ t0. Using l̄(t) = L̄0 + L̄(t)/(L̄0 + L̄(t) + D̄0 + D̄(t)), we can now write the ODE for the

fraction of likes l̄(t) as

˙̄l(t) =
1

L̄0 + L̄(t) + D̄0 + D̄(t)

[
(1− l̄(t)) ˙̄L(t)− l̄(t) ˙̄D(t)

]
, (32)

and noting that L̄0 + L̄(t) + D̄0 + D̄(t) > 0 for all t ≥ t0, we have that the steady state l∗ must be

such that (32), evaluated at l∗, is equal to 0. Noting that 1+(L̄0 + L̄(t))/(D̄0 + D̄(t)) = 1/(1− l̄(t))
and replacing (30) and (31) into condition (32) we find the unique steady state

l∗ =
ᾱ+ q − p− ε̄/2

ᾱ+ q − p
.

It is easy to verify that ˙̄l(t) > 0 if and only if l̄(t) < l∗. Recalling that q̂t = p− ᾱ+
ε̄

2(1− l̄(t))
and

replacing in l∗ for l̄(t) we can readily verify that quality in steady state is equal to q. Moreover,

since q̂t is increasing in l̄(t), it follows from ˙̄l(t) > 0 ⇔ l̄(t) < l∗ that dq̂t/dt > 0 ⇔ q̂t < q. Thus,

if q̂t0 < q then q̂t is strictly monotonically increasing in t, otherwise it is strictly monotonically

decreasing.

When ε̄ is small we can approximate the trajectories of L̄(t) and D̄(t) as follows. Note that the

initial conditions for the system of ODEs defined by (30) and (31), when q̂τ = q − ε̄, are given by

(t0 = τ, L̄τ , D̄τ ,
˙̄Lτ ,

˙̄Dτ ) where

L̄τ = w
Λ

ᾱ
(ᾱ+ q − 2ε̄− p), D̄τ = w

Λ

2ᾱ
ε̄, ˙̄Lτ =

Λ

ᾱ
(ᾱ+ q − ε̄− p), ˙̄Dτ = 0. (33)
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First, note that we can write

L̄(t) = L̄τ +

∫ τ+t

τ

˙̄L(s) ds = L̄τ + ˙̄Lτ t+

∫ τ+t

τ
( ˙̄L(s)− ˙̄Lτ ) ds,

D̄(t) = D̄0 +

∫ τ+t

τ

˙̄D(s) ds = D̄0 +

∫ τ+t

τ

˙̄D(s) ds.

From (30) and (33) it is easy to see that ˙̄L(s)− ˙̄Lτ = ˙̄D(s), and (31) and (33) imply that

˙̄D(s) =
Λε̄

4ᾱ

(
L̄(s)

D̄(s)
− L̄τ
D̄τ

)
.

We already established that ˙̄D(s) > 0 if and only if q̂s > q − ε̄, it follows from the definition of τ

and Proposition 8 that ˙̄D(s) > 0 for all s > τ . Using this property, it is easy to verify that

˙̄D(s) <
Λε̄

4ᾱ

(
L̄(s)− L̄τ

D̄τ

)
≤ Λε̄

4ᾱ

(
Λ(s− τ)

D̄τ

)
= O(ε̄).

Setting χ(t) =
∫ τ+t
τ

˙̄D(s) ds, we can rewrite L̄(t), D̄(t) as follows

L̄(t) = L̄τ + ˙̄Lτ t+ χ(t) and D̄(t) = D̄0 + χ(t),

which allow us to express the ratio for the number of likes to dislikes as

L̄(t)

D̄(t)
=

L̄τ + ˙̄Lτ t+ χ(t)

D̄0

(
χ(t)

D̄0 + χ(t)

)
=

L̄τ + ˙̄Lτ t

D̄0
− χ(t)

D̄0

(
L̄τ + ˙̄Lτ t

D̄0
− 1

)
+ ξ + ξ′,

where

ξ =
L̄τ + ˙̄Lτ t+ χ(t)

D̄0

(
χ(t)

D̄0
− χ(t)

D̄0 + χ(t)

)
= O(ε̄) and ξ′ = −

(
χ(t)

D̄0

)2

= O(ε̄2).

When ε̄ is small, the ratio of likes to dislikes can be approximated by

L̄(t)

D̄(t)
=
L̄τ
D̄0

+
˙̄Lτ
D̄0

t− L̄τ − D̄0

D̄2
0

χ(t)−
˙̄Lτ
D̄2

0

χ(t)t.

Substituting the above ratio into equation (31), and differentiating twice one obtains a third order,

non-homogeneous linear ODE, that is solvable in terms of the matrix exponential (not in closed

form due to the non-homogeneous coefficients).
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Proofs of Section 4

Lemma 4. The monopolist’s revenue function (20) can be written as

R̃(p) = Λ
[
h0(p) · π0(p) + h∞(p) · π∞(p)

]
where

h0(p) =

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)1−δw
− 1

1/w − δ
and h∞(p) =

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δw
δ

.

Moreover, R̃(p) is such that |R̃(p)− R̄(p)| ≤ ε̄[Λ(p/ᾱ)h∞(p)].

Proof. First, recall that when q0 < q − ε̄ we have

q̂t = p− ᾱ+ (ᾱ+ q0 − p) exp

(
t

w

)
and τ = w log

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)
,

substituting into the first term in the right-hand side of (20) yields∫ τ

0
e−δtπt(p) dt =

∫ τ

0
e−δt

(ᾱ+ q̂t − p)p
ᾱ

dt

=
(ᾱ+ q0 − p)p

ᾱ
·

[
et(1/w−δ)

1/w − δ

]τ
0

=
(ᾱ+ q0 − p)p

ᾱ
·

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)1−δw
− 1

1/w − δ

= π0(p) · h0(p).

Similarly, the second term in the right-hand side of (20) simplifies to∫ ∞
τ

e−δtπ∞(p) dt =

∫ ∞
τ

e−δt
(ᾱ+ q − p)p

ᾱ
dt

=
(ᾱ+ q − p)p

ᾱ
·

[
e−δt

δ

]∞
τ

=
(ᾱ+ q − p)p

ᾱ
·

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δw
δ

= π∞(p) · h∞(p).

Thus we have established that R̃(p) = Λ
[
h0(p) · π0(p) + h∞(p) · π∞(p)

]
.
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To establish the bound, note that q̂t ≥ q − ε̄ for all t ≥ τ implies the following inequality

|R̃(p)− R̄(p)| = Λ

(
p

ᾱ

)∫ ∞
τ

e−δt(q − q̂t) dt

≤ ε̄ · Λ
(
p

ᾱ

)∫ ∞
τ

e−δt dt

= ε̄ · Λ
(
p

ᾱ

) ( ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δw
δ

= ε̄ · Λ
(
p

ᾱ

)
h∞(p).

Proof of Proposition 5. The proof will proceed as follows. First we establish that for ε̄ sufficiently

small the revenue maximization problem (21) admits a unique optimal solution. Then we establish

its properties, proving in order Part (a) and Part (b).

Consider the expression for R̃(p) given in Lemma 4. Differentiating with respect to p once, we

get

R̃′(p) = Λ
[
h′0(p) · π0(p) + h0(p) · π′0(p) + h′∞(p) · π∞(p) + h∞(p) · π′∞(p)

]
.

and, differentiating twice, we get

R̃′′(p) = Λ
[
h′′0(p) · π0(p) + 2h′0(p) · π′0(p) + h0(p) · π′′0(p)

+h′′∞(p) · π∞(p) + 2h′∞(p) · π′∞(p) + h∞(p) · π′′∞
]
.

Noting that π′′0(p) = π′′∞(p) = −2/ᾱ, the latter equation simplifies to

R̃′′(p) = Λ

{[
h′′0(p) · π0(p) + h′′∞(p) · π∞(p)

]
+ 2

[
h′0(p) · π′0(p) + h′∞(p) · π′∞(p)

]
− 2

ᾱ

[
h0(p) + h∞(p)

]}
,

where

h0(p) + h∞(p) =

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)1−δw
− 1

1/w − δ
+

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δw
δ

,

h′0(p) · π′0(p) + h′∞(p) · π′∞(p) =

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−1−δww(q0 − q + ε̄)[p(q − q0) + ε̄(ᾱ− 2p+ q0)]

ᾱ(ᾱ+ q0 − p)3
,

h′′0(p) · π0(p) + h′′∞(p) · π∞(p) =(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δww(q0 − q + ε̄)[(p− q − ᾱ)(q − q0) + ε̄(3(α− p+ q)− δw(q − q0))− ε̄2(2− δw)]p

ᾱ(ᾱ+ q − ε̄− p)2(ᾱ+ q0 − p)2
.

It follows from Assumption 1(i) that the revenue function R̃(p) = R̃(p, ε̄) ∈ C∞(ε̄) for all p ∈
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[0, pmax]. This can be easily verified by noting that pmax < ᾱ− ε̄ implies that the quantity

ᾱ+ q − ε̄− p
ᾱ+ q0 − p

in h0 and h∞ is always bounded away from 0. The statement above implies that R̃′′(p, ε̄) is a

continuous function of ε̄ for all p ∈ [pmin, pmax], in particular it is continuous at ε̄ = 0. We will

now prove that, when ε̄ is sufficiently small, the revenue function R̃(p) is strictly concave for all

p ∈ [pmin, pmax]. Evaluating second-derivative R̃′′(p, ε̄) at ε̄ = 0 yields

R̃′′(p, 0) =

Λ ·
2−

(
ᾱ+ q − p
ᾱ+ q0 − p

)−δw( 2

δw
+ (q − q0)

(
2ᾱ− 2p− q + 3q0 − δw(q − q0)

(ᾱ+ q0 − p)2
− ᾱ+ q

ᾱ+ q − p
· (q − q0)(δw − 1)

(ᾱ+ q0 − p)2

))
ᾱ(1/w − δ)

.

(34)

Case 1: δw > 1. The denominator of the above equation is always negative. Moreover, since

ᾱ+ q

ᾱ+ q − p
> 1 for all p ∈ (0, ᾱ+ q0)

and the numerator of (34) is strictly increasing in this term, replacing (ᾱ + q)/(ᾱ + q − p) with 1

we find that the numerator of (34) is strictly bigger than

2

(
1−

(
ᾱ+ q − p
ᾱ+ q0 − p

)−δw ( 1

δw
+

q − q0

ᾱ+ q0 − p

))
(35)

and since δw > 1, replacing 1/δw with 1 we find that the above quantity is strictly bigger than

2

(
1−

(
ᾱ+ q − p
ᾱ+ q0 − p

)1−δw
)
. (36)

Now note that q > q0 and δw > 1 imply that(
ᾱ+ q − p
ᾱ+ q0 − p

)1−δw
< 1 for all p < ᾱ+ q0.

This implies that (36) is strictly bigger than 0 and so is the numerator of (34). Thus, we conclude

that R̃′′(p, 0) < 0 for all p ∈ (0, ᾱ+ q0).

Case 2: δw < 1. The denominator in equation (34) is always positive. Moreover, since

ᾱ+ q

ᾱ+ q − p
> 1 for all p ∈ (0, ᾱ+ q0)
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and the numerator is strictly decreasing in this term, replacing (ᾱ+ q)/(ᾱ+ q − p) with 1 we find

that the numerator of (34) is strictly smaller than the quantity in (35). Moreover, since δw < 1,

replacing 1/δw with 1 in (35) we find that the quantity in (35) is strictly smaller than the quantity

in (36). Now note that q > q0 and δw < 1 imply that

(
ᾱ+ q − p
ᾱ+ q0 − p

)1−δw
> 1 for all p < ᾱ+ q0.

This implies that (36) is strictly smaller than 0 and so is the numerator of (34). Thus, we conclude

that R̃′′(p, 0) < 0 for all p ∈ (0, ᾱ+ q0).

Case 1 and Case 2 establish that R̃′′(p, 0) < 0 for all p ∈ (0, ᾱ + q0). Moreover, since R̃′′(p, ε̄)

is continuous at ε̄ = 0, there exists ε′ > 0 such that R̃′′(p, ε̄) < 0 for all ε̄ < ε′. In particular,

this implies that when ε̄ is sufficiently small, R̃(p) is strictly concave for all p ∈ [pmin, pmax], and

therefore Problem (21) admits a unique optimal solution.

Proof of Part (a). First, note that, since R̃(p) is strictly concave, then R̃′(p) is strictly decreasing

for all p ∈ [pmin, pmax].

Now, note that R̃′(p, ε̄) is a continuous function of ε̄ at ε̄ = 0 for all p ∈ [0, pmax]. This

follows directly from R̃(p, ε̄) ∈ C∞(ε̄) for all p ∈ [0, pmax], which was established above. We will

now prove that p∗ ∈
[
pm(q0), pm(q)

]
. By definition, pm(q0), pm(q) ∈ [pmin, pmax], and it is easy to

verify that that pm(q0) = max{pmin, (ᾱ + q0)/2}. If pm(q0) = pmin then clearly p∗ ≥ pm(q0). If

pm(q0) = (ᾱ+ q0)/2, then evaluating the first-derivative R̃′(p, ε̄) at (pm(q0), 0) yields

R̃′(pm(q0), 0) = Λ · q − q0

ᾱδ

(
2
ᾱ+ q

ᾱ+ q0
− 1

)−δw
> 0

since q > q0, thus p∗ > pm(q0). It follows from Assumption 1(i) that pm(q) = (ᾱ + q)/2, so

evaluating the first-derivative at (pm(q), 0) we have

R̃′(pm(q), 0) = Λ · (q − q0)

1−
(

ᾱ+ q

ᾱ+ 2q0 − q

)1−δw

ᾱ(1/w − δ)
. (37)

Note that q > q0 implies that (
ᾱ+ q

ᾱ+ 2q0 − q

)1−δw
> 1,

which in turn implies that when δw > 1 the denominator in (37) is always strictly negative and

the numerator is always strictly positive. When δw < 1 the reverse inequalities hold for the

denominator and numerator in (37), therefore R̃′(pm(q), 0) < 0. By continuity of R̃′(p, ε̄) at ε̄ = 0,

there exists ε′′ > 0 such that R̃′(pm(q0), ε̄) > 0 and R̃′(pm(q), ε̄) < 0 for all ε̄ < ε′′. Thus proving
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that, for ε̄ sufficiently small, we have p∗ ∈ [pm(q0), pm(q)].

Proof of Part (b). Setting R̃′(p) = 0, we get the following first-order condition for the monopolist’s

problem

h′0(p) · π0(p) + h0(p) · π′0(p) + h′∞(p) · π∞(p) + h∞(p) · π′∞(p) = 0.

Dividing both sides of the above equation by h0(p), and then dividing again by 1 + h∞(p)/h0(p),

the first-order condition can be rewritten as

(1− ω(p)) · π′0(p) + ω(p) · π′∞(p) + ξ(p) = 0 (38)

where

ω(p) =
h∞(p)/h0(p)

1 + h∞(p)/h0(p)
=

(ᾱ+ q0 − p)(1− δw)

ᾱ+ q0 − p+ δw

(
q − ε̄− q0 − (ᾱ+ q0 − p)

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)δw) (39)

and

ξ(p) =
(h′0(p)/h0(p)) · π0(p) + (h′∞(p)/h0(p)) · π∞(p)

1 + h∞(p)/h0(p)

= ε̄ · p(q0 − q + ε̄)(1− δw)δw

ᾱ(ᾱ+ q − ε̄− p)

ᾱ+ q0 − p+ δw

(
q − ε̄− q0 − (ᾱ+ q0 − p)

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)δw) .

Clearly, as δ → 0 or w → 0 we have ω(p) → 1 and ξ(p) → 0 for all p ∈ (0, ᾱ + q0), consequently

the left-hand side of (38) goes to π′∞(p). Finally, let p∗ = p∗(δ, w) be the unique solution of (38)

and note that by strict concavity R′′(p∗) < 0, then p∗ converges to the solution of π′∞(p) = 0, i.e.

p∗(δ, w) → pm(q) as δ → 0 or w → 0. For the other case, as δ → ∞ or w → ∞ we have ω(p) → 0

for all p ∈ (0, ᾱ + q0). This is easy to verify by first dividing numerator and denominator in (39)

by δw, next noting that
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

> 1

since q0 < q − ε̄, and then taking the limit. Moreover, as δ →∞ or w →∞ we have ξ(p)→ 0 for

all p ∈ (0, ᾱ + q0), this can be verified as follows. Divide numerator and denominator by δw and

note that

ξ(p) = ε̄ · A+B · δw
C

δw
+D ·

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)δw ,
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for the obvious choices of A,B,C and D. It is easy to see that since

ᾱ+ q − ε̄− p
ᾱ+ q0 − p

> 1,

then ξ(p)→ 0 as δ →∞ or w →∞. Thus, the left-hand side of (38) goes to π′0(p) and p∗ converges

to the solution of π′0(p) = 0, i.e. p∗(δ, w)→ (ᾱ+ q0)/2 as δ →∞ or w →∞, if (ᾱ+ q0)/2 ≥ pmin.

Otherwise, if pmin > (ᾱ + q0)/2 then p∗(δ, w) → pmin as δ → ∞ or w → ∞. Recalling that

pm(q) = max{pmin, (ᾱ+ q0)/2} completes the proof.

Proofs of Section 5

First, we argue that setting s ≤ τ in the monopolist’s problem is without loss of generality. We

define formally the discounted revenue, for a generic s > 0, as

R̃(p0, p1, s) =

Λ

(∫ min{s,τ}

0
e−δtπt(p0) dt+

∫ max{s,τ}

min{s,τ}
e−δt[πt(p1)1{s ≤ τ}+ π∞(p0)1{s > τ}] dt+

∫ ∞
max{s,τ}

e−δtπ∞(p1) dt

)
.

When s ≤ τ the above equation reduces to (22), when s > τ the revenue function is given by

R̃(p0, p1, s) = Λ

(∫ τ

0
e−δtπt(p0) dt+

∫ s

τ
e−δtπ∞(p0) dt+

∫ ∞
s

e−δtπ∞(p1) dt

)
.

Suppose that R̃(p∗0, p
∗
1, s
∗) is optimal and s∗ > τ , clearly it must be that p∗1 = argmax

p1∈[pmin,pmax]
{π∞(p1)}.

But this implies that R̃(p∗0, p
∗
1, τ) ≥ R̃(p∗0, p

∗
1, s
∗), thus it is without loss of generality to consider

only policies such that s ≤ τ .

Before proving the proposition, we introduce the following definition

τk := inf{t : t ≥ 0, |q − q̂t| ≤ ε̄ | qk, pk}, k = 0, 1,

where τk denotes the time that the prevailing quality estimate reaches within ε̄ from q, starting from

a prior qk and a price pk. This is analogous to the simpler definition of τ = inf{t : t ≥ 0, |q− q̂t| ≤ ε̄}
that was introduced previously, and it simplifies the exposition of the following proofs.

The following lemma is needed for the proof of Proposition 6.

Lemma 5. The monopolist’s revenue function (22) can be written as

R̃(p0, p1, s) = Λ
[
h0(s) · π0(p0) + e−δs

[
hs(p1) · πs(p1) + h∞(p1) · π∞(p1)

]]
,
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where

h0(s) =
es(1/w−δ) − 1

1/w − δ
, hs(p1) =

(
ᾱ+ q − ε̄− p1

ᾱ+ q1 − p1

)1−δw1

− 1

1/w1 − δ
, h∞(p1) =

(
ᾱ+ q − ε̄− p1

ᾱ+ q1 − p1

)−δw1

δ
.

Proof. (Sketch only.) First, note that q0 < q − ε̄ and that s ≤ τ implies that q1 ≤ q − ε̄. Thus, for

all t ≤ τ the quality estimate is given by

q̂t =

p0 − ᾱ+ (ᾱ+ q0 − p0) exp
(
t
w

)
if t < s

p1 − ᾱ+ (ᾱ+ q1 − p1) exp
(
t−s
w1

)
if t ≥ s

.

Following the argument of the proof of Lemma 4, we establish the desired result.

Proof of Proposition 6. First we establish that p∗1 ∈
[
pm(q1), pm(q)

]
. Differentiating R̃ twice with

respect to p1 and then evaluating at ε̄ = 0 yields

∂2

∂p2
1

R̃(p0, p1, s)

∣∣∣∣∣
ε̄=0

= Λ · e−sδ·

2−
(
ᾱ+ q − p1

ᾱ+ q1 − p1

)−δw1
(

2

δw1
+ (q − q1)

(
2ᾱ− 2p1 − q + 3q1 − δw1(q − q1)

(ᾱ+ q1 − p1)2
− ᾱ+ q

ᾱ+ q − p1
· (q − q1)(δw1 − 1)

(ᾱ+ q1 − p1)2

))
ᾱ(1/w1 − δ)

.

(40)

The following two cases establish that the equation above is always negative.

Case 1: δw > 1. The denominator of the equation (40) is always negative. Since

ᾱ+ q

ᾱ+ q − p1
> 1 for all p1 ∈ (0, ᾱ+ q1)

and the numerator of (40) is strictly increasing in this term, replacing (ᾱ+ q)/(ᾱ+ q − p1) with 1

we find that the numerator of (40) is strictly bigger than

2

(
1−

(
ᾱ+ q − p1

ᾱ+ q1 − p1

)−δw1
(

1

δw1
+

q − q1

ᾱ+ q1 − p1

))
(41)

and since δw1 > 1, replacing 1/δw1 with 1 we find that the above quantity is strictly bigger than

2

(
1−

(
ᾱ+ q − p1

ᾱ+ q1 − p1

)1−δw1
)
. (42)
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Now note that q > q1 and δw1 > 1 imply that(
ᾱ+ q − p1

ᾱ+ q1 − p1

)1−δw1

< 1 for all p1 < ᾱ+ q1.

This implies that (42) is strictly bigger than 0 and so is the numerator of (40). Thus, we conclude

that (40) is strictly smaller than 0 for all p1 ∈ (0, ᾱ+ q1).

Case 2: δw < 1. The denominator in equation (40) is always positive. Since

ᾱ+ q

ᾱ+ q − p1
> 1 for all p1 ∈ (0, ᾱ+ q1)

and the numerator of (40) is strictly decreasing in this term, replacing (ᾱ + q)/(ᾱ + q − p1) with

1 we find that the numerator of (40) is strictly smaller than the quantity in (41). Moreover, since

δw1 < 1, replacing 1/δw1 with 1 in (41) we find that the quantity in (41) is strictly smaller than

the quantity in (42). Now note that q > q1 and δw1 > 1 imply that

(
ᾱ+ q − p1

ᾱ+ q1 − p1

)1−δw1

> 1 for all p1 < ᾱ+ q1.

This implies that (42) is strictly smaller than 0 and so is the numerator of (40). Thus, we conclude

that (40) is strictly less than 0 for all p1 ∈ (0, ᾱ+ q1).

Case 1 and Case 2 prove that

∂2

∂p2
1

R̃(p0, p1, s)

∣∣∣∣∣
ε̄=0

< 0 for all feasible s, p0 and p1 ∈ (0, ᾱ+ q1).

Moreover, since
∂2

∂p2
1

R̃(p0, p1, s) as a function of ε̄, is continuous at ε̄ = 0 for all feasible s, p0 and

p1 ∈ [0, pmax], it follows that, when ε̄ is sufficiently small, R̃(p0, p1, s) is strictly concave in p1 for

all feasible s, p0 and p1 ∈ [pmin, pmax].

We next show that p∗1 ∈ [pm(q1), pm(q)]. By definition, pm(q1), pm(q) ∈ [pmin, pmax], and it is

easy to verify that that pm(q1) = max{pmin, (ᾱ+ q1)/2}. If pm(q1) = pmin then clearly p∗ ≥ pm(q1).

If pm(q1) = (ᾱ+ q1)/2, then evaluating the first-derivative at p1 = pm(q1) and ε̄ = 0 yields

∂

∂p1
R̃(p0, p

m(q1), s)

∣∣∣∣∣
ε̄=0

= Λ · e−δs · q − q1

ᾱδ

(
2
ᾱ+ q

ᾱ+ q1
− 1

)−δw1

> 0

since q > q1. It follows from Assumption 1(i) that pm(q) = (ᾱ + q)/2, so evaluating the first-
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derivative at p1 = pm(q) and ε̄ = 0 we have

∂

∂p1
R̃(p0, p

m(q), s)

∣∣∣∣∣
ε̄=0

= Λ · e−δs · (q − q1)

1−
(

ᾱ+ q

ᾱ+ 2q1 − q

)1−δw1

ᾱ(1/w1 − δ)
. (43)

Note that q > q1 implies that (
ᾱ+ q

ᾱ+ 2q1 − q

)1−δw1

> 1,

which implies that when δw1 > 1 the denominator in (43) is always strictly negative and the nu-

merator is always strictly positive. When δw1 < 1 the reverse inequalities hold for the denominator

and numerator in (43). Therefore

∂

∂p1
R̃(p0, p

m(q), s)

∣∣∣∣∣
ε̄=0

< 0.

By continuity at ε̄ = 0 it follows that

∂

∂p1
R̃(p0, p

m(q1), s) > 0 and
∂

∂p1
R̃(p0, p

m(q), s) < 0,

when ε̄ is sufficiently small.

Finally, to establish that p∗0 ≤ p∗1 we first obtain an equivalent problem (see Boyd and Van-

denberghe (2004, Chapter 4, Section 4.1.3) for the formal definition of equivalent optimization

problems) by making a change of variable. Noting that s ≤ τ if and only if s ≤ τ0, we replace the

last constraint in the monopolist’s optimization problem and set φ = s/τ0, equivalently s = φτ0.

We let the monopolist choose φ ∈ [0, 1] instead of s. It is clear that the optimal solution (p∗0, p
∗
1, s
∗)

of the original problem, can be readily obtained from the optimal solution (p∗0, p
∗
1, φ
∗) of the trans-

formed problem and vice versa, thus the two problems are equivalent. Making the change of variable

in the monopolist’s objective (22) yields

R̃(p0, p1, φ) = Λ

(∫ φτ0

0
e−δtπt(p0) dt+

∫ φτ0+τ1

φτ0

e−δtπt(p1) dt+

∫ ∞
φτ0+τ1

e−δtπ∞(p1) dt

)
,

and the associated monopolist’s problem is

max R̃(p0, p1, φ)

s.t. p0, p1 ∈ [pmin, pmax]

φ ∈ [0, 1].

Let (p∗0, p
∗
1, φ
∗) be the optimal solution to the above problem and suppose, by contradiction, that
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p∗0 > p∗1. We will now construct a solution (p′0, p
′
1, φ
′) that strictly dominates (p∗0, p

∗
1, φ
∗). Let

p′0 = p∗1 < p∗0 and note that τ0(p′0) < τ0(p∗0) since

∂τ0

∂p0
=

w(q − ε̄− q0)

(ᾱ+ q − ε̄− p0)(ᾱ+ q0 − p0)
> 0 for all p0 ∈ [pmin, pmax].

Moreover, one can immediately verify that

q1(p0, φ) = p0 − ᾱ+ (ᾱ+ q0 − p0)

(
ᾱ+ q − ε̄− p0

ᾱ+ q0 − p0

)φ
is decreasing in p0 for all φ ∈ [0, 1], thus q1(p∗0, φ

∗) ≤ q1(p′0, φ
∗). Set φ′ ≤ φ∗ to be such that

q1(p∗0, φ
∗) = q1(p′0, φ

′) and note that φ′ is always feasible since φ∗ is feasible. Finally, set p′1 =

argmaxp1{R̃(p′0, p1, φ
′)}. Now, consider the revenue function evaluated at the new solution and

note that ∫ φ′τ0(p′0)

0
e−δtπt(p

′
0) dt >

∫ φ′τ0(p′0)

0
e−δtπt(p

∗
0) dt,

since by construction q̂t ≤ q1(p∗0, φ
∗) and πt(p0) is a strictly concave function of p0 which is maxi-

mized at p0 = (ᾱ+ q̂t)/2 ≤ p′0 < p∗0. Finally, note that our choice of p′1 implies that the continuation

value of the policy (p′0, p
′
1, φ
′) after φ′τ0(p′1) is not smaller than the continuation value of the policy

(p∗0, p
∗
1, φ
∗). Thus, we reach the contradiction R̃(p′0, p

′
1, φ
′) > R̃(p∗0, p

∗
1, φ
∗). It must be p∗0 ≤ p∗1.
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