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We propose and analyze a general periodic-review model in which the firm has access to a set of potential suppliers,
each with specific yield and price characteristics. Assuming that unsatisfied demand is backlogged, the firm incurs three
types of costs: (i) procurement costs, (ii) inventory-carrying costs for units carried over from one period to the next, and
(iii) backlogging costs. A procurement strategy requires the specification, in each period, of (i) the set of suppliers to be
retained, (ii) their respective shares in this period’s replenishments, as well as (iii) the traditional aggregate order placed

(among the various suppliers).

We show how the optimal procurement strategy can be obtained with an efficient algorithm. A base-stock policy is no
longer optimal, but in each period there exists a maximum inventory level, such that orders are placed if and only if the
starting inventory is below this threshold. In each period it is optimal to retain a given number of suppliers that are cheapest
in terms of that period’s effective cost rates, i.e., the expected cost per usable unit. The optimal number of suppliers to
be retained in a given period depends on all current and future parameters and distributions, but this dependence can be
aggregated into a single so-called benchmark cost measure. Under Normal yield and demand distributions, the suppliers’
market shares are determined by a single aggregate score, itself the product of a simple reliability score and a cost score.
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1. Introduction and Summary

Fifty years of multiperiod inventory models have focused
on the challenge of managing demand risks, assuming that
all orders are filled completely. In practice, firms often deal
with less than perfectly reliable suppliers who deliver only
a random fraction of any given order. This type of supply
risk arises because of uncertain yields, disruptions such as
fires, hurricanes, strikes, sabotages and terrorist attacks, or
failure of a replenishment batch to satisfy quality standards.

One strategy for dealing with such supply risks is to
spread orders over multiple suppliers.! Toyota, for example,
started to seek multiple suppliers after a fire at its almost-
exclusive provider (Aisin) caused its assembly plants to
shut down in 1997; see Treece (1997). Suppliers may be
willing to assume part of the supply risks, but only if
orders are placed well in advance, allowing them to engage
in multiple production rounds and draw down inventory
pools. However, purchasing firms are often unable to com-
mit their orders with such extensive lead times. Hewlett-
Packard (HP) launched, in 2000, a Procurement Risk
Measurement framework that “enables the simultaneous
measurement and management of multiperiod and cor-
related demand, cost, and availability uncertainties”; see
Nagali et al. (2008). Orders are split among different num-
bers of suppliers, for different components. To allow for a
beneficial sharing of yield risks with its suppliers, HP often
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engages in flexible quantity agreements, whereby it com-
mits itself to minimum order quantities, the full delivery
of which is guaranteed by the suppliers; on top of these
minimum quantities, HP places short-term orders where it
remains exposed to the yield uncertainties.”> We refer to
Federgruen and Yang (2008a) for several other (e.g., the
vaccine, cell phone and oil refinery) industries in which
multisourcing is essential to mitigate supply risks.

In this paper, we analyze a general periodic-review
model, in which the firm has access to a set of potential
suppliers, each with specific yield and price characteristics.
Assuming that unsatisfied demand is backlogged, the firm
incurs, as in standard inventory models, (i) procurement
costs, (ii) inventory carrying costs for units carried over
from one period to the next, and (iii) backlogging costs.
However, in contrast to standard inventory models, a pro-
curement strategy requires the specification, in each period,
of (i) the ser of suppliers to be retained, (ii) the aggregate
order to be placed, and (iii) the suppliers’ respective shares
in this order.

The model is a generalization of the standard periodic-
review model with linear procurement costs, introduced by
Arrow et al. (1951) and Dvoretzky et al. (1952) and ana-
lyzed by Karlin (1958); see Zipkin (2000) for a detailed
review. This standard model assumes a single, fully reliable
supplier who delivers any given order either immediately
or after a fixed lead time. The model also generalizes
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Henig and Gerchak (1990), who assume that the single
supplier faces a random yield factor; see (Zipkin 2000,
§9.4.8). More specifically, we consider a planning horizon
of T periods, in which the firm faces a given sequence of
independent, but possibly nonstationary, continuously dis-
tributed random demands. Suppliers are differentiated by
their time-dependent prices and (general) yield distribu-
tions. The firm either pays for all ordered units, regardless
of whether they are delivered as usable units or not, or it is
charged only for the usable ones. Most generally, the direct
cost consequences of yield risks may be shared between the
firm and the suppliers, in that a base cost rate is charged
for every ordered unit and an additional charge only for
those that are usable. The firm’s holding and backlogging
costs are proportional with the end of the period’s inven-
tory levels and backlog sizes, respectively. (More generally,
all of our results continue to apply when these costs are
given by convex functions of the inventory levels.) We ini-
tially assume that (the usable parts of) orders placed in
any period become available in time to meet that period’s
demand. However, as discussed in §4, all of our results can
easily be extended to allow for a fixed lead time, as long as
the actual yield realizations of a given period’s orders are
revealed to the firm by the beginning of the next period.

We develop an efficient algorithm that identifies the
optimal procurement strategy. Most importantly, we derive
many structural results that generate important managerial
insights. Here we summarize the main results. In contrast
to the classical model with a single fully reliable supplier, it
is no longer optimal to use a base-stock policy, i.e., to order
up to a given base-stock level whenever the starting inven-
tory is below this level. However, as in the classical model,
there continues to be in each period, a “maximum ordering
inventory level,” such that orders are placed if and only if
the starting inventory is below this level. (The maximum
ordering inventory level can be obtained as the unique root
of an analytically available increasing function.)

We show that in any given period, the set of retained
suppliers is consecutive in the effective cost rates the sup-
pliers charge in that period. (The effective cost rate is the
expected procurement cost the firm incurs per useable unit.)
In other words, in a given period, it is optimal to retain
the k* suppliers that are cheapest in terms of that period’s
effective cost rates, for some 1 < k* < N. The degree of
supplier diversification, i.e., k*, does, however, depend on
the suppliers’ yield characteristics and the demand distribu-
tion of this period, as well as all cost parameters and yield
and demand distributions pertaining to future periods. Inter-
estingly, these various parameters and distributions impact
on k* via a single aggregate measure, which we refer to
as the benchmark cost rate. This benchmark cost rate rep-
resents the expected value of the total cost saving, associ-
ated with a marginal effective unit, delivered—for free and
outside of the normal procurement process—beyond those
arising from the optimal set of orders; here, the total cost
saving relates to current holding and backlogging costs as

well as all future costs. The benchmark cost rate is decreas-
ing in the starting inventory. This implies, in particular, that
the number of suppliers, optimally retained in each period,
decreases with the starting inventory.

As to what drives the suppliers’ market shares in any
period, clear insights can be obtained when all yield and
demand distributions are Normal.® Here, a supplier’s mar-
ket share is given by the relative value of a specific supplier
score, which is the product of a reliability and a cost score:
the former is this period’s reciprocal of the squared coeffi-
cient of variation of the supplier’s yield distribution, and the
latter is given by the amount by which the current supplier’s
effective cost rate falls below the benchmark cost rate. The
market share of each selected supplier is given by his over-
all score relative to the sum of the suppliers’ scores.* As
with the supplier set itself, the market shares in any given
period depend on all future costs, yield and demand distri-
butions only via a single measure, i.e., the benchmark cost
rate. We also make systematic comparisons with the clas-
sical inventory model, in which only demand risks prevail,
focusing on optimal safety stocks and order-up-to levels,
and their dependence on the starting inventory level.

The remainder of this paper is organized as follows:
§2 provides a review of the relevant literature. Our results
are obtained in §3, whereas §4 discusses how the base
model and its results can be extended to account for
fixed supplier costs, positive lead times, capacity limits,
and correlated yield and demand distributions. All proofs
are deferred to the electronic companion to this paper,
which is available as part of the online version at http://
or.journal.informs.org/.

2. Literature Review

Karlin (1958) already recognized the need to address set-
tings where replenishment quantities are random. In §§4-8
of his paper, he considered the case where every period’s
order quantity, from a single supplier, is exogenously given,
but the actual supply depends on a random yield factor.
Subsequently, a large literature on inventory systems with
random yields has developed; see Yano and Lee (1995) and
Grosfeld-Nir and Gerchak (2004) for surveys. Almost all
studies assume a single supplier. Only Henig and Gerchak
(1990), Anupindi and Akella (1993), and Swaminathan
and Shanthikumar (1999) considered multiperiod planning
models.

Henig and Gerchak (1990), assuming a single supplier,
demonstrated the existence of a time-dependent critical
inventory level such that an order is placed if and only if
the period’s starting inventory is below this level. See also
Zipkin (2000) for a treatment of this model, as well as the
development of a linear inflation heuristic under the long-
run average cost criterion.

Anupindi and Akella (1993) were the first to analyze a
multiperiod procurement problem with fwo suppliers, how-
ever, assuming that any order is either delivered completely
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without any yield loss, or not at all. For this special case,
these authors established that the optimal supplier set is
consecutive in the effective cost rates, and the number of
suppliers decreasing with the starting inventory, properties
demonstrated in full generality in this paper. Swaminathan
and Shanthikumar (1999) showed, both in a single- and in
a two-period model, that the optimal set of suppliers may
fail to be consecutive when the demand distributions are
discrete.

Systems with an arbitrary set of suppliers have been ana-
lyzed only by Agrawal and Nahmias (1997), Dada et al.
(2007), and Federgruen and Yang (2009), and only in a
single-period setting. Agrawal and Nahmias (1997) con-
sider the special case of constant demand, Normal yield
distributions, and zero starting inventory. For a given set
of suppliers, the paper shows that the optimal order sizes
satisfy a set of nonlinear equations, without providing a
method to solve them. When N = 2, the authors prove that
this system of equations has a unique solution. As to iden-
tifying the optimal supplier base, they suggest enumerating
all possible sets. Dada et al. (2007) prove the above consec-
utiveness property of the optimal supplier base in a single-
period model with zero starting inventory. (The authors
study a yield model more general than the multiplicative
structure we consider.) Federgruen and Yang (2009) derive
an efficient algorithm to determine the optimal set of sup-
pliers and order quantities in a single-period setting.

This paper generalizes all of the above references by
characterizing the structure of the optimal procurement
strategy in an arbitrary nonstationary periodic-review set-
ting, where the buyer has access to an arbitrary set of
suppliers.

Finally, our paper is related to other recent papers that
establish important structural results of the value function
in dynamic programs in which the action space is given by
a subset of some Euclidean space and the expected imme-
diate and future cost function by a nonlinear function of the
action vector; see Zhu and Thonemann (2009) and Frank
et al. (2003).

3. Model and Structural Results

We consider a periodic-review procurement-planning

model consisting of T periods, numbered forwards towards

the end of the planning horizon. The firm has access to

N suppliers. The suppliers differentiate themselves from

each other in terms of their yield distributions and unit

prices. Let:

¢;, = the price charged by supplier i in period ¢ for every
ordered unit.

¢;, = the additional price charged by supplier i in period ¢
for every effective unit delivered.

X;, = the random yield factor of supplier i, with cdf G,,(-),
mean p,,, variance s> > 0, and coefficient of variation
Yi=Sy/Pisi=1,...,N;t=1,...,T.

D, = the uncertain demand in period ¢, with a general con-
tinuous cdf F,(-), pdf f,(-), cedf F(-), mean u,,
standard deviation o,, where the pdf is assumed to
be continuously differentiable on the interior of the
distribution’s support, t=1,...,T.

h, = the inventory cost per unit carried in inventory at the
end of period t, r=1,...,T.

b, = the backlogging cost rate per unit backlogged at the
end of period ¢, t=1,...,T.

a = the discount factor (0 < a < 1).

Note that the expected total price paid to supplier i in
period ¢, per ordered unit, is given by:

c,=ch+cipys i=1,...,N; t=1,...,T. (1)

The above two-part fee structure includes, as special
cases, settings where the firm only pays for effective units
(¢, = 0) or where it pays exclusively for every ordered
unit (¢, =0). In general, different suppliers ask the firm to
assume a different fraction cy,/c;, of the cost risks associ-
ated with yield losses.

The yield factors {X;,} and the sequence of demand vol-
umes {D,} are assumed to be independent. We initially
assume that orders placed in a given period become avail-
able in time to meet that period’s demand. See §4 for
relaxations of both assumptions. To formulate the planning
problem as a dynamic program, we need the following vari-
ables and value functions:

I, = the inventory level at the beginning of period ¢,
t=1,...,T.

y;, = the order placed with supplier i in period ¢.

Y, = Z?’: yi: = the aggregate order in period ¢.

Y¢= YN, pi.y.,= the expected effective supply in
period ¢, i.e., the expected amount of usable
supply resulting from the various orders.

v,(I,) = the minimum expected discounted costs in
periods ¢, t+ 1, ..., T, when starting period ¢
with an inventory level /,. 2)

The inventory dynamics are described by the following

recursive scheme:
N

IH—l =1+ ZXityit -D,

i=1

t=1,...,T, 3)
and the value functions therefore satisfy the following
recursive equations: (Let x* £ max{x, 0}.)

Ut(It) :r)nil(}H,(y,,I,), where (4)
H,(y,.1,)

N N +
=Zcityit+hrE|:It+ZXityir _Dt]

i=1 i=1

N + N
+th|:Dt_It_ZXityit] +aEvt+|<It+ZXityit_Dt)’
i=1

i=1
t=1,...,T, and (5)
Urii £0. (6)
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We first show that the value functions are strictly convex
and that a unique optimal order vector exists for every start-
ing inventory level. In the appendix, we show that

N N
HI(YI’ It) = Z Y+ ht <Ir + Zpltylt - Mr)

=1 =1

+o0 _
+(h+b)Ex, | . Fdu
L4201 Xuyu
+oo N
+ aE{Xn} / Vit <It + le,yh — M) dFt(l,t)
- =1

™)

THEOREM 1. Fixt=1,...,T.
(a) For all —oo < I, < 400, v,(I,) < o0 and

I,Linjoo Ut(It) = I,LirJrrloo Ut([t) = 00.

(b) The value function v,(-) is strictly convex, and the
Sfunction H,(y,, 1,) is jointly strictly convex and supermod-
ular in (y,, 1,).

(c) For each starting inventory level 1, there exists a
unique optimal order vector yi(I,).

As is immediate from its proof, all of the structural
results in Theorem 1 continue to apply when [some of]
the demand distributions are discrete or mixed. Additional
structural results depend on the value functions v,(-) being
continuously differentiable and twice differentiable almost
everywhere, as shown in Lemma 1 below. These analytical
properties of the value functions rely on our assumption
that the demand functions have continuous distributions.

LEmMmA 1. Fixt=1,...,T.

(a) The function H,(y,,1,) is twice continuously differ-
entiable.

(b) The value function v,(-) is continuously differen-
tiable with

, oH,(y;, I,)
vt(II) = [8; ;
T ! T (®)
=Y &b V(L) <Y o' hy.
s=t

s=t

and

(¢) The value function v,(-) is twice continuously differ-
entiable except for at most N points.

In view of the joint convexity of the function H,(y,, I,),
by (7), the optimal set of orders to be used in period ¢ is
the unique solution of the following system of equations
and inequalities:

dH,(y;, 1,)/dy;

N
=c;+hp,— (b, + ht)Et{X,,} [XitE (11 + ZXItyl*t)i|

=1

+o0 N
+ aE{X,,} |:Xit /_ v;+1 (It + letyl*t - “) dF;(”)i| (9)

=1
=0, ify;>0
>0’

if y; =0.

This characterization permits us to show that the optimal
set of suppliers to be retained in any period ¢ is consecutive
in the effective cost rates {c;/p;,}. In fact, in Theorem 2,
below, we show that the optimal set of suppliers in period ¢
consists of those whose effective cost rate falls below a
benchmark cost rate:

)\ZE(It) = _v;(lt)

N
=—h,+ (b, +h)Ey, [E (1, +y X,,y;)}

=1

+o00 N
—aEy,) [/ Vit (1, +2 X,y - M) dFt(u)}
- =1
(10)
<SA() = —=h + (b + h)F (L)

—a_/+oov;+1(1t—u)dFt(u). (11)

(The second equality follows from (8), see (20) in the
appendix; the inequality follows from the fact that its left-
hand side is decreasing in each of the order quantities,
itself a consequence of Theorem 1(b).) The benchmark cost
rate represents the expected value of the total cost sav-
ing, associated with a marginal effective unit, delivered—
for free and outside of the normal procurement process—
beyond those arising from the optimal set of orders; here,
the total cost saving relates to current holding and backlog-
ging costs, as well as all future costs.

THEOREM 2. Fix period t =1,...,T. Renumber the sup-
pliers such that ¢, /p;, < ¢ /Py < -+ < Cyi /Py

(a) The optimal set of suppliers is consecutive in the
sequence of effective cost rates {c;;/p;,}-

(b) The benchmark cost rate Af(1,) is a strictly decreas-
ing, continuous function of I,.

(c) k*(1,), the optimal number of suppliers, is decreasing
in 1,, i.e., the optimal set of suppliers shrinks as a function
of 1,. In other words, additional units of starting inventory
may result in the elimination of one or more of the most
expensive suppliers in the retained supplier set.

(d) y is a continuous function that is differentiable
everywhere except for at most N points, where this vector
function has left and right derivatives.

(e) There exists an inventory level S,, such that it is opti-
mal to place orders if and only if the starting inventory
I, <S8,

(f) S, is the unique root of the strictly increasing
funaion Cis + htplt - (bt + ht)pltE(It) + apltf:: U;+1
(I, —u)dF,(u).

Theorem 2(a) shows that the optimal set of suppliers in
any given period is consecutive in that period’s effective
cost rates. The degree of supplier diversification, i.e., how
many suppliers are to be retained depends, of course, on all
current and future yield and demand distributions, as well
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as all current and future cost rates. Strikingly, the depen-
dence on these various distributions and cost parameters
occurs via a single aggregate measure, i.e., the benchmark
cost rate AZ(1,): the retained suppliers are precisely those
whose effective cost rate is strictly below this benchmark.
This characterization also implies that if a supplier fails to
be part of the set of retained suppliers, he cannot become
competitive by improving his yield distribution alone. In
the words of Hill (2000), cost can be thought of as an
“order qualifier,” whereas reliability acts as an “order win-
ner.” The consecutiveness property of the optimal supplier
set was first obtained by Anupindi and Akella (1993) in a
two-supplier, but multiperiod, setting with Bernoulli yield
factors, and by Dada et al. (2007) and Federgruen and Yang
(2009) for a single-period setting with an arbitrary number
of suppliers. Our assumption that the demand distributions
are continuous is essential for the consecutiveness property.
Under discrete or mixed demand distributions, any of the
functions H,, although convex, may fail to be differentiable
at the optimal solution y;. Similarly, the value function v, ,
may not be differentiable in countably many points, so that
the (last term in the) benchmark cost rate AZ(1,), itself,
is ill-defined when the demand distribution has a positive
mass in any of the points where v, , fails to be differ-
entiable. Indeed, Swaminathan and Shanthikumar (1999)
show that under discrete distributions, the optimal supplier
set needs not be consecutive, even in a single-period setting
with N =2 suppliers; i.e., with a discrete demand distribu-
tion, it may be optimal to order from the more expensive
supplier exclusively.

Similarly, the monotonicity of the optimal supplier set
as a function of the starting inventory generalizes the same
result obtained by Anupindi and Akella (1993) in their
two-supplier model. In the case of a single supplier, as
first shown by Henig and Gerchak (1990), the supermod-
ularity of the value function v, implies that the optimal
order quantity is decreasing in the starting inventory level;
see Theorem 1(b). Based on extensive numerical results,
we conjecture that this property applies under an arbitrary
number of suppliers.®

Our model with multiple unreliable suppliers inherits
the well-known property in the classical model, that, in
each period ¢, orders are placed if and only if the start-
ing inventory is below a given threshold S,. However, the
threshold S, is no longer the order-up-to level for all the
inventory levels below it. The single-period example in Fig-
ure 2 of Federgruen and Yang (2009) exhibits the follow-
ing phenomena: (i) the expected order-up-to level usually
decreases, but it sometimes fails to be monotone, and may
even be increasing in the starting inventory; and (ii) the
expected order-up-to level is sometimes larger, but some-
times smaller, than the level in the corresponding classical
model. Observation (ii) is somewhat surprising, because
one might conjecture that the need for safety stocks would
be larger when supply risks compound on demand risks.
Actually, it is the relative magnitude of the supply risks

compared to the demand risks that determines whether the
order-up-to level is larger or smaller than what is optimal
in the absence of supply risks. In particular, when the cost
consequences of a shortage are relatively low, the additional
supply risks may render it optimal to target a lower, rather
than a higher, expected inventory level after ordering.

The remaining question is how the different cost parame-
ters and yield and demand distributions impact on the allo-
cation of the aggregate orders among the retained suppliers.
A very insightful characterization of these market shares
can be obtained when all distributions are Normal; see The-
orems 4(b) and 5(c) in Federgruen and Yang (2008b):

PN (AR s
T SO = el
i=1,...,N. (12)

In other words, the share of each supplier in the expected
effective total supply Y, * is given by a supplier score, itself
the product of a reliability score 7y;%, and a cost-saving
score that measures the saving, relative to the benchmark
cost rate AF(1,), per effective unit, of using this supplier.
By (12), the optimal market shares of the suppliers are sim-
ply proportional to their supplier scores and can be obtained
as a simple closed-form expression in terms of the model
parameters once the (single) benchmark cost rate has been
computed. The dependence of the optimal supplier set and
their market shares on all current and future cost, demand,
and yield considerations arises via a single aggregate quan-
tity, i.e., the benchmark cost rate A*(7,). Federgruen and
Yang (2008b) also show that the market share formula (12)
can be used as a close approximation when (some of) the
demand and yield distributions fail to be Normal.

The optimality conditions (9), along with the consecu-
tiveness property of the optimal set of suppliers, suggest
the following algorithm (GA) to find the optimal order vec-
tor y; in any given period ¢. (As in Theorem 2, the suppliers
are numbered such that ¢,,/p,, < ¢5,/P2 < -+ < i/ Piie)

Algorithm 1 (General Algorithm (GA))
FOR k:=1TO N DO
BEGIN
Step 1. Find the unique nonnegative solution
{¥1,, ..., ¥} of the following system of k
equations in k unknowns {y;,, ..., i}

k
i+ hpy — (b, + ht)E{X,,} |:XitE(It + ZXlrylt>i|

=1

+oo k
+aE{X1,} [Xit/_ v;+1 <1t+Zleylt - “) dFt(”)] =0,

=1
i=1,...,k
Step 2. Set y} =0 for i > k. Calculate AX(1,)
from (10).
IF A7 (1)) < €441/ Prsr» THEN
exit with y; as the optimal order vector
ENDIF
END (13)
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(If the test in Step 2 is met, the right-hand side of (9)
is nonnegative for all i=k+1, ..., N, whereas in view of
Step 1, it equals zero for i =1, ..., k, thus verifying that
y; is the optimal order vector. Also, the test in Step 2 is
met for exactly one value of k, permitting an exit as soon
as it is met: if it were met for two different values of k,
there would be two distinct optimal solutions, whereas by
Theorem 2(a), (9) would fail to have a solution if the test
in Step 2 was never met.) (GA) amounts to solving at most
N systems of well-behaved equations, each of which has a
unique solution. The main difficulty arises from the evalua-
tion of the multivariate expectations to the right of (13). For
general yield and demand distributions, this is best done by
a simulation technique.

4. Extensions

We conclude this paper with a discussion of several impor-
tant generalizations of our model.

4.1. Fixed Supplier Cost; Price Benefits
Associated Multisourcing

Our model ignores any fixed cost K; incurred for each
supplier i that is added to the pool of potential suppli-
ers & (for example, costs associated with buyers and infor-
mation systems). Such fixed costs provide an incentive to
limit the degree of supplier diversification. They can, of
course, easily be incorporated when comparing aggregate
expected costs under two or more sets of suppliers. Such
comparisons may also allow us to model a second bene-
fit of supplier diversification, i.e., the ability to negotiate
better prices, when dealing with a larger pool of qualified
suppliers. Representing the cost rates {c;} as decreasing
functions of the number of suppliers in the pool %, i.e.,
¢ = ¢;,(|2|), the overall cost of a pool & is given by
C(P) = Yiey Ki + v,(Iy | ¢y = ¢;,(|Z])). Identifying the
optimal pool of potential suppliers %* = argming C(P)
is in general a complex combinatorial problem, which is
NP-hard even in single-period settings, see Proposition 1
in Federgruen and Yang (2008a).

4.2. Lead Times

Positive lead times of L > 1 periods can be handled in
a similar manner as in the classical model with a single,
fully reliable supplier, provided the actual yields for the
orders placed at the beginning of a given period become
known before the start of the next period: only orders
in periods r =1,2,..., T — L are relevant, thereafter, the
orders fail to be received during the considered plan-
ning horizon. We now use as the state variable: IP, =
I, + Z:_:lt_ 1. Viz X, = inventory position at the beginning of
period ¢ = the inventory on hand, plus the effective sup-
ply in process. Because all unsatisfied demand is back-
logged, the inventory position satisfies the same recursive
scheme as (3): IP,,, =1P,+ ¥~ X,v,—D,, t=1,...,T,
whereas IH—L = IPt + ZIN:I Xityit - (Dt +Dr+1 +e +Dt+L)-

Recognizing that the expected end-of-the-period holding
and backlogging costs in periods t =1, ..., L cannot be
affected by any of the procurement decisions, these cost
terms may therefore be eliminated from the dynamic pro-
gram. Charging to period ¢ the expected inventory and
backlogging costs that incur at the end of period ¢+ L, we
obtain the modified dynamic program:

,T—L,

v,(IP,) = m;rol H(y,,IP,), t=1,... where
Yz

H,(y,.1P,)

N N
= Z CitYit + aLhtE|:IPt + Z Xityit

i=1 i=1

+
- (DI +Dt+1 + - '+Dt+L)]

N +
+a'bE |:D, +Dy+--+Dy —IP, =) Xir)’n]

i=1

N
+ OZEU[+1 (IPz + ZXityi[ - Dt) ’

i=1
vr_11(+)=0.

It is easily verified that all of the results in this paper con-
tinue to apply. The problem is considerably more complex
when the yields of a given period’s orders do not become
known to the purchasing firm before the start of the next
period. As an extreme case, assume that the actual yields
are not revealed until the orders are delivered. In this case,
the inventory position at the beginning of period ¢ is itself
unknown and only partially observable. To model this sit-
uation, we need to keep track of the L order vectors in
process, requiring a dynamic program with a state space of
dimension LN + 1.7

4.3. Capacities

Capacity bounds represent an additional complication in
many applications. Thus, assume that a capacity limit M,,
prevails for any order placed with supplier i in period f,
ie,y, <M, (i=1,....,N;t=1,...,T). One easily veri-
fies that all of the results in Lemma 1, Theorems 1 and 2,
continue to apply for arbitrary capacities; see Theorem 3
in the appendix. In particular, in any period #, the optimal
set of retained suppliers continues to be the consecutive set
{i: ¢;,/p; < AE(1,)}. However, the simple market share for-
mula (12) no longer applies because the market shares are
now affected by the capacity levels in addition to the yield
reliabilities and cost differentials.

4.4. Correlated Yields and Demands

In some settings, supply risks may be correlated, for exam-
ple, when natural disasters (storms, floods) or sabotage
by terrorists are likely to hit multiple facilities in a given
geographic region, or when the suppliers depend on com-
mon second-tier suppliers. Similarly, the yields and demand
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distributions in a given period may be correlated, for exam-
ple, when both are dependent on weather-related factors
or common economic variables; see, for example, Babich
et al. (2007) for a procurement model with multiple sup-
pliers subject to correlated yield risks.

It can be verified that all of the results in Lemma 1 and
Theorem 1 continue to apply. However, it is no longer true
that the optimal set of suppliers, in any given period, is
consecutive in the effective cost rates, i.e., consists of those
whose effective cost rate is below a given benchmark rate.

More specifically, the second equality in (22) in the
appendix (electronic companion) breaks down under corre-
lated yields, so that a supplier i may not be selected even
if its effective cost rate falls below A£(1,), the benchmark
cost rate. It is therefore easy to construct examples where
the optimal supplier set fails to be consecutive.

5. Electronic Companion

An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.

Endnotes

1. Another major benefit of multisourcing results from
increased bargaining power to reduce purchase prices.
Although this benefit is not directly addressed, our model
can be used to compare the overall long-term performance
of the firm when having access to additional potential sup-
pliers. In such comparisons, the suppliers’ unit prices could
be modeled as decreasing functions of the total number of
suppliers the firm deals with; see §4.

2. Nagali et al. (2008, p. 51) state: “In periods of high
demand, hi-tech suppliers place original equipment man-
ufacturers (OEMs) such as HP under allocation whereby
they supply only a fraction of the OEM’s total demand.
Availability uncertainty can also result from supply and
delivery disruptions, such as the earthquake in Taiwan in
late 1999, or supplier quality issues.” HP’s PRM process
was a finalist in the 2007 Edelman Award Competition.

3. See, however, §3 for a discussion of how this result can
be used as an approximation when the distributions are of
a different type.

4. Commercially available supplier scorecard systems
tend to determine aggregate scores as the sum or a
weighted average scores of individual criteria, apparently
without any theoretical justification; see e.g., http://www
.theperformancescore.com/index.asp?pgid=21 and http://
www.commercezone.co.za/CWS_CommerceZone/default
.aspx?i_CategoryID=68.

5. Demand may represent net demand, net of precommitted
and guaranteed deliveries, as under the flexible quantity
contracts discussed in §1. In our base model, we assume
that the demand distributions have the positive half line as

their support. All of our results are easily extended when
the support is given by a different interval, for example, the
full real line, as in the case of Normal distributions.

6. This could, for example, be established by showing that
the right-hand side of (25) in the appendix (electronic com-
panion) is nonpositive.

7. See Federgruen and Yang (2008b) for a reduction to
an L + 1 dimensional state space when all distributions
are Normal or when end-of-the-period inventory levels are
approximated as Normals.
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