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In many service industries, companies compete with each other on the basis of the waiting time their cus-
tomers experience, along with other strategic instruments such as the price they charge for their service. The

objective of this paper is to conduct an empirical study of an important industry to measure to what extent
waiting time performance impacts different firms’ market shares and price decisions. We report on a large-scale
empirical industrial organization study in which the demand equations for fast-food drive-thru restaurants in
Cook County are estimated based on so-called structural estimation methods. Our results confirm the belief
expressed by industry experts, that in the fast-food drive-thru industry customers trade off price and waiting
time. More interestingly, our estimates indicate that consumers attribute a very high cost to the time they spend
waiting.
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1. Introduction
This paper reports on an empirical study of an
important industry, the drive-thru fast-food indus-
try. We estimate a competition model, derived from
an underlying mixed multinomial logit (MNML) con-
sumer choice model, using detailed empirical data.
The main goal is to measure to what extent wait-
ing time performance, along with price levels, brand
attributes, and geographical and demographic factors,
impact competing firms’ market shares. In the litera-
ture it is commonly assumed that customers attribute
a cost rate to their waiting time that can be prox-
ied by an earnings rate, for example, the disposable
per capita income in the market (see, e.g., Mueller
1985). Our results demonstrate that this may result
in questionable policy analyses because we find that
customers attribute an implicit value to their wait
time, which is many times the average wage in the
United States. We also characterize how the market’s
price equilibrium responds to changes in the wait-
ing time standards. Based on this market analysis, we
show that the trend to continuously improve waiting

times and service levels can be explained on game-
theoretical grounds, creating a valuable framework
for future market dynamics studies in various indus-
tries. Although our empirical study is focused on the
drive-thru fast-food industry, we apply a method-
ology based on structural estimation methods fre-
quently used in the industrial organization literature,
which, mutatis mutandis, can be employed to estab-
lish the impact that service attributes have on market
shares in other industries.

In many service industries, companies compete
with each other on the basis of the waiting time (or
other service quality attributes) their customers expe-
rience, along with other strategic instruments such
as their price. Executives realize that time is money
for the consumer, but it is unclear how much money,
how the exchange rate differs in different industries,
and how it varies with other factors such as loca-
tion, brand, etcetera. Often, specific waiting time stan-
dards or guarantees are advertised. For example, in
2002 Ameritrade increased its market share in the
online discount brokerage market by “guaranteeing”
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that equity trades take no more than 10 seconds to be
executed; the guarantee is backed up with a commis-
sion waiver if the time limit is violated. This led most
major online brokerage firms (E-trade, Fidelity) to
offer and aggressively advertise even more ambitious
waiting time standards. Various call centers promise
that the customer will be helped within one hour, say,
possibly by a callback. In other industries, average
waiting times are monitored by independent organi-
zations. For example, in the airline industry indepen-
dent government agencies as well as Internet travel
services report, on a flight-by-flight basis, the aver-
age delay and percentage of flights arriving within
15 minutes of schedule. See Allon and Federgruen
(2007) for a longer list of examples.

A fundamental premise of the by now extensive
theoretical literature on service competition is the
belief that waiting times have a major impact on con-
sumer choices and market shares, similar to, or per-
haps even in excess of, price differentials. However,
this premise has rarely been substantiated by empir-
ical field studies. In the fast-food industry, almost
all outlets are owned by independent franchisees
who select their own prices. In contrast, chains set
national waiting time standards by prescribing a uni-
form operational process to their franchisees along
with specific recipes for their standard menu items.
These processes include standard customer greetings,
order taking, the maximum number of burgers on
a grill and amount of time they may be cooking,
the relationship between number of drive-thru lanes
and demand volume, etcetera, all of which determine
the chain’s waiting time standard; see Garber (2005)
and Jargon (2006). DeHoratius et al. (2010) describe
how tightly the McDonald’s chain standardizes and
engineers the service operations process of its out-
lets. Because chains implement a national uniform
waiting time (distribution), we were able to obtain
these distributions from a national Drive-Thru Time
Study Database, which we purchased from the indus-
try organization Quick Service Restaurant (QSR).

Chains invest heavily to shave seconds off their
average waiting times, clearly believing that their
market shares are very sensitive to the relative wait-
ing times experienced. Hughlett (2008) attributes the
following statement to the president of one of the
main technology vendors serving the fast-food indus-
try: “There is an industry maxim that for every
seven-second reduction in total service time, sales will
increase by 1% over time.” It is the belief expressed
in this maxim that underlies the chains’ continuous
strategic focus on waiting time reductions in their out-
lets via technological and process improvements. An
estimate of the expected consumer response to reduc-
tions in waiting time standards, such as that gener-
ated by our study, would be of high value to the

industry when evaluating the potential profitability of
investments of this type. We therefore look to sup-
port these beliefs via an empricial study of a large
fast-food drive-thru market, focusing on the follow-
ing series of research questions of equal interest to the
academic community and the competing chains in the
(fast-food) industry.

1. Does the customer’s waiting time at the fast-
food drive-thru lane represent a significant determi-
nant of consumer choices and resulting market shares,
as believed by the industry and operations manage-
ment literature alike?

2. When comparing the demand sensitivity to wait-
ing time and price differentials, is the implied value
of time of the same order of magnitude as the aver-
age wage or income earned per hour? If not, is it of a
larger or smaller order of magnitude?

3. Can the above-stated industry maxim be sub-
stantiated by empirical estimates? In particular, when
taking into account that the various outlets are likely
to adjust their prices in response to reduced wait-
ing time standards, adopting a new price equilibrium,
does the maxim hold?

4. Furthermore, this maxim expresses the belief
that a given waiting time reduction is equally valu-
able for all chains in terms of resulting increases in
market shares and sales. Plausible consumer choice
models may imply that these benefits, in fact, vary
with the initial market shares of the chains, either in a
robustly predictable way or one that depends on the
specific parameter estimates. Either way, it is impor-
tant to understand to what extent these benefits vary
with the size of the chain and other chain attributes.
In addition, do the increases in market shares accrue
primarily from customers switching between chains
or from the acquisition of new customers to the fast-
food market?

Our empirical research thus follows a slight variant
of the standard paradigm as discussed, for example,
by Fisher (2007, Figure 5). Our starting point is a
series of premises, maxims, and questions that arise
from the theoretical operations management literature
on service competition as well as practitioner discus-
sions and surveys in the fast-food industry, reported
in such outlets as the industry organization’s main
publication, the QSR magazine, the Nation’s Restaurant
News, and the general press.

As mentioned, almost all contributions to the lit-
erature on service competition have been theoreti-
cal, with numerical investigations confined to small
hypothetical examples. Indeed, we believe ours to be
one of the first marketwide empirical studies to com-
plement the theoretical service competition literature.
There are several reasons for the paucity of empiri-
cal studies. It is very difficult to access data regarding
customer waiting times, in particular when seeking to
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quantify the waiting time experience at all competing
service providers. Whereas absolute waiting times at
a given firm might explain the firm’s demand volume
in a monopoly setting, it is the relative waiting times
at various competing providers that, along with the
firms’ other strategic choices, explain ultimate con-
sumer choices and hence realized market shares. Sim-
ilarly, it is typically very hard, if not impossible, to
collect data on sales volumes or market shares of
the competing outlets. Although such data are some-
times accessible for consumer products, in the service
industry it is rare that sales volumes can be gathered
by outsiders. Firms are reluctant to provide the infor-
mation, considering it of the highest strategic value.
Indeed, sales volumes were unavailable in our con-
text. Instead, we infer them by estimating the param-
eters in the system of equations characterizing the
unique equilibrium in a competition game resulting
from a detailed consumer choice model and an outlet
cost structure reflecting a broad category of queue-
ing systems. In other words, the demand function
parameters are backed out from the equilibrium con-
ditions, with the help of the observed equilibrium.
This technique has been applied in a number of eco-
nomics studies, e.g., Feenstra and Levinsohn (1995)
and Thomadsen (2005) but, to our knowledge, not in
the operations management literature.

More specifically, we accommodate the absence of
demand data with three assumptions: (1) Consumers
attribute a utility level to each potential outlet that
depends stochastically on price, waiting time, the dis-
tance to the outlet, and various chain characteris-
tics. Similarly, consumers assign a utility level to the
no-purchase option, which depends stochastically on
the consumer’s gender, race, age bracket, and occu-
pational status. (2) Outlets encounter a cost struc-
ture that is affine in the sales volume, with random
noise terms for the marginal costs; this cost structure
applies to many queueing models used to describe
the service process, such as M/M/1 systems or open
Jackson networks. (3) Outlets adopt a pure Nash equi-
librium in the price competition model that results
from the above consumer choice model and the out-
lets’ cost structure.

The first assumption is used to derive the relation-
ships between prices, service levels, and sales quan-
tities. Based on the second and third assumptions,
these relationships are subsequently used to derive
the firms’ Nash equilibrium conditions to jointly esti-
mate the parameters of the indirect utility functions
of the consumers as well as the parameters of the out-
lets’ cost structure. Our estimation method is a gen-
eralized method of moments (GMM) technique, as
opposed to more standard maximum-likelihood esti-
mators for systems of nonlinear equations, for reasons
explained in §5.

In summary, the main contribution of this paper is
that to our knowledge it is one of the first to estimate,
for the benefit of market observers and the firms alike,
how sales volumes for a service organization depend
on the prices and waiting times of all competing
providers within a given region, their location, as well
as other attributes (e.g., brand-specific characteristics).
In particular, we conclude that consumers attribute
a value to their waiting time that is many times the
average wage level. We use counterfactual studies
to confirm that a seven-second reduction by a sin-
gle chain results, on “average,” in a 1% market share
increase for that chain. However, for a large chain like
McDonald’s, the increase is more than 3%, showing
that the industry’s “seven second rule” needs to be
qualified. The increased market share results primar-
ily from the acquisition of new customers who were
previously opting for the outside good as opposed
to cusomers switching between chains. Our model
explains the continuing trend of all chains invest-
ing heavily to reduce their waiting time standards.
We show, in addition, that neglecting to include any
waiting time measure in the consumer choice model
results in significantly overestimated price sensitivi-
ties. This validates our belief that overlooking service
as a competitive instrument in the model specification
results in distorted managerial insights. Not account-
ing for the waiting time as an attribute also distorts
the estimated value of the no-purchase option, as well
as the importance of the number of chain outlets, as
a proxy for the consumers’ perceived quality of the
chain.

The remainder of this paper is organized as fol-
lows: Section 2 provides a review of the relevant lit-
erature. Section 3 develops our consumer choice and
competition model. Section 4 describes the many data
sources employed and the approach we adopted to
collect the data. Section 5 is devoted to a description
of the GMM estimation technique as applied to our
model. Section 6 describes the estimation results and
counterfactual studies. Section 7 completes the paper
with a discussion of possible extensions.

2. Literature Review
The literature on competition in service industries
dates back to the late 1970s. Luski (1976) and Levhari
and Luski (1978) were the first to model competition
between service providers. The latter paper addresses
a duopoly where each of the firms acts as an M/M/1
system, with exogenous and identical service rates.
In this model, customers select their service provider
strictly on the basis of the full price, defined as the
direct price plus the expected steady-state waiting
time multiplied with the waiting time cost rate. The
question of whether a price equilibrium exists in
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this model remained an open question until it was
recently resolved in the affirmative by Chen and Wan
(2003), albeit for the basic model with a uniform cost
rate. These authors show, however, that the Nash
equilibrium may fail to be unique.

Cachon and Harker (2002) and So (2000) analyzed
the first models in which customers consider crite-
ria beyond the lowest full price when choosing a
service provider (e.g., quality). Both confined them-
selves, again, to M/M/1 service providers. Allon and
Federgruen (2007, 2008) treat the price and wait-
ing time standard as completely independent firm
attributes that different customers may trade off in
different ways. See those, as well as Hassin and Haviv
(2003), for additional references of service competition
models.

Many service processes are provided via call
centers. Here, customers are known to be very
sensitive to their waiting times, which is why such
centers are designed and staffed to meet specific
service-level agreements (SLAs); see Hasija et al.
(2008) for a recent survey of such agreements.
However, virtually all planning models in the vast
literature related to call centers assume that demand
processes are exogenous inputs, or, at best, depen-
dent on service charges. We refer to Gans et al. (2003)
for an excellent tutorial on call center management.
When describing future challenges in this area, the
authors emphasize “a better understanding of cus-
tomer behavior” (§7.3) and the need to model and
estimate “multiple levels of equilibria.” Beyond these
levels, we suggest the desirability of models incorpo-
rating the competitive effect of service levels provided
by the call centers of competing service providers.

The above-reviewed literature is based on the
observation that firms compete along the service-
level dimension as well as anecdotal and empirical
evidence that customers value waiting time when
making decisions regarding their preferred service
provider. One example in the fast-food industry is
Davis and Vollmann (1990), who examined consumer
choice criteria with a sample of 723 customers who
were asked to rank their satisfaction with various
aspects of the delivery process. The authors estab-
lished that the satisfaction scores were highly cor-
related with the experienced waiting time. Time of
day, store location, and whether the customer was
at work or school were important factors determin-
ing the strength of the waiting time sensitivity. Day
of week and participation activities other than work
around the meal (e.g., shopping, visiting friends) were
not significant.

This empirical study complements the earlier
quoted plethora of trade literature documenting the
centrality of waiting times in this industry. Our study
complements the theoretical literature on competi-
tion models by estimating the parameters used and

assumed by these models. There have been very few
other works that attempt to estimate these param-
eters. The two empirical studies investigating ques-
tions closest to our own are Deacon and Sonstelie
(1985) and Png and Reitman (1994). The former
appears to have been the first to estimate the impact
price differentials and average waiting times have
on sales volumes; however, the setting is one where
prices are exogenously determined by government
price controls, avoiding the endogeneity challenge
inherent in most studies, including our own. The
selected estimation method is based on a probit
model, applicable only in the case of two firms. The
model does not apply to settings with price-selecting
firms or those where customer choices depend on fac-
tors other than the full price. Png and Reitman (1994)
describe the peak-hour sales in a market of 1,501 gas
stations in four Massachusetts counties via a system
of demand equations. These equations are not derived
from an underlying consumer choice model as, for
example, in Deacon and Sonstelie (1985) or our paper.
In the absence of actual observations of the waiting
times or the peak-hour sales volumes, the authors
specify the logarithm of a firm’s (peak-hour) sales
volume as a linear function of the logarithm of the
firm’s own price, that of the average of the prices of
the “nearby” stations, a vector of station attributes,
and a proxy for the average waiting time. The lat-
ter is postulated as the ratio of the peak-hour sales
volume and a predetermined power of the number
of pumps, whereas the peak-hour sales volume is
assumed to be given by the aggregate weekly sales
divided by a given power of the number of operat-
ing hours. The coefficients in this model are assumed
to be homogeneous constants that are estimated via a
least-squares regression method. The authors address
the problem of the explanatory prices and capacity
variables being endogenous to the system by the use
of a two-stage least-squares method, invoking instru-
mental variables claimed to be uncorrelated with the
error terms.

The transportation research literature has often
specified the demand for alternative transportation
modes as arising from a mixed multinomial logit
model with prices and travel times as explana-
tory variables, similar to our paper. However, the
maximum-likelihood estimations typically employed
are challenged by the abovementioned endogeneity
problems; see Hess et al. (2005) for a recent exam-
ple, estimating the implicit cost associated with travel
time to be in excess of $100/hour. Finally, an earlier
economics paper by De Vany et al. (1983) estimated
the effect waiting times have on patient volumes in
dentist offices; ignoring the impact of competition and
employing OLS, the authors obtain a statistically sig-
nificant positive value for the waiting time sensitivity,
perhaps because in their setting demand is relatively
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inelastic with respect to waiting times while capac-
ity is inflexible. In contrast, we estimate the impact
of waiting times, prices, geographic dispersion, chain
attributes, and demographic factors on demand. Our
approach follows the work of Bresnahan (1987), Berry
(1994), and Berry et al. (1995). In what came to be
known as the Berry–Levinsohn–Pakes (BLP) method,
these authors demonstrate how to estimate consumer
choice models and cost structures in oligopolistic
markets with differentiated goods using aggregate
consumer-level data and structural models of com-
petition. The general approach posits a distribution
of consumer preferences for the competing goods
based on their attributes. The preferences are aggre-
gated into a market-level demand system that when
combined with assumptions on cost and price-setting
behavior allows one to estimate the parameters.

In the above papers, market shares are observed.
Feenstra and Levinsohn (1995) were the first to
demonstrate how this estimation framework can be
used in the absence of quantity data. As mentioned
in the introduction, we face the same challenge
because in the fast-food industry, sales data are not
reported and are treated as strategic and proprietary
information.

More recent work by Davis (2006) and Thomadsen
(2005) incorporated geography in the BLP framework.
Thomadsen (2005) studies the impact of ownership
structure on prices in the fast-food industry. The
author uses this method to establish that the impact
of mergers in such an industry can be large, but the
impact of mergers decreases as the merging outlets
are further apart. Our consumer choice model adds
the waiting time measure to the set of outlet and
chain-dependent explanatory variables employed in
Thomadsen (2005), but does not include ownership
structure. For reasons explained in the model sec-
tion, we incorporate other chain attributes that act as
indicators of perceived quality, instead of the chain
dummy variables employed in Thomadsen (2005).

Our study is also related to the recent empir-
ical literature in operations management. To our
knowledge, most of this literature focuses on con-
sumer products rather than services. See Olivares and
Cachon (2009) and Musalem et al. (2010) for surveys
of this literature. Notable exceptions include Olivares
et al. (2008) and KC and Terwiesch (2009, 2011), which
focus on the health-care industry.

3. The Model
In this section we develop the competition model rep-
resenting the competitive interdependencies and inter-
actions among the outlets in our geographic region.
The model combines two submodels: (a) a consumer
choice model that determines how many of the region’s

residents and commuters choose, for any given lunch
or dinner meal, to go to a fast-food establishment and,
among those, how many select a specific outlet; and (b)
a model to represent the variable cost structure of the
different outlets as a function of their sales volume and
service level (i.e., its waiting time standard). Combin-
ing the two submodels permits us to derive the outlets’
profit functions. As explained, in the fast-food indus-
try, waiting time standards are selected by the chains.
However, price decisions are relegated to the indepen-
dent outlets, if for no other reason than to avoid illegal
forms of price fixing. As franchising became popular
in the sixties, the U.S. courts began to limit the types
of pricing restrictions that chains can impose on their
franchises. Only maximum retail prices have become
legal, under certain conditions, based on the Supreme
Court ruling in State Oil Co. v. Khan.1 (In the prior
30 years, even maximum price levels had been illegal;
see Albrecht v. Herald Co.2)

When collecting data, we called the chains for price
recommendations that they may give to their fran-
chisees. Consistent with the Supreme Court rulings,
we were told that the practice of suggesting prices to
the outlets is illegal. Indeed, we have observed sig-
nificant price differences among outlets of the same
chain, see Table 2 in §4. Thus, waiting time standards
are selected centrally by the chains, but prices are
chosen by the individual outlets. We can therefore
assume that the prices observed in the market rep-
resent the equilibrium in a price competition model,
under given waiting time standards specified by the
chains operating in the selected geographical region.
We show that this price equilibrium model has an
equilibrium that is a solution of a nonlinear system
of equations. It is this system of equations that per-
mits us to estimate the parameters that describe the
consumer choice model and associated demand func-
tions, as well as the parameters in the cost structure.

3.1. The Consumer Choice Model
Demand for fast-food meals at each outlet is speci-
fied by a discrete choice model. Consumers choose
either to purchase a specific lunch or dinner meal
from one of the fast-food outlets or to consume an
outside good. Consumers assign a utility value to
each outlet, as well as to the no-purchase option, spec-
ified as a linear function of the price, waiting time,
distance, chain identity of the outlet, and various
demographic factors including the consumer’s gen-
der, race, age bracket, and occupational status. Each
of these utility equations contains an additional ran-
dom noise term. It is natural to assume that customers
make their choices in two stages: (i) they first decide
whether to dine at a fast-food outlet as opposed to

1 State Oil Co. v. Khan, 522 U.S. 3 (1997).
2 Albrecht v. Herald Co., 390 U.S. 145 (1968).
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alternatives, such as eating at home or a different type
of restaurant; and (ii) assuming the first question is
answered in the affirmative, which of the various out-
lets in the region to patronize. We model the two-
stage choice process by assuming that the (potential)
customer attributes a utility value to the no-purchase
option that depends on her demographic attributes.
The customer also assigns a utility value to each of
the outlets in the region that depends on attributes of
both the outlet and the chain to which it belongs. The
customer purchases a meal at one of the fast-food out-
lets if and only if the highest of the outlets’ utility val-
ues is in excess of that of the no-purchase option; in
this case the meal is consumed at the outlet with the
highest utility value. Formally, the conditional indi-
rect utility of consumer i from fast-food outlet j is
specified as follows:

Ui1 j = �+X ′

k4j5� − �Dij −�Pj −�Wk4j5 +�ij1 (1)

where k4j5 denotes the chain k to which outlet j
belongs; Xk4j5 is a column vector of observed prop-
erties of the chain to which outlet j belongs; Dij is
the distance between consumer i and outlet j ; Pj is
the price of a (standard) meal at outlet j ; Wk4j5 is the
waiting time standard (equal to average steady-state
waiting time in system) of chain k4j5 associated with
outlet j ; �ij is the portion of the utility of individual i
at outlet j , which is unobserved by the modeler; and
(�1�1�1�1 �) represents a parameter string with � an
array of the same dimension as X.

Our estimation of waiting time sensitivity is based
on three assumptions: (i) consumers make purchas-
ing decisions based on the steady-state waiting time
distribution at an outlet, not on the prevailing queue
length (the only varying observable characteristic) at
the time of arrival; (ii) consumers characterize the
steady-state waiting time distribution by its average;
and (iii) all outlets belonging to the same chain share
the same waiting time distribution. The first assump-
tion is based on our understanding that in most cases
consumers make their selection before traveling to any
specific outlet based on the “average” experience. The
second assumption is not inherent to our approach and
could easily be replaced by other characteristics of the
steady-state waiting time distribution, such as the 95th
percentile. As for the final assumption, we explained
earlier that in the fast-food industry the chains select
and announce to their franchisees a common wait-
ing time standard for all of their outlets, implemented
with tight process prescription and control. Indeed,
chains achieve remarkably uniform average waiting
times at their franchises. Jargon (2006) reported that
the average waiting time at Burger King’s 6,900 domes-
tic franchises covers a very narrow range from 165 to
170 seconds; the average waiting time was reduced

by 22 seconds in one year. Industry trade organiza-
tions such as QSR publicize yearly surveys of the aver-
age waiting time experienced at the various fast-food
chains. Outlet-specific samples in our waiting time
data set are too small to make our own empirical ver-
ifications of assumption (iii). Furthermore, although
there are empirical papers that have individual wait-
ing time observations for a single outlet or chain in a
service industry, such a data set is extremely difficult
to obtain for industrywide studies.

Because all outlets belonging to the same chain
share the same waiting time standard, it is important
to include in the individual utility functions (1) any
other observable chainwide attributes that (i) are cor-
related with the waiting time standard and (ii) may
plausibly serve as a quality indicator for the chain.
The only such attributes we were able to identify are
the density of the chain network, as measured by the
number of outlets, in the county and the intensity
of the chain’s advertising efforts, as quantified by its
aggregate national advertising spending. We do not
use chain identity indicator variables, as is frequently
done, because its inclusion among the explanatory
variables in (1) results in an identification problem.
Normalizing the coefficient of one of the chain indica-
tor variables removes collinearity in the utility func-
tion; however, market shares remain invariant to a
common additive shift in the coefficients of the indi-
cator variables and that of the waiting time standard.

A recent QSR-commissioned study (Magid Asso-
ciates 2010) reports on a survey among 1,120 drive-
thru customers, in which each respondent was asked
to list which of 10 attributes makes the drive-
thru experience the best. The most frequently cited
attribute was “speed—wait time of drive-thru ser-
vice” (22% of respondents), followed by “price” and
“order accuracy” (12% each). Location was listed
almost as frequently as “price” (and order accu-
racy), i.e., by 11% of respondents. Our consumer
choice model represents all of these attributes with
the exception of “order accuracy;” the latter should
be included in future studies, in particular because it
may shed light on an optimal balance between “speed
of service” and “order accuracy.”

We assume that for every outlet j , the random
components of 8�ij9 represent nonsystematic unob-
servable variations in the perceived utility of the
outlet among potential customers of the same demo-
graphic type residing or working in the same location.
We therefore assume that the 8�ij9 variables are inde-
pendent and identically distributed (i.i.d.) random
utility models of type (1) often contain an additional
outlet-specific component �j , j = 11 0 0 0 1N , to address
systematic attributes of the firm (outlet), known to
the firms and customers, but not to the modeler. As
argued in Thomadsen (2005), in the case of the fast-
food drive-thru industry, this term may be omitted
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because other than through price and location, differ-
ent outlets belonging to the same chain offer close to
identical attributes, whereas the chains create virtu-
ally identical “experiences” at all their locations. At
the same time, as explained above, all relevant chain-
specific attributes are captured by the chain variables
X in the first term in (1), along with the waiting time
standard W . The indirect utility associated with the
no-purchase option is given by

Ui10 = �0 +Mi� +�i100 (2)

Here, Mi is a row vector specifying the consumer’s
age, gender, race, and whether they are making the
decision as a commuter or resident (i.e., people are
allowed to have a different preference for the outside
good when they are at work versus at home). If the
age distribution is characterized by A age classes, the
Mj vector is a binary vector of dimension (A + 2):
for l = 11 0 0 0 1A − 1, Mil = 1 if consumer i belongs to
the lth age bracket and 0 otherwise; similarly, for l =
A, A + 1, and A + 2, Mil = 1405 if the consumer is
female (male), African American (white), and a res-
ident (worker), respectively. Terms �0 and � repre-
sent another set of parameters to be estimated, and
�i0 denotes the unknown portion of the utility of indi-
vidual i for the nonpurchase option. Once again, the
random components 8�i09 are i.i.d.

We consider a limited number of age brackets.
Therefore, there is a finite list of 811 0 0 0 1M9 of
consumer types, combining age, gender, race, and
occupational status. In view of the importance of the
distances between the consumer and the various out-
lets, we partition our geographic region into a grid
of very small subareas, B = 811 0 0 0 1B9, and assume
all consumers residing in a subarea are located at
the subarea’s centroid. (In our study, we use tracts,
as defined by the U.S. Census, with an average area
of 1.2 square miles in Cook county.) Thus, all poten-
tial consumers residing in a given subarea, b ∈ B,
and belonging to a given demographic group, m ∈M ,
share the same mean utility value for all outlets and
the no-purchase option.

Assuming that the distributions of the random
noise terms, 8�ij 2 j = 01 0 0 0 1 J 9, are Gumbel (or dou-
bly exponential) with common scale parameter �, and
assuming that every consumer selects the alternative
with the highest utility value, this gives rise to the fol-
lowing multinomial logit model in which each outlet’s
market share for each tract and demographic group
is given by the following expression:

Sj1 b1m4P1W1X � �1�1�1�1�1�5

=
e4�+X′

k4j5�−Dbj�−Pj�−Wk4j5�5/�

e4�M+�05/� +
∑J

t=1 e
4�+X′

k4t5�−Dbt�−Pt�−Wk4t5�5/�
1

j = 11 0 0 0 1 J 3 b = 11 0 0 0 1B3 m= 11 0 0 0 1M0 (3)

Without loss of generality, we express the utility
levels in units such that the scale parameter � = 1.
Also, the consumer choices only depend on the rel-
ative ranking of the utility values for the different
outlets and the no-purchase option; they are therefore
invariant to a common additive shift. This permits us
to normalize the intercept � in the utility function (1)
to �= 0.

Multiplying the market shares with h4b1m5, the
number of consumers of demographic group m resid-
ing in or commuting to geographic region b allows us
to specify expected aggregate sales in an outlet as a
function of the various parameters � ≡ 8�1�1�1�1�9
in the utility equations:

Qj4P1W1X � �1�1�1�5

=
∑

b

∑

m

h4b1m5Sj1 b1m4P1W1X � �1�1�1�1 50 (4)

3.2. The Outlets’ Cost Structure
When assessing the impact of operational measures,
it is important to specify a cost structure which is
rigorously substantiated by an adequate operational
model. We have selected a structure, in which an out-
let’s costs, expressed as a function of its expected sales
volume, is affine with an intercept that is proportional
with the reciprocal of the waiting time standard:

Cj4Qj5 = c̄jQj + d̄j/Wk4j5

= 4ck4j5 + �j5Qj + 6dk4j5 +uj 7/Wk4j51

j = 11 0 0 0 1 J 0 (5)

Here, for every outlet j = 11 0 0 0 1 J and chain k =

11 0 0 0 1K:

Jk = the set of outlets belonging to chain k, i.e., Jk =

8j2 k4j5= k9;
ck4j5 = the average variable food, labor, and equipment

cost rate per customer for an outlet of chain k;
dk4j5 = the average variable capacity cost rate for an

outlet of chain k;
�j = a noise term, denoting the difference between

outlet j’s variable cost rate c̄j and the norm or
average for this chain ck4j5;

uj = a noise term, denoting the difference between
outlet j’s variable capacity cost rate d̄j and the
norm or average for this chain dk4j5.

Each outlet’s marginal cost rate, as well as the capac-
ity cost rate, is equal to a common chain-specific cost
plus a zero-mean, unobserved outlet-specific compo-
nent. This specification is supported by the franchisers’
effort to create a uniform customer experience across
their outlets via standardization of the equipment,
as well as the preparation process and food compo-
nents used at each of its outlets. The unobserved shock
to the cost rate comes from outlet-specific conditions
(e.g., deficiencies in labor productivity, management
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efficiency, or smaller kitchens creating crowding and
reduced efficiency).

The affine cost structure in (5) arises in several
queueing models that may describe the service pro-
cess of an outlet. For example, the structure in (5)
arises in an M/M/1 system, where the waiting time
standard W denotes the expected total sojourn time
in the drive-thru queue and the variable capacity cost
is assumed to be proportional with the service rate.
More realistically, a fast-food service process could be
represented as a Jackson (queueing) network. A food
order may travel along a path of service stages, from
order taking to the cooking of the hamburgers, assem-
bly of the cooked burgers with the side dish and
required drink, and back to the drive-thru counter.
Allon and Federgruen (2008) have shown that the cost
structure in (5) applies to a general Jackson network,
assuming that the variable capacity costs are propor-
tional with the service rates installed at the various
nodes of the network. Alternatively, the service pro-
cess may be best described as a GI/GI/s system, with
an arbitrary renewal arrival process, arbitrary service
time distribution, and a team of s parallel servers.
If the consumer is particularly focused on the delay
experienced in the drive-thru queue and if W denotes
a given fractile of the delay distribution, then the cost
structure in (5) arises as a close approximation; see
Allon and Federgruen (2008). This identity is in fact
exact, rather than an asymptotically correct approx-
imation, when the service time distribution is expo-
nential, i.e., in the case of a GI/M/s system.

We refer to Allon and Federgruen (2008) for addi-
tional queueing models resulting in affine cost struc-
tures of type (5). These authors also show that an
even larger set of queueing models give rise to a
more complex family of cost functions. Our estima-
tion method, which fits the model parameters to the
first-order conditions (FOC) of the underlying com-
petition model, can be adapted to this more general
cost structure; see §3.3 for more discussion. However,
Allon and Gurvich (2010) show that approximating a
more complex capacity function by an affine function
results in only minor discrepancies in the price equi-
librium. Thus, disregarding higher-order terms does
not significantly alter the outcomes of the market.

3.3. The Price Competition Model
We are now ready to analyze the price competition
model that arises when all waiting time standards
have been specified. We assume that every outlet is
independently owned. However, our methodology is
readily adapted if various outlets are jointly managed
by the same franchisee; see below. In view of (5),

�j4P1W1X1�5 = 4Pj − c̄j5Qj4P1W1X � �5− d̄j/Wk4j51

j = 11 0 0 0 1 J (6)

denotes firms j’s profit level as a function of all prices
charged by the various outlets. Each firm j selects
its price within a given range 6c̄j1 pj1max7. It is a long-
standing conjecture that a price competition model
with a mixed multinomial logit demand function and
an affine cost structure has a unique interior point
equilibrium that is the unique solution of the system
of equations given by the FOC:

Qj4P1W1X � �5+ 4Pj − ck4j5 − �j5
¡Qj4P1W1X � �5

¡Pj

= 01

j = 11 0 0 0 1 J 0 (7)

This conjecture underlies almost all structural esti-
mation methods in models with demand equations
of this type. Indeed, the essence of these estimation
methods is to find parameter combinations under
which the FOC equations (7) are satisfied as closely
as possible since the competing firms are assumed to
have adopted the observed price vector as a Nash
equilibrium.

Unfortunately, little was known about whether or
when the above conjecture holds, see e.g., Berry et al.
(1995) Indeed, Allon et al. (2009) show that an equi-
librium may fail to exist in the general model without
any parameter restrictions. A Nash equilibrium does
exist and the set of equilibria corresponds with the
set of solutions to (7), provided one can ensure that
no single firm attains an excessively large share of the
market when pricing at a specific level, which under
the condition, is shown to be an upper bound for
a rational price choice. More specifically, the authors
introduce the following parameterized condition:

C4�5. Each firm j captures, in each market
segment—i.e., each tract/demographic group combi-
nation (b1m)—less than a fraction of the market when
pricing at the level p̄j = c̄j + 1/41 − �5�, j = 11 0 0 0 1N 0
This condition is easily satisfied by checking for every
firm j and market segment 4b1m5 that

e6X
′
k4j5�−Db1 j�−p̄j�−Wk4j5�7

e4�M−�05+e6X
′
k4j5�−Db1 j�−p̄j�−Wk4j5�7+

∑

t 6=j e
6X′

k4t5�−Db1t�−pmax
t �−Wk4t5�7

≤�0

(8)
A firm’s market share is, of course, maximized when
its competitors adopt their maximum price levels.
(See Allon et al. 2009 for sufficient conditions of
C4�) that are independent of the choice of the 8pmax

j 9
values.) Under condition C(�), Allon et al. (2009,
Lemma 4.1) show, in fact, that for all j = 11 0 0 0 1N ,
the price level p̄j = c̄j + 1/41 −�5� arises as an upper
bound for firm j’s price level. Of particular impor-
tance are conditions C41/25 and C41/35, which ensure
that no outlet captures more than 50% or 33% of the
market, respectively (under the abovementioned price
levels). Conditions C41/25 and C41/35 are easily sat-
isfied in most industries and the fast-food industry
in particular. (See §6 for a verification.) Theorems 4.2
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and 4.3 in Allon et al. (2009), applied to our model,
imply the following:

Theorem 3.1. (a) Under condition C41/25, the price
competition model has an equilibrium that is an interior
point of the price cube XN

j=16c̄j1 c̄j + 2/�7.
(b) Under condition C41/25, every Nash equilibrium is

a solution to the FOC (7), and, vice versa, every solution
to (7) is a Nash equilibrium.

(c) Under condition C41/35, the price competition model
has a unique equilibrium that is an interior point of the
price cube XN

j=16c̄j1 c̄j + 105/�7; this equilibrium is a solu-
tion to the FOC (7).

Given the affine cost structure (5) as substantiated
in §3.2 on the basis of underlying queueing mod-
els, the waiting time measures impact only via the
demand model, i.e., via the marginal price sensitivi-
ties 8¡Qj4P1W1X � �5¡pj 2 j = 11 0 0 0 1 J 9; see (3), (4). As
discussed in §3.2 under more general queueing mod-
els, the marginal costs become a function of the wait-
ing time measures as well, in which case the vector
W impacts the structure of the FOC equations both
via the demand and the supply models. See also §6.

4. Data
We have studied the hamburger drive-thru fast-food
industry in Cook County, Illinois. We chose this
industry both because of the availability of data and
because this is an industry that has historically placed
a premium on competing via its service levels. The
QSR 2007 Drive-Thru Time Study notes that in 2007
all quick-service chains made major efforts to improve
speed of service in their drive-thrus (see Nuckolls
2007). Examples of new technology improving speed
of service include timer systems that allow in-store
managers, as well as regional and national offices, to
monitor waiting times at outlets and the outsourc-
ing of drive-thru order taking. The 2008 QSR Drive-
Thru Study reports that this trend is continuing, with
the fastest chain, Wendy’s, shaving off an additional
seven seconds from the average waiting time in the
previous year. There is a plethora of anecdotal evi-
dence that the industry is reacting to consumer expec-
tations regarding waiting times. For example, the
same 2007 QSR Drive-Thru Study reported that 70%
of surveyed customers said speed is an important fac-
tor in the drive-thru experience.

We believe that for our purposes Cook County is
representative of all urban/suburban counties in the
country. The propensity to consume hamburger fast-
food meals as opposed to alternatives may differ in
different parts of the country. However, we see no rea-
son why within urban/suburban areas, the relative
trade-offs between price, waiting times, geography,
and other chain attributes among those interested in
a fast-food meal would vary significantly.

We use as our data set all fast-food outlets belong-
ing to chains selling hamburgers and with a presence
of more than five outlets in the county. We consider
only outlets with drive-thru windows because out-
lets without drive-thru windows tend to be located
in places such as malls and airports where consumers
are facing a different set of considerations. This results
in a total of 388 outlets belonging to McDonald’s
(173), Burger King (92), Wendy’s (62), White Castle
(42), Dairy Queen (10), and Steak ’n Shake (9).

Our consumer choice model does not differentiate
among the various items on the outlets’ menus. Our
model choice is based on the assumption that con-
sumers, when trading off different outlets (as well
as the no purchase option), consider a general price
assessment about each restaurant rather than a com-
plete comparison of all fully itemized menus, infor-
mation they are unlikely to possess, let alone be
able to aggregate in a comprehensive trade-off among
alternative outlets. We have demonstrated that this
trade-off requires the consideration of waiting time,
geography, and chain attributes along with the gen-
eral price level. As a proxy for the general price level
of a hamburger drive-thru restaurant, we have com-
puted the price of a “standard meal” consisting of
the franchise’s signature burger, a small fries order,
and a small soft drink. (We gathered prices by call-
ing each location.) The type of burger selected was
standardized by weight, and in the case of White
Castle, which sells small burgers, we use the price
for four sliders. As noted in the introduction to §3,
we have observed very significant price differences
among outlets belonging to the same chain, with the
most expensive McDonald’s or Burger King outlet
being about 50% more expensive than the cheapest
outlet of that chain in the county; see Table 2.

Recall that in the absence of data on joint ownership
among franchises, we assume each outlet is owned
independently, or at least operating as an indepen-
dent profit center. In the state of Texas, there is a
limited amount of joint ownership among franchisees
(see Kalnins and Lafontaine 2004). Also, the larger
chains allow multiple-unit ownership only via pur-
chases of individual units and only under certain con-
ditions. The only exception among the six chains in
our study is White Castle, all of whose outlets are
owned by the chain. Because all of the outlets sell
similar products, i.e., hamburgers, and use the same
means of service, i.e., drive-thru facilities, we assume
that all of these outlets compete with each other as
alternative producers in the same market.

We use two chain attributes in addition to the
chains’ waiting time standard as potential indicators
of the consumer’s perception of chain quality: (1) the
density of the chain network measured by the num-
ber of outlets in Cook County; and (2) the “inten-
sity” of the chain’s advertising efforts, as measured
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Table 1 Average Waiting Time as Determined from the 2005 QSR
Drive-Thru Study

National advertising
Chain Mean wait (sec.) No. of outlets spend (’05 MM$)

Wendy’s 173034 62 360
Burger King 192029 92 265
McDonald’s 224027 173 638
Dairy Queen 231085 10 56
Steak ’n Shake 264030 9 1205
White Castle 269045 42 1205

by the national advertising spend. The advertising
spend was taken from the Ad$pender database using
the “Total Ad Spend” figure for the “General Pro-
motion” category for each chain in 2005. All media
outlets were included (e.g., television, U.S. Internet,
radio, and print). As discussed, all chains select and
strive for a common waiting time standard among
all of their outlets. In addition, customers often fre-
quent more than a single outlet of a chain and expect
to experience a similar service level, irrespective of
the specific outlet they visit. We have selected the
average steady-state waiting time, defined as the time
spent in the drive-thru queue plus the service time,
as the waiting time standard used in the consumer
choice model of §3.1. To arrive at the average wait-
ing time standards for the different chains, we have
employed the 2005 Drive-Thru Time Study Database,
which we purchased from QSR. The database con-
tains, for a national sample of outlets, two random
observations at lunch and at dinner time. We obtained
each chain’s average waiting time by averaging the
recorded observations over all outlets that belong to
the relevant chains, nationwide. These national aver-
age waiting times vary significantly across chains,
with the worst performer being close to twice as slow
as the best performer; see Table 1. The chain wide
waiting time standards of the six chains in our study
have a mean of 225.92 seconds, a standard deviation
of 38.21, and a range of [1730341269045]. Using a two-
sample t-test assuming unequal variances on all of the
national waiting time observations, we have verified
that waiting time observations for the six different
chains were indeed drawn from different distribu-
tions with the exception of two pairs: McDonald’s and
Dairy Queen, and White Castle and Steak ’n Shake.
(Note from Table 1 that the mean waiting times are
nearly identical within each of these two pairs as
well.) This confirms that different chains offer sys-
tematically different waiting time experiences to the
consumer. The results of this analysis can be seen in
Table A.1 in Appendix A.

Demographic and geographic information was
gathered with a very fine granularity at the so-called
tract level. Tracts are geographic areas defined by the
U.S. Census Bureau to contain 2,500 to 8,000 people.

Cook County consists of 1,343 tracts with an average
area of only 1.2 square miles. In urban areas a tract
corresponds with a few city blocks. The next-smallest
geographic area recognized by the U.S. Census, the
so-called block groups, are so small that some demo-
graphic data, such as race, cannot be reported with-
out revealing the exact household being discussed,
and hence are not available to the public. We have
considered the following age brackets: 0–9, 10–19,
20–39, 40–59, and 60+. We considered African Amer-
ican and white consumers only because these are the
racial groups for which we had the necessary data
for employing the macro moments discussed in §6.
As mentioned in §3, consumers are also differentiated
based on whether they are at work or home. As far
as the residents in a tract are concerned, we collected
the number of people of each age bracket, race, and
gender combination from the 2000 U.S. Census data.
As to the population working in each of the tracts, the
Bureau of Transportation Statistics reports the num-
ber of people commuting between every tract pair. We
aggregated the flow of workers into each tract in Cook
County from any originating tract (whether or not the
originating tract was within Cook County). Unlike the
U.S. Census data, the Bureau of Transportation Statis-
tics data are not broken down by age, gender, and
race combinations, so we estimated the population
size for each triplet combination by assuming that
the three demographic attributes are independent. If
a person lives and works in Cook County they are
counted as two consumers. We do this because such
consumers have the potential to consume one meal
(e.g., lunch) while at work and another meal (e.g.,
dinner) while at home. Distinguishing between com-
muters and residents, two genders, and two racial
groups, as well as among five age brackets, we have
thus divided the population into 40 different demo-
graphic groups. The distance from the consumer to
each outlet is calculated as the distance between the
restaurant and the centroid of the tract in which the
consumer is located. To compute these distances, we
employed the ArcView Geographic Information Sys-
tem modeling and mapping software.

In addition to the independent variables, we col-
lected data for the so-called instruments used in the
estimation method. As discussed in the next section,
these are outlet-specific variables that we argue are
correlated with one or more of the independent vari-
ables, but not with the noise terms 8�j 2 j = 11 0 0 0 1 J 9 in
the cost rates, i.e., the outlet-specific shock on chain-
wide marginal cost. Following the recommendation
in Thomadsen (2005), we have selected the following
instrumental variables: V1j is the distance from out-
let j to the nearest outlet, V2j is the number of outlets
within two miles of outlet j , V3j is the population den-
sity in the tract to which outlet j belongs, and V4j is
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Table 2 Summary Statistics for Outlet-Specific Data

Standard
Variable name Mean deviation Min Max

McDonald’s price ($) 4096 0025 4020 6009
Burger King price ($) 4085 0028 3063 5039
Wendy’s price ($) 4075 0020 4027 5024
White Castle price ($) 4046 0009 4023 4078
Dairy Queen price ($) 5066 0026 5007 6007
Steak n’ Shake price ($) 4099 0036 4067 5084
Distance to nearest outlet (mi) 0055 0048 0000 2052
No. outlets within 2 mi 5093 2054 1 14
Population density (100 K/sq mi) 0009 0009 1.71E−04 0080
Worker density (100 K/sq mi) 0004 0005 1.33E−03 0036

the worker density in this tract. Table 2 shows sum-
mary statistics for these instruments as well as the
price variables.

5. Estimation
As mentioned in the introduction, the major hurdle
when estimating the parameters of the demand func-
tions and the firms’ cost structure is the lack of avail-
able demand data. As explained, this challenge is not
unique to the fast-food industry, but presents itself in
almost all service industries. Because of the unavail-
ability of sales data, we employ a technique that esti-
mates the parameters on the basis of the system of
FOC equations (7), the solutions of which, by Theo-
rem 3.1, coincide with the Nash equilibria of the price
competition model.

The equilibrium conditions (7) represent a system
of equations that involve only the observed price vector
P , waiting time standards W , outlet attribute matrix
X, and distances 8Dj1 b j = 11 0 0 0 1 J 1 b = 11 0 0 0 1B9, as
well as the unknown parameter string and cost-rate
residuals. (In particular, the system of equations does
not involve the unobservable sales volumes.) The sys-
tem of Equation (7) allows us to determine the cost-
rate residual as closed-form functions of the observed
explanatory variables and unknown parameters. It is
easily verified that

¡Qj4P1W1X � �5

¡Pj

= −�
B
∑

b=1

M
∑

m=1

h4b1m5

(

1 −
Sj1 b1m4P1W1X � �5

h4b1m5

)

· Sj1 b1m4P1W1X � �50 (9)

In matrix notation, the equilibrium conditions (7) can
be stated as

Q4P1X1W5+ì4P − c̄5= 01 (10)

where ì is a diagonal J × J matrix whose jth diagonal
element ìj1 j = ¡Qj/¡Pj . For any choice of the parame-
ters �′ = 4� ′1� ′1�′1� ′1�′5, the corresponding vector of
cost rates can thus be determined in closed form:

c̄ = P +ì4P1X1W � �5−1Q4P1X1W � �50 (11)

The cost-rate residuals � can then be determined for
each outlet as the difference of the outlet’s total cost
rate and the average cost rate of the chain to which it
belongs, i.e.,

ck4j5 =
1

�Jk�

∑

j ′∈JK

c̄j ′1 �j = c̄j − ck4j51 ∀ j = 11 0 0 0 1 J 0 (12)

One might be tempted to estimate the unknown
parameters from (11) with the help of standard
maximum-likelihood methods. However, such meth-
ods require a choice of the specific unconditional dis-
tributions for the cost-rate noise terms �. Moreover,
because of the endogeneity of the price vector P , these
variables are correlated with the noise terms, so that
all conditional distributions 6�j � Pl2 1 ≤ j1 l ≤ J 7 need
to be prespecified as well. Incorrect guesses for these
various distributions result in biased inferences; see
Hall (2005). The GMM technique overcomes both dif-
ficulties. See Nevo (2000) and Hall (2005) for clear
expositions. It employs a vector of so-called instru-
ment variables Zj , which are correlated with (some of)
the explanatory variables 8P1X1W1D9, but uncorre-
lated with the cost-rate noise terms �; i.e., E6Zj�j 7= 0
for all cost rates and all outlets.

Our instruments are based on the four instrumen-
tal variables V1j , V2j , V3j , V4j defined in §4. To account
for asymmetries in the way that different chains are
affected by these instrumental variables, we interact
these variables with the chain indicator vectors, I k,
k = 11 0 0 0 1K, to arrive at a total of 24 instruments:
for all j = 11 0 0 0 1 J , Zj is a (24 × 1) vector defined by
Zj ≡ 8Zl1 k1 j = Vlj · Ikj1 l = 11 0 0 0 141 k = 11 0 0 0 1K9. Intu-
itively, these instruments affect demand by altering
the strength of competition and the size of the poten-
tial market. Moreover, they appear to be uncorrelated
with the cost-rate differential an outlet is experiencing
vis-à-vis the chain norm. Note that all of Cook County
is urban or suburban with a total land area of only
946 square miles. It therefore faces a labor market
with fairly uniform labor rates and skills. This implies
that it is very unlikely that any cost efficiencies or
inefficiencies of any outlet compared to the chain
norm can be attributed to the population or worker
density in its area. Had the study been conducted on
a nationwide level, the assumption of independence
would be more questionable. Other than labor cost,
the remaining variable costs in this industry are asso-
ciated with food, energy, and other process inputs that
are tightly prescribed by the chains. Outlets may face
different real estate costs depending upon whether
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they are in downtown Chicago as opposed to subur-
ban areas: however, these differences affect the out-
lets’ fixed costs rather than their variable costs. In
other words, it is reasonable to assume that the above-
stated orthogonality conditions apply. In view of the
population moment conditions, we must have, for
the proper parameter vector �, the sample average,
G4�5 = 41/J 5

∑J
j=1 Zj�j4�5, of the vectors of random

variables 8Zj�j1 j = 11 0 0 0 1 J 9 as close to zero as possi-
ble. The GMM estimator computes a parameter vector
�̂ that minimizes a quadratic function of this sam-
ple average; more specifically, for a given weighting
matrix A,

�̂ = arg min
�

G4�5′AG4�50 (13)

The optimal weighting matrix for the GMM estimator
has been shown to be the inverse of the asymptotic
variance-covariance matrix of the moment conditions.
However, because this matrix is not available a pri-
ori, we follow the commonly used two-step estima-
tion procedure: In the first step, we use the GMM
with weighting matrix A1 = I to get a consistent ini-
tial estimator �̂1 from (13). We then use �̂1 to esti-
mate the asymptotic variance-covariance matrix of
the moment conditions, 4E6G4�̂15G4�̂15

′75, and solve
the optimization problem (13) a second time with
A2 = 4E6G4�̂15G4�̂15

′75−1 as the weighting matrix (see
Hall 2005).

There are well-documented technical difficulties
associated with optimization problem (13). Its objec-
tive function has many local optima. In addition, there
are large regions where this function is close to flat,
creating formidable difficulties for standard gradient
methods. As a consequence, we designed a specific
optimization method, described in Appendix B, and
ran this algorithm with 20 different starting points.

Although there are asymptotically accurate approx-
imations for the variances of the parameter estimates
(see e.g., Hall 2005), these are often known to per-
form badly (see Brown and Newey 2002 and the 1996
special issue of the Journal of Business and Economic
Statistics quoted therein). Therefore, to validate the
statistical significance of these estimates, we have con-
structed confidence intervals using a bootstrapping
procedure. This procedure is advocated when no sam-
ple data are available beyond those used to obtain
the estimate (see, e.g., Brown and Newey 2002). The
idea is to use subsets of the sample and calculate the
value of the estimators in each subset in order to esti-
mate the variance. To that end, we selected 80 ran-
dom subsets of the tracts and ran the second stage of
the above algorithm on each subset, for all 20 start-
ing points, resulting in a total of 80 parameter vec-
tor estimates. Each subset has 134 tracts (10% of total
number of tracts). Eighty subsets were used because

randomly selecting 80 out of 120 such subsets consis-
tently yielded similar confidence intervals. We used
the empirical distribution to construct the confidence
intervals for each parameter.

We undertook two additional robustness tests for
our estimates. To attempt to improve the efficiency
of our estimates, we supplemented the 24 micromo-
ments, introduced in §5, with additional so-called
macromoments. Imbens and Lancaster (1994) sug-
gest supplementing micromoments with macromo-
ments to increase the efficiency of the estimates.
This approach has been used in industrial organiza-
tion studies by Petrin (2002) and Davis (2006). See
Appendix C for a specification of the macromoments.
In our second robustness check we ran the estimation
using only subsets of the six chains included in our
base model. We ran the estimation once assuming that
only the three largest chains (McDonald’s, Wendy’s,
and Burger King) have a presence in the market and a
second time excluding the largest chain (McDonald’s)
from the market.

Finally, if a nonaffine capacity cost function is
desired (see §3.2), a vector term k4P1X1W � �5 is to
be added to the marginal profit expression 4P − c̄5
in (10). It is easily verified that all steps in the esti-
mation procedure continue to apply, with modest
algebraic modifications. Whether the addition of non-
linear terms to the capacity cost function results in
an upward or downward shift of the waiting time
sensitivity depends on the coefficients in this four-
parameter family of functions, themselves dependent
on specific characteristics of the queueing system, e.g.,
the coefficients of variation of service and arrival time
distributions (see Allon and Federgruen 2008).

6. Results
In this section, we report the results of the estima-
tion process and robustness checks. We use either
the chain’s number of county outlets (OUT), the
chain’s national advertising spend (ADV), or neither
of these, as an additional chain attribute X in the util-
ity function (1). (The sensitivity to the ADV attribute
was found to be statistically insignificant when this
attribute was added as the single X-variable. We have
therefore omitted the specification with both OUT and
ADV as additional chain attributes.) We focus on the
key parameters of interest, emphasizing those that are
statistically significant. Table 3 reports the estimated
value of each of the main demand coefficients: price,
waiting time, and distance sensitivity (�1�1�), as well
as the sensitivity to the additional chain attributes, if
applicable. We report the estimates obtained by aver-
aging all 20 two-stage optimization solutions as well
as their 95% confidence intervals. The global optimum
among all 20 two-stage solutions is consistently close
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to the averages; for example, for the preferred specifi-
cation with OUT as an additional chain attribute, the
gap is never larger than 50%.

We first note that the estimates of the main param-
eters of interest, i.e., the sensitivity parameters for
price, waiting time, and distance (�1�1�), are remark-
ably consistent across all three model specifications.
This applies both to the point estimates and their
95% confidence intervals. (The only exception is the
estimate of the distance sensitivitiy in the model with-
out the additional chain attribute X, which is approx-
imately five times smaller than the estimate in the
other two specifications.) The best fit is obtained for
the specification with OUT. Its coefficient is signifi-
cantly positive at the 99% level, as opposed to that of
the ADV variable, which is statistically insignificant.
In view of the consistency of the estimates across the
three model specifications and the relative superiority
of the OUT specification, we focus on this specifica-
tion in the remaining base model discussion as well
as the robustness tests.

To ensure that the observed price vector is a
Nash equilibrium under the estimated parameter
values, we have verified that condition (C) is sat-
isfied. Indeed, as proven under this condition in
Theorem 3.1, we observed that pj < c̄j + 2/� for all
j = 11 0 0 0 1 J . In fact, we found that pj < p̃j = c̄j + 1/�,
so that the observed price vector is in fact the unique
equilibrium as long as p̃ is chosen as the maximum
price vector; see the discussion at the end of §3 and
Allon et al. (2009, Theorem 4.4).

Table 3 shows that all of the parameters (�1�1�1 �)
are significant at a 99% confidence level. Our esti-
mates indicate that consumers attribute a very high
cost to the time they spend waiting. Both the
price and waiting time parameters have a signifi-
cant impact on the consumer’s decision. These results
confirm our initial conjecture, as well as the belief
expressed by industry experts that in the fast-food
drive-thru industry customers trade off price and
waiting time. In particular, to overcome an additional
second of waiting time, an outlet will need to com-
pensate an average customer by as much as $0.05
(=0.0237/0.492) in a meal whose typical price ranges
from $2.25 to $6. This corresponds with an hourly

Table 3 Estimates of Consumer Sensitivity to Key Attributes Under Three Model Specifications

Model specification Price sensitivity ($) Wait time sensitivity (sec.) Distance sensitivity (miles) Chain proxy sensitivity

No brand proxy 4.86E−01∗∗ 2.64E−02∗∗ 1.73E−01∗∗ NA
(4.50E−01, 4.97E−01) (2.65E−02, 2.93E−02) (1.27E−01, 2.22E−01) NA

Number of outlets 4.92E−01∗∗ 2.37E−02∗∗ 8.24E−01∗∗ 1.39E−02∗∗

(4.05E−01, 5.00E−01) (2.05E−02, 2.95E−02) (8.11E−01, 1.26E+00) (1.37E−02, 2.59E−02)
Advertising spend 4.92E−01∗∗ 2.34E−02∗∗ 9.15E−01∗∗ −5.55E−04

(4.12E−01, 5.02E−01) (1.65E−02, 2.99E−02) (8.69E−01, 1.29E+00) (−1.24E−02, 3.01E−03)

∗∗Indicates significance at the 99% confidence level. Significance level determined via a two-tail test.

cost rate of approximately 10 times the (pretax) aver-
age wage of $18/hour and nearly 30 times the (pre-
tax) minimum wage in Illinois in 2005 ($6.50/hour).
Even when comparing (opposite) extreme values of
the 95% confidence intervals, the average consumer
assigns a cost to waiting that corresponds with a rate
of at least $0.04 per second. Because price differences
in this industry, as in many others, are rather modest,
this valuation implies that in the drive-thru market
waiting time plays a more significant role than pricing
in explaining sales volume. Moreover, these results
seem to justify the continuing trend of chains making
substantial investments to improve their waiting time.

It is also interesting to compare waiting time and
distance sensitivity. After all, the disutility associated
with the distance factor arises mainly from the asso-
ciated time loss. Assuming, for example, an average
velocity of 30 miles/hour, the estimate of � implies
that every additional second spent driving to the out-
let reduces the utility measure by 00824 × 30/31600 =

0069E−2. Thus, the disutility of time spent waiting in
the drive-thru line is at least three times that associ-
ated with the traveling time. This finding is consistent
with the literature (see, e.g., Kahneman and Tversky
1984, Larson 1987) that reveals that individuals value
time very differently, depending on the context and
the degree to which time spent is pleasurable or not:
most people mind time spent driving far less than
time waiting idly; some even enjoy the ride.

There are some limitations to be noted with the
estimation of the contribution of travel time to the
overall utility value. First, we do not have an exact
measure of the road distance between the consumer’s
residence and the outlets. Even if we did, this dis-
tance is not the best-possible measure for the addi-
tional effort and time she needs to expend to travel
to the outlet. After all, many consumers stop in a
drive-thru on the way from one point to the other,
so that the disutility associated with travel time is
not perfectly measured by the distance between the
consumer’s residence or work place and the outlet.
Finally, it is not clear that a consumer’s disutility from
travel varies linearly with the distance driven.

When omitting waiting time as an explanatory vari-
able in the consumer choice model, the resulting
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price sensitivity estimate is 0.543, a 10.5% increase
compared with the estimate we obtain with the full
model. In fact, this estimate lies outside the confi-
dence interval obtained using the full model. Indeed,
when service-level attributes such as waiting time are
disregarded, any reasonable estimation method can
be expected to attribute a greater weight to price dif-
ferentials to explain differences in sales volumes and
market shares. Furthermore, estimating the elasticity
of demand with respect to price using the model with-
out waiting time results in overestimating this price
elasticity by more than 10%. Not accounting for the
waiting time as a strategic attribute also overstates
the utility value of the outside good and disguises
the importance of the chains’ number of outlets in
the county, the best identified indicator of the con-
sumers’ perception of chain quality. These various
distortions contribute to suboptimal pricing decisions
when ignoring waiting time as an explanatory vari-
able in the consumer choice model.

It is also of interest to compare our results with
those of Thomadsen (2005), who employed a simi-
lar model to estimate market share equations in the
hamburger fast-food industry in Santa Clara, Cali-
fornia. Thomadsen’s consumer choice model disre-
gards differences in service attributes as explana-
tory variables but includes the coownership struc-
ture (i.e., multioutlet owners) and brand dummies.
Consistent with our findings regarding the impact
of omitted service attributes, Thomadsen’s estimate
for the price sensitivity parameter is systematically
larger than (in his case approximately double) the
value we obtain. Along with considering all national
chains with five or more outlets in the county, we
represent the fast-food market as more competitive
than Thomadsen does, in that we disregard the fact
that a certain percentage of franchise owners own
multiple outlets. (As mentioned, we lacked informa-
tion about common ownership.) Ignoring the lim-
ited coownership phenomenon (see earlier discussion
of Kalnins and Lafontaine 2004), results in under-
estimated equilibrium price sensitivity estimates for
given observed price levels. Note that even if the
price sensitivity parameters were double our estimate,
the estimated cost of waiting time would be approx-
imately $90/hour. Finally, Thomadsen (2005) reports
only a 90% confidence interval on the price estimate,
(001411068), which has a margin of error nearly 20
times that of our 90% interval. Indeed, our confidence
interval is entirely contained in his.

6.1. Robustness Testing
We have conducted various tests to confirm the
robustness of our estimates beyond the consistency of
the parameter estimates across the three model spec-
ifications, as well as the relatively narrow confidence

Table 4 Parameter Estimates Under Three Alternatives to the
Base Model

{McD, Without
Base model With MM BK, WN} McD

Price ($) 4.92E−01 5.03E−01 5.08E−01 5.14E−01
(4.05E−01, 5.00E−01)

Waiting time 2.37E−02 2.01E−02 2.05E−02 2.13E−02
(sec.) (2.05E−02, 2.95E−02)

Distance (miles) 8.24E−01 7.70E−01 8.53E−01 7.16E−01
(8.11E−01, 1.26E+00)

Brand proxy 1.39E−02 9.07E−03 1.34E−02 2.47E−02
(no. of outlets) (1.37E−02, 2.59E−02)

intervals. These additional robustness tests consist
of (i) adding the macro moments discussed in §4
and listed in Appendix A to the GMM estimation
procedure; (ii) repeating the estimation procedure
under the assumption that only the three largest
chains—McDonald’s, Burger King, and Wendy’s—
have a presence in the county; and (iii) repeating
the estimation under the assumption that the largest
chain, i.e., McDonald’s, is absent in the county, thereby
reducing the number of outlets by 44%. All of the
additional robustness tests employ the specification
with the OUT attribute. Table 4 reports the estimates
under the above three alternatives, while restating the
estimates of the base model. (As before, the numbers
within parentheses denote a 95% confidence interval;
the estimates with macromoments are based on a sin-
gle stage of estimation.) Once again, we have remark-
able consistency in all of the parameter estimates
among the different variants of the model/estimation
procedure.

6.2. Counterfactuals
How much, then, is it worth to reduce the wait-
ing time standards? We mentioned the industry
maxim that a seven-second reduction in waiting times
increases a chain’s market share by 1%. We have
therefore investigated the impact of a single chain
reducing its waiting time standard by seven seconds,
allowing all outlets to adjust their prices to the new
price equilibrium. The results of this experiment can
be seen in Table 5. In the first two rows (i.e., the
rows with “Initial” in the title), we give the estimated
daily demand and market share of each chain at the
current waiting time standards and prices. The third
row, titled “McD,” shows the change in every chain’s
market share and demand volume when McDon-
ald’s reduces its waiting time by seven seconds. The
following five rows contain the results of the same
experiment for the remaining five chains. The per-
centage of the total market captured at the current
waiting time standards closely matches the results in
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Table 5 Change in Market Share Following Seven-Second Wait Standard Reduction at a Chain

Percentage of
McD BK WN Wh. Castle DQ S ’n S total market

Initial demand 5.58E+05 2.26E+05 1.33E+05 1.83E+04 1.95E+03 1.35E+03 14.22
Initial market share 59.47% 24.06% 14.16% 1.95% 0.21% 0.14%

McD (ã demand) 6.76E+04 −2.90E+03 −1.57E+03 −2.32E+02 −2.04E+01 −1.32E+01 15.17
(ã market share) 3.02% −1.80% −1.05% −0.15% −0.02% −0.01%

BK −2.93E+03 2.93E+04 −6.36E+02 −9.67E+01 −8.01E+00 −5.10E+00 14.61
−1.88% 2.40% −0.44% −0.06% −0.01% 0.00%

WN −1.58E+03 −6.38E+02 1.76E+04 −5.34E+01 −5.66E+00 −3.68E+00 14.45
−1.12% −0.45% 1.62% −0.04% 0.00% 0.00%

WC −2.36E+02 −9.73E+01 −5.36E+01 2.48E+03 −6.47E−01 −2.43E−01 14.25
−0.16% −0.06% −0.04% 0.26% 0.00% 0.00%

DQ −2.07E+01 −8.06E+00 −5.69E+00 −6.48E−01 2.64E+02 −7.12E−02 14.22
−0.02% −0.01% 0.00% 0.00% 0.03% 0.00%

SS −1.33E+01 −5.13E+00 −3.69E+00 −2.43E−01 −7.12E−02 1.84E+02 14.22
−0.01% 0.00% 0.00% 0.00% 0.00% 0.02%

All 6.23E+04 2.52E+04 1.51E+04 2.05E+03 2.25E+02 1.59E+02 15.81
−0.01% −0.01% 0.02% 0.00% 0.00% 0.00%

Paeratakul et al. (2003), providing further validation
of our estimates.

Our results confirm that the industry maxim is,
on “average,” correct. However, the absolute change
in market share ranges from 3% at McDonald’s
(the market leader) to 0.04% at Dairy Queen, with
Wendy’s, the chain with the fastest service in 2007
and 2008, experiencing an increase by 1.33%. (The
percentage increase in market share ranges between
4% at McDonald’s and 20% at Dairy Queen.) Here, a
chain’s market share is defined as the chain’s sales as
a percentage of the total sales in the hamburger drive-
thru industry. Even more importantly, an unmatched
reduction of McDonald’s waiting time standard by
seven seconds results in an increase of its sales vol-
ume by approximately 15%. Note that the increase
in demand comes primarily from attracting new cus-
tomers to the market. The percentage of the poten-
tial fast-food market captured by all the chains grows
by more than 1% when any of the three large play-
ers lower their waiting time. As further discussed
in §7, any chain’s unilateral waiting time reduction
is likely to induce waiting time changes by the com-
peting firms. Indeed, between 2005 and 2008, almost
all chains gradually reduced their waiting time stan-
dards, McDonald’s from 224 to 158 seconds and
Wendy’s from 173 to 131. Therefore, in the last row
of Table 5 we report the impact of a simultaneous
seven-second reduction of the average waiting time
by all chains. This simultaneous service improvement
results in the six chains capturing an additional 1.5%
of the potential market. Relative market share changes
are small, with Wendy’s the prime beneficiary in rel-
ative terms, perhaps because, for it, the seven-second

reduction is the largest relative service improvement
among all six chains.

7. Conclusions and Extensions
In this paper, we have proposed an approach to esti-
mate how sales volumes for a service organization
depend on all prices and waiting times of the vari-
ous service providers in the region, along with other
relevant attributes. We have applied this approach
to the drive-thru fast-food industry in Cook County,
Illinois. Here, consumers assign an implicit value
to waiting in the drive-thru queue that amounts to
many times the pretax U.S. wage, thus answering
the first two of the four main research questions
raised in §1. Most importantly, chains can improve
their absolute and relative market shares very sig-
nificantly by relatively modest reductions in waiting
time, which explains why all chains make continuous
efforts to shave off seconds from their consumer wait-
ing time—reducing waiting time standards pays off
handsomely in the fast-food industry. A seven-second
reduction, the magnitude of Wendy’s improvement
from 2007 to 2008, implies an “average” increase of a
chain’s market share by approximately one percent-
age point, which confirms the above industry maxim
and answers the third research question. However,
for a large chain like McDonald’s, it would result in
an increase by more than 3% whereas the increase
is 0.04% for a small chain like Dairy Queen, thus
providing an answer to the fourth and final research
question. The competitive dynamics are such that,
to the extent feasible via incremental process and
technological improvements, it is in all chains’ inter-
ests to reduce their waiting times; this occurs to a
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large extent because such service improvements result
in more potential consumers selecting the fast-food
option.

Several important extensions of our study and
underlying model would be valuable. First, it is not
clear whether the waiting time experience is best
characterized by the average alone or by the addi-
tion of other measures such as the standard deviation
and/or a percentile (say the 90th percentile) of the
waiting time distribution. Even if the average waiting
time is the best proxy, it is conceivable that the con-
sumer’s utility level diminishes in a nonlinear way
with it. A similar nonlinear dependence on the dis-
tance variable may be explored as well. In addition,
other service attributes such as the accuracy of the
order-filling process and the clarity of the speaker and
menu board could be included as explanatory vari-
ables in the random utility model (1).

Studying the impact of finer segmentations of the
population, including past patronage of specific out-
lets, so as to estimate the impact of loyalty/inertia
would be of interest. However, without sales volumes
for the period of interest, this fine level of segmen-
tation is not feasible. Nevertheless, in the modified
specification of the utility functions, we have added
explanatory variables that reflect brand penetration
and awareness in Cook County.

Although, as explained in §4, we believe that a con-
sumer choice model with a single price indicator per
outlet is most appropriate for this industry, it could be
worthwhile to test a far more detailed model that con-
siders a menu of items to be purchased at every outlet
and consumers choosing an outlet/menu item com-
bination. It goes without saying that the data gath-
ering and estimation challenges associated with such
a detailed model are formidable, especially in the
absence of sales data.

It would also be desirable to investigate how the
chains in the industry select their waiting time stan-
dards and how the costs associated with waiting
time reductions compare with the resulting revenue
enhancements. To this end, it appears natural to view
the price competition model in this paper as the
second stage in a two-stage game preceded by a
first-stage in which the chains as competing play-
ers select waiting time standards to maximize their
profits. Specification and estimation of such a first-
stage model meets with various challenges. First,
Lafontaine and Shaw (1999) document that franchises
typically pay a fixed periodic fee to the chain, along
with a percentage of the revenues. However, it is
unclear how these parameters are set as a function of
the desired waiting time standard. It is also unclear
how investments and operational costs depend on
this strategic choice. Moreover, because chains select
national standards, a two-stage game is needed with

all U.S. outlets participating in the second-stage price
competition game. It is also unclear whether all chains
face the same potential lower limits for the waiting
time standard. A final challenge is to verify whether
the first-stage competition model has a (unique) pure-
strategy equilibrium.

More broadly, the modeling approach and esti-
mation technique of our study could be applied in
other service industries in which consumers make
purchasing decisions based on a steady-state service
measure, as opposed to the one prevailing at the
time they consider entering the service system. In
most other service industries, one may expect that
the service-level measures vary by individual ser-
vice provider. This greatly simplifies the identification
challenges in the specification of the consumer choice
model, but increases the data collection effort because
one needs direct observations for every provider in
the chosen market. In addition, in our study we
are able to estimate the model without knowledge
of sales volumes or marginal cost rates because of
the absence of unobservable firm-specific (i.e., outlet-
specific) attributes that can be argued to have a con-
sistent impact on consumers’ purchasing decisions. In
industries where such an argument is not valid, the
estimation approach can only be applied if either sales
volume or variable cost-rate data can be assessed.
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Appendix A. Two Sample t-Tests
In this appendix, we report on the two-sample t-tests
(assuming unequal variances) we conducted on all national
waiting time observations for each of the six hamburger
chains to verify whether the waiting time distributions vary
by chain. The critical values for each test, with an alpha of
0.05, consistently rounded to 1.96. The t statistic is reported
in the right-hand section of Table A.1.

Appendix B. The Optimization Routine
To mitigate the difficulties associated with the optimization
problem (13), we restrict the feasible region for the parame-
ter vector � by imposing several reasonable constraints. For
all chains k = 11 0 0 0 1K, let

con4�5b1m =
∑J

j=1 Sj1 b1m4P1W1X � �5/h4b1m5, b = 11 0 0 0 1B;
m= 11 0 0 0 1M

= the fraction of the population in tract b and
socioeconomic group m that purchases a fast-
food meal;

con4con5= an upper (lower) bound for the fraction of the
population in any geographical area and any
socioeconomic group to purchase a fast-food
meal;
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Table A.1 Two-Sample t-Test on National Chainwide Wait Time Observations

Mean wait Burger White Dairy Steak
Chain No. of obs. (sec) Std. dev. McDonald’s King Wendy’s Castle Queen ’n shake

McDonald’s 598 224.27 151.38 — 4009 6066 −3098 −0070 −3086
Burger King 600 192.28 116.69 −4009 — 2089 −7025 −5015 −7070
Wendy’s 596 173.34 109.81 −6066 −2089 — −9013 −7092 −9093
White Castle 334 269.45 173.83 3098 7025 9013 — 3057 0055
Dairy Queen 528 230.10 128.18 0070 5015 7092 −3057 — −3040
Steak ’n Shake 328 262.69 141.22 3086 7070 9093 −0055 3040 —

Jk = 8j2 k4j5= k9 denotes the set of outlets belonging
to chain k;

ĉk4�5= best estimate of chain k’s standard cost rate
where

ck = 41/Jk5
∑

j∈Jk

6Pj +ì4P1X1W � �5−1Q4P1X1W � �5j 73

ck = 0;
c̄k = minj∈Jk

Pj 2 k = 11 0 0 0 1K.

We impose the constraints:

con≤ con4�5b1m ≤ con1 for all b = 11 0 0 0 1B and

m= 11 0 0 0 1M1 (B1)

ck ≤ ĉk4�5≤ c̄k1 for all k = 11 0 0 0 1K03 (B2)

Thus, instead of the unconstrained problem (13), we
solve the constrained optimization problem: 4P5min� {(13)
s.t. (B1) and (B2)}. To solve the constrained optimization
problem, we replaced the soft constraints (B1) and (B2) by
penalty functions that penalize any violations of these con-
straints. The penalty functions are multiplied with a com-
mon multiplier å, which within the course of our iterative
algorithm is reduced sequentially to zero. More specifically,
we have used the following perturbed objective:

G′4�5AG4�5+å
∑

b

∑

m

{

log6con− con4�5b1m7

+ log6con4�5b1m − con7

+
∑

k

log6c̄k − ĉk4�57+ log6ĉk4�5− ck7

}

0 (B3)

We have developed a special algorithm to solve 4P5 via
the modified objective (B3). We begin with a large value
for å, the weight of the penalty functions, roughly two
orders of magnitude larger than the objective function value
at the starting point. This is an application of the general
barrier method approach for constrained nonlinear opti-
mization. The algorithm invokes a quasi-Newton search
method. During this search, we restrict movement in the

3 We have chosen the constraints 0005 and 0070 as a wide range
around the national average consumption percentages reported in
Paeratakul et al. (2003). In this study, which surveyed a national
sample of the population across various age, gender, and race com-
binations to see if they had eaten fast food over the previous two-
day period, the group with the highest (lowest) percentage of fast-
food consumption reported at 52% (20%), well within our bounds.

direction of the barriers imposed by the penalty functions so
that any point within the interior of the feasible region can
be reached, but points along the barrier are not approached
very quickly, thus preventing the algorithm from “trapping”
itself in unfavorable points. When a stopping condition is
reached, the penalty weight å is halved and the modified
quasi-Newton search rerun. In the first iteration, when the
penalty å is large, this generally results in the algorithm
moving to a point that is quite far from the barriers. The
algorithm iterates until the penalty weight is small enough
to render the penalty terms insignificant compared to the
regular objective function (13). Because by the termination
of the algorithm, the multiplier is reduced to an insignificant
number, the algorithm optimizes the true objective function
(13) over the feasible region described by the constraints
(B1) and (B2).

To arrive at the reported estimates, we used a process
in which, in the first stage, we took 20 starting points and
ran the above algorithm with two different initial values
of the penalty parameter å—one is two orders of magni-
tude larger than the other—resulting in two estimates per
starting point. For each of the 20 starting points, we chose
the estimate (of the two) that resulted in the lower objec-
tive function (excluding the penalty function) and generated
a weighting matrix for this estimate from the covariance
matrix. In the second stage we ran our algorithm starting
with this estimate and weighting matrix, again from both å
values generating 40 final estimates.

Appendix C. The Macromoments
We have added macromoments that are based on three
demographic features: age, race, and gender. We use the
study by Paeratakul et al. (2003), which reports the pro-
portion of people in various demographic groups that
consume fast food over a two-day period. As suggested
in Thomadsen (2005), the macromoments are constructed
based on the idea that the consumption ratio of related
demographic groups in Cook County should be close to the
national consumption ratios. For example, the local ratio of
men to women consuming a fast-food meal should match
the national ratio; i.e., the percentage of women consuming
fast food in Cook County may differ from the national aver-
age, but the fraction of men consuming should differ from
the national average proportionally to women. The follow-
ing 12 macromoments were added to the micromoments
based on comparisons between age brackets, one between
genders, and one between races.

G0−9110−164�5=
1
J

J
∑

j=1

[

R0−9

Qj110−194�5

Pop10−19

−R10−19

Qj10−94�5

Pop0−9

]

1

(C1)
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0 0 0

G40−59160+4�5=
1
J

J
∑

j=1

[

R40−59

Qj160+4�5

Pop60+

−R60+

Qj140−594�5

Pop40−59

]

1

(C2)

GJ 4�5=
1
J

J
∑

j=1

[

RMale

Qj1Female4�5

PopFemale

−RFemale

Qj1Male4�5

PopMale

]

1 (C3)

GJ 4�5=
1
J

J
∑

j=1

[

RBlack

Qj1White4�5

PopWhite

−RWhite

Qj1Black4�5

PopBlack

]

1 (C4)

where R0−9 denotes the national fraction of fast-food con-
sumers who belong to the 0–9 age bracket as estimated
by the Paeratakul et al. (2003) study, Pop0−9 denotes the
Cook County population in this age bracket, and Qj10−94�5
denotes the demand of consumers age 0–9 at outlet j .
Similar definitions pertain to the other R_, Pop_, and Q_
numbers.
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