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The principal performance measures in an inventory system involve key characteristics of
the system’s inventory position, i.e., the total inventory the firm is economically committed
to, as well as the average order size or order frequency. As to the former, the focus among
operation managers is on the maximum inventory (position), the average inventory and the
minimum inventory, the latter being related to the so-called safety stock concept. Financial
analysts and macroeconomists pay particular attention to the sales/inventory ratio, also
referred to as the inventory turnover.

We derive general conditions under which monotonicity of the above key performance
measures can be established within a (single-item) inventory system governed by an optimal
(r,q) or (r,nqg) policy. When the sample paths of the leadtime demand process are step
functions, we refer to the model as the discrete model and the long-run average cost is of

the form: e
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(When the sample paths are continuous functions, or the so-called continuous model, we

have a similar expression with the sum replaced by an integral.) d and K represent the
long-run average demand rate and the fixed cost incurred for every order batch of size q
respectively. All other model primitives ¢ € T impact the long-run average cost exclusively
via the so-called instantaneous expected cost function G(y|t).

The fixed cost K impacts only the first term in the numerator of (1). Zheng (1992)
already showed that the optimal reorder level r* is decreasing while the optimal order size
q¢* and the optimal order-up-to level R* = r* + ¢* are increasing in this parameter. In
contrast, the average demand rate d impacts both terms in the numerator of the long-run
average cost function and the net monotonicity effect on the optimal policy parameters is
therefore, sometimes, ambiguous. We establish our monotonicity properties with respect to
all other general model primitives ¢t € T', merely requiring that the space 7" be endowed with
a partial order <. As such, ¢ may be a cost parameter, or a parameter of the demand or
leadtime distribution. Alternatively, ¢ may represent the distribution of a random variable

or a complete stochastic process, or a cost rate function.



Our first main result is that the optimal reorder level r* and the optimal order-up-to
level R* are decreasing (increasing) in ¢ whenever the function G(y|t) is supermodular (sub-
modular) in (y, ), that is, any of the difference functions G(ya|t) — G(y1|t), with y1 < ys, is
increasing (decreasing) in t. Thus, the monotonicity patterns of r* and R* are identical in
the continuous model and the discrete model and the general conditions under which they
are obtained are identical as well. As to the remaining policy parameter g¢*, i.e., the opti-
mal order quantity, here the monotonicity patterns that can be expected, differ themselves,
between the continuous model and the discrete model . In the continuous model, ¢* can
often be guaranteed to be monotone in various model parameters. In the discrete model,
occasional unit increases (decreases) between stretches where ¢*(t) is decreasing (increasing)
can not be excluded. This gives rise to a new monotonicity property which we refer to as
rough monotonicity: an integer valued function is roughly decreasing (increasing) if the step
function does not exhibit any pair of consecutive increases (decreases). In addition, more
restricted conditions for the structure of the instantaneous expected cost function G(y|t) are
necessary and sufficient to obtain the monotonicity property of ¢* in the continuous model
and rough monotonicity in the discrete model. These more restricted conditions relate to
settings where ¢ represents a (scalar) parameter.

The most frequently used model in which the long-run average cost of an (r, q) or (r,nq)
policy is given by (1) or its continuous counterpart has the following assumptions: the
item is obtained at a given price per unit; inventory costs are accrued at a rate which is a
convex increasing function of the inventory level; stockouts are backlogged where backlogging
costs are, again, accrued at a rate which is a convex increasing function of the backlog
size; leadtimes are generated by a so-called exogenous and sequential process, ensuring that
consecutive orders do not cross and the leadtimes are independent of the demand process.
We refer to this as the standard inventory model.

Our general results imply, in particular, that »* and R* are decreasing in the item’s pur-
chase price, assuming that the inventory carrying cost rate function increases monotonically
with the purchase price. Similarly, r* and R* are decreasing in other parameters on which
the marginal inventory carrying cost rate function depends monotonically, for example, the
physical maintenance and warehousing cost per unit of inventory, or more generally, when
the marginal holding cost rate function is replaced by a pointwise larger one. In contrast,
r* and R* are both increasing when the marginal backlogging cost rate function is replaced
by a pointwise larger one. As a final application for the standard inventory model, compare
two leadtime demand processes such that the leadtime demand distribution under the first

process is stochastically smaller than that under the second process. (Dominance of the



steady-state leadtime demand distribution may arise because of a change of the demand
process, a stochastic enlargement of the leadtime distribution, or both.) We show that r*
and R* are always smaller under the first process compared to the latter. As far as ¢* is
concerned, our general results imply, for example, monotonicity with respect to the purchase
price, holding/backorder cost rates, and in the case of normal leadtime demands, their mean
and standard deviation. Similarly, if the demand process is a Brownian Motion and lead-
times are fixed, ¢* is increasing in the drift, volatility and the leadtime. Sufficient conditions
for (rough) monotonicity can often be stated in terms of broadly applicable properties of the
cdf of the leadtime demand distribution such as log-concavity.

To our knowledge, other than Zheng (1992) only two papers have addressed monotonicity
properties in systems that are governed by general (r,q) policies. Song and Zipkin (1996b)
address systems with i.i.d. leadtimes, assuming the optimal reorder level r(q) is selected in
conjunction with any exogenously specified order quantity g. Since under i.i.d. leadtimes
the long-run average cost can only be approximated, these authors investigate the impact
of increased leadtime variability on the average backlogging /inventory size by conducting a
numerical study. As in this paper, Song et al. (2010) consider systems governed by the glob-
ally optimal (r,q)-policy. They show that both r* and R* decrease when the steady-state
leadtime or leadtime demand distribution becomes stochastically larger. We obtain this
as a special corollary of our general monotonicity result under submodular instantaneous
expected cost functions G(y|t). They also show that a stochastically smaller leadtime or
leadtime demand is not guaranteed to result in a lower average cost, while the less variable
leadtime or leadtime demand distribution does. The remainder of Song et al. (2010) estab-
lishes monotonicity properties of the policy parameters under increased (leadtime) demand

variability, but only under certain conditions on the model parameters.
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