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Discrete choice models are appealing for airline revenue management (RM) because they offer a means to
profitably exploit preferences for attributes such as time of day, routing, brand, and price. They are also

good at modeling demand for unrestricted fare class structures, which are widespread throughout the industry.
However, there is little empirical research on the practicality and effectiveness of choice-based RM models.
Toward this end, we report the results of a study of choice-based RM conducted with a major U.S. airline. Our
study had two main objectives: (1) to assess the extent to which choice models can be estimated well using
readily available airline data, and (2) to gauge the potential impact that choice-based RM could have on a
sample of test markets.
We developed a maximum likelihood estimation algorithm that uses a variation of the expectation-

maximization method to account for unobservable data. The procedure was applied to data for a test market
from New York City to a destination in Florida. The outputs are promising in terms of the quality of the com-
puted estimates, although a large number of departure instances may be necessary to achieve highly accurate
results. These choice model estimates were then used in a simulation study to assess the revenue performance
of the EMSR-b (expected marginal seat revenue, version b) capacity control policies and the current controls
used by the airline relative to controls optimized to account for choice behavior. Our simulation results show
1%–5% average revenue improvements using choice-based RM. Although such simulated results must be taken
with caution, overall our study suggests that choice-based revenue management is both feasible to execute and
economically significant in real-world airline environments.
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1. Introduction
Quantity-based revenue management (RM) involves
optimally allocating capacity of resources to demand
by controlling the availability of fare products. This
allocation is done dynamically as demand materi-
alizes, and with considerable uncertainty about the
quantity or composition of future requests.
Traditionally, both researchers and practitioners

have made the assumption that demand for each
fare class is an independent stochastic process that
is not influenced by the firm’s availability controls.

This so-called independent demand model does not
endogenize customer behavior, such as choice behav-
ior and purchase-timing behavior (see Talluri and
van Ryzin 2004b for further discussion of the indepen-
dent demand model). Clearly, this is a somewhat unre-
alistic assumption. For example, the probability of sell-
ing a full-fare ticket may very well depend on whether
a discount fare is available at the same time, the prob-
ability that a customer buys at all may depend on the
lowest available fare, etc. When a customer buys a
higher fare when a discount class is closed it is called
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a buy-up; when she chooses another flight from the
same carrier when a discount class is closed, it is called
diversion. When a customer willing to pay a high fare
instead buys a low-fare ticket because it is available, it
is called a buy-down. These behaviors have important
revenue consequences.
Such choice behavior is well recognized in RM prac-

tice, and several ad hoc corrections to the independent
demand model have been proposed to capture some
of these effects (e.g., see Belobaba 1987a, b, Belobaba
1989; Belobaba and Weatherford 1996). The success
of low-cost airlines offering simplified, undifferenti-
ated fare structures has rekindled interest in customer
choice models, because with minimal rules and restric-
tions separating fare classes (i.e., in so-called “fence-
less” fare environments), customers have considerable
latitude to buy up, buy down, or divert. Moreover,
point-to-point operators often have many flight depar-
tures per day in a given origin-destination (O-D) mar-
ket, so customers have a variety of departures at dif-
ferent price levels from which to choose. RM decisions
can potentially be improved by properly accounting
for this environment of flexibility and choice.
Choice-based RM has been an active research area

of late. Belobaba and Hopperstad (1999) conducted
simulation studies to understand the impact that
passenger choice behavior has on traditional RM
methods. Talluri and van Ryzin (2004a) provided
an exact analysis of the optimal control policy for
a single-leg model of RM under a general discrete
choice model of demand. Zhang and Cooper (2006)
analyzed choice among parallel flights in the same
market (e.g., different departure times between the
same O-D pair). Their model assumes that the cus-
tomer chooses within the same fare class among
different flights but not between fare classes. They
developed bounds and approximations to the result-
ing dynamic program. Boyd and Kallesen (2004)
illustrated the effect of considering demand models
for price-sensitive customers in a single-leg setting,
where customers are price sensitive and not perfectly
segmented, and therefore may buy down. Gallego
et al. (2004) and Liu and van Ryzin (2008) studied a
deterministic network RM problem using a customer-
choice-based linear programming model. The recent
dynamic programming (DP) approximation proposal
of Zhang and Adelman (2009), the column generation

algorithm of Miranda Bront et al. (2009), and the DP
decomposition scheme of Kunnumkal and Topaloglu
(2009) also belong to this line of research.
However, there is little empirical understanding of

how choice behavior impacts airline RM. That is,
how significant is choice behavior in real airline mar-
kets? Can it be estimated well using available data?
And what do real-world estimates of choice behav-
ior have to say about the potential revenue improve-
ments from using choice-based RM? Exceptions are
the work of Andersson (1989, 1998) and Algers and
Besser (2001), who reported development efforts at
SAS to apply logit choice models to estimate buy-up
and recapture factors1 at one of their hubs. Work close
to ours is that of Ratliff et al. (2008), who proposed
a heuristic methodology for estimating recapture and
demand untruncation for parallel flights in the same
market (e.g., different departure times between the
same O-D pair).
Here, we report the results of a research study

conducted in collaboration with a major U.S. commer-
cial airline. The focus of the study was on O-D markets
between the New York metropolitan area and various
airports in Florida. The study had twomain objectives:
the first objective was to assess the feasibility of esti-
mating choice behavior from readily available airline
data; the second objective was to use these estimates
of choice behavior to assess the potential improvement
of using choice-based optimization methods in the tar-
geted test markets.
Toward these ends, in a first phase we developed a

maximum likelihood estimation (MLE) algorithm for
inferring customer choice behavior from an airline’s
available operational data—namely, capacity avail-
ability, revenue accounting, and flight schedule data.
The first challenge here is constructing relevant

choice models. Given a booking instance, one must
infer which alternatives the customer was consider-
ing when making their purchase decision and the
relevant attributes that influenced that customer’s
decision. This requires determining the consideration
set of flight alternatives, the relevant attributes of
each alternative, and how these attributes are to be
parameterized.

1 Recapture is the amount of demand that is retained by the firm’s
substitute products when a fare class is closed down or the cabin
is sold out.
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The second problem of estimating customer choice
behavior is the available data. Airlines only observe
bookings and not shopping behavior; i.e., they only
record the outcomes of customers who decide to
buy.2 This means it is impossible to distinguish a
small time period without an arrival from a period
in which there was an arrival but the arriving cus-
tomer did not purchase from our airline (i.e., the
customer purchased from a competitor or did not
purchase at all). One must therefore infer the real,
uncensored volume of potential customers that the
airline was facing in each market using only pur-
chase data. Ignoring this censoring can cause a severe
bias in estimation. Moreover, with this incompleteness
in the data, the standard MLE procedure is diffi-
cult because of the complexity of the log-likelihood
function. To circumvent this problem and account for
unobservable no-purchase data, we used a variation
of the expectation-maximization (EM) method (see
Dempster et al. 1977, or the textbook by McLachlan
and Krishnan 1996). The EM procedure we devel-
oped is an implementation of the generic framework
described in Talluri and van Ryzin (2004a, §5).3

To test our estimation method, we first applied it to
a set of simulated data. This step was taken to assess
the quality of the estimation procedure in an environ-
ment where the volume of data and true underlying
parameters of the choice behavior are controllable and
known. We then applied the estimation procedure to
our airline data set. We computed specific estimates
of customer preferences for price, arrival time, and
departure day. The accuracy of our estimation was
validated through the calculation of asymptotic stan-
dard errors and �2 goodness-of-fit tests between the
observed number of bookings and the expected num-
ber of bookings predicted by our model. The results
of the tests showed the method was quite accurate
for the simulated data cases when we generated large
volumes of booking records. The quality of the esti-
mates was acceptable, though of lower accuracy, in

2 Although the airline’s Web data provide more complete shopping
information, direct sales through the company’s own website only
represent a small fraction of total sales. For this reason, we focused
exclusively on bookings data.
3 The EM method has also been used in other RM contexts, in par-
ticular by McGill (1995), to estimate multivariate normal demand
data with censoring.

the real airline markets that we analyzed. This was
due mainly to the more limited number of departure
instances in the real data set. Overall, the results indi-
cate that with sufficient data, choice behavior can be
reasonably accurately estimated from readily avail-
able airline data.
The second phase of the project involved conduct-

ing a simulation study based on the estimated choice
models. Here, we compared the expected revenue
obtainable from the RM controls used by the air-
line and assessed the potential revenue improvements
that could be achieved by optimizing to account
for choice behavior effects. To measure this impact,
we simulated demand under the estimated choice
behavior parameters and then processed that demand
under the RM capacity controls used by the airline,
EMSR-b (expected marginal seat revenue, version b)
controls that we calculated based on the indepen-
dent demand assumption, and an alternative set of
controls computed using our previous algorithmic
work on simulation-based optimization, which explic-
itly accounts for choice behavior (see van Ryzin and
Vulcano 2008). Our simulation study showed that
the benefits obtained from optimizing RM controls to
account for choice behavior are significant: the aver-
age revenue gains ranged from 1.4% to 5.3% in the
markets we tested. Although in some cases the con-
fidence interval (CI) for the revenue improvements
did include zero, the range was always strongly on
the positive side. We also tested the robustness of
these results by perturbing the parameters to mimic
varying degrees of estimation error. The results show
that the gains in revenue can be affected by estima-
tion accuracy, particularly in cases where the value
added is relatively low (e.g., around 1%). For bigger
revenue gap cases, the revenue benefits are preserved
even when parameter estimates have errors on the
order of 25%. Although these revenue improvements
and robustness studies are only simulation estimates,
they are based on models fit to real-world data and
hence give some sense of the potential performance
of choice-based RM.
In summary, our analysis shows that choice behav-

ior and customer preferences for price, flight time,
and departure date can be estimated relatively well
from readily available airline data, although the qual-
ity of these estimates may vary across different mar-
kets. The simulated benefit of using choice-based RM



Vulcano, van Ryzin, and Chaar: OM Practice
374 Manufacturing & Service Operations Management 12(3), pp. 371–392, © 2010 INFORMS

methods relative to incumbent, independent-demand
RM methods appears quite significant. Together, these
results suggest choice-based RM is both a practi-
cally feasible and economically significant improve-
ment over current airline RM practice.
The remainder of this paper is organized as follows:

For completeness, we begin in §2 by reviewing some
general background on choice models and the multi-
nomial logit (MNL) model used in our study. In §3 we
specialize the choice model for an airline O-D market
and explain our construction of choice sets and how
we parameterized the relevant flight attributes. The
EM estimation algorithm is described in §4. In §5 we
describe the simulation study to assess the RM con-
sequences of embedding choice behavior in capacity
control decisions. Finally, we present our concluding
remarks in §6.

2. Choice Modeling and Estimation
We first provide an overview of discrete-choice mod-
els and then discuss in detail the parametric choice
model used in our study.

2.1. General Choice Models
Choice behavior can be modeled by assuming that
customers are utility maximizers and individual cus-
tomer utilities for alternatives are random variables.
Specifically, consider a set of alternatives offered by
a firm, denoted C. Each customer n has a choice
(or consideration) set Cn ⊂ C. We denote by “0” the
no-purchase alternative, which is normalized to have
utility of zero. Let Uin be the utility of customer n for
alternative i ∈ Cn. Without loss of generality, we can
decompose this utility into two parts, a representa-
tive component vin that is deterministic (also called
the nominal or expected utility) and a random com-
ponent �in. This leads to a utility function

Uin = vin+ �in� (1)

The representative component vin is often modeled
as a linear-in-parameters combination of observable
attributes,

vin = �Txin	 (2)

where � is an unknown vector of parameters (to be
estimated), and xin is a vector of attributes (explana-
tory deterministic values) of customer n for alterna-
tive flight i such as price paid, arrival time, departure
day, etc.

The probability that an individual n selects alterna-
tive i from the set Cn ∪ 
0� is given by

Pni�= �Uin ≥Ujn	 ∀ j ∈Cn ∪ 
0��� (3)

2.2. The MNL Model
The most common random utility model, widely used
in the economics and marketing, is the MNL model
(see Ben-Akiva and Lerman 1994, Chapter 5). It is
derived by assuming that the �ins in the utility func-
tions are independent and identically distributed ran-
dom variables with a Gumbel (or double-exponential)
distribution having cumulative distribution function

F x�= ��in ≤ x�= exp−exp−�x−����	

where � is the location parameter (mode) and � is a
positive scale parameter. The mean and variance of
�in, respectively, are

E��in�= �+�/� and Var��in�=
�2

6�2
	 (4)

where � ≈ 3�1416 and � is the Euler constant (i.e.,
� ≈ 0�5772). The Gumbel distribution is used because
it is closed under maximization and hence can be
applied to (3) (see Gumbel 1958).
For the MNL model, the probability that customer n

chooses alternative i ∈Cn is given by

Pni�=
e�vin∑

j∈Cn e
�vjn + 1	

where the one in the denominator stands for the zero
no-purchase utility (i.e., v0n = 0) leading to e�v0n = 1.
Note that in the case of linear-in-parameters utili-

ties (Equation (2)), � cannot be distinguished from the
overall scale of �. Thus, for convenience, we generally
make an arbitrary assumption that � = 1. Although
this is operationally necessary, from (4) we have to
keep in mind that we are implicitly assuming equal
variance random utilities. For future reference, we set

Pni�=
e�

Txin∑
j∈Cn e

�Txjn + 1	 i ∈Cn� (5)

We let zero denote the set of null alternatives, and
let Pn0� be the probability that customer n does not
purchase from our airline; i.e.,

Pn0�=
1∑

j∈Cn e
�Txjn + 1 � (6)
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Section A1 in the online appendix provides a brief
description of a standard approach for estimating
parametric choice models: maximum likelihood esti-
mation,which is indeed theapproachwe followedhere.

3. A Choice Model for Airline
Markets

We first describe the data available to airlines for esti-
mating customer choice behavior. Then, we describe
the design decisions we took in constructing our dis-
crete choice model.

3.1. Airline Data
At our sponsor firm, there were three readily avail-
able sources of data to use in estimating cus-
tomer choice behavior: flight schedule data, revenue
accounting data, and availability data. The flight
schedule database lists the flights offered by the car-
rier: flight number, origin/destination, day and time
of departure and arrival, aircraft type, etc. The rev-
enue accounting database has one record per ticket
issued, i.e., a customer booking record or passenger name
record (PNR) in the airline industry. The relevant fields
for our study were ticket number, issue date, coupon
number4 (this field should be the sequence number of
the coupon in the ticket), prorate (portion of the total
ticket value assigned to a particular coupon, which
henceforth will be called simply the fare), coupon
origin and destination, and flight number. We com-
plete the description of the purchase with information
about the arrival time of the flight, which is taken
from the flight schedule database.
The availability data are taken from the RM system.

It describes the number of available seats for each of
the demand classes (or buckets) for every flight offered
by the airline. There is also a field for the average
revenue value corresponding to each bucket.5 There
is one record per flight bucket for different snapshot

4 A coupon representsasingleflightofamultiflight itinerary.Forexam-
ple, a round-trip ticket basedon twononstopflights has two coupons.
5 Airline RM systems book reservations in buckets (or fare classes).
Each compartment (first, business, and coach) has a number of
fare classes—typically 15 or so for coach, 1 or 2 for business, and
1 or 2 for first. Each bucket is used to book tickets sold under
different fare-basis codes. Each of these fare-basis codes has spe-
cific fares associated with them and involves somewhat different
requirements, like the number of days of advance purchase.

dates during the booking horizon. Typically, there is
daily snapshot data, or one snapshot every two days
in cases where the snapshot date is further than one
week from the departure date of the flight.
A fourth source of data available for our study was

screen scrape data. These are data obtained from third
parties that automatically sample information about
alternatives and fares offered by competitors at differ-
ent points in time during the booking horizon. This
can be obtained by Web crawler programs. Similar
data can be obtained via global distributions systems
(GDSs). GDSs communicate with the host reservation
system of each airline to periodically obtain availabil-
ity information at the bucket level and hence are in
a position to track market-level prices and availabil-
ity. However, airlines must pay to acquire these GDS
data, their request is typically delayed by a month or
more, and even with GDS data the problem of esti-
mating customer choice behavior is still a challenge.
Although we obtained screen scrape data provid-

ing samples of competitor fares for our study, these
data turned out to be quite incomplete and “dirty.”
In our first attempts at model building and esti-
mation, we incorporated competitor alternatives and
attributes in our choice model and estimation proce-
dure to account for competitive effects. Our expec-
tation was that this would improve the accuracy of
the choice model. However, our preliminary results
yielded very poor quality estimates. A single generic
outside alternative produced more stable estimates
with lower standard errors and better predictive per-
formance. Hence, we decided to omit these com-
petitive data. Nevertheless, we strongly believe that
with more complete and clean data, explicitly incor-
porating competitive data could add precision to
the quality of estimates. A short survey with point-
ers to different applications of discrete choice mod-
els under competitive considerations is provided in
Dubé et al. (2002).

3.2. Choice Model Design
We specialized the general choice model described
above to our airline setting. One major design deci-
sion was the definition of the choice sets Cns. In our
context, Cn includes all the alternatives from our air-
line that customer n evaluates at the moment of mak-
ing her purchase decision. Without shopping data, we
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could not observe Cn directly and therefore had to
make a somewhat arbitrary, albeit plausible, defini-
tion of the set of relevant alternatives. For our study,
and based on our conversations with managers at the
sponsor airline, we tried different definitions of Cn,
including all flights offered by our airline on a given
departure day, all flights offered on a given set of
consecutive departure days, and/or all flights offered
from different subsets of arriving or departing air-
ports (e.g., all New York metro airports versus JFK
airport alone). Because of the sparsity of the airline
real data, we decided on the simpler definition of Cn

as being all flights on a given day between a spe-
cific pair of airports. This choice yielded the highest
quality and most intuitive estimates. We used both
the schedule and the availability files to build this set,
assuming that for some k, the k lowest available buck-
ets (i.e., the k cheapest fares) on each flight are the
alternatives considered by an arriving customer.
Although the availability database gives the aver-

age revenue per bucket, in general there was a
mismatch between these revenue numbers and the
fares listed in the revenue accounting database (the
sequence of PNRs). Moreover, it is not necessarily
true that the fare in the PNR corresponds to the low-
est open bucket available at the time of booking.6

To guarantee consistency within the MNL model,
we therefore replaced the true fare paid (taken from
the revenue accounting file) by the average revenue
reported in the availability file.7 In this way, we
ensured that the fares for the alternatives that are pur-
chased and those that are not purchased are consis-
tent, and hence the choice probabilities in (5) and (6)
are well defined and add up to one. Still, this ad hoc
fixing of the data introduces some noise that could
hurt the estimation procedure.
Another major design decision relates to the time

unit of analysis. In the extreme case where the time
unit is very small—say, at the level of a second—for
a given O-D market, most periods in a day will have

6 The most consistent approach would be to use the fare-basis code
to map a booking request to an open bucket. Unfortunately, accord-
ing to our experience, this was not straightforward even for the
airline research staff itself to unravel this mapping because of the
diversity of sales channels, travel agency agreements, etc.
7 We also tried the reverse substitution, but the results were of
worse quality.

no-purchase outcomes and just a few will have book-
ings occurring. From our numerical experience, this
situation leads to bad behavior in the estimation pro-
cedure. We found a good compromise was to parti-
tion the day into T = 140 small time periods (i.e., each
time period corresponds to a 10-minute interval).
For the purpose of representing the arrival time of

a flight, a day is split into four time slots: morning
(between 5 a.m. and 11 a.m.), noon (between 9 a.m.
and 3 p.m.), afternoon (between 1 p.m. and 7 p.m.),
and evening (between 5 p.m. and midnight). These
intervals overlap, and hence convex weights were
assigned to different times slots to represent arrival
times that fall in multiple slots. For example, the
morning and noon slots overlap from 9 a.m. to 11 a.m.
Therefore, a flight arriving at 7 a.m. is a morning
flight with weight 1, a flight arriving at 11:30 a.m. is a
noon flight with weight 1, a flight arriving at 9:30 a.m.
is considered a morning flight with weight 0�75 and
a noon flight with weight 0�25, a flight arriving at
10:30 a.m. is considered a morning flight with weight
0�25 and a noon flight with weight 0�75.
We acknowledge that this use of overlapping time

slots and “fuzzy” indicator variables is nonstandard
from a modeling point. Traditional discrete choice for-
mulation approaches would typically define nonover-
lapping slots, leading to four dummy variables, one
of which would be eliminated by setting it as a
reference alternative (e.g., see Coldren et al. 2003
and Coldren and Koppelman 2005 for characteriza-
tions of time of day preferences in airline passenger
choice models using dummy variables).8 However,
the overlapping time windows were suggested by
the sponsor airline because these are the time frames
used to define “morning,” “noon,” “afternoon,” and
“evening” flights in the airline’s website search engine.
We felt, therefore, that they best represented the time
differences as presented to customers. We also used
the attribute of arrival time for our set of outbound
flights from New York to Florida rather than the alter-
native of departure time. This was also based on dis-
cussions with the airline sponsor, who felt time spent
in Florida was the primary concern of travelers in
these markets.

8 Yet an alternative approach is used by Carrier (2008), who defines
a time-based cyclical utility for airline passenger choice based on
a sine/cosine formulation.
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Departure day may be considered as a choice along
with arrival time of day, in which case the choice
set Cn includes the flights of two or more consecutive
days. This is the formulation we used for our simu-
lated data example. The day of a flight is represented
by dummy variables so that if the choice set Cn con-
tains days d1	d2	 � � � 	 dCn , then we introduce dCn − 1
dummy variables, setting one reference alternative as
the null alternative. Our data covered four days dur-
ing the peak spring break vacation period, March 23
to March 26, 2005, with d1 representing March 23 and
d4 representing March 26.
The other attribute included in the model is the

base fare paid divided by 1,000 (because of numerical
scaling issues). All flights considered in these markets
are nonstop flights, and so we did not add an indica-
tor to account for this attribute.
To illustrate this parametrization, consider a market

between New York and Florida,9 with possible depar-
ture days d1 or d2. The complete specification of the
model attributes is provided in Table 1.
For example, consider a flight from New York

departing March 23 with arrival time 9:15 a.m. and
fare $180. This alternative is represented as a tuple:
xin = 0�180	0�875	0�125	0	0	1�.
Note that in our discrete choice model we do

not include alternative specific constants. The reason
we omitted alternative specific constants is that the
attributes that we consider are sufficient to distin-
guish a flight, because all flights in a set are operated
by the same carrier between the same city pair, and
they differ only in terms of arrival time, price, and
departure date. Furthermore, when we tried using
alternative specific constants, we got very poor qual-
ity estimates, most likely because of the increased
number of parameters and the relatively low volume
of data we had available.
We emphasize here that our choice model assumes a

homogeneous market; i.e., customers’ preferences are
described by a single set of parameters � for all cus-
tomers. According to the airline staff’s assessment, this
was a reasonable assumption; the New York–Florida
market was believed to be relatively homogeneous, at

9 In our terminology, market refers to particular origin-destination
airport combinations, like origin in LaGuardia (LGA) and destina-
tion in Palm Beach (PBI).

Table 1 Choice Behavior: Attribute Definitions

Attribute Description Value

xn1 Base fare Base fare divided by 1,000
xn2 Morning flight (before 11 a.m.) Weight as morning arrival
xn3 Noon flight (9 a.m.–3 p.m.) Weight as noon arrival
xn4 Afternoon flight (1 a.m.–7 p.m.) Weight as afternoon arrival
xn5 Evening flight (5 p.m.–midnight) Weight as evening arrival
xn6 Indicator for flying on day d1 1 if flight departs on day d1,

0 if it departs on d2

least with respect to price sensitivity, consisting over-
whelmingly of vacation travelers. Still, within these
markets the airline could potentially face different
customer segments for whom the relative weights of
different attributes may vary. In our model-building
phase, we in fact tried a multisegment (or latent class)
MNL model, assuming that customers belong to dis-
crete segments l = 1	 � � � 	L, for which we estimated
both arrival rates  l and preference parameters �l (e.g.,
see Train 2003, Chapter 6). However, as with the com-
petitor data and alternative specific constants, the vol-
ume of data proved too limited, and we were not able
to obtain good estimates even with L = 2 latent seg-
ments (note that this doubles the number of model
parameters).
Even though our final single-segment MNL model

yielded good results (as will be shown in the fol-
lowing sections), it also raises the usual concerns
of the MNL model, most noticeably the property
of independence from irrelevant alternatives, which
implies proportional substitution across alternatives.
Briefly, this property establishes that the ratio of prob-
abilities for two alternatives is constant regardless of
the consideration set containing them. Other choice
models are more flexible with respect to the variety of
substitution patterns that they exhibit (e.g., see Train
2003, Chapter 4). Among them, the nested logit model
has been widely used in the marketing literature. In
our case, we could think of a nested structure where
“buy/no buy” is at the top of the hierarchy and the
different flight options are under the “buy” branch.
Yet the nested logit model can be more challenging
to estimate than the basic MNL model because the
log-likelihood function is not globally concave.
In summary, exploring alternative choice model

specifications within the airline industry context is
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certainly worthy of further study. Nevertheless, we
believe that the single-segment MNL model used
in our project provides a good first-cut sense
of the possibilities and benefits of implementing
choice-based RM.

4. Estimation
Having defined the consideration sets and the para-
metrization of the attributes, we can compute the
MLE estimates for our model. We first describe the
log-likelihood function with incomplete data for our
model, where we recall that the incompleteness comes
from the fact that only purchase transaction data are
available and no-purchase outcomes are unobserv-
able. To overcome this problem, we implement a vari-
ation of the EM method that estimates parameters for
the utility function (2) and for the arrival rate of cus-
tomers jointly. Then, we present a preliminary simu-
lated data example to illustrate the quality of the esti-
mates produced by the procedure. Finally, we present
two examples based on real airline data.

4.1. The Incomplete Data Log-Likelihood
Function

Consider a collection of booking histories, h =
1	 � � � 	H , representing statistical replicas of a given
booking horizon. Each booking horizon consists of
B days, and bookings occur for flights departing on
any day 1	 � � � 	D. For instance, we could consider the
last D = 5 days of a month, a booking horizon of
B = 30 days prior to those D days, and have data for
each month during a calendar year, giving us H = 12
histories.
We assume a (discretized) Poisson arrival process

of customers: Each booking day b is broken up into
T small time intervals. In each small time period
of day b, an arrival occurs with probability  . Note
that because of the Poisson assumption, and assum-
ing intervals of time are small, there is at most one
arrival per period with probability 1. Each arrival
selects among the products available on day b (or
does not purchase at all) according to the MNL model
described by (5) and (6). Let �b	h denote the set of
periods in which customers purchase on day b of
booking history h, and let ��b	h denote the set of peri-
ods in which there are no purchase transactions on
day b of booking history h (i.e., ��b	h� + � ��b	h� = T ).

Consider a linear-in-parameters mean utility of the
form vin = &0+�Txin. Our objective is to estimate the
parameters � = &0	�	 � from purchase data, where
�= &1	 � � � 	&K�. As discussed above, given only pur-
chase data it is impossible to distinguish a period
without an arrival from a period with an arrival but
where the arriving customer chooses the no-purchase
alternative 0 (i.e., she bought from the competitor or
did not buy at all). The incomplete data log-likelihood
function for our model is given by

log�x	��

=
H∑
h=1

B∑
b=1

∑
i∈�b	h

[
log +&0+�Txi−log

(∑
j∈Cb

e&0+�Txj +1
)]

+
B∑
b=1

( H∑
h=1

� ��b	h�
)
log

(
 

(
1∑

j∈Cb e
&0+�Txj +1

)
+1− �

)
�

(7)

Unfortunately, this function is difficult to maximize
directly because of the complexity of the second term
above. To overcome this problem, we used the EM
method of Dempster et al. (1977).

4.2. The EM Method
The EM method operates on the complete data log-
likelihood function, which has a simpler form than (7)
and is constructed assuming that all the arrivals, pur-
chases, and nonpurchases can be observed. Specifi-
cally, for the periods in ��b	h, let ab = 1 if there is an
arrival in an observation period of day b, and ab = 0
otherwise. Note that ab = 1 accounts for an arrival that
either buys from our competitors or decides not to
buy at all.10

We can now write the complete data log-likelihood
function:

log�x	��

=
H∑
h=1

B∑
b=1

∑
i∈�b	h

[
log +&0+�Txi−log

(∑
j∈Cb

e&0+�Txj +1
)]

10 For notational simplicity, we omit the fact that each booking day
b is itself divided into many smaller time periods, so in fact there
is an indicator abt for each interval t of day b. Because this extra
set of indices does not change the form of the likelihood function,
to minimize the complexity of the displayed equations, we omit
them.
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+
B∑
b=1

( H∑
h=1

� ��b	h�
)
ab

(
log − log

(∑
j∈Cb

e&0+�Txj + 1
))

+
B∑
b=1

( H∑
h=1

� ��b	h�
)
1− ab� log1− �� (8)

The first line of (8) in accounts for the observed book-
ings, and there is one term for every record in the
revenue accounting database for each booking history.
The second line accounts for customers that either
buy from competitors or do not purchase, and the
third line refers to periods with no arrivals. These last
two are unobserved data.
The broad strategy of the EM method consists of

starting with arbitrary initial estimates �̂ ≡ &̂0	 �̂	  ̂�

of the parameters, where �̂ = &̂1	 � � � 	 &̂K�. Then
we use these estimates to compute the conditional
expected value of log�x	��, E�log�x	�� � x	 �̂� (the
expectation step, or E-step). Effectively, this replaces
the missing data (the indicators ab for the no-purchase
time periods) by their expected values conditioned on
the current estimates. We then maximize the resulting
log-likelihood function (which has the same form as
the complete log-likelihood function) to generate new
estimates �̂ (the maximization step, or M-step). These
steps are repeated until the procedure converges. We
next describe these steps in complete detail.

4.2.1. The E-Step. In the E-step of each iteration,
the unknown data are the values ab in the second and
third lines of (8), for all b, corresponding to periods
with nonpurchase from our airline. However, given
current estimates �̂= &̂0	 �̂	  ̂�, we can determine the
expected values of these indicators. Specifically, let
Pbi� be the probability that a customer arriving in a
small period of day b chooses alternative i (irrespec-
tive of the booking history). By the Bayesian formula,
we get for b = 1	 � � � 	B, irrespective of the booking
horizon h:

âb *= E�ab � t ∈ ��b	 �̂�

= �ab = 1 � t ∈ ��b	 �̂�

= �t ∈ ��b � ab = 1	 �̂��ab = 1 � �̂�
�t ∈ ��b � �̂�

= Pb0 � &̂0	 �̂� ̂
 ̂Pb0 � &̂0	 �̂�+ 1−  ̂�

	

where, from (6),

Pb0 � �̂�=
1∑

j∈Cb e
&̂0+�̂Txj + 1

�

Observe that the probability Pb0 � �̂� for the nonob-
servable periods does not depend on a particular
booking history h, h = 1	 � � � 	H , because the choice
sets for a given booking day b are the same for all h.
Substituting âb into (8), we obtain the expected,

complete data log-likelihood function

Q� � �̂� *= E�log�x	�� � x	 �̂�

=
H∑
h=1

B∑
b=1

∑
i∈�b	h

[
&0+�Txi−log

(∑
j∈Cb

e&0+�Txj +1
)]

+
B∑
b=1

( H∑
h=1

��b	h�
)
log +

B∑
b=1

( H∑
h=1

� ��b	h�
)

· âb
(
log − log

(∑
j∈Cb

e&0+�Txj + 1
))

+
B∑
b=1

( H∑
h=1

� ��b	h�
)
1− âb� log1− �� (9)

This function is relatively easy to maximize, as shown
next.

4.2.2. The M-Step. We next determine a maxi-
mizer, �̂∗, of the expected log-likelihood function (9).
Note that the function (9) is separable in  and &0	��.
Define the function F  � as

F  � *=
B∑
b=1

( H∑
h=1

��b	h�
)
log +

B∑
b=1

( H∑
h=1

� ��b	h�
)
âb log 

+
B∑
b=1

( H∑
h=1

� ��b	h�
)
1− âb� log1− ��

Taking the derivative with respect to  b, we get

,F  �

, 
=

B∑
b=1

H∑
h=1

��b	h�
1
 
+

B∑
b=1

H∑
h=1

� ��b	h�âb
1
 

−
B∑
b=1

H∑
h=1

� ��b	h�1− âb�
1
1− 

�

Setting this derivative equal to zero, we obtain the
updated estimate

 ̂∗ =
∑B

b=1
∑H

h=1 ��b	h� +
∑B

b=1
∑H

h=1 � ��b	h�âb
B×H × T

�
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This says that our current best estimate of  is the
number of observed purchases for flights booked
on any day b across the H booking histories,∑B

b=1
∑H

h=1 ��b	h�, plus the estimated number of arrivals
from unobservable periods on any day b across all
the booking histories,

∑B
b=1

∑H
h=1 � ��b	h�âb, divided by

the total number of periods under consideration, B×
H × T . The function F  � is concave in  , and hence
the critical point  ̂∗ is a well-defined global maximizer
of F .
Next, we maximize the terms in (9) contain-

ing &0	�� to obtain the updated estimates &̂∗
0	 �̂

∗�.
Define the function G&0	�� as

G&0	��

*=
H∑
h=1

B∑
b=1

∑
i∈�b	h

[
&0+�Txi − log

(∑
j∈Cb

e&0+�Txj + 1
)]

−
B∑
b=1

( H∑
h=1

� ��b	h�
)
âb log

(∑
j∈Cb

e&0+�Txj + 1
)
� (10)

To find a critical point &̂∗
0	 �̂

∗� of G&0	��, we solve
this nonlinear optimization problem by using the
conjugate gradient method. The partial derivative of
G&0	�� with respect to &0 is

,G&0	��

,&0
=

H∑
h=1

B∑
b=1

∑
i∈�b	h

(
1−

∑
j∈Cb e

&0+�Txj

∑
j∈Cb e

&0+�Txj +1
)

−
B∑
b=1

( H∑
h=1

� ��b	h�
)
âb

∑
j∈Cb e

&0+�Txj

∑
j∈Cb e

&0+�Txj +1 � (11)

For all k = 1	 � � � 	K, we compute the partial deriva-
tives of G&0	��:

,G&0	��

,&k

=
H∑
h=1

B∑
b=1

∑
i∈�b	h

(
xi	k−

∑
j∈Cb e

&0+�Txj xj	k∑
j∈Cb e

&0+�Txj +1
)

−
B∑
b=1

( H∑
h=1

� ��b	h�
)
âb

∑
j∈Cb e

&0+�Txj xj	k∑
j∈Cb e

&0+�Txj +1 � (12)

Although the function G&0	�� is data dependent,
it is jointly concave for linear-in-parameters utilities
under weak regularity conditions on the data (see
Train 2003, p. 65; McFadden 1974).

4.2.3. Convergence and Implementation. To
check for convergence, in each iteration of the
algorithm we compare the value of the expected
log-likelihood function (9) before and after maximiz-
ing with respect to  and &0	��. We also check for
the norm of the difference between two consecutive
sets of these estimates. Thus, if �i� = &

i�
0 	�

i�	  i��
is the optimal set of parameters from iteration i,
we check if �Q�i+1� � �̂i�� − Q�i� � �̂i��� < /, or if
��i+1� − �i��< /, for some small / > 0. We also set a
maximum of 300 iterations for the EM method.
Because the expected log-likelihood function (9) is

continuous in both &0	�	 � and &̂0	 �̂	  ̂�,11 then The-
orem 2 in Wu (1983) guarantees that if the sequence
of estimates converges, the resulting value will be a
stationary point of the incomplete data log-likelihood
function (7). Whether the sequence diverges or con-
verges to something other than the global maximum
is more difficult to determine. In practice, the EM
method has proved to be a robust and efficient way
to compute maximum likelihood estimates for incom-
plete data problems (e.g., see McLachlan and Krish-
nan 1996, Chapter 3, for further discussions on con-
vergence properties of the EM method).
Although the standard implementation of the EM

method is computationally intensive because it makes
a pass through all of the available data in every iter-
ation, in our experience it is computationally feasible
with the volume of data that a real airline may han-
dle during a booking period of few weeks for a single
O-D pair and for a small number of departure days.
Our implementation of the estimation algorithm

was developed under Windows XP and coded in
C++ using the Microsoft Visual C++ 6.0 compiler
and the STL (Standard Template Library) as a source
of basic classes and containers. To optimize the
function (10), we selected from the library Numer-
ical Recipes in C++ the Broyden-Fletcher-Goldfarb-
Shanno variant of the Davidon-Fletcher-Powell min-
imization algorithm, a quasi-Newton-type method
that requires computing (11) and (12).

4.3. Preliminary Estimation Case: Example 0
We first applied our EM method over a set of sim-
ulated data. We did this as an initial test to get a

11 Note that the expected log-likelihood function (9) is also a func-
tion of &̂0	 �̂	  ̂� through âb .
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sense of how many data are necessary to get good
estimates and how closely those estimates match the
(known) parameters that generated the data. Given
a known underlying MNL choice model (i.e., given
values for  and �) for a fixed O-D market, we used
Monte Carlo simulation to generate H = 100 streams
of data for a booking horizon of B = 10 days for
flights departing on any day d1	d2	 or d3. We set
 = 0�3 and used the MNL probabilities (5) and (6)
to determine the product chosen by each arrival. We
have around 42,000 arrivals throughout the gener-
ated streams, out of which around 40,300 booked a
flight. The data about the flights offered were taken
from both the schedule and the availability files for
the market under consideration. In this preliminary
example, we assume that the customer considers the
lowest available bucket of each flight in her consid-
eration set (i.e., following the notation in §3.2, we
set k= 1).
The parameters � used for this base case are given

in Table 2 and were based on estimates obtained from
the real airline data set. Descriptive statistics of the
data used for this example can be found in Table A1
in the online appendix.
To determine the mean utility (2) for a given

flight, we need one parameter &j for every attribute
value xin. However, we modified this parameter defi-
nition. Observe that both the set of attributes for the
time slots and the set for the departure days add up
to one, leading to a degree of freedom in the � param-
eters and hence to the identifiability problem (i.e., the
inability to fully recover the original parameters from
the estimated ones). In symbols, for customer n, given
xin and �, and noting that

xin2 + xin3 + xin4 + xin5 = 1 and xin6 + xin7 + xin8 = 1	

Table 2 Input � Values for Example 0

Attribute Description Value

�1 Base fare −1�0
�2 Morning flight (before 11 a.m.) 0�5
�3 Noon flight (9 a.m.–3 p.m.) 0�7
�4 Afternoon flight (1 a.m.–7 p.m.) 0�3
�5 Evening flight (5 p.m.–midnight) 0�5
�6 Indicator for flying on day d1 0�6
�7 Indicator for flying on day d2 0�3
�8 Indicator for flying on day d3 0�9

we would have

vin = &1xin1+&2xin2+ · · ·+&8xin8

= &1 xin1+ &2−&5�xin2+ &3−&5�xin3+ &4−&5�xin4

+&5+ &6−&8�xin6+ &7 −&8�xin7 +&8� (13)

By defining &0 = &5+&8 and relabeling the parameters
to have a consecutive numbering, we can equivalently
consider a mean utility of the form vin = &0 + �Txin
for the different purchase options (recall that the no-
purchase option has been normalized to have zero
mean utility). Here, we are choosing as reference vari-
ables both evening flight and departure day d3. In gen-
eral, one of the criteria for picking the reference vari-
ables is that there is at least one alternative in every
choice set that matches it (e.g., in our instance this
would mean that in every booking day there is an
evening flight offered with departure day d3). This is
indeed the case in our data. We refer to &0 as the base
utility.
We applied the EM method starting from esti-

mates &̂0 = 1 and �̂,  ̂ set equal to zero. The out-
put after reindexing the � parameters is included in
Table 3.
The third column in this table reports the true

parameter values, following the adjustment described
in (13). The fourth column reports the estimates com-
puted by the EM method. The fifth column reports
the percentage bias between the estimated and true
values,12 followed by the asymptotic standard error
(ASE) of the corresponding estimate (see §A5 in the
online appendix for further details). Note that for
all the coefficients except the indicator for morning
flight, we can reject the null hypothesis that the true
value is zero at the 0.01 significance level.13 How-
ever, the true value of the indicator for morning flight
is indeed zero. The number of iterations performed
in the EM method in this case was 36, taking 15
minutes of computing time. Given the identifiabil-
ity problem inherent to the data, it is not possible

12 Note the results suggest an apparent bias in the estimates,
which is not unexpected because the MLE is only asymptotically
unbiased.
13 The quasi-t statistic is computed as the ratio between the esti-
mated value of the parameter and the ASE. Recall that for a two-
tailed test, the critical values of this statistic are ±1�65, ±1�96, and
±2�58 for the 0.10, 0.05, and 0.01 significance levels, respectively.
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Table 3 Output Parameters for Example 0

Parameter Description True value Est. value Bias (%) ASE t-stat

�̂0 Base utility for any purchase option 1�4 1�5881 13�43 0�0131 121�34
�̂1 Base fare −1�0 −1�2265 22�65 0�0644 −19�06
�̂2 Morning flight (before 11 a.m.) 0�0 0�0169 0�0273 0�62
�̂3 Noon flight (9 a.m.–3 p.m.) 0�2 0�2376 18�80 0�0128 18�60
�̂4 Afternoon flight (1 p.m.–7 p.m.) −0�2 −0�2178 8�89 0�0132 −16�39
�̂5 Indicator for flying on day d1 −0�3 −0�2715 −9�51 0�0155 −17�51
�̂6 Indicator for flying on day d2 −0�6 −0�5756 −4�06 0�0126 −45�62
�̂ Arrival rate 0�3 0�2988 −0�41 2.3E−05 13�229�40

to distinguish how much of the value &̂0 is driven
by each reference (evening slot versus day d3). How-
ever, the quality of the estimates is quite good, as
indicated by the last three columns of Table 3. In
the online appendix (§A3), we include another simu-
lated example that does not suffer from this identifi-
ability problem, although the bias of the estimates is
higher.
Figure 1 shows a measure of the goodness of fit of

our estimates for Example 0 for the first five days of
the booking horizon under consideration. For a given
pair b	d� (i.e., booking day b, departure day d), and
recalling that Pni� is the probability that customer n

Figure 1 Goodness of Fit for the Bookings per Combination 	b� d� for Booking Days b= 1� � � � �5 in Example 0

True expected vs. predicted bookings
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chooses flight i, we have that  × Pni� is the Poisson
rate of arrivals per unit of time on booking day b that
choose flight i departing on day d. Therefore,

E�number of bookings on day b for flight i
departing on day d�= T × × Pni�	

where T = 140 is the number of booking periods per
day. Based on the true parameters of Table 2, we
can compute the true expected number of bookings
and utilities to be observed from a population of cus-
tomers that choose according to them. Based on the
estimated parameters of Table 3, we can compute the
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Figure 2 Goodness of Fit for the Utilities per Combination 	b� d� for Booking Days b= 1� � � � �5 in Example 0
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number of bookings and utilities predicted by the out-
put of the EM method. In Figure 1, for every possible
combination b	d� there are several tick marks, each
one representing a flight. The graph shows an excel-
lent quality of fit; clearly, the difference between the
average number of observable bookings and the num-
ber predicted by the EM method is negligible.
We then aggregated the observed number of book-

ings per flight across the entire booking horizon and
the expected number of bookings predicted by the
EM method for the 14 flights contained in the three
departure days under consideration (see Table A2 in
the online appendix). A �2-test gives a p-value = 1,
giving a very strong justification not to reject the null
hypothesis that the observed bookings indeed follow
the distribution estimated via the EM procedure.
Figure 2 shows another measure of the goodness

of fit; in this case, we compared the true expected util-
ities and the mean utilities predicted by our EM pro-
cedure. Here, even though the estimated utilities are
slightly lower than the original utilities, the shift pre-
serves their relative order. Again, this reflects a bias in
the component estimates, even though the resulting

total predicted sales are quite accurate. Moreover, we
note that multiple values &̂0	 �̂	  ̂� may produce the
same probabilities of sale as observed by Talluri and
van Ryzin (2004a, §5). In such cases, the EM method
finds only one such pair. In the online appendix
(Figure A2.1) we show the comparison between the
true and predicted MNL choice probabilities for dif-
ferent alternatives (including the no-purchase), where
we also found a very good quality of fit.
We next studied the sensitivity of the procedure to

different starting points. For example, starting from
&̂0 = 1	 �̂= 0, and two different arrival rates (the true
value of the arrival rate  ̂ = 0�3, and  ̂ = 0�6), we
obtain high-quality results, similar to the case when
the initial  ̂= 0. Details are provided in Table A3 in
the online appendix.
We then checked the behavior of the EM method

when the model does not capture all parameters of
the utility function (e.g., there are omitted variables in
the specification of the model). Toward this end, tak-
ing again the data generated based on the description
in Table 2 with  = 0�3, we assume that customers
choose based only on the fare and the departure days,
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Table 4 Estimated Parameters for Example 0 When Customers Choose Based on Fare and Departure Day Only

Parameter Description True value Est. value Bias (%) ASE t-stat

�̂0 Base utility for any purchase option 0�9 1�6207 80�07 0�0133 122�27
�̂1 Base fare −1�0 −0�6232 −37�68 0�0627 −9�94
�̂5 Indicator for flying on d1 −0�3 −0�4283 42�76 0�0150 −28�50
�̂6 Indicator for flying on d2 −0�6 −0�6823 13�72 0�0126 −54�25
�̂ Arrival rate 0�3 0�2977 −0�76 0�0000 13�182�51

and we omit the fact that the flight arrival time also
factors into their total utility. Table 4 shows the results
obtained from this misspecified model. Note that for
all the coefficients we can reject the null hypothe-
sis that the true value is zero at the 0.01 signifi-
cance level. Another measure of the goodness of fit
is given by comparing the values of the incomplete
data log-likelihood function evaluated at the original
parameter values and at the estimated parameters,
which are −176	323 and −171	629, respectively. Run-
ning a �2-test of the observed bookings versus the
expected number of bookings predicted by the esti-
mated model for the 14 flights under consideration
gives strong support for the estimated model with a
p-value= 0�93.
Next, we assumed that customer utilities are based

only on the fare and the flight arrival times (ignoring
flight departure day) and estimated this misspecified
model based on booking data for the D = 3 book-
ing days under consideration. The results are reported
in Table 5. Note that for all the coefficients (includ-
ing the indicator for morning flight), we can reject
the null hypothesis that the true value is zero at the
0.01 significance level. In this case, using (13), we can
recover the four time coordinates of �̂ from the value
of &̂0. However, in this case, the quality of the esti-
mates is rather poor, with very pronounced biases.

Table 5 Estimated Parameters for Example 0 When Customers Choose Based on Fare and Flight Times

Parameter Description True value Est. value Bias (%) ASE t-stat

�̂0 Base utility 0�5 1�6138 222�76 0�0131 123�43
�̂1 Base fare −1�0 −2�3879 138�79 0�0607 −39�31
�̂2 Morning 0�0 0�1841 0�0274 6�72
�̂3 Noon 0�2 0�4030 101�48 0�0126 31�94
�̂4 Afternoon −0�2 −0�1694 −15�30 0�0134 −12�68
�̂ Arrival rate 0�3 0�2982 −0�59 0�0000 13�205�42

Running a �2-test of the observed bookings versus the
number of bookings predicted by our model for the
14 flights under consideration, we get a small p-value
of 0.08. This case shows the importance of defining
the customers’ consideration sets; accounting for dif-
ferent departure days is important.
We also tested how the volume of data affects the

quality of estimates from our procedure. We did this
by changing the value of the arrival rate  . We could
also do this by changing the number of histories, H ,
or the booking periods per day, T . However, vary-
ing  gives a better sense of the impact of the rela-
tive mix of periods with observations and nonobser-
vations in the sample. Fixing H = 100, T = 140, and �

as in Example 0, and taking  = 0�01, we obtain rather
poor estimates with large biases and small t-statistics
(see Table 6). This is we have many periods with no
observations and only a few observable purchases. In
this case, the total number of bookings across the 100
histories is around 1,400, and this does not seem suf-
ficient to obtain good estimates.
When we increase the value of the arrival rate to

 = 0�05, which corresponds to around 7,000 recorded
bookings, we start getting better estimation results,
and for an even larger value  = 0�7 (corresponding
to around 98,000 arrivals), we obtain high-quality
estimates (even better than the base case in Table 3
for  = 0�3). Running a �2-test of the expected number
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Table 6 Estimated Parameters for Example 0 Under Different Arrival Rates

Arrival rate �= 0�01 Arrival rate �= 0�70
Estimated Estimated

Param. Description True value value Bias (%) t-stat value Bias (%) t-stat

�̂0 Base utility 1�40 14�3635 925�96 0�00 1�5905 13�61 198�29
�̂1 Base fare −1�00 −0�5423 −45�77 −1�13 −1�0761 7�61 −28�79
�̂2 Morning 0�00 −0�1608 −0�89 −0�0161 −0�98
�̂3 Noon 0�20 0�1549 −22�56 1�66 0�2194 9�71 29�32
�̂4 Afternoon −0�20 −0�2357 17�83 −3�07 −0�2045 2�27 −24�09
�̂5 Indicator for d1 −0�30 −0�3333 11�11 −3�58 −0�2965 −1�17 −30�55
�̂6 Indicator for d2 −0�60 −0�5868 −2�20 −7�71 −0�6160 2�67 −79�24
�̂ Arrival rate 0�01 0�0098 −2�14 434�80 0�6915 −1�22 30�618�87

of bookings predicted by our model in the  = 0�7
case versus the observed number of bookings for
the 14 flights under consideration, we see there is
very strong support for the estimated model, with
p-value= 1. Overall, what matters for the quality of
the estimates is the volume of data available and
the definition of the base period. In the extreme case
where we have infinitely many small periods T , the
probability  of having an arrival per period would
be very small, and the quality of the estimates would
be very poor, leading also to some potential numeri-
cal problems in the estimation process. Having longer
base periods increases the probability of arrival, but
one must be careful to keep the probability of having
two or more arrivals per period small.

4.4. Estimation Results for Airline Data
We next present the results of the EM method applied
to an O-D market in our airline data set for two
different departure dates. We describe the estima-
tion for each departure date in turn. Table A6 in
the online appendix reports descriptive statistics for
each market.

4.4.1. Example 1. In this market, we consider a
booking horizon of B = 39 days, with data from
February 6 to March 17, 2005 (i.e., we take just a sin-
gle history H = 1), with 549 reservations. The market
is defined by an origin airport in New York and a
destination airport in Florida. We consider flights for
one departure day: March 25, 2005. There is a total
of five flights on this departure day in this market.
When building the consideration set Cn, we assume
that each customer takes into account the five lowest

available fares (i.e., buckets) of each flight. That is, for
each flight in the consideration set, we take the five
lowest available fares from the availability file (i.e.,
we set k = 5 in terms of the notation introduced at
the beginning of §3.2). Recall that a flight’s time is
defined as its arrival time in Florida.
The initial set of estimates for the EM method

was &̂0 = �̂= 0 and  ̂= 0�1. The EM method reached
the maximum of 300 iterations for this case in 208
seconds of computational time.14 The norm differ-
ence between the last two sets of estimates was
��300�−�299�� = 0�002.
In Table 7, the three columns under Example 1 give

a summary of the final set of estimates. Note that we
cannot reject the null hypothesis that the true value
of the morning flight indicator is zero. The �2-test
of the total number of observed bookings versus the
expected number of bookings per flight shows a rea-
sonably high p-value= 0�41, providing good support
for the estimated distribution of sales.
A few aspects of the model summarized in

Table 7 are also worth noting. First, in terms of the
linear-in-parameters utility described in (2), the price
coefficient has the right (negative) sign. Second, it is
interesting to interpret the relative value of the coef-
ficients as indicators of the sensitivity of the choices.
For instance, according to the attributes described
in Table A6 in the online appendix, Flight 3 is a
noon flight and Flight 4 is a 0.092 morning/0.908

14 The computational times reported here were obtained with
an Intel Pentium IV, 2.4 GHz, and 512 MB of RAM. Although
undoubtedly more sophisticated nonlinear solvers and platforms
could be used, this setup proved to be sufficient for our study.



Vulcano, van Ryzin, and Chaar: OM Practice
386 Manufacturing & Service Operations Management 12(3), pp. 371–392, © 2010 INFORMS

Table 7 Estimated Parameters for Examples 1 and 2

Example 1 Example 2

Parameter Description Value ASE t-stat Value ASE t-stat

�̂0 Base utility −2�0566 0�1185 −17�3619 −2�3468 0�0888 −26�4284
�̂1 Base fare −1�7348 0�2148 −8�0745 −1�9175 0�1601 −11�9746
�̂2 Morning flight (5 a.m.–11 a.m.) 1�0861 1�2384 0�8770 3�3114 1�3590 2�4366
�̂3 Noon flight (9 a.m.–3 p.m.) 1�3056 0�1465 8�9133 0�2851 0�1284 2�2203
�̂4 Afternoon flight (1 p.m.–7 p.m.) 0�7751 0�1538 5�0406 −0�3186 0�1387 −2�2976
�̂ Arrival rate 0�1927 0�0011 177�2174 0�3485 0�0011 322�7402

noon flight. The mean utilities for this flights are,
respectively,

v3n = −2�0566− 1�7348p3+ 1�3056 and

v4n = −2�0566− 1�7348p4+ 1�0861× 0�092
+ 1�3056× 0�908

= −2�0566− 1�7348p4+ 1�2854	

where pi is the price charged for Flight i	 i = 3	4.
Then, v4n ≥ v3n when p4 ≤ p3 − 0�012. Recalling that
the scale of the prices is in thousands, a discount
of $12 over the current price p3 will make Flight 4 a
more attractive alternative (on average), indicating a
rather similar willingness to pay for both flights. Sim-
ilarly, and just as another example, we can compare
the mean utilities of Flights 4 (a late morning flight)
and 5 (an early evening flight):

v4n = −2�0566− 1�7348p4+ 1�0861× 0�092
+ 1�3056× 0�908

= −0�7712− 1�7348p4	
v5n = −2�0566− 1�7348p5+ 0�7751× 0�675

= −1�5334− 1�7348p5�

Then, v5n ≥ v4n when p5 ≤ p4− 0�439. Thus, a discount
of $439 over the current price p4 will make Flight 5 an
alternative more attractive than Flight 4, on average.
This type of analysis could be useful for the airline
to determine price strategies, or even flight schedule
strategies, to influence the revenue performances and
load factors of the different flights.
Columns for Example 1 in Table 8 provide the cal-

culation of the market shares based on the estimated
parameters and the linear-in-parameters utilities (2)

for the five flights under consideration, assuming that
the fare is set at the intermediate point of the fare
range open during the booking horizon.15 Although
this decision is arbitrary, the numbers obtained give
a sense of the explanatory power of the MNL param-
eters when compared with the relative frequencies of
the observed bookings.

4.4.2. Example 2. For the same market as above,
we next considered a booking horizon of B= 39 days
(between February 7 and March 18, 2005). Here, we
considered flights for March 26, 2005. There is a total
of five flights in this market on this day with a total
of 506 recorded bookings. Like in Example 1, when
building the consideration set Cn, we assume that
each customer takes into account the five lowest avail-
able fares of each flight. Again, a flight’s time is
defined as its arrival time in Florida.
The initial set of estimates for the EM method

was &̂0 = �̂ = 0 and  ̂ = 0�1. The EM method also
reached the maximum of 300 iterations for this case.
The norm difference between the last two sets of esti-
mates was ��300�−�299�� = 0�0022. It took 193 seconds
of computational time to run the procedure.
In Table 7, the three columns under Example 2 give

a summary of the final coefficient estimates. Note that
we can reject the null hypothesis that the true value of
the parameters is zero at the 0.05 confidence level for
all estimates, implying that the attributes under con-
sideration are relevant for the sake of capturing choice
behavior. The �2-test of the total number of observed
bookings versus the expected number of bookings per

15 See descriptive statistics in Table A6 in the online appendix.
For instance, for Flight 1, the range of fares for the 63 observed
bookings is �57	212�, so we assume that the fare is set at
57+ 212�/2= 134�50.
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Table 8 Estimated Market Shares for Examples 1 and 2

Example 1 Example 2

Utility-based Booking-based Utility-based Booking-based
Flight market share market share market share market share

1 0�110 0�115 0�203 0�213
2 0�239 0�237 0�214 0�223
3 0�285 0�260 0�155 0�170
4 0�294 0�260 0�264 0�251
5 0�073 0�128 0�164 0�142

flight shows a good p-value = 0�50, confirming the
quality of the estimated distribution.
In this example, the price coefficient again has the

right (negative) sign. We could also perform sensitiv-
ity calculations as the ones presented for Example 1.
Regarding the consistency of the predicted market
share with the booking frequencies, we see in columns
under Example 2 in Table 8 that, once again, the pre-
dicted shares based on the estimated parameters are
remarkably close to the observed bookings.

5. Assessing RM Improvements
As mentioned above, the second phase of our
study used the choice model estimates fit from
the test markets to assess the potential improve-
ment in revenues from using choice-based RM opti-
mization methods. Toward this end, we used the
model and optimization algorithm developed in
van Ryzin and Vulcano (2008). In this model, we
assume the firm controls the availability of products
using a nested, protection-level-based, capacity con-
trol strategy. Using a simulation-based optimization
algorithm, we calculate sample path gradients of the
network revenue function with respect to the protec-
tion levels. The gradients are then used sequentially
to construct a stochastic steepest ascent method. Start-
ing from an initial set of protection levels (possibly
computed under the traditional independent demand
model assumption), the algorithm is guaranteed to
converge (in probability) to a stationary point of the
expected revenue function under mild conditions.
The input data to the optimization algorithm are

provided by a choice model simulator module that
generates streams of demand based on customers’
preferences described by the choice model estimated
from our test markets. Every arriving customer is

Figure 3 An Integrative Estimation/Optimization Approach for
Choice-Based RM
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characterized by a preferred list of products, built ran-
domly using the utilities based on the MNL param-
eters. Figure 3 sketches the integration of the whole
estimation/optimization approach.

5.1. Simulating Customer Choice Behavior
Once we have the estimates that characterize cus-
tomer choice behavior from our EM method, we can
use them to simulate the arrival of customer requests
to the central reservation system (CRS) as follows: On
booking day b, customers arrive in accordance with a
Poisson process with rate  per unit of time. Hence,
we generate a Poisson random variable with mean
140× to have an instance of the number of arrivals
in day b.
Next, for each generated arrival n, we build a pref-

erence list based on the utilities described in §2.1
as follows: First, we construct the set of alternatives
Cn as we did in the estimation phase.16 Then, for
each alternative i ∈ Cn, we compute the utility Uin

in (1) by taking the vector of attributes xin correspond-
ing to this alternative, and by simulating the ran-
dom term �in. We use the standard inverse function
method for the latter; that is, for a Unif(0,1) value u,
we compute

�in =− log− logu�−��

We also simulate the random noise �0n for the no-
purchase alternative. Recalling that the mean no-
purchase utility has been normalized to zero, we

16 Recall that the consideration set Cn is built primarily upon the
schedule and the availability files. The difference from the estima-
tion phase is that when simulating we do not take information from
the revenue accounting file.
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rank our airline’s alternatives with utility in excess
of �0n. This ordered set of alternatives constitute cus-
tomer n’s preference list.
This is repeated for all days in the booking horizon

under analysis, following the sequence b= 1	 � � � 	B to
build one stream of arrivals. The sequence of arrivals
is saved in a file. For simplicity, we assume single-unit
demand for all customers.

5.2. Optimizing RM Controls
The last stage in our analysis is to assess the per-
formance of RM controls based on the traditional
independent demand assumption relative to those
incorporating choice behavior effects. To this end,
we ran simulation tests using Examples 1 and 2 in
§4.4. We tested the performance of our procedure
based on two sets of initial protections levels17: one
based on the current controls implemented by the
airline, and the other using single-leg, EMSR-b con-
trols (e.g., see Talluri and van Ryzin 2004b, §2.2,
for a definition and discussion of EMSR-b). For the
former, we used the “availability” file provided by
the airline and constructed an initial set of nested
protection levels taking the highest values of the
controls for each class observed in the file during
the booking horizon under consideration, preserving
the nested property of the protection levels. For the
EMSR-b controls, we first computed statistics for the
independent demands of the different products. To
do so, we took the simulated streams of demand and
retained the first element of each customer’s prefer-
ence list. In this way, we obtained the mean and vari-
ance for the uncensored demand of each product (i.e.,
of each flight-bucket combination). Then, following
the usual practice, we assumed normal distribution
of each product’s demand and computed nested pro-
tection levels using EMSR-b. We compared these two
sets of protection levels with the improved ones that
we obtained when applying the choice-based stochas-
tic gradient (SG) algorithm described in van Ryzin
and Vulcano (2008). We emphasize here that the pro-
tection levels provided by the airline were calibrated
in an ad hoc way, because of some dirtiness in the

17 A protection level yi is defined as the number of seats reserved
for classes i and higher. The labeling of the classes assumes that
class 1 is the highest (i.e., most expensive fare) one, followed by
class 2, class 3, etc.

data and the fact that their value changed during
the booking horizon. In this sense, the protection lev-
els given by EMSR-b constitute a more sensible “null
model.”
For the examples below, we simulated 2,000

streams of customer arrivals. Every arrival is specified
as a “customer type,” characterized by a particular
preference list (i.e., two customers that have the same
preference list are considered the same type). In each
example, there are five parallel flights and 80 prod-
ucts. According to the sponsor airline policy, there
are 16 buckets per flight (i.e., 15 protection levels
per leg).
After generating the new set of protection lev-

els, we checked the revenue obtained with the orig-
inal and new protection levels over 2,000 simulated
streams of arrivals. We report expected revenues
under both protection levels policies, 95% confidence
intervals for the revenue gap and corresponding (net-
work) load factors, defined as the average of the leg load
factors, i.e., the ratio between average number of seats
sold on leg i and its initial capacity ci.
We ran the numerical experiments under Windows

XP, with a CPU Intel Core Duo of 2.0 GHz, and 1 GB
of RAM.

5.2.1. Example 1. This is the example described in
§ 4.4.1. Across the 2,000 streams of demand, there are,
on average, 841 arrivals per stream that have one of
our flights as the first choice, with a total of 592,605
customer types. The initial capacities available are still
significant (between 76 and 155 seats).
First, we ran the stochastic gradient algorithm over

the set of protection levels provided by the airline.
Comparing the revenue obtained from the protection
levels improved by the algorithm and the original
ones, we observed an expected revenue gap of 3.04%,
with a 95% CI of −0�12%	6�21%�. Even though this
confidence interval technically includes zero, it is
strongly on the positive side, and the improvement is
significant at slightly less than the 95% level. We also
observe a small increase in the load factor from 0.68 to
0.70. However, as we explained above, because these
protection levels were built in an approximate way
from the airline’s availability file, we place greater sig-
nificance on the values given by the EMSR-b heuristic.
Table 9 reports the original EMSR-b and updated

sets of protection levels obtained by the stochastic
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Table 9 Protection Levels for Example 1: EMSR-b vs. SG

Protection levels yi

Flight Capacity ci Stage 1 2 3 4 5 6 7 8 9 10 11

1 136 Original 3 8 9 10 12 16 20 39 62 83 105
Updated 0 0 0 17 17 17 136 136 136 136 136

2 155 Original 9 26 56 91 126 155 155 155 155 155 155
Updated 9 10 147 155 155 155 155 155 155 155 155

3 152 Original 49 96 119 134 145 152 152 152 152 152 152
Updated 34 152 152 152 152 152 152 152 152 152 152

4 150 Original 48 86 102 112 113 115 128 138 149 150 150
Updated 80 83 83 83 83 89 125 138 149 150 150

5 76 Original 25 66 76 76 76 76 76 76 76 76 76
Updated 42 76 76 76 76 76 76 76 76 76 76

gradient algorithm. Even though according to the air-
line system there were 16 virtual classes in the origi-
nal flights, we report the protection levels of the open
classes (all the remaining classes were closed for the
five flights, and remained closed after the application
of the algorithm). Revenue-wise, the stochastic gradi-
ent algorithm led to a revenue improvement of 1.42%,
with a 95% CI for the revenue gap of −2�47%	5�30%�,
suggesting the improvement in this case is not very
statistically significant. It took just 15 seconds to com-
pute the new set of protection levels. As we described
in our previous paper (see van Ryzin and Vulcano
2008, §4), the impact of the algorithm over differ-
ent buckets is not unidirectional; that is, some classes
become more protected and others become less. Some
classes are collapsed (e.g., classes 1–4 in Flight 1), and
others are closed (e.g., classes 8–12 in Flight 1). In
this case, the load factor significantly decreased from
0.90 to 0.75, meaning that the new protection levels
dramatically reduced the number of tickets sold but
improved the mix of passengers by forcing several
buy-ups (e.g., note the increment in y1 for Flights 4
and 5) and rejecting several formerly accepted low-
fare tickets.
The above test assumes the choice-based RM opti-

mization uses the true parameter values of the utility
function. However, in reality there will always be esti-
mation error as well as specification error. We were
interested in how such errors in estimation effect the
revenue results. For example, one might posit that
choice-based RM only “works” if one has highly accu-
rate estimates of the parameters of the choice model.

To assess the robustness of our combined estimation
and optimization procedure with respect to estimation
noise, we perturbed the original  ̂ and &̂0	 �̂� esti-
mates provided by our estimation algorithm, by ran-
dom multiplicative factors in the range ±10%	 ±25%,
and ±50%. Then, we simulated 2,000 streams of
demand based on each perturbed set of estimates, and,
starting from the original set of EMSR-b reported in
Table 9, we computed the corresponding improved set
of (noisy) protection levels using the stochastic gradi-
ent algorithm. Finally, to assess the impact of the ran-
dom noise in the estimates, we processed the original
streams of demand (i.e., the demand streams gener-
ated under the “true”  ̂ and &̂0	 �̂�) and compared
the revenues obtained with the noisy protection lev-
els to the revenue obtained using the original set of
EMSR-b protection levels. Note that given the num-
ber of bookings for the different flights described in
Table A6 in the online appendix (between 63 and 143),
these perturbation of the estimated choice parameters
can indeed have an impact on the distribution of pas-
sengers across different flights. The results are summa-
rized in Table A7 in the online appendix, showing the
outcome of five different perturbations in each of the
ranges±10%	 ±25%, and±50%. Considering the rela-
tively narrow, original expected revenue gap of 1.42%,
we see that even with a 10% perturbation, the addi-
tional revenues become negative in two of the five
cases.

5.2.2. Example 2. This is the example described in
§4.4.2. Each of the five parallel flights has 16 classes.
Each of the 2,000 demand streams has an average of
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1,097 arrivals that have one of our flights as the first
choice, and produce a total of 351,654 customer types.
The capacities available vary between 106 and 135.
As in Example 1, first we ran the stochastic gradient

algorithm over the set of protection levels provided
by the airline. Comparing the revenues obtained
from both sets of protection levels, we observed a
expected revenue gap of 2.49%, with a 95% CI of
−0�52%	5�50%�. Again, even though the confidence
interval includes the zero, it is strongly on the posi-
tive side and significant at slightly less than 95%. We
also observe an increase in the load factor from 0.82
to 0.87. However, as explained above, because these
protection levels were built in an approximate way,
we also consider the protection levels given by the
EMSR-b heuristic.
Table 10 reports the original EMSR-b and the cor-

responding updated sets of protection levels obtained
by the stochastic gradient algorithm. Even though
there were 16 buckets in the original flights, we
report the protection levels of the open classes (all
the remaining classes were closed for the five flights,
and remained closed after the application of the algo-
rithm). It took 70 seconds to compute the new set
of protection levels. For this market, the stochas-
tic gradient algorithm led to a revenue improve-
ment of 5.30%, with a 95% CI of 2�28%	8�32%�.
The initial and improved sets of protection levels are
shown in Table 10. In contrast to Example 1, here the
load factor significantly increases from 0.82 to 0.89,
suggesting that part of the increase in revenues is

Table 10 Protection Levels for Example 2: EMSR-b vs. SG

Protection levels yi

Flight Capacity ci Stage 1 2 3 4 5 6 7

1 118 Original 27 34 43 51 56 79 102
Updated 6 9 10 36 40 118 118

2 122 Original 6 47 85 122 122 122 122
Updated 1 4 122 122 122 122 122

3 106 Original 7 40 70 97 106 106 106
Updated 0 106 106 106 106 106 106

4 135 Original 48 76 87 98 109 130 135
Updated 15 65 65 65 68 130 135

5 121 Original 22 61 101 121 121 121 121
Updated 5 37 121 121 121 121 121

explained by an increased sales volume. This is par-
ticularly noticeable in Flights 1 and 4, where pro-
tection levels y1 to y5 were significatively reduced.
This phenomenon occurs jointly with a change of the
passenger mix that is clear in Flight 3, which now
focuses exclusively on passengers for Buckets 1 and 2,
and in Flight 5, which closes Bucket 4 but opens more
the highest three classes.
Even though the expected revenue gap of 5.30%

might seem very high by RM standards, it is not sur-
prising when compared to other results reported in
the literature. For instance, Liu and van Ryzin (2008,
§7.1) report revenue improvements between 0.10%
and 7% in 18 of 20 parallel flight cases when account-
ing for choice behavior effects versus traditional meth-
ods. Also for a parallel flight case, Miranda Bront
et al. (2009) report revenue improvements of approx-
imately 10% for similar load factor scenarios. We also
observed significant gains for simulated parallel flight
networks in our previous paper (see Examples 2, 3,
and 4 in van Ryzin and Vulcano 2008, §4.)
We again tested the robustness of our estimation/

optimization procedure with respect to estimation
noise. In this case, given the large initial expected rev-
enue gap of 5.30%, there is more room for estimation
error. As shown in Table A8 in the online appendix,
the choice-based protection levels still produce sig-
nificant revenue gains with up to 25% errors in the
parameter estimates.

6. Conclusions
Our analysis shows that it is feasible to estimate
choice behavior and customer preferences for price,
arrival time, and departure dates from readily avail-
able airline data. The main caveat is that the quality
of these estimates may vary across markets, and they
improve significantly if one has access to a large num-
ber of historical booking records. Having customer-
level shopping data would, in our view, provide for
even more robust estimates of choice effects.
Our simulation study suggests that the benefits that

could be obtained from optimizing RM controls to
account for choice behavior are significant: the rev-
enue gains were between 1.4% and 5.3% in the mar-
kets we tested. For the cases of relatively low rev-
enue improvements, the accuracy of the choice model
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estimates was important for providing these bene-
fits. When gains are higher (i.e., around 5% revenue
lift), the benefit of choice-based RM does not require
highly accurate estimates of the underlying choice
model parameters. Although these are only simu-
lation estimates and rely on the fact that demand
follows the model exactly (i.e., no model specifica-
tion error), they give some sense of the potential for
improvement using choice-based RM. More testing
with industry-wide data of both the estimation and
optimization procedures are needed to confirm these
initial results. We have worked out the basic technical
building blocks for doing so in this paper.
Several extensions of this work warrant attention.

It would be desirable to further test a model with
unobservable (or latent) segments within the popu-
lation (e.g., business and leisure segments) so that
customer choice behavior can be predicted more
accurately. However, as we discussed in §3.2, more
complex models appear to require more data to esti-
mate accurately. Another extension that could prove
useful when dealing with a large volume of data
is the sampling-based implementation of the EM
method proposed by Jank (2005), which consists of
intelligently incrementing the number of observations
needed to compute the log-likelihood function toward
the end of the algorithm instead of using all the avail-
able data in each iteration of the EM method. Finally,
our choice model assumes that customers’ valuations
for different attributes do not depend on the offer set.
It thus ignores framing or reference effects. Account-
ing for such behavioral biases would be worth further
study.

Electronic Companion
An electronic companion to this paper is available on
the Manufacturing & Service Operations Management website
(http://msom.pubs.informs.org/ecompanion.html).
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