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We propose a method for estimating substitute and lost demand when only sales and product availability data are observable,
not all products are displayed in all periods (e.g., due to stockouts or availability controls), and the seller knows its
aggregate market share. The model combines a multinomial logit (MNL) choice model with a nonhomogeneous Poisson
model of arrivals over multiple periods. Our key idea is to view the problem in terms of primary (or first-choice) demand;
that is, the demand that would have been observed if all products had been available in all periods. We then apply the
expectation-maximization (EM) method to this model, and we treat the observed demand as an incomplete observation
of primary demand. This leads to an efficient, iterative procedure for estimating the parameters of the model. All limit
points of the procedure are provably stationary points of the incomplete data log-likelihood function. Every iteration of the
algorithm consists of simple, closed-form calculations. We illustrate the effectiveness of the procedure on simulated data
and two industry data sets.
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1. Introduction
Two important problems in retail demand forecasting are
estimating turned-away demand when items are sold out
and properly accounting for substitution effects among
related items. For simplicity, most retail demand forecasts
rely on time-series models of observed sales data, which
treat each stock keeping unit (SKU) as receiving an indepen-
dent stream of requests. However, if the demand lost when a
customer’s first choice is unavailable (referred to as spilled
demand) is ignored, the resulting demand forecasts might
be negatively biased; this underestimation can be severe if
products are unavailable for long periods of time. Concur-
rently, stockout-based substitution will increase sales in sub-
stitute products that are available (referred to as recaptured
demand); ignoring recapture in demand forecasting leads to
an overestimation bias among the set of available SKUs.
Correcting for both spill and recapture effects is important
in order to establish a good estimate of the true underlying
demand for products.

A similar problem arises in forecasting demand for book-
ing classes in the airline industry. One common heuris-
tic used in practice to correct for spilled demand is to
assume that the demand turned away is proportional to the
degree of “closedness” of a product (an itinerary-fare-class
combination). For instance, suppose a booking class is open

(available for sale) during 10 days of a month with 30 days.
If 20 bookings are observed for the month, then this heuris-
tic approach will estimate a demand of 20 × 30/10 = 60
for this booking class. However, because the observed 20
bookings might include some recapture from other, closed
itinerary-fare-classes, this (uncorrected) approach can lead
to a “double counting” problem; namely, spill is estimated
on unavailable products but also counted as recapture on
alternate, available products.

Empirical studies of different industries show that stock-
out-based substitution is a common occurrence. For airline
passengers, recapture rates are acknowledged to be in the
range of 15%–55% (e.g., Ja et al. 2001), while Gruen et al.
(2002) report recapture rates of 45% across 8 categories at
retailers worldwide.

Because spilled and recaptured demand are not directly
observable from sales transactions, various statistical tech-
niques have been proposed to estimate them. Collectively,
these techniques are known as demand untruncation or
uncensoring methods. One of the most popular such
methods is the expectation-maximization (EM) algorithm.
EM procedures ordinarily employ iterative methods to
estimate the underlying parameters of interest; in our case,
demand by SKU across a set of historical data. The EM
method works by using alternating steps of computing
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conditional expected values of the parameter estimates to
obtain an expected log-likelihood function (the E-step)
and maximizing this function to obtain improved estimates
(the M-step). Traditionally, retail forecasts that employ the
EM approach have been limited to untruncating sales history
for individual SKUs and disregard recapture effects from
substitute products.

Classical economic theory on substitution effects (e.g.,
see Nicholson 2004) provides techniques for estimating
demand shifts due to changes in prices of alternative offer-
ings. However, an important practical problem is how to
fit such demand models when products are out of stock
or otherwise unavailable, and how to do so using only
readily available data, which in most retail settings consist
of sales transactions, product attributes (brand, size, price,
etc.), and on-hand inventory quantities by SKU. Our work
helps address this problem.

A widely used approach for estimating demand for dif-
ferent SKUs within a set of similar items is to use discrete
choice models, such as the multinomial logit (MNL) (e.g.,
see Ben-Akiva and Lerman 1994 and Train 2003). Choice
models predict the likelihood of customers purchasing a
specific product from a set of related products based on their
relative attractiveness. A convenient aspect of the MNL
model is that the likelihood of purchase can be readily
recalculated if the mix of available related products changes
(e.g., due to another item being sold out or restocked).

In this paper, we propose a novel method of integrating
customer choice models with the EM method to untruncate
demand and correct for spill and recapture effects across
an entire set of related products. Our model of demand
combines a multinomial logit (MNL) choice model with a
nonhomogeneous Poisson model of arrivals over multiple
periods. The problem we address is how to jointly estimate
the preference weights of the products and the arrival rates
of customers. The only required inputs are observed histor-
ical sales, product availability data, and market share infor-
mation. The key idea is to view the problem in terms of
primary (or first-choice) demand and to treat the observed
sales as incomplete observations of primary demand.
We then apply the EM method to this primary demand
model and show that it leads to an efficient, iterative pro-
cedure for estimating the parameters of the choice model.
All limit points of the procedure are provably stationary
points of the associated incomplete data log-likelihood func-
tion. Because our estimates are maximum likelihood esti-
mates (MLEs), they inherit the statistical properties of a
MLE: they are consistent (i.e., they converge in probability
to the true parameter values), asymptotically normal, and
asymptotically efficient (i.e., asymptotically unbiased and
attaining equality of the Cramér–Rao lower bound for the
variance, asymptotically).

Our EM method also provides an estimate of the num-
ber of lost sales—that is, the number of customers who
would have purchased if all products were in stock—which
is critical information in retailing. The approach is also

remarkably simple, fast, and effective, as illustrated on sim-
ulated data and two industry data sets.

2. Literature Review
There are related papers in the revenue management litera-
ture on similar estimation problems. Talluri and van Ryzin
(2004, §5) develop an EM method to jointly estimate arrival
rates and parameters of a MNL choice model based on con-
sumer level panel data under unobservable no-purchases.
Vulcano et al. (2010) provide empirical evidence of the
potential of that approach. Ratliff et al. (2008) provide a
comprehensive review of the demand untruncation literature
in the context of revenue management settings. They also
propose a heuristic to jointly estimate spill and recapture
across numerous flight classes, by using balance equations
that generalize the proposal of Andersson (1998). A similar
approach was presented before by Ja et al. (2001).

Another related stream of research is the estimation of
demand and substitution effects for assortment planning
in retailing. Kök and Fisher (2007) identify two common
models of substitution:

1. The utility-based model of substitution, where con-
sumers associate a utility with each product (and also with
the no-purchase option) and choose the highest utility alter-
native available. The MNL model belongs to such class.
The single-period assortment planning problem studied by
van Ryzin and Mahajan (1999) is an example of the appli-
cability of this model.

2. The exogenous model of substitution, where cus-
tomers choose from the complete set of products, and if the
item they choose is not available, they may accept another
variant as a substitute according to a given substitution
probability (e.g., see Netessine and Rudi 2003).

Other papers in the operations and marketing science
literature also address the problem of estimating substitu-
tion behavior and lost sales. Anupindi et al. (1998) present
a method for estimating consumer demand when the first
choice variant is not available. They assume a continuous
time model of demand and develop an EM method to uncen-
sor times of stockouts for a periodic review policy, with the
constraint that at most two products stock out in order to
handle a manageable number of variables. They find max-
imum likelihood estimates of arrival rates and substitution
probabilities.

Swait and Erdem (2002) study the effect of temporal
consistency of sales promotions and availability on con-
sumer choice behavior. The former encompasses variability
of prices, displays, and weekly inserts. The latter also influ-
ences product utility, because the uncertainty of a SKU’s
presence in the store might lead consumers to consider the
product less attractive. They solve the estimation problem
via simulated maximum likelihood and test it on fabric soft-
ener panel data, assuming a variation of the MNL model
to explain consumer choice; but there is no demand uncen-
soring in their approach.
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Campo et al. (2003) investigate the impact of stockouts
on purchase quantities by uncovering the pattern of within-
category shifts and by analyzing dynamic effects on
incidence, quantity, and choice decisions. They propose a
modification of the usual MNL model to allow for more
general switching patterns in stockout situations, and they
formulate an iterative likelihood estimation algorithm. They
then suggest a heuristic two-stage tracking procedure to
identify stockouts: in a first stage, they identify potential
stockout periods; in stage two, these periods are further
screened using a sales model and an iterative outlier analysis
procedure (see Appendix A therein).

Borle et al. (2005) analyze the impact of a large-scale
assortment reduction on customer retention. They develop
models of consumer purchase behavior at the store and cate-
gory levels, which are estimated using Markov chain Monte
Carlo (MCMC) samplers. Contrary to other findings, their
results indicate that a reduction in assortment reduces over-
all store sales, decreasing both sales frequency and quantity.

Chintagunta and Dubé (2005) propose an estimation pro-
cedure that combines information from household panel
data and store level data to estimate price elasticities in a
model of consumer choice with normally distributed ran-
dom coefficients specification. Their methodology entails
maximum likelihood estimation (MLE) with instrumental
variables regression (IVR) that uses share information of
the different alternatives (including the no-purchase option).
Different from ours, their model requires no-purchase store
visit information.

Kalyanam et al. (2007) study the role of each individual
item in an assortment, estimating the demand for each item
as well as the impact of the presence of each item on other
individual items and on aggregate category sales. Using a
database from a large apparel retailer, including informa-
tion on item specific out-of-stocks, they use the variation
in a category to study the entire category sales impact of
the absence of each individual item. Their model allows for
flexible substitution patterns (beyond MNL assumptions),
but stockouts are treated in a somewhat ad hoc way via sim-
ulated data augmentation. The model parameters are esti-
mated in a hierarchical Bayesian framework, also through
a MCMC sampling algorithm.

Bruno and Vilcassim (2008) propose a model that acco-
unts for varying levels of product availability. It uses infor-
mation on aggregate availability to simulate the potential
assortments that consumers might face in a given shop-
ping trip. The model parameters are estimated by drawing
multivariate Bernoulli vectors consistent with the observed
aggregate level of availability. They show that neglecting the
effects of stockouts leads to substantial biases in estimation.

More recently, Musalem et al. (2010) also investigate
substitution effects induced by stockouts. Different from
ours, their model allows for partial information on product
availability, which could be the case in a periodic review
inventory system with infrequent replenishment. However,
their estimation algorithm is much more complex and

computationally intensive than ours because it combines
MCMC with sampling using Bayesian methods.

The aforementioned paper by Kök and Fisher (2007) is
close to ours. They develop an EM method for estimating
demand and substitution probabilities under a hierarchical
model of consumer purchase behavior at a retailer. This con-
sumer behavior model is similar to the one in Campo et al.
(2003) and is standard in the marketing literature; see e.g.,
Bucklin and Gupta (1992) and Chintagunta (1993). In their
setting, upon arrival, a consumer decides: (1) whether or not
to buy from a subcategory (purchase-incidence), (2) which
variant to buy given the purchase incidence (choice), and
(3) how many units to buy (quantity). Product choice is
modeled with the MNL framework. Unlike our aggregate
demand setting, they analyze the problem at the individual
consumer level and assume that the number of customers
who visited the store but did not purchase anything is neg-
ligible (see Kök and Fisher 2007, §4.3). The outcome of
the estimation procedure is combined with the parameters
of the incidence purchase decision, the parameters of the
MNL model for the first choice, and the coefficients for the
substitution matrix. Due to the complexity of the likelihood
function, the EM procedure requires the use of nonlinear
optimization techniques in its M-step.

Closest to our work is that of Conlon and Mortimer
(2009), who develop an EM algorithm to account for
missing data in a periodic review inventory system under a
continuous time model of demand, where for every period
they try to uncensor the fraction of consumers not affected
by stockouts. They aim to demonstrate how to incorporate
data from short-term variations in the choice set to identify
substitution patterns, even when the changes to the choice
set are not fully observed. A limitation of this work is
that the E-step becomes difficult to implement when mul-
tiple products are simultaneously stocked out, because it
requires estimating an exponential number of parameters
(see Conlon and Mortimer 2009, Appendix A.2).

In summary, there has been a growing field of literature
on estimating choice behavior and lost sales in the context
of retailing for the last decade. This stream of research also
includes procedures based on the EM method. Our main
contribution to the literature in this regard is a remark-
ably simple procedure that consists of a repeated sequence
of closed-form expressions. The algorithm can be read-
ily implemented in any standard procedural computer lan-
guage, and it requires only minimal computation time.

3. Model, Estimation, and Algorithm

3.1. Model Description

A set of n substitutable products is sold over T purchase
periods, indexed t = 1121 0 0 0 1 T . No assumption is made
about the order or duration of these purchase periods. For
example, a purchase period might be a day, and we might
have data on purchases over T (not necessarily consecutive)
days; or it might be a week, and we might have purchase
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observations for T weeks. Periods could also be of differ-
ent lengths, and the indexing need not be in chronologi-
cal order.

The only data available for each period are actual pur-
chase transactions (i.e., how many units we have sold of
each product in each period) and a binary indicator of the
availability of each product during the period. (We assume
products are either always available or always unavailable
in a period; see discussion below.) The number of cus-
tomers arriving and making purchase choices in each period
is not known; equivalently, we do not observe the number
of no-purchase outcomes in each period. This is the fun-
damental incompleteness in the data, and it is a common
limitation of transactional sales data in retail settings in
which sales transactions and item availability are frequently
the only data available.

The full set of products is denoted N = 811 0 0 0 1 n9.
We denote the number of purchases of product i observed in
period t by zit and define zt = 4z1t1 0 0 0 1 znt5. We will assume
that zit ¾ 0 for all i1 t; that is, we do not consider returns.
Let mt =

∑n
i=1 zit denote the total number of observed pur-

chases in period t. We will further assume without loss of
generality that for every product i, there exists at least one
period t such that zit > 0; else, we can drop product i from
the analysis.

We assume the following underlying model generates
these purchase data: the number of arrivals in each period
(i.e., number of customers who make purchase decisions)
is denoted At . At has a Poisson distribution with mean �t

(the arrival rate). Let Ë= 4�11 0 0 0 1 �T 5 denote the vector of
arrival rates. It could be that some of the n products are
not available in certain periods due to temporary stockouts,
limited capacity, or controls on availability (e.g., capacity
controls from a revenue management system, or deliber-
ate scarcity introduced by the seller). Hence, let St ⊂ N
denote the set of products available for sale in period t.
We assume St is known for each t and that the products
in St are available throughout period t. Whenever i 6∈ St , for
notational convenience we define the number of purchases
to be zero, i.e., zit = 0.

Customers choose among the alternatives in St according
to a MNL model, which is assumed to be the same in each
period (i.e., preferences are time homogeneous, although
this assumption can be relaxed as discussed below). Under
the MNL model, the choice probability of a customer
is defined based on a preference vector v ∈ Rn, v > 0,
that indicates the customer “preference weights” or “attrac-
tiveness” for the different products.1 This vector, together
with a normalized, no-purchase preference weight v0 = 1,
determines a customer’s choice probabilities as follows:
let Pj4S1v5 denote the probability that a customer chooses
product j ∈ S when S is offered and preference weights are
given by vector v. Then,

Pj4S1v5=
vj

∑

i∈S vi + 1
0 (1)

If j 6∈ S, then Pj4S1v5= 0.

We denote the no-purchase probability by P04S1v5.
It accounts for the fact that when set S is offered, a cus-
tomer may either buy a product from a competitor, or not
buy at all (i.e., buys the outside alternative):

P04S1v5=
1

∑

i∈S vi + 1
0

The no-purchase option can be treated as a separate product
(labeled zero) that is always available. Note that by total
probability,

∑

j∈S Pj4S1v5+P04S1v5= 1.
The statistical challenge we address is how to estimate

the parameters of this model—namely, the preference vec-
tor v and the arrival rates Ë—from the purchase data zt ,
t = 1121 0 0 0 1 T .

3.2. The Incomplete Data Likelihood Function

One can attempt to solve directly this estimation problem
using maximum likelihood estimation (MLE). The incom-
plete data likelihood function can be expressed as follows:

LI4v1Ë5

=

T
∏

t=1

(

�4mt customers buy in period t �v1Ë5
mt!

z1t!z2t!···znt!

·
∏

j∈St

[

Pj4St1v5
∑

i∈St
Pi4St1v5

]zjt
)

1 (2)

where the probabilities in the inner product are the con-
ditional probabilities of purchasing product j given that a
customer purchases something. The number of customers
that purchase in period t, mt , is a realization of a Poisson
random variable with mean �t

∑

i∈St
Pi4St1v5, viz

�4mt customers buy in period t � v1Ë5

=
6�t

∑

i∈St
Pi4St1v57

mte−�t
∑

i∈St
Pi4St 1v5

mt!
0 (3)

One could take the log of (2) and attempt to maximize
this log-likelihood function with respect to v and Ë. How-
ever, it is clear that this is a complex likelihood function
without much structure, so maximizing it (or its logarithm)
directly is not an appealing approach. Indeed, our attempts
in this regard were not promising as reported later in §5.

3.3. Multiple Optima in the MLE and
Market Potential

A further complication is that the likelihood function (2)
has a continuum of maxima. To see this, let 4v∗1Ë∗5
denote a maximizer of (2). Let � > 0 be any real number
and define a new preference vector v0 = �v∗. Define new
arrival rates

�0
t =

�
∑

i∈St
v∗
i + 1

�4
∑

i∈St
v∗
i + 15

�∗

t 0
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Then, it is not hard to see from (1) that

�∗

t Pj4St1v
∗5= �0

tPj4St1v
051

for all j and t. Because this product of the arrival rate
and purchase probability is unchanged, by inspection of (2)
and (3), the solution 4v01Ë05 has the same likelihood and
therefore is also a maximum. Because this holds true for
any �> 0, there is a continuum of maxima. Of course, this
observation holds more generally: for any pair of values
4v1Ë5, there is a continuum of values �4v1Ë51� > 01 such
that LI4v1Ë5=LI4�v1�Ë5.

One can resolve this multiplicity of optimal solutions by
imposing an additional constraint on the parameter values
related to market share. Specifically, suppose we have an
exogenous estimate of the preference weight of the outside
alternative relative to the total set of offerings. Let’s call
it r , so that

r 2=
1

∑n
j=1 vj

0 (4)

Then fixing the value of r resolves the degree of freedom
in the multiple maxima. Still, this leaves the need to solve
a complicated optimization problem. In §3.5 we look at
a simpler and more efficient approach based on viewing
the problem in terms of primary demand. Before doing so,
however, we briefly discuss the demand model itself.

3.4. Discussion of the Demand Model

Our model uses the well-studied MNL for modeling cus-
tomer choice behavior in a homogeneous market (i.e.,
customer preferences are described by a single set of para-
meters v). As mentioned, a convenient property of the MNL
is that the likelihood of purchase can be readily recalcu-
lated if the availability of the products changes. However,
the MNL has significant restrictions in terms of modeling
choice behavior, most notably the property of independence
from irrelevant alternatives (IIA). Briefly, this property says
that the ratio of purchase probabilities for two available
alternatives is constant regardless of the choice set contain-
ing them. Other choice models are more flexible in model-
ing substitution patterns (e.g., see Train 2003, Chapter 4).
Among them, the nested logit (NL) model has been widely
used in the marketing literature. While less restrictive, the
NL requires more parameters and therefore a higher vol-
ume of data to generate good estimates.

Despite the limitation of the IIA property, MNL models
are widely used. Starting with Guadagni and Little (1983),
marketing researchers have found that the MNL model
works well when estimating demand for a category of sub-
stitutable products (in Guadagni and Little’s study, regu-
lar ground coffee of different brands). Recent experience
in the airline industry also provides good support for using
the MNL model.2 According to the experience of one of
the authors, there are two major considerations in real air-
line implementations: (i) the range of fare types included,

and (ii) the flight departure time proximity. Regarding (i), in
cases where airlines are dealing with dramatically different
fare products, then it is often better to split the estimation
process using two entirely separate data pools. Consider the
following real-world example. An international airline uses
the first four booking classes in their nested fare hierarchy
for international point-of-sales fares that have traditional
restrictions (i.e., advance purchase, minimum stay length,
etc.); these are the highest-valued fare types. The next eight
booking classes are used for domestic travel with restriction-
free fares. Because there is little (or no) interaction between
the international and domestic points-of-sales, the airline
applies the MNL model to two different data pools: one for
international sales and the other for domestic sales. Separate
choice models are fit to the two different pools. Regard-
ing (ii), it would be somewhat unrealistic to assume that
first-choice demand for a closed 7:00 a.m. departure would
be recaptured onto a same-day, open 7:00 p.m. departure in
accordance with the IIA principle. Hence, it makes sense
to restrict the consideration set to departure times that are
more similar. Clearly, some customers will refuse to con-
sider the alternative flight if the difference in departure
times is large. Some recently developed revenue manage-
ment systems with which the authors are familiar still use
the MNL for such flight sets, but they implement a correc-
tion heuristic to overcome the IIA limitation.

Another important aspect of our model is the interpre-
tation of the outside alternative, and the resulting interpre-
tation of the arrival rates Ë. For instance, if the outside
alternative is assumed to be the (best) competing prod-
uct, then

s = 1/41 + r5=

∑n
j=1 vj

∑n
j=1 vj + 1

defines the retailer’s market share, including the retailer and
its competitor(s). Alternatively, if the outside alternative is
considered to consist of both the competitor’s best product
and a no-purchase option, then s gives the retailer’s market
potential, and Ë is then interpreted as the total market size
(number of customers choosing). This later interpretation is
found in marketing and empirical industrial organizations
applications (e.g., see Berry et al. 1995 for an empirical
study of the U.S. automobile industry and Nevo 2001 for an
empirical study of the ready-to-eat cereal industry). Hence-
forth, given a value s (retailer’s market share or potential),
we set the attractiveness of the outside alternative as r =

41−s5/s, which is equivalent to (4). Low values of r imply
high market share or potential.

Note that we work with store-level data (as opposed to
household panel data). Chintagunta and Dubé (2005) dis-
cuss the advantages of using store-level data to compute
the mean utility associated with products (in our MNL
case, logvi is the mode of the random utility of prod-
uct i). We also assume that for every product j , there is
a period t for which zjt > 0 (otherwise, that product can
be dropped from the analysis). In this regard, our model
can accommodate assortments with slow-moving items for
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which zjt = 0 for several (but not all) periods. It’s worth
noting that for retail settings, having zero sales in many con-
secutive periods could be a symptom of inventory record
error. DeHoratius and Raman (2008) found that 65% of
370,000 inventory records of a large public U.S. retailer
were inaccurate, and that the magnitude of the inaccura-
cies was significant (of around 35% of the inventory level
on the shelf per SKU). A possible misleading situation is
that the IT system records a SKU as being in stock even
though there are no units on the shelf, and hence no sales
will be observed despite the fact that the product is tagged
as “available.”

Furthermore, if a period t has no sales for any of the
products, then that period can be dropped from the anal-
ysis. Note that for that period, mt = 0 in Equations (2)
and (3), and therefore �∗

t = 0. Intuitively, this is because our
model assumes that the market participation s is replicated
in every single period, and hence the most likely arrival
rate to produce no sale in a period is an arrival rate of zero.

Regarding the information on product availability, as
mentioned above we assume that a product is either fully
available or not available throughout a given period t.
Hence, the time partitioning should be fine enough to cap-
ture short-term changes in the product availability over
time.3 However, in contrast to other approaches (e.g.,
Musalem et al. 2010), we do not require information on
inventory levels; all we require is a binary indicator describ-
ing each item’s availability.

Finally, note that our model assumes homogeneous
preferences across the whole selling horizon but a non-
homogeneous Poisson arrival process of consumers. The
assumption of homogeneous preferences can be relaxed by
splitting the data into intervals where a different choice
model is assumed to apply over each period. The resulting
modification is straightforward, so we do not elaborate on
this extension. The estimates Ë̂ can be used to build a fore-
cast of the volume of demand to come by applying standard
time series analysis to project the values forward in time.

3.5. Log-Likelihood Based on Primary Demand

By primary (or first-choice) demand for product j , we mean
the demand that would have occurred for product j if all n
alternatives were available. The (random) number of pur-
chases, Zjt , of product j in period t might be greater than
the primary demand because it could include purchases
from customers whose first choice was not available and
who bought product j as a substitute (i.e., Zjt includes
demand that is spilled from other unavailable products and
recaptured by product j). More precisely, the purchase
quantity Zjt can be split into two components: the primary
demand, Xjt , which is the number of customers in period t
that have product j as their first choice; and Yjt , the substi-
tute demand, which is the number of customers in period t
that decide to buy product j as a substitute because their
first choice is unavailable. Thus,

Zjt =Xjt + Yjt0 (5)

Clearly, Xjt ¾ 0, but the equation remains true when Zjt = 0
and Yjt ¶ 0, as explained below. Our focus is on estimating
the primary demand Xjt . While this decomposition seems
to introduce more complexity in the estimation problem, in
fact it leads to a considerably simpler estimation algorithm.

3.5.1. Basic Identities. Based on the purchase observa-
tions zt , we have that E6Zjt � zt7 = zjt . Let X̂jt = E6Xjt � zt7
and Ŷjt = E6Yjt � zt7 denote, respectively, the conditional
expectation of the primary and substitute demand given
the purchase observations. We seek to determine these two
quantities. In what follows, assume that the preference vec-
tor v is given.

Case 1. Consider first products that are unavailable in
period t, that is j 6∈ 4St ∪ 8095. For these items, we have
no observation zjt , and for completeness we set zjt = 0.
To determine X̂jt for these items, note that

E6Xjt � zt7=
vj

∑n
i=1 vi + 1

E6At � zt71

and

∑

h∈St

E6Zht � zt7=

∑

h∈St
vh

∑

h∈St
vh + 1

E6At � zt70

Combining these expressions to eliminate E6At � zt7 yields

E6Xjt � zt7=
vj

∑n
i=1 vi + 1

∑

h∈St
vh + 1

∑

h∈St
vh

∑

h∈St

E6Zht � zt71

or equivalently,

X̂jt =
vj

∑n
i=1 vi+1

∑

h∈St
vh+1

∑

h∈St
vh

∑

h∈St

zht1 j 6∈ 4St ∪ 80950 (6)

For this case, in view of (5), we have Ŷjt = −X̂jt ,
meaning that customers are “substituting out of” product j
because j is not available.

Case 2. Next, consider the available products j ∈ St .
For each such product, we have zjt observed transactions,
which according to (5) can be split into

zjt = X̂jt + Ŷjt1 j ∈ St0

Note that

�8product j is a first choice � purchase j9

=
�8product j is a first choice9

�8purchase j9

=
vj

∑n
i=1 vi + 1

/ vj
∑

h∈St
vh + 1

=

∑

h∈St
vh + 1

∑n
i=1 vi + 1

0
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Therefore, because X̂jt = zjt�{product j is a first choice �

purchase j}, we have

X̂jt =

∑

h∈St
vh + 1

∑n
i=1 vi + 1

zjt1 and Ŷjt =

∑

h6∈4St∪8095
vh

∑n
i=1 vi + 1

zjt0 (7)

Case 3. Last, for the no-purchase option (i.e., j = 0),
we are also interested in estimating its primary demand
in period t conditional on the transaction data, i.e., X̂0t =

E6X0t � zt7. Recall that At is the total (random) number of
arrivals in period t, including the customers that do not
purchase. Again, we do not observe At directly but note that

E6X0t � zt7=
1

∑n
i=1 vi + 1

E6At � zt70 (8)

In addition, the following identity must hold:

At =X0t +

n
∑

i=1

Xit0

Conditioning on the observed purchases we have that

E6At � zt7= X̂0t +

n
∑

i=1

X̂it0 (9)

Substituting (9) into (8), we obtain

X̂0t =
1

∑n
i=1 vi

n
∑

i=1

X̂it0 (10)

Interestingly, we can also get the lost sales in period t,
given by the conditional expectation of the substitute
demand for the no-purchase option, Ŷ0t = E6Y0t � zt7:

Ŷ0t =
1

∑

i∈St
vi + 1

∑

h6∈4St∪8095

X̂ht0

Next, define Nj1 j = 01 0 0 0 1 n1 as the total primary
demand for product j over all periods (including the no-
purchase option j = 0). Thus, Nj =

∑T
t=1 Xjt , giving an

estimate

N̂j 2=
T
∑

t=1

X̂jt1 (11)

where, consistent with our other notation, N̂j = E6Nj � z11

0 0 0 1 zT 7, which is positive because X̂jt ¾ 0, for all j and t,
and for at least one period t, X̂jt > 0.4

3.5.2. Overview of Our Approach. The key idea
behind our approach is to view the problem of estimating
v and Ë as an estimation problem with incomplete obser-
vations of the primary demand Xjt , j = 0111 0 0 0 1 n, t =

11 0 0 0 1 T . Indeed, suppose we had complete observations
of the primary demand. Then the log-likelihood function
would be simple, namely

L4v5=

n
∑

j=1

Nj ln
(

vj
∑n

i=1 vi + 1

)

+N0 ln
(

1
∑n

i=1 vi + 1

)

1

where Nj is the total number of customers selecting prod-
uct j as their first choice (or selecting not to purchase,
j = 0, as their first choice). We show below this func-
tion has a closed-form maximum. However, because we do
not observe Nj , j = 0111 0 0 0 1 n1 directly, we use the EM
method of Dempster et al. (1977) to estimate the model.
This approach drastically simplifies the computational prob-
lem relative to maximizing (2). It also has the advantage of
eliminating Ë from the estimation problem and reducing it
to a problem in v only. (An estimate of Ë can be trivially
recovered after the algorithm runs, as discussed below.)

The EM method is an iterative procedure that consists of
two steps per iteration: an expectation (E) step and a max-
imization (M) step. Starting from arbitrary initial estimates
of the parameters, it computes the conditional expected
value of the log-likelihood function with respect to these
estimates (the E-step) and then maximizes the resulting
expected log-likelihood function to generate new estimates
(the M-step). The procedure is repeated until convergence.
While technical convergence problems can arise, in prac-
tice the EM method is a robust and efficient way to com-
pute maximum likelihood estimates for incomplete data
problems.

In our case, the method works by starting with esti-
mates v̂> 0 (the E-step). These estimates for the preference
weights are used to compute estimates for the total pri-
mary demand values N̂01 N̂11 0 0 0 1 N̂n, by using the formulas
in (6), (7), and (10), and then substituting the values of X̂jt

in (11). In the M-step, given estimates v̂ (and therefore,
given estimates for N̂01 N̂11 0 0 0 1 N̂n), we then maximize the
conditional expected value of the log-likelihood function
with respect to v:

E6L4v5 � v̂7=
n
∑

j=1

N̂j ln
(

vj
∑n

i=1vi+1

)

+N̂0 ln
(

1
∑n

i=1vi+1

)

0 (12)

Just as in the likelihood function (2), there is a degree
of freedom in our revised estimation formulation. Indeed,
consider the first iteration with arbitrary initial values for
the estimates v̂, yielding estimates N̂j , j = 0111 0 0 0 1 n.
From (10), r defined in (4) must satisfy N̂0 = r

∑n
j=1 N̂j .

As above, r measures the magnitude of outside alternative
demand relative to the alternatives in N. We will prove
later, in Proposition 1, that this relationship is preserved
across different iterations of the EM method. So the initial
guess for v̂ implies an estimate of r .

Expanding (12), the conditional expected, complete data
log-likelihood function is

L4v5 2=E6L4v110001vn5 � v̂110001v̂n7

=

n
∑

j=1

N̂j

{

ln
(

vj
∑n

i=1vi+1

)

+r ln
(

1
∑n

i=1vi+1

)}
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=

n
∑

j=1

N̂j ln
(

vj
∑n

i=1vi+1

)

+r ln
(

1
∑n

i=1vi+1

) n
∑

j=1

N̂j 0 (13)

This expected log-likelihood function is then maximized to
generate new estimates v̂∗

j 1 j = 11 0 0 0 1 n. We show below
this a simple maximization problem, with closed-form
solution

v∗

j =
N̂j

r
∑n

i=1 N̂i

1 j = 11 0 0 0 1 n0 (14)

In the E-step of the next iteration, the EM method uses
these maximizers to compute updated estimates X̂jt in (6),
(7), and (10), leading to updated values N̂j . These two steps
are repeated until convergence.

Note that both the expectation and maximization steps
in this procedure involve only simple, closed-form calcu-
lations. Also note that the whole EM procedure can be
described only in terms of the preference weight estimates
v̂j1 j = 11 0 0 0 1 n. The optimal first-choice estimates X̂jt are
returned by applying (6), (7), and (10) using the estimates
v̂j of the final iteration. Estimates of Ë can also be recov-
ered from (9) by simply noting that

�̂t ≡ E6At � zt7= X̂0t +

n
∑

i=1

X̂it0 (15)

That is, the arrival rate is simply the sum of the primary
demands of all n products plus the primary demand of the
no-purchase alternative. Intuitively, this is why viewing the
problem in terms of primary demand eliminates the arrival
rate from the estimation problem; the arrival rate is simply
the sum of primary demands.

3.5.3. Summary of the EM Algorithm. We next sum-
marize the EM algorithm for estimating primary demand
using pseudocode.

EM Algorithm for Estimating Primary Demand
[Initialization]: Given a market participation s, let
r 2= 41 − s5/s. For all product j and periods t, set
Xjt 2= zjt , with Xjt 2= 0 if j 6∈ St . Then, initialize
variables N01N11 0 0 0 1Nn, as follows:

Nj 2=
T
∑

t=1

Xjt1 j = 11 0 0 0 1 n1 N0 2= r
n
∑

j=1

Nj1

X0t 2=N0/T 1 and vj 2=Nj/N01 j = 11 0 0 0 1 n0
Repeat

For t 2= 11 0 0 0 1 T do
For j 2= 11 0 0 0 1 n do

If j 6∈ St , then set

Xjt 2=
vj

∑n
i=1 vi + 1

∑

h∈St
vh + 1

∑

h∈St
vh

∑

h∈St

zht1 and Yjt = −Xjt1

else (i.e., j ∈ St), then set

Yjt 2=

∑

h6∈4St∪8095
vh

∑n
i=1 vi + 1

zjt1 and Xjt 2= zjt − Yjt0

EndIf
EndFor
Set

X0t 2=
1

∑n
i=1 vi

n
∑

i=1

Xit1 and Y0t 2=
1

∑

i∈St
vi + 1

∑

h6∈4St∪8095

Xht0

EndFor
Set N0 2=

∑T
t=1 X0t .

For j 2= 11 0 0 0 1 n do
Set Nj 2=

∑T
t=1 Xjt .

Set vj 2=Nj/N0.
EndFor

until Stopping criteria are met.

A few remarks on implementation: The initialization of
Xjt , j = 11 0 0 0 1 n, is arbitrary; we merely need starting val-
ues different from zero if j ∈ St . The stopping criteria can
be based on various measures of numerical convergence,
e.g., that the difference between all values Xjt from two
consecutive iterations of the algorithm is less than a small
constant �, or on a maximum number of iterations. In all
our experiments we observed very quick convergence, so
it would appear that the precise stopping criteria are not
critical.

4. Properties of the EM Algorithm
We start by noting some properties of the algorithm with
respect to the retailer’s market-participation-related param-
eter r (recall that s = 1/41 + r5). First, note that the func-
tion L in (13) is linearly decreasing as a function of r , for
all r > 0. Second, as claimed above, the value r remains
constant throughout the execution of the algorithm.

Proposition 1. The relationship N̂0 = r
∑n

j=1 N̂j , is pre-
served across iterations of the EM algorithm, starting from
the initial value of r .

Proof. In the E-step of an iteration, after we compute the
values X̂it , we use formula (10) with the vjs replaced by
the optimal values obtained in the M-step of the previous
iteration, i.e.,

X̂0t =
1

∑n
i=1 4N̂

′
i /r

∑n
h=1 N̂

′
h5

n
∑

i=1

X̂it = r
n
∑

i=1

X̂it1

where N̂ ′
i stand for the volume estimates from the previous

iteration. The new no-purchase estimate is

N̂0 =

T
∑

t=1

X̂0t =

T
∑

t=1

r
n
∑

i=1

X̂it

= r
n
∑

i=1

T
∑

t=1

X̂it = r
n
∑

i=1

N̂i1

and hence the relationship N̂0=r
∑n

j=1 N̂j , is preserved. �
Our next result proves that the complete data log-

likelihood function L4v11 0 0 0 1 vn5 is indeed unimodal.
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Proposition 2. The function L4v11 0 0 0 1 vn5, with v > 0,
and N̂j > 01 ∀ j , is unimodal, with unique maximizer v∗

j =

N̂j/r
∑n

i=1 N̂i, j = 11 0 0 0 1 n.

Proof. Taking partial derivatives of function (13), we get

¡

¡vj
L4v11 0 0 0 1 vn5=

N̂j

vj
−

41 + r5
∑n

i=1 N̂i
∑n

i=1 vi + 1
1 j = 11 0 0 0 1 n0

Setting these n equations equal to zero leads to a linear
system with unique solution

v∗

j =
N̂j

r
∑n

i=1 N̂i

1 j = 11 0 0 0 1 n0 (16)

The second cross-partial derivatives are

¡2

¡2vj
L4v11 0 0 0 1 vn5= −

N̂j

v2
j

+�4v11 0 0 0 1 vn51

where

�4v11 0 0 0 1 vn5=
41 + r5

∑n
i=1 N̂i

4
∑n

i=1 vi + 152
1

and
¡2

¡vj¡vi
L4v11 0 0 0 1 vn5= �4v11 0 0 0 1 vn51 j 6= i0

Let H be the Hessian of L4v11 0 0 0 1 vn5. To check that our
critical point (16) is a local maximum, we compute for
x ∈Rn1x 6= 0,

xTH4v11 0 0 0 1 vn5x =
41 + r54

∑n
i=1 N̂i54

∑n
i=1 xi5

2

4
∑n

i=1 vi + 152

−

n
∑

i=1

N̂i

x2
i

v2
i

0 (17)

The second-order sufficient conditions are xTH4v∗
11 0 0 0 1 v

∗
n5x

< 0, for all x 6= 0. Plugging in the expressions in (16),
we get

xTH4v∗

11 0 0 0 1 v
∗

n5x

= r2

( n
∑

i=1

N̂i

)(

4
∑n

i=1 xi5
2

1 + r
−

( n
∑

i=1

N̂i

) n
∑

i=1

x2
i

N̂i

)

0

Note that because r > 0, and N̂j > 01 ∀ j , it is enough to
check that
( n
∑

i=1

xi

)2

−

( n
∑

i=1

N̂i

) n
∑

i=1

x2
i

N̂i

¶ 01 ∀x 6= 00 (18)

By the Cauchy-Schwartz inequality, i.e., �yTz�2 ¶ �y�2�z�2,

defining yi = xi/

√

N̂i and zi =

√

N̂i, we get

( n
∑

i=1

xi

)2

=

(

n
∑

i=1

xi
√

N̂i

×

√

N̂i

)2

¶
(

√

n
∑

i=1

x2
i

N̂i

)2(√
n
∑

i=1

N̂i

)2

=

( n
∑

i=1

x2
i

N̂i

)( n
∑

i=1

N̂i

)

1

and therefore inequality (18) holds.

Proceeding from first principles, we have a unique crit-
ical point for L4v11 0 0 0 1 vn5, which is a local maximum.
The only other potential maxima can occur at a boundary
point. But close to the boundary of the domain the function
is unbounded from below; that is,

lim
vj↓0

L4v11 0 0 0 1 vn5= −�1 j = 11 0 0 0 1 n0

Hence, the function is unimodal. �
A few comments are in order. First, due to the definition

of v∗
j and because

∑T
t=1 zjt > 0, then N̂j > 0 for every itera-

tion of the EM method. Second, observe that Equation (17)
shows that the function L4v11 0 0 0 1 vn5 is not jointly con-
cave in general, because there could exist a combination
of values N̂11 0 0 0 1 N̂n, and the vector 4v11 0 0 0 1 vn5 such that
for some x, xTH4v11 0 0 0 1 vn5x> 0. For example, if we take
n = 2, v = 410511025, N̂1 = 501 N̂2 = 3, and x = 40001115,
then r = 1/4v1 + v25 = 0037, and xTH4v11 v25x = 3033.
In this regard, this is different from the usual linear-in-
parameter MNL formulation, for which the complete data
log-likelihood function is jointly concave in most cases
(e.g., see Talluri and van Ryzin 2004, §5). However, from a
computational point of view, what matters is that it is uni-
modal, and even better, the optimal solution has a closed
form, which leads to our third observation: our procedure
is indeed an EM algorithm, as opposed to the so-called
generalized EM algorithm (GEM). In the case of GEM,
the M-step requires only that we generate an improved
set of estimates over the current ones (i.e., it requires to
find a vector v̄ such that E6L4v̄5 � v̂77 ¾ E6L4v̂5 � v̂7), and
the conditions for convergence are more stringent (e.g.,
see McLachlan and Krishnan 1996, Chapter 3, for further
discussion).

Because our EM method satisfies a mild regularity con-
dition, we have the following convergence result due to
Wu (1983).5

Theorem 1. The conditional expected value

E6L4v11 0 0 0 1 vn5 � v̂11 0 0 0 1 v̂n7

in (13) is continuous both in v > 0 and v̂ > 0, and hence
all the limit points of any instance 8v̂4k51 Ë̂4k51 k = 1121 0 0 09
of the EM algorithm are stationary points of the corre-
sponding incomplete-data log-likelihood function LI4v1Ë5,
and LI4v̂

4k51 Ë̂4k55 converges monotonically to a value
LI4v

∗1Ë∗5, for some stationary point 4v∗1Ë∗5.

Proof. The result simply follows from the fact that N̂j =
∑T

t=1 X̂jt , j = 0111 0 0 0 1 n, and X̂jt are continuous in v̂
according to Equations (6), (7), and (10). Clearly, L is
also continuous in v. In addition, recall that the estimates v̂
imply a vector Ë̂ once we fix a market participation r
(through Equation (15)), and therefore the EM algorithm,
given the unique maximizer found in the M-step as proved
in Proposition 2, indeed generates an implied sequence
8v̂4k51 Ë̂4k51 k = 1121 0 0 09. �
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As pointed out by (Wu 1983, §2.2), the convergence
of 8LI4v̂

4k51 Ë̂4k55 to LI4v
∗1Ë∗5, for some stationary point

4v∗1Ë∗5, does not automatically imply the convergence of
84v̂4k51 Ë̂4k559 to a point 4v∗1Ë∗5. Nevertheless, the conver-
gence of the sequence of points 84v̂4k51 Ë̂4k559 can be checked
numerically as part of the EM procedure. In our experiments
reported in §5, we consistently observed that the sequence
of estimates converged. Another caveat is the fact that the
stationary point of LI4v1Ë5 is not guaranteed to be a global
maximum, but this drawback is also shared by any stan-
dard nonlinear optimization method working directly on the
original incomplete-data log-likelihood function.

5. Numerical Examples
We next report on two sets of numerical examples. The
first set is based on simulated data, which are used to get a
sense of how well the procedure identifies a known demand
system and how much data are necessary to get good esti-
mates. Then, we report results on two real-world data sets,
one for airlines and another for retail. In all the exam-
ples, we set a stopping criterion based on the difference
between the matrices X̂ from two consecutive iterations of
the EM method, halting the procedure as soon as the abso-
lute value of all the elements of the difference matrix was
smaller than 0.001. The algorithm was implemented using
the MATLAB6 procedural language, in which the method
detailed in §3.5.3 is straightforward to code.

5.1. Examples Based on Simulated Data

Our first example is small and illustrates the behavior of
the procedure on a known demand system. We provide
the original generated data (observed purchases) and the
final data (primary and substitute demands), as well as
comparative results with two benchmark procedures. Next,
we look at the effect of input data volume on the accu-
racy of the estimates. Finally, we run an exhaustive set of
comparisons between our procedure and three benchmarks
to get a broader sense of the relative performance of our
method.

Table 1. Purchases and no-purchases for the preliminary example.

Observable data: Purchases and nonavailability (NA)

Periods

Product 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Total

1 10 15 11 14 NA NA NA NA NA NA NA NA NA NA NA 50
2 11 6 11 8 20 16 NA NA NA NA NA NA NA NA NA 72
3 5 6 1 11 4 5 14 7 11 NA NA NA NA NA NA 64
4 4 4 4 1 6 4 3 5 9 9 6 9 NA NA NA 64
5 0 2 0 0 1 0 1 3 0 3 3 5 2 3 3 26

Nonobservable data

No purchases 8 17 15 12 29 24 40 35 32 37 40 32 48 45 52 466
� 38 50 42 46 60 49 58 50 52 49 49 46 50 48 55 742

Table 2. Output parameters for preliminary example.

Parameter True value Est. value Bias (%) ASE t-stat

v̂1 1000 00948 −5025 00092 10032
v̂2 0070 00759 8049 00078 9072
v̂3 0040 00371 −7035 00048 7069
v̂4 0020 00221 10025 00035 6028
v̂5 0005 00052 3080 00016 3028

5.1.1. Preliminary Estimation Case. Given a known
underlying MNL choice model (i.e., values for the prefer-
ence weights v) and assuming that arrivals follow a homo-
geneous Poisson process with rate � = 50, we simulated
purchases for n = 5 different products. Initially, we con-
sidered a selling horizon of T = 15 periods and pref-
erence weights v = 41100710041002100055 (recall that the
weight of the no-purchase alternative is v0 = 1). Note
w.l.o.g. we index products in decreasing order of prefer-
ence. These preference values give a market potential s =
∑n

j=1 vj/4
∑n

j=1 vj + 15= 70%.
Table 1 describes the simulated data, showing the ran-

domly generated purchases for each of the five products
for each period and the total number of no-purchases and
arrivals. Here period 1 represents the end of the selling
horizon. A label “NA” in position 4j1 t5 means that prod-
uct j is not available in period t. The unavailability was
exogenously set prior to simulating the purchase data.

For the estimation procedure, the initial values of v̂j are
computed following the suggestion in §3.5.3, i.e.,

v̂j =

∑T
t=1 zjt

r
∑T

t=1

∑n
i=1 zit

1 j = 11 0 0 0 1 n1 (19)

with r = 004286 (equivalently with a market share/potential
of s = 0070); we also assume perfect knowledge of this
market potential. The output is shown in Table 2.

The second column includes the true preference weight
values for reference. The third column reports the esti-
mates computed by the EM method. The fourth column
reports the percentage bias between the estimated and true
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Table 3. Primary demand output X̂jt and arrival rate output �̂t for n= 5 products and for the no-purchase option j = 0.

Periods

Product 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Total (Nj )

1 1000 1500 1100 1400 1500 1201 1300 1008 1405 1509 1109 1805 1105 1702 1702 20705
2 1100 600 1100 800 1403 1105 1004 807 1106 1207 905 1408 902 1308 1308 16603
3 500 600 100 1100 209 306 609 304 504 602 407 702 405 607 607 8102
4 400 400 400 100 403 209 105 205 404 304 203 304 207 400 400 4803
5 000 200 000 000 007 000 005 105 000 101 101 109 006 009 009 1104

No-purch. 1208 1400 1105 1405 1509 1208 1307 1104 1503 1607 1205 1905 1201 1801 1801 21900

�̂t 4208 4700 3805 4805 5301 4208 4600 3803 5101 5600 4200 6504 4005 6008 6008 73307

values. Note that the results suggest an apparent bias in
the estimates, which is not unexpected because the MLE
is only asymptotically unbiased. The fifth column shows
the asymptotic standard error (ASE) of the corresponding
estimate (e.g., see McLachlan and Krishnan 1996, Chap-
ter 4, for details on ASE calculation). Note that for all the
coefficients we can reject the null hypothesis that the true
value is zero at the 0.005 significance level.7 The average
estimated �̂ in this small example is 48.91, showing a small
bias with respect to the mean rate: −2018%.

Table 3 shows the uncensored primary demands obtained
by the EM method (i.e., the estimates X̂jt1 j = 11 0 0 0 1 n,
and X̂0t , t = T 1 0 0 0 11) as well as the estimate of the arrival
rate in each period, �̂t (the sum of all primary demand
estimates). Table 4 shows the substitute demand estimates
Ŷjt1 j = 11 0 0 0 1 n, and Ŷ0t1 t = T 1 0 0 0 11. By inspection of
the latter, observe that as we move toward the end of
the horizon (i.e., toward the right of the table) and the
most preferred products become less available, the sub-
stitute demand tends to explain an increasing fraction of
the sales and no-purchases. As a simple validation, note
that the total first-choice demand (i.e.,

∑n
j=1 Nj = 51407)

matches the total number of bookings (i.e.,
∑T

t=1

∑n
j=1 zjt =

276) plus the total substitute demand (i.e., 238.7). We also
observe negative values of Ŷjt for j 6∈ St , representing the
total primary demand X̂jt that shifted to another product or
to the no-purchase alternative.

From Tables 3 and 4, we can also compute another
important performance measure: the percentage of lost
sales, defined as

�4lost sales5=

∑T
t=1 Y0t

∑n
j=1 Nj

=
23807
51407

= 46038%0

Table 4. Substitute demand output Ŷjt for n= 5 products and for the no-purchase option j = 0.

Periods

Product 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Total in St

1 000 000 000 000 −1500 −1201 −1300 −1008 −1405 −1509 −1109 −1805 −1105 −1702 −1702 000
2 000 000 000 000 507 405 −1004 −807 −1106 −1207 −905 −1408 −902 −1308 −1308 1002
3 000 000 000 000 101 104 701 306 506 −602 −407 −702 −405 −607 −607 1808
4 000 000 000 000 107 101 105 205 406 506 307 506 −207 −400 −400 2603
5 000 000 000 000 003 000 005 105 000 109 109 301 104 201 201 1405

No-purch. 000 000 000 000 603 500 1403 1109 1508 2703 2005 3109 2604 3906 3906 23807

The total aggregate recapture rate is computed as the ratio
of the total substitute demand across the n products to the
total primary demand, i.e.,

Recapture rate =

∑T
t=1

∑

j∈St
Yjt

∑n
j=1 Nj

=
70004
51407

= 13061%0

In this case, it took 31 iterations of the EM method to
meet the stopping criteria in just 0.03 seconds of com-
putation time. As a benchmark, we also optimized the
incomplete-data log-likelihood function (i.e., the logarithm
of function (2))—which we call direct max for short.
We used the built-in MATLAB function “fminsearch” that
implements the simplex search method of Lagarias et al.
(1998). This is a direct search method that does not use
numerical or analytic gradients. The initial point 4v1Ë5 was
based on the observed bookings as in the EM method.
The tolerance was set at 0.001. For this small example,
the MATLAB algorithm took 11,176 iterations to converge,
requiring 14,063 evaluations of the log-likelihood function
and 8.26 seconds of computational time. It converged to a
point of a slightly higher level set of logLI4v1Ë5 compared
to the one obtained by our EM method: −92038 versus
−92063. However, the two-orders-of-magnitude difference
in computation time between the methods, especially con-
sidering the small size of the problem, is noteworthy.

A possible concern of the EM method is the sensitiv-
ity of the final result with respect to the starting point of
the procedure. In the reported results, the initial point was
the proportion of sales of each product (see Equation (19)).
We also tried as starting point the values v̂1 = · · · = v̂5 = 1,
which led to a very close (although lower) log-likelihood
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value of −92.86. Finally, we randomly generated 1,000
starting points, where the value of each v̂i was Unif[0, 1].
The log-likelihood was −92065±0007. So, even though the
specific terminal estimates differed when starting from dif-
ferent points, the log-likelihood reached was very similar
in all cases.

We next contrast the performance of our EM method
with two benchmarks other than direct max. The first
benchmark is a naïve estimate that sets the primary demand
of closed periods at the average of the demand observed
in open periods. As mentioned above, this is a traditional
unconstraining method used by airlines (called “Naïve 2”
by Weatherford and Pölt 2002).8 While these naïve esti-
mates are straightforward to compute, their quality is lower
than our EM-based estimates. In particular, in this case
they belong to a significantly lower level set logLI4v1Ë5=

−113043.
The second benchmark is the double exponential

smoothing (DES) or Holt’s method, reported by Queenan
et al. (2007, §3) as more successful than four other common
unconstraining methods, including an EM-related algorithm
based on an underlying normal demand assumption (see
the appendix of that article). This benchmark takes slightly
longer to compute (1.6 seconds) because it has to optimize
five quadratic programs (one per product) to find the cor-
responding base and trend smoothing constants. For this
example, the DES estimates belong to an even lower level
set logLI4v1Ë5= −115084.

Figure 1 (left) illustrates true and estimated primary
demands for the preliminary example. The true expected
primary demand is described by

E6Nj 7= �× T ×
vj

∑n
i=1 vi + 1

0 (20)

The graph shows the decreasing unconstrained, original
demand from product 1 (the most preferred according to
Table 2) to product 5. Clearly, the primary demand inferred

Figure 1. Primary demand (left) and realized sales (right), for the preliminary example, and for estimates under EM,
naïve, and DES methods.

1 2 3 4 5
0

50

100

150

200

250

300

Product

U
ni

ts

U
ni

ts

Primary demand: Original and estimates

1 2 3 4 5
0

20

40

60

80

100

120

Product

Sales: Observations and estimates

Sales
EM-based

Naïve-based
DES-based

Original
EM-based

Naïve-based
DES-based

by our EM algorithm is more accurate than the estimates
produced by both benchmarks. In particular, the errors
of the naïve and DES estimates are significantly larger
for the least preferred but most available products. This
result is intuitive because substitution effects are ignored
in the benchmark estimates. The root-mean-square errors
(RMSEs) of estimates are 9.41 for EM, and 26.90 and
50.68, respectively, for the naïve and DES estimates, pro-
viding strong evidence for the relative quality of the EM
estimates.

Figure 1 (right) compares the predicted and observed
sales per product for the EM and benchmark estimates
across the 15 periods. For each method, given estimates v̂,
Ë̂ and availability information of the different products, we
compute the predicted sales per product per period:

E6sales of product j in period t7= �̂t

v̂j I8j ∈ St9
∑

i∈St
v̂i + 1

1 (21)

and then for each j we sum these values over t. The RMSEs
are 4.42 for EM-based, and 23.44 and 24.90, respectively,
for naïve and DES estimates, also confirming the strong
support in favor of the former.

Figure 2 illustrates the behavior of the estimation meth-
ods in two extreme cases. Product 1 (left graph) is the most
preferred product and becomes unavailable sooner (cumu-
lative sales are steady from period 12 onward; see Table 1
above). It does not get substitute demand because when
it is available, so are the other products. Because in our
example 4v1Ë5 are homogeneous across time, the cumula-
tive primary demand follows a linear trend. This is tracked
closely by our adaptive EM and conforms with the linear
proration assumed by the naïve heuristic. In contrast, as
seen in Figure 2 (left), the DES estimator takes the expo-
nentially smoothed increasing trend and diverges from the
true primary demand by overestimating it.

Product 5 (Figure 2, right graph) is the least preferred
product and is always available. Because it is always
offered, the naïve estimate coincides with actual sales
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Figure 2. Cumulative observed sales and primary demand (PD) for product 1 (left) and product 5 (right), for the true
parameters of the Preliminary Example, and for estimates under EM, naïve, and DES methods.
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throughout the sales horizon. However, because both the
naïve and DES estimators are based on the assumption of
independent demand for each product, they do not deduct
product 5 substitute demand from the observed sales, and
therefore both overestimate the true primary demand. This
phenomenon is related to the double counting problem dis-
cussed in §1. If we consider all products, the expected
aggregate primary demand per period in this case is: �×
∑n

j=1 vj/4
∑n

j=1 vj + 15 = 35007. Despite the small sample
size of this preliminary example, the average of the cumu-
lative first-choice demand per period estimated by the EM
algorithm is close: 34.31.

5.1.2. Effects of Data Volume and Quality. In this
section, we report on a test of the accuracy of estimates pro-
duced by our procedure under different volumes and quality
of input data. As in the previous example, given an underly-
ing MNL choice model and assuming that customers arrive
according to a homogeneous Poisson process with rate �=

50, we used Monte Carlo simulation to generate purchases
for n = 10 different products. Here, unlike in the previous
example, we randomly generated the availability of prod-
ucts: in each period, each product is available independently
with probability 0.70. We then tested various volumes of
simulated data, ranging from 10 to 5,000 periods.

We further considered three different market potential
scenarios: a weak market position where s = 14%, an inter-
mediate market position where s = 46%, and a dominant
position where s = 81%. Figure 3 shows the box plot of the
biases of the estimates v̂ under the different market poten-
tial conditions. On each box, the central mark is the median,
the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not con-
sidered outliers, and outliers are plotted individually. The
average of the estimates �̂t was always very close to the
mean 50, consistently exhibiting a very small bias com-
pared with the bias for the v̂ (generally within [−2%12%]),
so we did not include it in the box plot.

As expected, we note that for each market potential sce-
nario, as we increase the number of periods, the biases
decrease. Having T = 50 periods seems to be enough data
to drive most biases under 10%. At the same time, as the
market potential increases (and hence, more purchases per
period are observed), accuracy also increases.

One potential concern of our procedure is the need to
get an exogenous estimate of market share and the result-
ing impact this estimate has on the quality of the esti-
mates. To test this sensitivity, we used the same inputs for
generating data as above (i.e., � = 50, n = 10, and prod-
ucts available with probability 0.70) for the case of T =

500 periods. We then applied our EM procedure assuming
inaccurate information about the market potential. Specif-
ically, we perturbed s by ±10% and ±20%, and plotted
the biases of the estimates v̂ and the average �̂ (Figure 4,
left) and of the estimates of the primary demand N̂j1 j =

11 0 0 0 1 n, and the average �̂ (Figure 4, right). Note that a
perturbation of the market potential generally amplifies the
biases of the estimated parameters v̂ and the average �̂
with respect to their original values. However, the algorithm
adjusts these biases in such a way that it preserves the qual-
ity of the estimates of the primary demand volume for prod-
ucts j = 11 0 0 0 1 n. In other words, the relative preferences
across products are sensitive to the initial assumption made
about market potential (see §6.1 for further discussion), yet
Figure 4 (right) shows a relatively small bias in the result-
ing primary demand estimates.

5.1.3. Comparison with Three Benchmarks. Our
last experiment on synthetic data assesses the performance
of our EM method relative to the three aforementioned
benchmarks: the direct max, naïve, and DES method.
We generated transaction data for n ∈ 851151259, T ∈

830110013009 and two product availability settings: one
with open availability, where each product is available in
each period with probability 0.8, and one with limited avail-
ability, where this probability is set at 0.5, for a total of 18

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

59
.2

22
.1

2]
 o

n 
05

 F
eb

ru
ar

y 
20

16
, a

t 0
6:

42
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Vulcano, van Ryzin, and Ratliff: Estimating Primary Demand
326 Operations Research 60(2), pp. 313–334, © 2012 INFORMS

Figure 3. Biases of the preference weights v̂ under dif-
ferent market potentials: (a) s = 14%, (b) s =

46%, and (c) s = 81%, for different selling
horizon lengths.
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scenarios. We simulated 1,000 instances for each of those
scenarios based on the following underlying MNL demand
model: preference weights vj ∼ Unif600051171 j = 11 0 0 0 1 n,
v0 = 1, and arrival rates �t ∼ Unif61011007.

After generating an instance of data, we applied the four
methods under consideration. For direct max, we again
used the “fminsearch” MATLAB function, setting both the
iteration and function evaluation limits at 1,000 and the
tolerance (i.e., the difference between two consecutive func-
tion values) at 0.001. Tables 5 and 6 summarize the results
for both availability settings, fixing the values provided by
direct max as the baseline. We report the difference between
the log-likelihood values and root mean squared errors
(RMSEs) of EM, naïve and DES with respect to direct max;
desirable outcomes are positive values in the log-likelihood
difference and negative values in the RMSE difference. Note
that EM consistently achieves this desirable performance,
and the difference tends to be more significant when the
problem is larger (large n and large T ). Direct max in turn
is consistently better than naïve and DES.

In terms of speed, direct max was clearly the most
computationally intensive method. With the configuration
described above for running the MATLAB function, it took
about one minute to calculate each of the large cases, and the
procedure frequently terminated due to the iteration limit.
The other methods took only a couple of seconds to com-
pute, except for DES, which occasionally ran longer due to
its need to solve quadratic programs (minimizing squared
error) during its execution. When relaxing the constraint on
the number of iterations of direct max, the quality of the
estimates increases and becomes closer (and even slightly
better) than EM, but the computation time also escalates;
for example, for the open availability case, n= 15 and T =

100, the average RMSE difference in favor of direct max
is 1.97, but the procedure requires around 20 minutes of
calculation to converge to the solution.

It is also noticeable that the quality of the EM and direct
max estimates improve with respect to naïve and DES esti-
mates as products become less available (i.e., Table 6 com-
pared to Table 5). This is because the Naïve and DES
estimates correct for demand censoring but do not adjust
for double counting recaptured demand.

All in all, EM is clearly attractive relative to the bench-
mark methods—in terms of both estimation quality and
computational speed.

5.2. Industry Data Sets

We next present results of two estimation examples based
on real-world data sets, one for an airline market and one
for a retail market.

5.2.1. Airline Market Example. This example is
based on data from a leading commercial airline serving a
sample O–D market with two daily flights. It illustrates the
practical feasibility of our approach and shows the impact
of the consideration set design on the estimation outcome.
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Figure 4. Biases of the estimates v̂ and the average �̂ (left) and of the estimates of the primary demand N̂j and the
average �̂ (right) under noisy market potentials.
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Notes. The raw data were generated based on the true market potentials: (a) s = 14%, (b) s = 46%, and (c) s = 81%, and then the parameters were
estimated assuming perturbed values: ±102s and ±101s.
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Table 5. Comparative results with respect to direct max for the open availability case.

Difference in log-likelihood values Difference in RMSEs

EM Naïve DES EM Naïve DES

Products n Periods T Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

5 30 200 107 −2506 1002 −12600 3404 −605 306 2601 805 3200 1503
100 2305 903 −6404 2802 −39107 7109 −4209 607 5904 2301 6409 3205
300 8508 2405 −17803 7800 −1116804 16605 −15508 1802 15300 7004 16004 7902

15 30 005 005 −4607 1102 −16504 3404 −007 008 2103 302 2302 507
100 403 106 −14809 1908 −53503 6201 −1002 205 6108 600 6204 1002
300 1508 400 −43907 4004 −1158405 10409 −3803 604 17706 1306 17307 1907

25 30 008 007 −5107 1003 −17701 3401 −007 007 1406 200 1601 304
100 303 103 −16500 1803 −56304 6303 −506 106 4404 306 4403 602
300 906 204 −49108 3109 −1167400 10603 −1908 303 13005 609 12502 1100

Note. Mean and standard deviation (SD) of the differences of log-likelihood and RMSE values.

We analyzed bookings data for the last seven selling
days prior to departure for each consecutive Monday from
January to March of 2004 (11 departure days total). There
were 11 classes per flight, and each class has a different
fare value. Fares were constant during the 11 departure days
under consideration. The market share of the airline for this
particular O-D pair was known to be approximately 50%,
which we used as the value for s (recall the discussion
in §3.4).

We define a product as a flight-class combination, so we
had 2 × 11 = 22 products. For each product, we had seven
booking periods (of length 24 hours) per departure day,
leading to a total of 7×11 = 77 observation periods. There
were nonzero bookings for 15 out of the 22 products, so
we focused our analysis on those 15 products. We note that
in the raw data we occasionally observed a few small neg-
ative values as demand realizations; these negative values
corresponded to ticket cancelations, and for our analysis we
simply set them to zero.

We computed two sets of estimates for the demand,
under different assumptions: in the multiflight case we
assumed customers chose between both flights in the day,
so the consideration set consisted of all 15 products; in the

Table 6. Comparative results with respect to direct max for the limited availability case.

Difference in log-likelihood values Difference in RMSEs

EM Naïve DES EM Naïve DES

Products n Periods T Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

5 30 1704 702 −8705 3700 −15305 6807 −2006 602 6004 2203 6306 3101
100 12603 2200 −21501 10905 −46000 17706 −11201 1005 14808 6105 17504 7800
300 42407 5606 −59400 32800 −1135508 46307 −37401 2206 40201 18506 49705 21207

15 30 1001 406 −30406 5404 −40102 10806 −607 200 6607 901 7006 1503
100 4903 1200 −98000 12009 −1135000 21708 −3409 406 20201 2002 22308 3200
300 14508 3007 −2193808 30109 −4107203 44406 −11007 1300 59706 5207 66806 6705

25 30 902 405 −39706 5802 −51007 11007 −306 103 5107 600 5507 909
100 3005 707 −1129405 11000 −1171402 21402 −1706 207 16104 1101 17808 1901
300 7303 1300 −3188403 23607 −5117201 38302 −5207 508 48007 2303 53401 3308

Note. Mean and standard deviation (SD) of the differences of log-likelihood and RMSE values.

independent-flight case, we assumed customers were inter-
ested in only one of the two flights, implying there were
two disjoint consideration sets (one for each of the flights
with 7 and 8 products, respectively) and with a market
share of 25% per flight.

Again we tested the performance of our EM-based esti-
mates versus the performance of three alternative estima-
tion methods: naïve, DES, and direct max. While both
EM and direct max consider each day independently, both
naïve and DES methods rely on a time series model of the
demand. Therefore, for the latter two, we treated data at the
week level; i.e., for each week and for each product, we
came up with an estimate of the primary demand. Then for
each product j , we aggregated the primary demand across
the 11 weeks to get N̂j and used it to compute v̂j as in (14).

Table 7 shows the results. Besides checking the value
of logLI4v1Ë5 for each pair 4v̂1 Ë̂5, we conducted two in-
sample tests.9 After running our estimation procedure, we
aggregated the observed bookings and the predicted book-
ings (computed as in (21)) across all the 77 periods and
computed RMSEs and goodness-of-fit �2-tests for the mul-
tiflight and independent cases. We needed to do this global
aggregation to ensure the number of expected bookings was
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Table 7. Estimation results for the airline market example.

Estimation method

Consideration set Measure EM Naïve DES Direct max

Flight 1 logLI 4v1Ë5 −279044 −300015 −290006 −378067
RMSE 2018 3064 14032 7039

�2-test (p-value) 0099 0033 0000 0000

Flight 2 logLI 4v1Ë5 −276022 −383036 −450036 −365049
RMSE 2000 20042 13056 4065

�2-test (p-value) 0099 0000 0000 0001

Joint logLI 4v1Ë5 −681008 −805027 −992081 −756039
RMSE 6031 21088 15003 7044

�2-test (p-value) 0058 0000 0000 0000

greater than or equal to 5 for all the products, to have
meaningful �2-tests. Across all measures, EM clearly dom-
inates the other methods. The relative performance among
the other methods is mixed.

Computationally, EM, naïve, and DES are fast, while
direct max is considerably slower. In fact, despite the small
size of the data set, when maximizing logLI4v1Ë5 using
the standard built-in MATLAB optimization function, it
took 16 minutes for the multiflight case and 7 minutes and
12 minutes, respectively, for each of the flights in the inde-
pendent case. Recall that this incomplete data function does
not have much structure, and a standard optimization algo-
rithm can get stuck in a local extremum or saddle point.
While one could attempt to stabilize the MATLAB proce-
dure and try different starting points, the experience on this
example attests to the simplicity, efficiency, and robustness
of our EM method relative to brute-force MLE (i.e., direct
max). In fact, it took only 31 iterations of the EM method
to compute the multiflight estimates and 24 and 176 iter-
ations for each of the independent flights, taking only a
fraction of a second. For a major airline estimating hun-
dreds of thousands of O–D markets on a daily or even
more frequent basis, such differences in computing time are
significant.

Overall, the EM algorithm outperforms the three bench-
marks in terms of both computational time and quality of
output for this independent-flight case.

For the multiflight case, Figure 5 shows the observed
bookings and predicted bookings for the 15 products under
consideration. The labels in the horizontal axis represent
the fares of the corresponding products (e.g., “F1, $189”
means “Flight 1, bucket with fare $189”). Figure 6 shows a
similar plot for the independent-flight case. In both figures,
EM-based predictions track closely the observed sales.
An exception is the first product “F1, $189,” which accord-
ing to our data is available throughout the whole horizon
but experiences sales just in the last two weeks.

Comparing the two cases, the multiflight case offers more
degrees of freedom in fitting the product demands because
it includes relative attractiveness across more options, and
therefore it is a harder estimation case. Moreover, the

differences in predictions produced by the two approaches
suggest that the definition of the consideration set can have
significant impact on the quality of the estimates. Hence,
how best to construct these sets is an important area of
future research (e.g., see Fitzsimons 2000 for an analysis
of the impact of choice set design on stockouts).

Finally, focusing on the EM-based estimates and using
Ŷ0t and N̂j , we computed the fraction of lost sales. For
the multiflight case the estimate was 42.4%, and for the
two-independent-flight case, the estimates were 33.1% and
86.1% for each flight, respectively. Table 8 summarizes the
estimation statistics for the output of the EM method under
both market segmentation cases. The t-statistics indicate
that we can reject the null hypothesis that the true value of
any coefficient is zero at the 0.01 significance level.

5.2.2. Retail Market Example. This next example
illustrates our EM method applied to sales data from a retail
chain. We consider sales observed during eight weeks over
a sample selling season. We assume a choice set defined
by six substitutable products within the same small subcat-
egory of SKUs. The market share of this retail location is
estimated to be 48%. The first few products (P1–P3) had
more limited availability, while product P6 was the most
available. As in the previous example, we tested the perfor-
mance of our EM-based estimates against the three bench-
marks: naïve, DES, and direct max. For naïve and DES,
we treated data at the week level and then aggregated the
primary demand across the eight weeks to get N̂j , and next
v̂j as in (14).

Table 9 shows the results. Besides checking the value
of logLI4v1Ë5 for the estimates 4v̂1 Ë̂5, we conducted two
in-sample tests. After running our estimation procedure, we
aggregated the observed bookings and the predicted book-
ings (computed as in (21)) across all the 56 periods, and
computed RMSEs and goodness-of-fit �2-tests. Across all
measures, EM again clearly outperforms the others.

In terms of computation time for this example, EM,
naïve, and DES are straightforward to compute and take
less than a second (although, again, DES requires solving
simple quadratic minimization problems during its execu-
tion). For instance, for EM it just took 120 iterations to
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Figure 5. Comparison of observed and predicted bookings for EM-based, naïve-based, DES-based, and direct max-based
estimates under the multiflight assumption for the airline market example.
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reach convergence in only 0.3 seconds. In contrast, when
running the MATLAB built-in function “fminsearch” to
optimize the log-likelihood function for this example, its
performance (in terms of the likelihood value) was worse
than our EM method and it ran for over three minutes,
taking 87,829 iterations and 97,862 evaluations of the

Figure 6. Comparison of observed and predicted bookings for EM-based, naïve-based, DES-based, and direct max-based
estimates under the independent flight assumption for the airline market example.
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function logLI4v1Ë5. Again, for a large retailer estimat-
ing hundreds of categories across thousands of stores, such
computation time differences matter.

Figure 7 shows the observed and predicted sales for the
six products under consideration. Again, EM-based predic-
tions closely tracked the observed sales. Naïve tends to
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Table 8. Estimation results for the airline market example.

Multiflight demand Independent-flight demand

Parameter Product Coefficient ASE t-statistic Coefficient ASE t-statistic

v1 F1, $189 000832 000121 608760 000695 000100 609500
v2 F2, $189 000397 000082 408415 000105 000016 605625
v3 F1, $279 001249 000151 802715 000658 000097 607835
v4 F2, $279 002087 000203 1002808 001814 000073 2408493
v5 F1, $310 001361 000159 805597 000747 000104 701827
v6 F2, $310 000455 000088 501705 000353 000030 1107667
v7 F2, $345 000524 000095 505158 000379 000031 1202258
v8 F1, $380 000442 000087 500805 000289 000063 405873
v9 F2, $380 000358 000078 405897 000248 000025 909200
v10 F2, $415 000314 000073 403014 000183 000021 807143
v11 F1, $455 000725 000113 604159 000488 000083 508795
v12 F2, $455 000614 000103 509612 000227 000024 904583
v13 F1, $500 000359 000078 406026 000268 000061 403934
v14 F2, $500 000121 000045 206889 000024 000008 300000
v15 F1, $550 000163 000052 301346 000188 000051 306863

Table 9. Estimation results for the retail market example.

Estimation method

Measure EM Naïve DES Direct max

logLI 4v1Ë5 −132063 −172036 −232051 −182010
RMSE 1086 8019 7048 5012
�2-test (p-value) 0097 0000 0000 0000

underestimate the less available products (P1–P3) and over-
estimate the most available ones (P6). DES is more conser-
vative, although it also overestimates the sales of product
P6. The direct max procedure seemingly was trapped in a
(bad) stationary point of the incomplete data log-likelihood
function, producing poor estimates.

Table 10 summarizes the estimation statistics for the out-
put of the EM method. The t-statistics indicate that we
can reject the null hypothesis that the true value of all the
coefficients is zero at the 0.01 significance level.

Figure 7. Comparison of observed and predicted sales
for EM-based, naïve-based, DES-based, and
direct max-based estimates for the retail mar-
ket example.
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Table 10. Estimation results for the retail market example.

Product
Parameter and price Coefficient ASE t-statistic

v1 P1, $15 004342 000435 9098
v2 P2, $26 001366 000217 6029
v3 P3, $27 002093 000277 7056
v4 P4, $30 000541 000132 4010
v5 P5, $35 000313 000099 3016
v6 P6, $50 000576 000136 4024

Finally, using the EM-based estimates, we compute the
percentage of lost sales for this example, which turns out
to be very significant:

�4lost sales5=

∑T
t=1 Y0t

∑n
j=1 Nj

=
210
303

= 6903%0

6. Implementation Issues and Extensions

6.1. Model Parameters

While the overall EM procedure as stated above is simple
and efficient, there are several practical issues that warrant
further discussion.10 One issue we observed is that the esti-
mates are sensitive to how consideration sets are defined.
Hence, it is important to have a good understanding of the
set of products that customers consider and to test these
different assumptions.

We have also noticed that with some data sets, the
method can lead to extreme estimates; for example, arrival
rates that tend to infinity, or preference values that tend to
zero. This is not a fault of the algorithm per se but rather
the maximum likelihood criterion. In these cases, we have
found it helpful to impose various ad hoc bounding rules
to keep the parameter estimates within a plausible range.
In markets where the seller has significant market power,
we have found it reasonable to set a value s no larger than
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90%; otherwise, one can get abnormally high recapture
rates into the least preferred products.

Our method requires binary data to describe the avail-
ability of a product during a time period. However, a sim-
ple heuristic variation can accommodate partial availability,
which is a common situation for airlines. The idea is to
partition the continuous time within a period into a finite
number of periods where the product is either fully avail-
able or unavailable, and assume that arrivals occurred uni-
formly during the original period. For instance, suppose
that a product has been available during 60% of a period
duration, and that there have been three purchases observed.
Then, the period could be split into five periods. In three
of them the product will be fully available, and there will
be a single purchase in each. In the remaining two periods,
the product would be unavailable.

There is also the issue of obtaining a good estimate of the
market share or market potential s (recall that this depends
on our interpretation of the outside alternative). In either
case, note that this share is based on an implicit “all-open”
product offering, i.e., s =

∑n
i=1 vi/4

∑n
i=1 vi + 15. This is a

difficult quantity to measure empirically in some environ-
ments, and indeed our entire premise is that products might
not be available in every period. Nevertheless, the following
procedure avoids estimating an “all open”-based s: recall
from §3.3 that given MLE estimates v∗ and Ë∗, we can
scale these estimates by an arbitrary constant � > 0 to
obtain a new MLE of the form

v4�5= �v∗1

Ë4�5=
�
∑

i∈St
v∗
i + 1

�4
∑

i∈St
v∗
i + 15

Ë∗0

The family of MLE estimates v4�51Ë4�5 all lead to the
same expected primary demand for the firm’s own products
j = 11 0 0 0 1 n for all �, but they produce different expected
numbers of customers who choose the outside alternative
(i.e., buy a competitor’s product or do not buy at all).
Therefore, if we have a measure of actual market share over
the same time periods from other sources (based on actual
availability rather than on the “all open” assumption), one
can simply search for a value of � that produces a total
expected market share (using (21)) that matches the total
observed market share. This is a simple one-dimensional,
closed-form search because the family of MLEs v4�51Ë4�5
is a closed-form function of �.

Finally, note that by correcting for both the censoring
and double counting problems, our model and estimation
approach provides an underlying independent-demand esti-
mate of primary demand, because the Poisson arrivals are
partitioned according to (full-availability) MNL probabili-
ties. That is, primary demand for each product is nonho-
mogenous Poisson and independent across products. Thus,
one can use standard time-series methods applied over
these primary demand estimates to forecast future primary
demand.

6.2. Linear-in-Parameters Utility

In our basic setting, we focus on estimating a vector of
preference weights v̂. A common form of the MNL model
assumes the preference weight vj can be further broken
down into a function of attributes of the form vj = euj

where uj = ÂT xj is the nominal utility of alternative j , xj
is a vector of attributes of alternative j , and Â is a vector
of coefficients (part worths) that assign a utility to each
attribute. Expressed this way, the problem is one of esti-
mating the coefficients Â.

Our general primary demand approach is still suitable for
this MNL case. The only difference is that now there is no
closed-form solution for the M-step of the EM algorithm,
and one must resort to nonlinear optimization packages to
solve for the optimal Â in each iteration. Alternatively, one
can use the following two-step approach: In step 1, run the
EM algorithm as described here to estimate v̂. In step 2,
look for a vector Â that best matches these values using
the fact that log v̂j = ÂT xj , j = 11 0 0 0 1 n. In most cases, this
will be an over-determined system of equations, in which
case we could run a least-squares regression to fit Â. The
following proposition provides theoretical support for this
procedure.

Proposition 3. Suppose that the observed purchases are
generated by an underlying linear-in-parameters MNL
model, so that the preference weights vi11 ¶ i ¶ n satisfy
vi = Â′Txi for some unknown vector Â′. For a given sample
size N = n×T , let the MLE estimate (e.g., a limit point of
the EM algorithm) be denoted v̂. Now consider the least-
squares problem

min
Â

g4Â5=

n
∑

i=1

4v̂i − eÂ
Txi52 0

Then Â′ converges in probability to an optimal solution of
the least-squares problem as the sample size N increases.

Proof. Note that if we substitute the true value Â′ in g4 · 5,
then g4Â′5=

∑n
i=14v̂i −vi5

2. Because v̂i is a MLE estimator
for vi, then it is consistent, and therefore v̂i ⇒ vi, where
“⇒” stands for convergence in probability (see Billingsley
1995, Theorem 25.3), and where the limit is taken over the
number of periods T (so over the sample size N ). Consider
the continuous functions hi4x5 = 4x − vi5

2, i = 11 0 0 0 1 n.
From (Billingsley (1995, Corollary 2 of Theorem 25.7) we
then have that for each i, hi4v̂i5= 4v̂i − vi5

2 ⇒ 0. Hence,
g4Â′5=

∑n
i=1 hi4v̂i5⇒ 0. Because g4Â5¾ 0 for any Â, this

means the true vector Â′ solves the least-squares problem
asymptotically. �

Again, note from Theorem 1 that the EM procedure
is not guaranteed to provide a limit point and moreover
might provide only a local maximum. To ensure that the
above procedure correctly estimates Â, care must be taken
to check numerically that the sequence of EM estimates is
convergent, and it might be necessary to try multiple start-
ing points to ensure that the algorithm if finding a global
maximum.
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7. Conclusions
Estimating the underlying demand for products when there
are significant substitution effects and lost sales is a com-
mon problem in many retail markets. Our approach com-
bines a multinomial logit (MNL) demand model with a
nonhomogeneous Poisson model of arrivals over multiple
periods. It assumes realistic data: observed sales, product
availability, and an aggregate estimate of the market share
of the set of products. The problem we address is how
to jointly estimate the parameters of this combined model;
i.e., preference weights of the products and arrival rates.
By viewing the problem in terms of primary demand and
treating the observed sales as incomplete observations of
primary demand, we are able to apply the expectation-
maximization (EM) method to this incomplete demand
model. This leads to a very simple, highly efficient iterative
procedure for estimating the parameters of the model that
provably converges to a stationary point of the incomplete
data log-likelihood function. Numerical examples show that
the method performs very well in terms of estimation qual-
ity and speed relative to other simple benchmark estimation
methods and to direct maximization of the incomplete log-
likelihood function. Given its simplicity to implement, the
realistic input data needed, and the quality of the results,
we believe that our EM algorithm has significant practi-
cal potential. The general strategy of considering demand
estimation in terms of primary demand might also help
improve estimation procedures in other cases. For exam-
ple, it would be interesting to see if the approach could be
adapted to a latent-segment, mixed MNL model or a nested
logit model.
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Endnotes

1. A further generalization of this MNL model to the case where
the preference weights are functions of the product attributes is
provided in §6.2.
2. For example, Sabre has been running the single-segment MNL
model for a large origin-destination airline for more than two years
and has been observing very significant revenue improvements.
3. Later in §6.1 we discuss how to relax this requirement and
accommodate partial availability of products per period, e.g., how
to account for the fact that a product is available during 60% of
the time within a period.

4. This is due to our assumption that v > 0, and that for at least
one period t, zjt > 0, for each j = 11 0 0 0 1 n.
5. See also McLachlan and Krishnan (1996, Theorem 3.2).
6. MATLAB is a trademark of The MathWorks, Inc. We used
version 7.10 for Microsoft Windows 7 on a CPU with Intel Core
i7 processor and 4 Gb of RAM.
7. The quasi-t statistic is computed as the ratio between the esti-
mated value of the parameter and the ASE. The preference weights
vj are always nonnegative. Recall that for a one-tailed test, the crit-
ical values of this statistic are ±1065, ±1096, and ±2058 for the
0.05, 0.025, and 0.005 significance levels, respectively.
8. This is the standard, single-class untruncation method used by
airlines on booking curves under the independent demand model.
For instance, based on Table 1, product 1 shows 50 sales in 4 out
of 15 periods, so this ad-hoc estimator sets the average 50/4 =

1205 as the primary demand for periods where product 1 was not
available. Weatherford and Pölt (2002) report better results for
another averaging method, called “Naïve 3,” that exploits partial
closures during a period. Recall that our setting allows only full
or no availability of a product during a period.
9. We also tried out-of-sample tests, but the quantity of data was
very limited and too volatile to allow for good out-of-sample
testing.
10. The comments in this section are based not only on our own
experience but also on Sabre’s experience, obtained through the
use of a proprietary variation of this EM method that has been in
production since 2008.
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