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We develop a theoretical model to investigate the incentives for coordinating the positioning and pricing

of horizontally differentiated products in the context of a vertical trading relationship between a retailer

and multiple suppliers. We also use the model to analyze various trading relationships, such as category

management, and characterize the channel efficiency of each, leading to interesting insights about when

such practices may be most effective. In particular, we show that when competing suppliers sell through

a common retail intermediary, the classical neo-Hotelling incentives to differentiate products is eliminated

(or significantly reduced) in certain channel added value regimes, resulting in a loss in channel profit. The

incentives to differentiate are recovered, however, if all products are controlled by a single supplier as in

category management. Depending on the channel added value regime, the gain in efficiency from a monopolist

supplier’s incentive to differentiate can offset the loss in efficiency due to positioning distortion and cost

difference distortion. These results provide a theoretical explanation for why category management may lead

to gains in supply chain efficiency. Lastly, we show numerically how category management together with a

simple profit target for the retailer can, in many cases, achieve both full supply chain coordination and a Pareto

improving allocation of profits to both the supplier and retailer.

Key words : horizontal differentiation, neo-Hotelling model, category management, channel coordination,

channel efficiency
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1. Introduction

Category management, a common retail practice, is a vertical partnership between a leading

supplier (the category captain) and a retailer that aims to increase profit of an entire product category

by coordinating assortment, promotion and pricing decisions (see Federal Trade Commission 2001,

Harris and McPartland 1993, McLaughlin 1994, Nielsen Marketing Research 1992, Verra 1998).

While putting category decisions in the hands of a category captain can improve coordination,

the market power it creates may lead to channel inefficiency because the category captain has

incentives to bias decisions in favor of its own brands (see Steiner 2001, Basuroy et al. 2001,

Kurtuluş and Toktay 2004, Gruen and Shah 2000, Zenor 1994). How best to balance these two

effects is an important problem in retailing practice.

We develop a theoretical model to investigate the incentives for coordinating product posi-

tioning and pricing of horizontally differentiated products1 in the context of a vertical trading

relationship between a monopolist retailer and multiple suppliers. The model, together with its

variations, allows us to analyze a number of trading relationships and characterize the channel

efficiency of each one, leading to interesting insights about when such practices may be most

effective.

In particular, we first consider a two echelon decentralized system with two competing suppliers

and a monopolist retailer. The suppliers each offers a horizontally differentiated product defined

by a price-attribute bundle. The retailer sets a retail price which directly affects the demand.

Horizontal differentiation of product attributes is described through the neo-Hotelling model

introduced by Salop (1979). Readers are referred to Lancaster (1990) and Anderson et al. (1992,

Ch. 8) for discussions on locational competition and discriminatory pricing models.

Due to the presence of a downstream retailer, we find that suppliers do not always have the

incentive to maximally differentiate, in contrast to the direct selling model of Salop (1979). Instead,

there are cost regimes where suppliers have partial or complete indifference to differentiating

horizontally.

We subsequently study the fully centralized system and the monopolist supplier model based

on an appropriate modification of the decentralized system. When comparing channel profits

of the three models, we first observe that supply chain inefficiency may be attributable to the

following causes:

1 Products are horizontally differentiated when they are different in features or attributes that cannot be ordered, such
as color, style or taste. In contrast, vertically differentiated products can be ordered through a customer’s perceived
difference in quality.
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• Double Marginalization: This is the distortion introduced as a result of the marginal cost to the

retailer being greater than the marginal cost to the channel. See Spengler (1950) for a definition;

• Positioning Distortion: A novel addition from our model, where the retailer’s profit is maxi-

mized when the two products maximally differentiate but the suppliers in equilibrium are indif-

ferent to product positioning;

• Cost Difference Distortion: Another novel addition from our model, where the production cost

differences between competing products further exacerbate losses in channel efficiency.

Taking all these various factors into account, we show that under certain channel added value

regimes, concentrating positioning and pricing power into the hands of a single supplier improves

channel efficiency, because this arrangement eliminates positioning distortion and cost difference

distortion. These results, in a stylized sense, suggest where category management provides benefits

to a channel.

Finally, we consider a practical modification. In a typical category management partnership, the

category captain often has some form of profit sharing agreement with the retailer in exchange

for gaining market power over the category. In particular, we consider the case where the retailer

imposes a profit target on the category, which moderates some of the market power given to the

monopolist supplier. We provide insight via a numerical study, and show in many cases that this

simple modification achieves both full channel coordination, which also eliminates the loss due

to double marginalization, and a Pareto improving allocation of channel profits.

2. Decentralized System

We first consider a two echelon decentralized system involving two competing suppliers that

supply a monopolist retailer. Each supplier offers a single product. The suppliers first simultane-

ously set product positions and then wholesale prices. The retailer takes the product positions and

wholesale prices as given and sets a retail price for each product. Each player maximizes his own

profit. Our objective is to characterize an equilibrium for the optimal (product position, wholesale

price, retail price) triple.

One can think of this as a stylized model of category management: selecting a product position

can be thought of as choosing a specific product from a firm’s broader product line to match the

consumer preferences and competitive offerings at a given retailer. The constraint that each firm

only offers one product mimics the fact that a manufacturer can only place a limited number of its

products on store shelves (in this case only one). Suppliers in the category compete against each

other in terms of both their product offering and price, and retailers set prices for the category

based on demand functions and wholesale prices.
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We use the neo-Hotelling model to describe the market, which is typically represented with a

circle of unit circumference. Consumers are assumed to be uniformly distributed on that circle.

In addition, we use the term product domain to describe the demand of a product sold in this neo-

Hotelling market. The product domain is realized wherever the purchase utility, a function of both

retail price and distance to the product position, is positive. An illustration of the neo-Hotelling

model is provided in Figure 1. For a market that contains only one product, the product domain

is symmetric around the location of the product.

Location of product 1, l1

Purchase utility > 0

Purchase utility = 0

Purchase utility < 0

Figure 1 Product Domain of a Neo-Hotelling Model

The reader will note that our results would likely be different if we used the finite line topology

(classic Hotelling model) instead of the circle, or infinite-line topology (neo-Hotelling model). This

is based on the fact that the equilibrium for the two-competitor finite-line model is achieved with

both competitors relocating to the mid-point, whereas the equilibrium for the two-competitor

infinite-line model, described in Salop (1979), is achieved with both competitors maximally dif-

ferentiating their positions. However, we work only with the neo-Hotelling model because it has

become the dominant model of horizontal differentiation in the literature. Replicating our analyses

under the classic Hotelling model is a subject for future investigation.

For product i, let li be its position (see Figure 2). In a multi-product Hotelling setup, the distance

between the two products, expressed as |l1− l2|, is used to characterize the differentiation of product

features. Let wi be its wholesale price, ci be its production cost, pi be its retail price, and Di be its

product domain. In addition, let v be the consumer valuation2, and θ be the linear position cost to

the consumer. A consumer buys product i if and only if its net utility is positive and larger than

the competing product; that is

v−θ|li − l| − pi > 0

2 Horizontal differentiation implies that v stays the same for both products. We assume v is fixed.
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and

v−θ|li − l| − pi > v−θ|lj − l| − pj, j, i.

If we assume full rationality, the decentralized system can be solved via backward induction.

First we analyze the retailer’s problem by solving for (p∗1,p
∗
2). Then we determine (w∗1,w

∗
2) in the

suppliers’ game. And finally we find the optimal differentiation in product positions |l1 − l2|.

Location of product 1, l1

Location of product 2, l2

Figure 2 Neo-Hotelling Setup with Two Products

2.1. Retailer’s Problem

Taking product positions and wholesale prices as given, the retailer solves a joint profit maximiza-

tion problem to obtain the optimal retail prices. In order to determine the product domains in the

objective function, we divide our analysis between symmetric and asymmetric positioning of the

two products.

2.1.1. Products in Symmetric Positions. When the two products are positioned symmetrically

(|l1 − l2| = 1
2 ), it is possible for the product domains to be (S1) separable, (S2) barely touching3, or

(S3) overlapping on both ends. An illustration is provided in Figure 3. Let l be the position of a

consumer and the corresponding net utility of purchasing product i be v−θ|li − l| − pi.

When the product domains are separable, a consumer makes a purchase decision of product i

independent of all other products. Thus he buys product i if

v−θ|li − l| − pi ≥ 0.

Let l∗ be the borderline consumer position between buying and not buying. Then,

|li − l∗|=
v− pi

θ
.

3 Symmetrically positioned product domains barely touch when they extend the entire market without overlapping.
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l1

l2

S1

l1

l2

S2

l1

l2

S3

P1
P2

Figure 3 Domain Scenarios for Products in Symmetric Positions

We consider scenarios (S1) and (S2) together, i.e.

|l1 − l∗|+ |l2 − l∗|=
v− p1

θ
+

v− p2

θ
≤

1
2
,

where strict inequality describes (S1) and equality describes (S2). By symmetry of the circle,

product domains under (S1) or (S2) can be written as

Di = 2|li − l∗|=
2(v− pi)

θ
.

The retailer then solves the following problem:

(P1) max
p1,p2

(p1 −w1)
2(v− p1)

θ
+ (p2 −w2)

2(v− p2)

θ

s.t.
v− p1

θ
+

v− p2

θ
≤

1
2
.

Now we consider scenarios (S2) and (S3) together, i.e.

v− p1

θ
+

v− p2

θ
≥

1
2
,

where strict inequality describes (S3) and equality again describes (S2). When the product domains

overlap, a consumer has to decide between purchasing the two products. He will buy product i,

if, for j, i,

v−θ|li − l| − pi ≥ v−θ|lj − l| − pj.

Let l∗ denote the position where a consumer is indifferent between the two products (represented

with a straight line that cuts across the overlapped domains of scenario (S3) in Figure 3). We can

solve the following system to obtain the domains under (S2) or (S3):




v−θ|l1 − l∗| − p1 = v−θ|l2 − l∗| − p2

|l1 − l∗|+ |l2 − l∗|= 1
2
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⇒ D1 = 2|l1 − l∗|=
1
2
+

p2 − p1

θ
; D2 = 2|l2 − l∗|=

1
2
+

p1 − p2

θ
.

The retailer then solves the following problem:

(P2) max
p1, p2

(p1 −w1)
(1
2
+

p2 − p1

θ

)
+ (p2 −w2)

(1
2
+

p1 − p2

θ

)

s.t.
v− p1

θ
+

v− p2

θ
≥

1
2
.

2.1.2. Products in Asymmetric Positions. Assume |l1 − l2| refers to the shorter arc between

l1 and l2, and 1 − |l1 − l2| refers to the longer arc. When the products are located asymmetrically

(0 < |l1 − l2| < 1
2 )4, it is possible for product domains to be (AS1) separable, (AS2) barely touching

on one end but not touching on the other end, (AS3) overlapping on one end but not touching

on the other end, (AS4) overlapping on one end but barely touching on the other end, or (AS5)

overlapping on both ends. An illustration is provided in Figure 4.

l1

l2

AS1

l1

l2

AS2

l1

l2

AS4

l1

l2

AS3

l1

l2

AS5

P3

P4

P5

Figure 4 Domain Scenarios for Products in Asymmetric Positions

We consider (AS1) and (AS2) together, i.e.

v− p1

θ
+

v− p2

θ
≤ |l1 − l2|,

where inequality describes (AS1) and equality describes (AS2). The retailer solves the following

problem, which has the same objective function as in (P1):

(P3) max
p1,p2

(p1 −w1)
2(v− p1)

θ
+ (p2 −w2)

2(v− p2)

θ

s.t.
v− p1

θ
+

v− p2

θ
≤ |l1 − l2|.

4 |l1 − l2| = 0 corresponds to cannibalization of one product by another. We will discuss later in the suppliers’ game that
this scenario in general does not lead to an equilibrium solution.
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(AS2), (AS3) and (AS4), considered together, can be described by the following:

|l1 − l2| ≤
v− p1

θ
+

v− p2

θ
≤ 1− |l1 − l2|,

where an active lower bound describes (AS2), an active upper bound describes (AS4), and all the

interior points describe (AS3). The domain for product i on the longer arc between l1 and l2 is

separable from that of product j ( j, i), while on the shorter arc it overlaps with that of product j.

Let l∗ denote the position where a consumer is indifferent between the two products on the shorter

arc between l1 and l2 (represented with a straight line that cuts across the overlapped domains of

scenarios (AS3), (AS4) and (AS5) in Figure 4). In order to find the domain on the overlapping side,

we solve the following system:




v−θ|l1 − l∗| − p1 = v−θ|l2 − l∗| − p2

|l1 − l∗|+ |l2 − l∗|= |l1 − l2|

⇒ |l1 − l∗|=
1
2
|l1 − l2|+

p2 − p1

2θ
; |l2 − l∗|=

1
2
|l1 − l2|+

p1 − p2

2θ
.

The domain for product i under (AS2), (AS3) or (AS4) consists of two pieces. The first piece

measures from the product position li to the point where a consumer is indifferent between buying

and not buying. The second piece measures from li to the point where a consumer is indifferent

between buying product i and product j. Therefore,

D1 =
v− p1

θ
+

(1
2
|l1 − l2|+

p2 − p1

2θ

)
=

1
2
|l1 − l2|+

p2 − 3p1

2θ
+

v
θ

;

D2 =
v− p2

θ
+

(1
2
|l1 − l2|+

p1 − p2

2θ

)
=

1
2
|l1 − l2|+

p1 − 3p2

2θ
+

v
θ
.

The retailer solves the following problem:

(P4) max
p1,p2

(p1 −w1)

(
1
2
|l1 − l2|+

p2 − 3p1

2θ
+

v
θ

)

+ (p2 −w2)

(
1
2
|l1 − l2|+

p1 − 3p2

2θ
+

v
θ

)

s.t. |l1 − l2| ≤
v− p1

θ
+

v− p2

θ
≤ 1− |l1 − l2|.

Now we consider (AS4) and (AS5) together, i.e.

v− p1

θ
+

v− p2

θ
≥ 1− |l1 − l2|,

where strict inequality describes (AS5) and equality describes (AS4). Let l∗1 be the position on the

shorter arc between l1 and l2 where a customer is indifferent between buying either of the two

products, and let l∗2 be similarly defined as the product indifference point on the longer arc between

l1 and l2. We can solve the following systems to obtain the product domains:

l∗1





v−θ|l1 − l∗1| − p1 = v−θ|l2 − l∗1| − p2

|l1 − l∗1|+ |l2 − l∗1|= |l1 − l2|
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⇒|l1 − l∗1|=
1
2
|l1 − l2|+

p2 − p1

2θ
; |l2 − l∗1|=

1
2
|l1 − l2|+

p1 − p2

2θ
;

l∗2





v−θ|l1 − l∗2| − p1 = v−θ|l2 − l∗2| − p2

|l1 − l∗2|+ |l2 − l∗2|= 1− |l1 − l2|

⇒|l1 − l∗2|=
1
2

(1− |l1 − l2|)+
p2 − p1

2θ
; |l2 − l∗2|=

1
2

(1− |l1 − l2|)+
p1 − p2

2θ
.

The domain for each product under (AS4) or (AS5) can be written as:

D1 = |l1 − l∗1|+ |l1 − l∗2|=
1
2
+

p2 − p1

θ
; D2 = |l2 − l∗1|+ |l2 − l∗2|=

1
2
+

p1 − p2

θ
.

The retailer solves the following problem:

(P5) max
p1,p2

(p1 −w1)
(1
2
+

p2 − p1

θ

)
+ (p2 −w2)

(1
2
+

p1 − p2

θ

)

s.t.
v− p1

θ
+

v− p2

θ
≥ 1− |l1 − l2|.

2.1.3. Characterization of Retailer’s Optimal Response. The solutions to (P1)–(P5) (see

Appendix A.1) are used to construct the retailer’s optimal response to a given set of wholesale

prices (w1,w2) and relative product position |l1− l2|. We first define the quantity v− w1+w2
2 as the retail

added value. The results, as shown in the following proposition, are fully specified by comparing

this quantity against a function of the linear position cost θ.

Proposition 1. When product positions are symmetric, the retailer’s optimal solution can be segmented

as follows:

• Region 1 (v− w1+w2
2 < θ2 ) - Separable solution is optimal;

• Region 2 (v− w1+w2
2 > θ2 ) - Barely touching solution is optimal.

When product positions are asymmetric, the retailer’s optimal solution can be segmented as the following:

• Region 3 (v− w1+w2
2 < θ|l1 − l2|) - Separable solution is optimal;

• Region 4 (θ|l1 − l2|< v− w1+w2
2 < 3

2θ|l1 − l2|) - The solution where one end barely touches and the other

end does not touch is optimal;

• Region 5 ( 3
2θ|l1 − l2|< v− w1+w2

2 < θ− 1
2θ|l1 − l2|) - The solution where one end overlaps and the other

end does not touch is optimal;

• Region 6 (v− w1+w2
2 > θ− 1

2θ|l1 − l2|) - The solution where one end overlaps and the other end barely

touches is optimal.

Proof: See Appendix A.1. Q.E.D.

We use two figures to illustrate the two product position scenarios discussed in Proposition 1.

Figure 5 corresponds to the symmetric case (regions 1 and 2), whereas Figure 6 corresponds to
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the asymmetric case (regions 3 through 6). In both figures, the retail added value v− w1+w2
2 is the

axis and characterizes the segments. The retailer’s optimal solution in each of those segments is

illustrated with the corresponding neo-Hotelling product domain. Table 1 summarizes the solution

to each of the 6 regions discussed in Proposition 1.

Figure 5 Retailer’s Optimal Solution under Symmetric Product Positions

Figure 6 Retailer’s Optimal Solution under Asymmetric Product Positions

Regions p∗1 p∗2 π∗

1, 3 v+w1
2

v+w2
2

(v−w1)2

2θ +
(v−w2)2

2θ

2 v+ w1
4 −

w2
4 −

θ
4 v+ w2

4 −
w1
4 −

θ
4 v+ (w1−w2)2

4θ − w1+w2
2 − θ4

4 v+ w1−w2
4 − θ2 |l1 − l2| v− w1−w2

4 − θ2 |l1 − l2| (2v−w1 −w2)|l1 − l2| −θ|l1 − l2|2

+
(w1−w2)2

4θ

5 v+w1
2 + θ

4 |l1 − l2|
v+w2

2 + θ
4 |l1 − l2| 1

4θ

(
v−w1 +

θ
2 |l1 − l2|

)2

+ 1
4θ

(
v−w2 +

θ
2 |l1 − l2|

)2
+ 1

8θ (w1 −w2)2

6 w1−w2
4 + v+ θ

2 |l1 − l2| − θ2
w2−w1

4 + v+ θ
2 |l1 − l2| − θ2 v− θ2 +

θ
2 |l1 − l2| −

w1+w2
2 +

(w1−w2)2

4θ
Table 1 Summary of Results for the Retailer’s Problem in Decentralized System
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When the two products are symmetrically located (as in Figure 5) and when the retail added

value is below the critical value of θ2 (region 1), it is optimal for the retailer, by setting the appropriate

retail prices, to induce product domains that only partially cover the entire market. When the

retail added value is above θ
2 (region 2), however, the optimal retail prices induce domains that

completely cover the market—hence, barely touching. In other words, the optimal retail prices are

constant (if we assume v and wi to be constant) within each of the respective regions (regions 1

and 2), but the pricing levels step down as retail added value increases past the critical value of θ2 .

When the two products are asymmetrically located (as in Figure 6) and when the retail added

value is below θ|l1 − l2| (region 3), it is again optimal for the retailer to induce product domains

that only partially cover the entire market. As the retail added value increases past θ|l1− l2| (region

4), it becomes optimal to drop the retail prices so that the product domains barely touches on one

end (due to the asymmetric positioning), while holding them constant until the retail added value

reaches 3
2θ|l1 − l2|. Similarly, the transition from region 4 to region 5 (overlapping on one end but

not touching on the other end) and then to region 6 (overlapping on the one end but not touching

on the other end), as the retail added value continues to increase, implies two more stepwise drops

in the optimal retail prices.

In both the symmetric and asymmetric cases, there is no further drop in optimal retail prices

when the product domains cover the entire market (as in regions 2 and 6).

2.2. Suppliers’ Game and Equilibrium Analysis

We next consider the “position-then-price” game for the suppliers5. To start, note that cannibaliza-

tion – in which product i takes the same position as product j with a lower wholesale price, which

induces the retailer to drop product j from the assortment – cannot be an equilibrium solution as

long as it is not the only option, because the cannibalized firm can strictly increase its profit by

moving its product position away from its competitor.

We next construct a two-stage game (product position then wholesale price) and find the

equilibrium for the suppliers. Via backward induction and the assumption of total rationality,

the suppliers know that the monopolist retailer will behave optimally in a manner prescribed by

the 6 regions in Figure 6. Furthermore, domain functions for the suppliers are symmetric in each

region6. This implies that we can first solve for the suppliers’ equilibrium wholesale prices in each

region, and then find the best overall region, which is subsequently used to determine the optimal

product positions.

5 Simultaneous selection of position and price does not lead to an equilibrium (see Anderson et al. 1992, Section 8.3).
6 In other words, interchanging subscripts i and j in product i’s domain gives product j’s domain.
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Let w̄j, j , i be the wholesale price of the competing product j as given to supplier i. Suppliers’

domain functions are found by substituting results from Table 1. We formulate a set of uncon-

strained profit maximization problems for the suppliers, and use the derived results to characterize

equilibrium outcomes.

Regions 1 and 3 (refer to Figures 5 and 6) have the same domain functions, since both correspond

to separable domain solutions.

D1 =
2(v− p∗1)

θ
=

v−w1

θ
; D2 =

2(v− p∗2)

θ
=

v−w2

θ
.

Each supplier maximizes its own profit, i.e.

(SP13) max
w1

(w1 − c1)
v−w1

θ
; max

w2

(w2 − c2)
v−w2

θ
.

The domain functions for region 2 are

D1 =
2(v− p∗1)

θ
=

1
2
−

w1

2θ
+

w2

2θ
; D2 =

2(v− p∗2)

θ
=

1
2
−

w2

2θ
+

w1

2θ
.

The domain functions for region 6 are

D1 =
1
2
|l1 − l2|+

p∗2 − 3p∗1
2θ

+
v
θ
=

1
2
−

w1

2θ
+

w2

2θ
; D2 =

1
2
|l1 − l2|+

p∗1 − 3p∗2
2θ

+
v
θ
=

1
2
−

w2

2θ
+

w1

2θ
.

Observe that regions 2 and 6 (refer to Figures 5 and 6) share the same domain functions. Each

supplier maximizes its own profit, i.e.

(SP26) max
w1

(w1 − c1)
(1
2
−

w1

2θ
+

w̄2

2θ

)
; max

w2

(w2 − c2)
(1
2
−

w2

2θ
+

w̄1

2θ

)
.

The domain functions for region 4 (refer to Figure 6) are

D1 =
1
2
|l1 − l2|+

p∗2 − 3p∗1
2θ

+
v
θ
= |l1 − l2| −

w1

2θ
+

w2

2θ
;

D2 =
1
2
|l1 − l2|+

p∗1 − 3p∗2
2θ

+
v
θ
= |l1 − l2| −

w2

2θ
+

w1

2θ
.

Each supplier maximizes its own profit, i.e.

(SP4) max
w1

(w1 − c1)
(
|l1 − l2| −

w1

2θ
+

w̄2

2θ

)
; max

w2

(w2 − c2)
(
|l1 − l2| −

w2

2θ
+

w̄1

2θ

)
.

The domain functions for region 5 (refer to Figure 6) are

D1 =
1
2
|l1 − l2|+

p∗2 − 3p∗1
2θ

+
v
θ
=

1
4
|l1 − l2|+

v
2θ

+
w2

4θ
−

3w1

4θ
;

D2 =
1
2
|l1 − l2|+

p∗1 − 3p∗2
2θ

+
v
θ
=

1
4
|l1 − l2|+

v
2θ

+
w1

4θ
−

3w2

4θ
.
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Each supplier maximizes its own profit, i.e.

(SP5) max
w1

(w1 − c1)
(1
4
|l1 − l2|+

v
2θ

+
w̄2

4θ
−

3w1

4θ

)
;

max
w2

(w2 − c2)
(1
4
|l1 − l2|+

v
2θ

+
w̄1

4θ
−

3w2

4θ

)
.

The solutions to the unconstrained maximization problems (detailed in Appendix A.2) have

some immediate properties that are summarized in the following lemmas.

Lemma 1. The transition of each supplier’s product domain is continuous between (i) regions 1 and 2 in

the symmetric positioning case, and (ii) regions 3, 4, 5, and 6 in the asymmetric positioning case.

Proof: See Appendix A.2. Q.E.D.

Lemma 2. Both suppliers have incentives to move toward maximum product differentiation for the

optimal solutions of regions 4 and 5.

Proof: See Appendix A.2. Q.E.D.

The following theorem characterizes the suppliers’ optimal responses to the downstream

retailer. Similar to the retail added value v− w1+w2
2 , we define the quantity v− c1+c2

2 as the channel

added value.

Theorem 1. When the channel added value v− c1+c2
2 ≥

3
2θ, the following equilibria exist:

1. v− c1+c2
2 ≥ 2θ: The suppliers are completely indifferent to the locations of their products;

2. 7
4θ ≤ v − c1+c2

2 < 2θ: The suppliers switch from being indifferent to locations to having incentives to

differentiate as |l1 − l2| decreases below the threshold c1+c2−2v+4θ
θ ;

3. 3
2θ≤ v− c1+c2

2 <
7
4θ: The suppliers have incentive to maximally differentiate their products (i.e. |l1− l2|=

1
2 ).

In all cases, the retailer sets prices such that product domains extend over the entire market.

When the channel added value v − c1+c2
2 ≤ θ, the suppliers have sufficient incentives to differentiate in

order to maintain separable product domains. In particular, they switch from having sufficient incentives

to differentiate to having maximal incentives to differentiate as |l1 − l2| decreases past the threshold 2v−c1−c2
4θ .

The retailer, in this case, sets prices to maintain the separable domains.

When θ < v− c1+c2
2 <

3
2θ, no equilibrium exists.

Proof: See Appendix A.2. Q.E.D.

According to Theorem 1, it is optimal for the suppliers to only sufficiently differentiate their

products when the channel added value is below the critical threshold of θ. No equilibrium exists

when the channel added value is between θ and 3
2θ. As the channel added value increases from
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3
2θ to 7

4θ, the suppliers have incentives to maximally differentiate their products. The incentives to

differentiate the product positions will diminish once again, as the channel added value increases

past 7
4θ. The suppliers become completely indifferent7 to the product positions, when the channel

added value reaches beyond the critical threshold of 2θ.

The retailer, in response, sets the optimal retail prices that result in separable domains when the

channel added value is below θ. When the channel added value is above 3
2θ, it is optimal for the

retailer to let product domains extend over the entire market—this means the product domains

either barely touch on both ends, in the case of maximally differentiated product positions, or

barely touch on one end but overlap on the other end, in the case of partially differentiated product

positions.

3. Benchmark Systems

In this section, we compare several benchmark systems to the decentralized system in the previous

section. Specifically, we consider the fully centralized system in Section 3.1, which allows us to

assess channel profit loss. We also consider a monopolist supplier system in Section 3.2, in which

the two products are supplied by a single vendor. Comparing the monopolist supplier system

to the decentralized system gives additional insights into the relationship between between the

upstream and downstream players in a supply chain.

3.1. Fully Centralized System

We consider a fully centralized system where the retailer both selects positions (by picking |l1− l2|)

and then prices (by determining (p1,p2)) the two products, over the cost of acquiring product

i, which is simply the production cost ci. The fully centralized system can again be solved via

backward induction. First we analyze the retailer’s problem by solving for (p∗1,p
∗
2). We observe

that the retailer’s problem shares the same formulations as (P1) through (P5) in §2.1 for the

decentralized system with wi replaced by ci. Next we find the optimal differentiation in product

positions |l1 − l2|, which is summarized in Theorem 2.

Theorem 2. When the channel added value v − c1+c2
2 >

θ
2 , the retailer positions the two products sym-

metrically and sets prices such that the two domains cover the entire market without overlapping (barely

touching). When the channel added value v− c1+c2
2 <

θ
2 , the retailer has sufficient incentives to differentiate

the products in order to maintain domain separability.

7 Complete indifference excludes cannibalization, where both products are found at the same location. We mentioned
previously that cannibalization cannot be an equilibrium solution as long as it is not the only option, because the
cannibalized firm can strictly increase its profit by moving away.
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Proof: See Appendix B. Q.E.D.

In a fully centralized the system, the retailer determines both the retail price and the product

positions. According to Theorem 2, it is again optimal to experience separable domains when the

channel added value is low, albeit at a lower threshold of θ2 than the threshold of θ in Theorem

1. In this case, the retailer only has sufficient incentives to differentiate the two products in order

to maintain domain separability. As the channel added value increases past θ2 , on the other hand,

the retailer has maximal incentives to differentiate while ensuring that product domains cover the

entire market.

When all market powers are concentrated within the hands of the retailer, it is not optimal to

disregard the positions, in the case of product domains that barely touch on one end but overlap

on the other end, of those products with high channel added value (greater than θ
2 ).

3.2. Monopolist Supplier

In this model, the two products are supplied by a single firm. The supplier first selects the product

differentiation |l1 − l2| and then picks the wholesale prices (w1,w2). The retailer’s problem is the

same as in §2.1 for the decentralized system.

We will now present the set of problems faced by the monopolist supplier. The constraints in

each problem, defined on the aggregate wholesale price w1 +w2, are algebraically equivalent to the

retail added value thresholds v− w1+w2
2 that we used to define the six solution regions in Figures 5

and 6.

The product domains in regions 1 and 3 are separable. The monopolist supplier solves the

following problem:

(SP13’) max
w1,w2

(w1 − c1)
v−w1

θ
+ (w2 − c2)

v−w2

θ
s.t. w1 +w2 ≥ α,

where α= 2v−θ for region 1 and α= 2v− 2θ|l1 − l2| for region 3.

Regions 2 and 6 have the same domain functions due to location indifference. The monopolist

supplier solves the following problem:

(SP26’) max
w1,w2

(w1 − c1)
(1
2
−

w1

2θ
+

w2

2θ

)
+ (w2 − c2)

(1
2
−

w2

2θ
+

w1

2θ

)

s.t. w1 +w2 ≤ β,

where β= 2v−θ for region 2 and β= 2v− 2θ+θ|l1 − l2| for region 6.

The monopolist supplier solves the following problem in region 4:

(SP4’) max
w1,w2

(w1 − c1)
(
|l1 − l2| −

w1

2θ
+

w2

2θ

)
+ (w2 − c2)

(
|l1 − l2| −

w2

2θ
+

w1

2θ

)
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s.t. 2v− 3θ|l1 − l2| ≤w1 +w2 ≤ 2v− 2θ|l1 − l2|.

The monopolist supplier solves the following problem in region 5:

(SP5’) max
w1,w2

(w1 − c1)
(1
4
|l1 − l2|+

v
2θ

+
w2

4θ
−

3w1

4θ

)

+ (w2 − c2)
(1
4
|l1 − l2|+

v
2θ

+
w1

4θ
−

3w2

4θ

)

s.t. 2v− 2θ+θ|l1 − l2| ≤w1 +w2 ≤ 2v− 3θ|l1 − l2|.

The optimal solution is summarized in the following theorem.

Theorem 3. When the channel added value v − c1+c2
2 > θ, the supplier positions the two products sym-

metrically, and the retailer sets prices that let product domains cover the entire market. When the channel

added value v− c1+c2
2 < θ, the retailer and the supplier have sufficient incentives to differentiate the products

in order to maintain domain separability.

Proof: See Appendix B. Q.E.D.

Compared to the decentralized system, there is only one supplier at the upstream. In terms

of market power concentration, the monopolist supplier system ranks between the decentralized

system and the fully centralized system. Interestingly, this intermediate concentration in market

power is sufficient to eliminate incentives to partially differentiate the product positions when

the channel added value is above the critical threshold of θ. We note that in this case the retailer

sets prices that allow product domains to cover the entire market, so any partial incentives to

differentiate, implying product domains that barely touch on one end but overlap on the other

end, are suboptimal. There is still sufficient incentives to differentiate, in order to maintain domain

separability, when the channel added value is below θ.

The intermediate concentration in market power (in the monopolist supplier system) also

appears to contribute to a higher critical threshold of θ than the full concentration in market power

(in the fully centralized system), which has a critical threshold of θ2 for channel added value. In

other words, the region for maximal differentiation, in terms of channel added values, is bigger

(by exactly θ
2 ) in a centralized system than that in a monopolist supplier system.

3.2.1. Monopolist Supplier with Retailer Profit Target. While the monopolist supplier has an

incentive to optimally differentiate its products, giving monopoly power to a single manufacturer

without constraints may result in the manufacturer appropriating significant profits from the

downstream retailer. To remedy that situation, we analyze a slight modification on the monopolist

supplier system by introducing a guaranteed profit target for the retailer. While closed-form

solutions in this case become analytically intractable, we present a numerical analysis in the next

section.
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4. Model Comparison

In terms of channel profit, we know that the fully centralized system always dominates either

the monopolist supplier system or the decentralized system, because all market powers are con-

centrated in the hands of the monopolist player. Comparing the decentralized system with the

monopolist system, however, leads to the following conclusion:

Theorem 4. • When the channel added value v− c1+c2
2 ≥

3
2θ, channel profit of the monopolist supplier

system dominates that of the decentralized system;

• When the channel added value v− c1+c2
2 ≤ θ, the monopolist supplier system achieves the same channel

profit as that of the decentralized system.

Proof: See Appendix C. Q.E.D.

The reader may recall from Theorem 1 that no equilibrium exists for the decentralized system

when the channel added value is between θ and 3
2θ, hence the omission from Theorem 4.

Looking at Theorems 1, 2, and 3 collectively, we are able to summarize the optimal response for

each of the three trading relationships under four channel added value regimes.

Observation 1. Theorems 1, 2, and 3 collectively imply the following:

• 0 ≤ v − c1+c2
2 < θ2 : The players in all three relationships have sufficient incentives to differentiate, in

order to maintain domain separability;

• θ
2 ≤ v − c1+c2

2 ≤ θ: The players in the decentralized system and the monopolist supplier system have

sufficient incentives to differentiate in order to maintain domain separability; the monopolist player in the

fully centralized system positions the two products symmetrically and sets prices such that the two domains

cover the entire market;

• θ < v− c1+c2
2 <

3
2θ: no equilibrium exists for the decentralized system, but the players in the centralized

and monopolist supplier systems have maximal incentives to differentiate, while the retail prices are set such

that the two product domains cover the entire market;

• 3
2θ ≤ v − c1+c2

2 <
7
4θ: The players in all three systems have maximal incentives to differentiate, while

the retail prices are set such that the two product domains cover the entire market;

• v− c1+c2
2 ≥

7
4θ: The suppliers in the decentralized system are either partially or completely indifferent to

differentiate the two products, while the players in the fully centralized system and the monopolist supplier

system still have maximal incentives to differentiate. In all cases, the retail products are set such that the

two product domains cover the entire market.

Channel inefficiency arises when the channel profit of the fully centralized monopolist system

is strictly greater than a candidate system. There are three potential sources of channel inefficiency,

namely 1) double marginalization, 2) positioning distortion, and 3) cost difference.
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Losses due to double marginalization (Spengler 1950) occur when an upstream player in a two-

echelon vertical trading partnership imposes a wholesale price that is strictly greater than its

production cost. This is a familiar supply chain inefficiency, and is the main source of channel

inefficiency within trading relationships where there are only sufficient incentives to differentiate

the products in order to maintain domain separability.

Positioning distortion occurs when the suppliers in an equilibrium that involves a decentralized

system are indifferent to the asymmetrically positioned products (i.e., |l1 − l2| , 1
2 ), and yet the

optimal retailer profit, and hence channel profit, suffers as a result of this asymmetric positioning.

This is a more novel inefficiency that occurs in our model. In certain channel added value regimes

(when v− c1+c2
2 ≥

7
4θ), the suppliers simply do not gain or lose by differentiating from their compe-

tition, even though the retailer is directly affected by the product positions. We can quantify the

loss in channel profit due to positioning distortion as θ
4 −

θ
2 |l1 − l2|, which is derived in Appendix

C. Clearly, this quantity drops to zero when the product positions are maximally differentiated,

i.e., when |l1 − l2|= 1
2 .

Cost difference distortion is also novel and is an inefficiency due to the difference in production

costs, i.e., when c1 , c2. This distortion occurs in channel added value regimes where the product

domains cover the entire market (when v− c1+c2
2 > θ). We only consider cost difference distortion

under the situation where product positions are maximally differentiated, and attribute the addi-

tional loss in efficiency to positioning distortion when the products are asymmetrically positioned.

We demonstrate algebraically in Appendix C that cost difference distortion is eliminated when

c1 = c2 and v− c1+c2
2 > θ.

Table 2 gives a summary of Theorem 4, Observation 1, as well as the main sources for channel

inefficiency:

v− c1+c2
2 ∈ [0, θ2 ) [ θ2 , θ] [ 3

2θ,
7
4θ) [ 7

4θ,∞)

Channel profit C≥MS=D C≥MS=D C≥MS≥D C≥MS≥D
Cause DM DM CD PD, CD

Table 2 Comparison of Channel Profits (C - centralized system, D - decentralized system, MS - monopolist

supplier model, CD - cost difference, PD - positioning distortion, DM - double marginalization)

4.1. Numerical Results

We use numerical experiments to compare the channel profits of the centralized, decentralized

and monopolist supplier systems. We assume v = 1 in all experiments, and consider the following

cases for c1 and c2, where c1 ≤ c2 without loss of generality:
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• c1 = 0.4, c2 = 0.6;

• c1 = c2 = 0.5.

The set-up of the experiment implies that the channel added value is held constant, i.e., v− c1+c2
2 =

0.5. Lastly, we vary θ≥ 0 to examine all solution regimes.

Table 3 summarizes the result of one numerical experiment (v = 1, c1 = 0.4, c2 = 0.6). The product

differentiation cost parameter θ is varied to reflect the 4 cases discussed in Table 2, in the same

order that was first presented. Except for the centralized system, where channel profit equals

retailer profit, we present a pair of profit numbers in the parentheses for each system, with the

first number corresponding to channel profit and second number corresponding to retailer profit.

We also characterize the optimal regions (refer to Figures 5 and 6 for an illustration) that result in

an equilibrium for all parties involved in each system.

θ 2.00 0.60 0.30 0.26
v− c1+c2

2 ∈ [0, θ2 ) [ θ2 , θ] [ 3
2θ,

7
4θ) [ 7

4θ,∞)

Centralized profit 0.130 0.367 0.458 0.473
Optimal region 1 or 3 2 2 2

Decentralized profit: best (0.098,0.033) (0.325,0.108) (0.444,0.129) (0.456,0.179)
As % of centralized (75.4%,25.4%) (88.6%,29.4%) (96.9%,28.2%) (96.4%,37.8%)

Optimal region 1 or 3 1 or 3 2 2
Decentralized profit: worst (0.412,0.135)

As % of centralized n/a n/a n/a (87.1%,28.5%)
Optimal region 6

Monopolist supplier profit (0.098,0.033) (0.325,0.108) (0.45,0.083) (0.464,0.075)
As % of centralized (75.4%,25.4%) (88.6%,29.4%) (98.3%,18.1%) (98.1%,15.9%)

Optimal region 1 or 3 1 or 3 2 2
Monopolist supplier with retailer target (0.128,0.100) (0.367,0.250) (0.458,0.250) (0.473,0.150)

As % of centralized (98.5%,76.9%) (100.0%,68.1%) (100.0%,54.6%) (100.0%,31.7%)
Optimal region 1 or 3 2 2 2

Table 3 Numerical Results ( v = 1, c1 = 0.4, c2 = 0.6, (#,#)=(channel, retailer) except for the centralized system)

The reader may recall that in a decentralized system, it is optimal to have partial incentives to

differentiate the product positions when the channel added value is greater than 7
4θ. In this case,

the product domains barely touch on one end and overlap on the other end. It is clear from the

numerical examples marked “best” and “worst” in Table 3 that suppliers make a total profit of

0.456 − 0.179 = 0.412 − 0.135 = 0.277 regardless of product positions8, but the retailer profit, and

hence channel profit, suffers as the product distance |l1 − l2| declines from a maximum of 1
2 . This is

a clear demonstration of the positioning distortion phenomenon, which is mitigated by moving

from the decentralized system to the monopolist supplier system.

8 In fact, the individual supplier profits are also shown to be constant, otherwise we would not have an equilibrium
solution for the suppliers.
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The cost difference distortion is evident when we compare two sets of production costs (c1, c2)

under two different channel added value regimes in Table 4. Here the channel inefficiency for

the decentralized and monopolist supplier systems is eliminated completely, as the difference

between c1 and c2 drops to zero. Furthermore, in the cases where production costs are not equal,

the cost difference distortion is mitigated when we move again from the decentralized system to

the monopolist supplier system.

θ 0.30 0.26
v− c1+c2

2 ∈ [ 3
2θ,

7
4θ) [ 7

4θ,∞)
Production costs c1 = 0.4, c2 = 0.6 c1 = c2 = 0.5 c1 = 0.4, c2 = 0.6 c1 = c2 = 0.5

Centralized profit 0.458 0.425 0.473 0.435
Optimal region 2 2 2 2

Decentralized profit: best (0.444,0.129) (0.425,0.125) (0.456,0.179) (0.435,0.175)
As % of centralized (96.9%,28.2%) (100.0%,29.4%) (96.4%,37.8%) (100.0%,40.2%)

Optimal region 2 2 2 2
Monopolist supplier profit (0.450,0.083) (0.425,0.075) (0.464,0.075) (0.435,0.065)

As % of centralized (98.3%,18.1%) (100.0%,17.6%) (98.1%,15.9%) (100.0%,14.9%)
Optimal region 2 2 2 2

Table 4 Numerical Results for Cost Difference Distortion ( v = 1, (#,#)=(channel, retailer))

Comparing retailer profits in the decentralized system with that of the monopolist supplier

model, we see that the retailer is less profitable under the latter than the former, especially when

the channel added value is high (v− c1+c2
2 ≥

3
2θ). In other words, the retailer suffers when market

power is concentrated into the hands of the monopolist supplier. However, the use of a retailer

profit target9 (as seen from the last row of Table 3) limits the market power of the monopolist

supplier, thereby increasing channel efficiency. In this particular example, the channel achieves

zero loss in all cases except when θ = 2. In addition, while the monopolist supplier system is not

able to reduce the loss in efficiency due to double marginalization (see the cases corresponding

to θ = 2 and 0.6, where the monopolist supplier system achieve the same channel profit as the

decentralized system due to separable product domains), imposing a retailer profit target does

significantly reduce, if not eliminate completely, this classic source of channel inefficiency.

In summary, depending on the channel added value regime, when turning over category power

to a single supplier, the gain in efficiency from the supplier’s incentives to differentiate can offset

the loss in efficiency due to positioning distortion and cost difference distortion. These results

provide a theoretical explanation for why category management may lead to gains in supply chain

efficiency. Moreover, imposing a simple profit target for the retailer can, in many cases, achieve

both full supply chain coordination, eliminating all three sources of channel inefficiency including

9 In the numerical experiments, we set retailer target to 0.1 for θ= 2, 0.25 for θ= 0.6 and 0.3, 0.15 for θ= 0.26.
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double marginalization, and a Pareto improving allocation of profits to both the supplier and

retailer.

5. Conclusion

We developed a theoretical model to investigate the incentives for coordinating the positioning

and pricing of horizontally differentiated products in the context of a vertical trading relationship

between a retailer and multiple suppliers. We also compared it to the fully centralized system

and the monopolist supplier system, the latter being akin to a common supply chain arrangement

called category management.

The models allow us to characterize the channel efficiency of each trading relationship, leading

to interesting insights about when such practices may be most effective. In particular, we are able

to show that when competing suppliers sold through a common retail intermediary in certain

channel added value regimes, it is possible to eliminate, if not significantly reduce, the classical

neo-Hotelling incentives to differentiate. The resulting loss in channel profits is called positioning

distortion. The incentives to differentiate are recovered, however, if all products are controlled by

a single supplier as in category management. The monopolist supplier arrangement is also able to

mitigate, but not fully eliminate, cost difference distortion—another source of channel inefficiency

that arises when the production costs are not equal. These results provide a theoretical explanation

for why category management may lead to gains in supply chain efficiency.

Lastly, we demonstrate via numerical experiments that category management, together with

a simple profit target for the retailer, can reduce or eliminate double marginalization, the classic

source of channel inefficiency, and in many cases achieve both full supply chain coordination and

a Pareto improving allocation of profits to both the supplier and retailer in this vertical trading

relationship.

For future research, we hope to extend the model to accommodate more than 2 suppliers

and more than 1 retailer, and investigate whether the conclusions we have reached here can be

generalized to a more competitive market. We are also looking to investigate a more accurate

portrayal of the category captain, which in reality controls the price of its own product but the

positioning of all products in the category—in comparison, the monopolist supplier, as we have

introduced in this paper, controls the pricing and positioning of all products in its category.

Appendix A: Technical Details of Decentralized System

A.1. Retailer’s Problem

Solution to (P1): First observe that the objective function is concave, and the constraint is linear. Therefore,

Karush-Kuhn-Tucker (KKT) conditions are both sufficient and necessary. The Lagrangian is

L(p, λ) = (p1 −w1)
2(v− p1)

θ
+ (p2 −w2)

2(v− p2)

θ
+λ

(1
2
−

v− p1

θ
−

v− p2

θ

)
,
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where λ is the Lagrange multiplier. The first order conditions 5pL(p, λ) = 0 yield the following:

p1 =
v+w1

2
+
λ
4

; p2 =
v+w2

2
+
λ
4
. (1)

Assuming that strict complementarity holds, we have the following 2 cases:

1.λ= 0⇔ The separable domain solution (S1) is optimal and dominates the barely touching solution (S2).

KKT⇒
1
2
−

v− p1

θ
−

v− p2

θ
> 0; (2)

(1)⇒ p∗1 =
v+w1

2
; p∗2 =

v+w2

2
. (3)

The corresponding retail profit is

π∗ =
(v−w1)2

2θ
+

(v−w2)2

2θ
. (4)

Plugging (3) into (2), we obtain

v−
w1 +w2

2
<
θ
2
,

which represents the corresponding retail added value condition for this case to hold.

2.λ > 0⇔ The barely touching solution (S2) is optimal and dominates the separable domain solution (S1).

KKT⇒
1
2
−

v− p1

θ
−

v− p2

θ
= 0; (5)

(1), (5)⇒ λ= 2v−θ− (w1 +w2)> 0 ⇔

v−
w1 +w2

2
>
θ
2

(the retail added value condition for this case to hold);

p∗1 = v+
w1

4
−

w2

4
−
θ
4

; p∗2 = v+
w2

4
−

w1

4
−
θ
4
. (6)

The corresponding retail profit is

π∗ = v+
(w1 −w2)2

4θ
−

w1 +w2

2
−
θ
4
. (7)

Weak complementarity (λ = 0, 1
2 −

v−p1

θ −
v−p2

θ = 0) holds at the borderline of the two cases. The retail added

value condition in this case is v− w1+w2

2 = θ
2 .

Solution to (P2): It can be verified that the objective function is concave, and the constraint is linear.

Therefore, the KKT conditions are both sufficient and necessary. The Lagrangian is

L(p, λ) = (p1 −w1)
(1

2
+

p2 − p1

θ

)
+ (p2 −w2)

(1
2
+

p1 − p2

θ

)
+λ

(v− p1

θ
+

v− p2

θ
−

1
2

)
.

The first order conditions 5pL(p, λ) = 0 yield

p1 − p2 =
θ
4
+

w1 −w2

2
−
λ
2

; p1 − p2 =−
θ
4
+

w1 −w2

2
+
λ
2
.

Clearly, we have that

θ
4
−
λ
2
=−
θ
4
+
λ
2
⇔ λ=

θ
2
> 0.

Since λ > 0, the inequality constraint in (P2) is always active by complementarity, i.e. the barely touching

solution (S2) will always dominate the overlapping domain solution (S3).
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Solution to (P3): First observe that the objective function is the same as in (P1) and is thus concave, and

the constraint is linear. Therefore, the KKT conditions are both sufficient and necessary. The Lagrangian is:

L(p, λ) = (p1 −w1)
2(v− p1)

θ
+ (p2 −w2)

2(v− p2)

θ
+λ

(
|l1 − l2| −

v− p1

θ
−

v− p2

θ

)
.

The first order conditions 5pL(p, λ) = 0 yield the following, just as in (P1):

p1 =
v+w1

2
+
λ
4

; p2 =
v+w2

2
+
λ
4
. (8)

Assuming that strict complementarity holds, we have the following 2 cases:

1.λ = 0⇔ The separable domain solution (AS1) is optimal and dominates the solution where one end

barely touches and the other end does not touch (AS2).

KKT⇒ |l1 − l2| −
v− p1

θ
−

v− p2

θ
> 0 (9)

(8)⇒ p∗1 =
v+w1

2
; p∗2 =

v+w2

2
. (10)

The corresponding retail profit is

π∗ =
(v−w1)2

2θ
+

(v−w2)2

2θ
.

Plugging (10) into (9), we obtain

v−
w1 +w2

2
< θ|l1 − l2|, (11)

which represents the corresponding retail added value condition for this case to hold.

2.λ > 0⇔ The solution where one end barely touches and the other end does not touch (AS2) is optimal

and dominates the separable domain solution (AS1).

KKT⇒ |l1 − l2| −
v− p1

θ
−

v− p2

θ
= 0 (12)

(8), (12)⇒ λ= 2v− 2θ|l1 − l2| − (w1 +w2)> 0 ⇔

v−
w1 +w2

2
> θ|l1 − l2| (the retail added value condition for this case to hold); (13)

p∗1 = v+
w1

4
−

w2

4
−
θ
2
|l1 − l2|; p∗2 = v+

w2

4
−

w1

4
−
θ
2
|l1 − l2|. (14)

The corresponding retail profit is:

π∗ = 2v|l1 − l2| − (w1 +w2)|l1 − l2| −θ|l1 − l2|
2 +

(w1 −w2)2

4θ
.

Weak complementarity (λ = 0, |l1 − l2| −
v−p1

θ −
v−p2

θ = 0) holds at the borderline of the two cases. The retail

added value condition in this case is v− w1+w2

2 = θ|l1 − l2|.

Solution to (P4): It is easy to verify that the objective function is concave, and the constraints are linear.

As a result, KKT conditions are both sufficient and necessary. Let μ1 be the lagrange multiplier associated

with the lower bound and μ2 be lagrange multiplier associated with the upper bound. The Lagrangian is:

L(p, μ1, μ2) =(p1 −w1)

(
1
2
|l1 − l2|+

p2 − 3p1

2θ
+

v
θ

)

+ (p2 −w2)

(
1
2
|l1 − l2|+

p1 − 3p2

2θ
+

v
θ

)

+μ1

(v− p1

θ
+

v− p2

θ
− |l1 − l2|

)
+μ2

(
1− |l1 − l2| −

v− p1

θ
−

v− p2

θ

)
.
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The first order conditions 5pL(p, μ1, μ2) = 0

⇒




θ|l1 − l2|+ 2p2 − 6p1 + 2v+ 3w1 −w2 − 2μ1 + 2μ2 = 0,

θ|l1 − l2|+ 2p1 − 6p2 + 2v+ 3w2 −w1 − 2μ1 + 2μ2 = 0;
(15)

⇒ p1 − p2 =
w1 −w2

2
. (16)

Assuming that strict complementarity holds, we have the following cases:

μ1 > 0 ⇒
v− p1

θ
+

v− p2

θ
− |l1 − l2|= 0; (17)

μ1 = 0 ⇒
v− p1

θ
+

v− p2

θ
− |l1 − l2|> 0; (18)

μ2 > 0 ⇒ 1− |l1 − l2| −
v− p1

θ
−

v− p2

θ
= 0; (19)

μ2 = 0 ⇒ 1− |l1 − l2| −
v− p1

θ
−

v− p2

θ
> 0. (20)

Note first that the upper and lower bounds cannot both be simultaneously active when product positions

are asymmetric. This implies that μ1 and μ2 cannot both be > 0. We have the following 3 cases:

1.μ1 > 0, μ2 = 0⇔ The solution where one end of the product domains barely touches while the other end

does not touch (AS2) is optimal and dominates (AS3) and (AS4).

(16), (17) ⇒ p∗1 = v+
w1 −w2

4
−
θ
2
|l1 − l2|; p∗2 = v−

w1 −w2

4
−
θ
2
|l1 − l2|. (21)

The corresponding retail profit is

π∗ = (2v−w1 −w2)|l1 − l2| −θ|l1 − l2|
2 +

(w1 −w2)2

4θ
.

As a sanity check, observe that the results obtained above are identical to (14) when solving (P3). We

will check that (20) still holds by plugging in (21), and indeed by symmetry,

1− |l1 − l2| −
v− p∗1
θ
−

v− p∗2
θ

= 1− 2|l1 − l2|> 0.

Plugging (21) into either equation in (15), we have that

2μ1 = 3θ|l1 − l2|+w1 +w2 − 2v> 0 ⇔ v−
w1 +w2

2
<

3
2
θ|l1 − l2|,

which we then intersect with (13) to obtain the retail added value condition for this case to hold, i.e.,

θ|l1 − l2|< v−
w1 +w2

2
<

3
2
θ|l1 − l2|.

2.μ1 = 0, μ2 = 0⇔ The solution where one end overlaps while the other end does not touch (AS3) is optimal

and dominates (AS2) and (AS4).

(15)⇒ p∗1 =
v+w1

2
+
θ
4
|l1 − l2|; p∗2 =

v+w2

2
+
θ
4
|l1 − l2|. (22)

The corresponding optimal retail profit is

π∗ =
1

4θ

(
v−w1 +

θ
2
|l1 − l2|

)2

+
1

4θ

(
v−w2 +

θ
2
|l1 − l2|

)2

+
1

8θ
(w1 −w2)2.

Plugging (22) into (18) and (20) gives

3
2
θ|l1 − l2|< v−

w1 +w2

2
< θ−

1
2
θ|l1 − l2|,

which represents the retail added value condition for this case. Observe that (13) is not violated.



25

3.μ1 = 0, μ2 > 0⇔ The solution where one end overlaps while the other end barely touches (AS4) is optimal

and dominates (AS2) and (AS3).

(16), (19) ⇒ p∗1 =
w1 −w2

4
+ v+

θ
2
|l1 − l2| −

θ
2

; p∗2 =
w2 −w1

4
+ v+

θ
2
|l1 − l2| −

θ
2
. (23)

The corresponding retail profit is

π∗ = v−
θ
2
+
θ
2
|l1 − l2| −

w1 +w2

2
+

(w1 −w2)2

4θ
. (24)

Plugging (23) into either equation in (15) gives the retail added value condition for this case, i.e.,

2μ2 = 2v− 2θ+θ|l1 − l2| −w1 −w2 > 0 ⇔ v−
w1 +w2

2
> θ−

1
2
θ|l1 − l2|.

Observe that (13) is not violated.

Weak complementarity holds at the borderline of (AS2) and (AS3), i.e. v− w1+w2

2 = 3
2θ|l1− l2|, and that of (AS3)

and (AS4), i.e. v− w1+w2

2 = θ− 1
2θ|l1 − l2|.

Solution to (P5): First observe that the objective function is the same as in (P2) and is thus concave, and

the constraint is linear. Therefore, the KKT conditions are both sufficient and necessary. The Lagrangian is

L(p, λ) = (p1 −w1)
(1

2
+

p2 − p1

θ

)
+ (p2 −w2)

(1
2
+

p1 − p2

θ

)
+λ

(v− p1

θ
+

v− p2

θ
− 1+ |l1 − l2|

)
.

The first order conditions 5pL(p, μ1, μ2) = 0 yield

p1 − p2 =
θ
4
+

w1 −w2

2
−
λ
2

; p1 − p2 =−
θ
4
+

w1 −w2

2
+
λ
2
.

Clearly, we have that
θ
4
−
λ
2
=−
θ
4
+
λ
2
⇔ λ=

θ
2
> 0.

Since λ > 0, the inequality constraint in (P5) is always active by complementarity, i.e. the solution where

one end overlaps while the other end barely touches (AS4) will always dominate solution where both ends

overlap (AS5).

Proof of Proposition 1: For symmetrically positioned products, solution to (P2) establishes that the over-

lapping domain solution (S3) is always dominated by (S2), when the condition for (S3) to be realizable

holds. The comparison is thus between separable domain (S1) and barely touching (S2). Solution to (P1)

establishes the retail added value regions 1 and 2 in the proposition statement and determines when (S1)

dominates (S2) and vice versa.

For asymmetrically positioned products, solution to (P5) establishes that (AS5), the case where product

domains overlap on both ends, is always dominated by (AS4). Therefore, we need only compare (AS1)

through (AS4). According to the solution to (P3) and when (11) is satisfied, only (AS1) and (AS2) are realizable

situations. Furthermore, (11) is the condition that establishes (AS1)’s dominance over (AS2), corresponding

to retail added value region 3 in the proposition statement.

Conversely when (13) is satisfied, (AS1) is dominated by (AS2) and can be removed from further consid-

eration. Condition (13) is the link between the solutions to (P3) and (P4). The various cases in the solution to

(P4) correspond exactly to retail added value regions 4, 5, and 6 in the proposition statement and determines

when (AS2), (AS3), or (AS4) is the optimal solution in each region.
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A.2. Suppliers’ Game

Solution to (SP13): The objective functions are concave. The first order conditions yield the following:

w∗1 =
v+ c1

2
; w∗2 =

v+ c2

2
. (25)

And therefore,

w∗1 +w∗2 = v+
c1 + c2

2
; (26)

π∗1 =
(v− c1)2

4θ
; π∗2 =

(v− c2)2

4θ
. (27)

Solution to (SP26): The objective functions are concave. The first order conditions yield the following:

w∗1 =
θ+ c1 + w̄2

2
; w∗2 =

θ+ c2 + w̄1

2
.

Solving jointly by letting w̄i = w∗i ,

w∗1 = θ+
2
3

c1 +
1
3

c2; w∗2 = θ+
1
3

c1 +
2
3

c2; (28)

⇒ w∗1 +w∗2 = 2θ+ c1 + c2; (29)

π∗1 = 2θ
(1

2
+

c2 − c1

6θ

)2

; π∗2 = 2θ
(1

2
+

c1 − c2

6θ

)2

. (30)

Solution to (SP4): The objective functions are concave. The first order conditions yield the following:

w∗1 =
2θ|l1 − l2|+ c1 + w̄2

2
; w∗2 =

2θ|l1 − l2|+ c2 + w̄1

2
.

Solving jointly by letting w̄i = w∗i ,

w∗1 = 2θ|l1 − l2|+
2
3

c1 +
1
3

c2; w∗2 = 2θ|l1 − l2|+
1
3

c1 +
2
3

c2; (31)

⇒ w∗1 +w∗2 = 4θ|l1 − l2|+ c1 + c2; (32)

π∗1 = 2θ
(
|l1 − l2|+

c2 − c1

6θ

)2

; π∗2 = 2θ
(
|l1 − l2|+

c1 − c2

6θ

)2

. (33)

Solution to (SP5): The objective functions are concave. First order conditions yield the following:

w∗1 =
θ|l1 − l2|+ 2v+ w̄2 + 3c1

6
; w∗2 =

θ|l1 − l2|+ 2v+ w̄1 + 3c2

6
.

Solving jointly by letting w̄i = w∗i ,

w∗1 =
1
5
θ|l1 − l2|+

2
5

v+
18
35

c1 +
3
35

c2; w∗2 =
1
5
θ|l1 − l2|+

2
5

v+
18
35

c2 +
3
35

c1; (34)

⇒ w∗1 +w∗2 =
2
5
θ|l1 − l2|+

4
5

v+
3
5

(c1 + c2); (35)

π∗1 =
3

4900θ
(7θ|l1 − l2|+ 14v− 17c1 + 3c2)2; π∗2 =

3
4900θ

(7θ|l1 − l2|+ 14v− 17c2 + 3c1)2. (36)
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Proof of Lemma 1: Region 1 ↔ region 2. Consider supplier 1’s problem in region 2. Rewrite the right

boundary of region 2 as w2 = 2v−θ−w1. Plugging it into the objective function in region 2 (SP26) yields the

objective function in region 1 (SP13). Thus the transition from region 1 to region 2 is continuous. A similar

argument holds for supplier 2.

Region 3↔ region 4. Consider supplier 1’s problem in region 4. Rewrite the right boundary of region 4 as

w2 = 2v−2θ|l1− l2| −w1. Plugging it into the objective function in region 4 (SP4) yields the objective function

in region 3 (SP13). Thus the transition from region 3 to region 4 is continuous. A similar argument holds for

supplier 2.

Region 4 ↔ region 5 ↔ region 6. Consider supplier 1’s problem in regions 4, 5 and 6. Rewrite the left

boundary of region 4 or right boundary of region 5 as w2 = 2v− 3θ|l1 − l2| −w1. Plugging it into the objective

function in region 4 (SP4) and the objective function in region 5 (SP5) yields the same objective value.

Rewrite the right boundary of region 6 or left boundary of region 5 as w2 = 2v−2θ+2θ|l1− l2| −w1. Plugging

it into the objective function in region 5 (SP5) and the objective function in region 6 (SP26) also yields the

same objective value. Thus the transition from region 4 to region 5 and then to region 6 is continuous. A

similar argument holds for supplier 2.

Proof of Lemma 2: Region 4’s optimal objective functions for the suppliers are stated in (33). Both objective

functions increase in |l1 − l2| if



|l1 − l2| ≥

c1−c2

6θ

|l1 − l2| ≥
c2−c1

6θ

⇒ |c1 − c2| ≤ 6θ|l1 − l2|,

which is always satisfied because it is exactly suppliers’ participating constraints in region 410.

Region 5’s optimal objective function for each supplier is described respectively by (36). Both objective

functions increase in |l1 − l2| if




7θ|l1 − l2| ≥ −14v+ 17c1 − 3c2

7θ|l1 − l2| ≥ −14v+ 17c2 − 3c1
⇒





17c1 − 3c2 ≤ 7θ|l1 − l2|+ 14v;

17c2 − 3c1 ≤ 7θ|l1 − l2|+ 14v.

The above is always satisfied because it is exactly suppliers’ participating constraints in region 511. Again

there is incentive to increase |l1 − l2| as much as possible.

Proof of Theorem 1: First we establish a few inequalities on the channel added value v− c1+c2

2 to characterize

the 6 solution regions (refer to Figures 5 and 6, which are based on retail added value thresholds v− w1+w2

2 ). By

backward induction, we want to show that the suppliers have the incentives to choose the solution regions

that the retailer will also choose, thereby leading to equilibrium results. These inequalities, summarized in

Table 5 below, are both sufficient and necessary. We observe that the only two channel added value thresholds

absent of |l1 − l2| are θ and 3
2θ, which give rise to the following segments: v− c1+c2

2 ≥ 3
2θ, θ < v− c1+c2

2 <
3
2θ,

and v− c1+c2

2 ≤ θ.

10 Suppliers will participate if they can make a positive profit by having the product on the market, i.e. wi ≥ ci for each
i. The suppliers’ participating constraints in region 4 are obtained by plugging (31), respectively for each supplier, into
the previously stated inequality.
11 The suppliers’ participating constraints in region 5 are obtained by plugging (34), respectively for each supplier, into
the inequality wi ≥ ci.
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Regions Characterization of Solution Regions Representation with Inequalities

1, 3

Reg. 1 is not in eqm.⇒ Reg. 2 may be;
v−

w∗1+w∗2
2 > θ2 , v−

w∗1+w∗2
2 > θ|l1 − l2|

(26)
=⇒ v− c1+c2

2 > θReg. 3 is not in eqm.⇒ Reg. 4, 5, 6 may be

Both regions are in eqm. v−
w∗1+w∗2

2 ≤ θ2 , v−
w∗1+w∗2

2 ≤ θ|l1 − l2|
(26)
=⇒ v− c1+c2

2 ≤ 2θ|l1 − l2|

Reg. 1 is in eqm.;
2θ|l1 − l2|< v− c1+c2

2 ≤ θ
Reg. 3 is not in eqm.⇒ Reg. 4, 5, 6 may be

2, 6

Reg. 2 is not in eqm.⇒ Reg. 1 may be;
v−

w∗1+w∗2
2 < θ2 , v−

w∗1+w∗2
2 < θ− θ2 |l1 − l2|

(29)
=⇒ v− c1+c2

2 < 3
2θReg. 6 is not in eqm.⇒ Reg. 3, 4, 5 may be;

Both regions are in eqm. v−
w∗1+w∗2

2 ≥ θ2 , v−
w∗1+w∗2

2 ≥ θ− θ2 |l1 − l2|
(29)
=⇒ v− c1+c2

2 ≥ 2θ− θ2 |l1 − l2|

Reg. 2 is in eqm.; 3
2θ≤ v− c1+c2

2 < 2θ− θ2 |l1 − l2|Reg. 6 is not in eqm.⇒ Reg. 3, 4, 5 may be

4
Reg. 4 is not in eqm.⇒ Reg. 5, 6 may be v−

w∗1+w∗2
2 > 3

2θ|l1 − l2|
(32)
=⇒ v− c1+c2

2 > 7
2θ|l1 − l2|

Reg. 4 is not in eqm.⇒ Reg. 3 may be v−
w∗1+w∗2

2 < θ|l1 − l2|
(32)
=⇒ v− c1+c2

2 < 3θ|l1 − l2|
Reg. 4 is not in eqm. by Lemma 2 3θ|l1 − l2| ≤ v− c1+c2

2 ≤ 7
2θ|l1 − l2|

5
Reg. 5 is not in eqm.⇒ Reg. 6 may be v−

w∗1+w∗2
2 > θ− θ2 |l1 − l2|

(35)
=⇒ v− c1+c2

2 > 5
3θ−

θ
2 |l1 − l2|

Reg. 5 is not in eqm.⇒ Reg. 3, 4 may be v−
w∗1+w∗2

2 < 3
2θ|l1 − l2|

(35)
=⇒ v− c1+c2

2 < 17
6 θ|l1 − l2|

Reg. 5 is not in eqm. by Lemma 2 17
6 θ|l1 − l2| ≤ v− c1+c2

2 ≤ 5
3θ−

θ
2 |l1 − l2|

Table 5 Characterization of Solution Regions

Case I: When v− c1+c2

2 ≥
3
2θ, we compare the lower bound 3

2θ for this case with the inequalities in Table

5. For the two regions (region 1 and 2) with symmetric product positioning, we observe that the suppliers’

optimal solution to region 2 is in equilibrium, but the suppliers’ optimal solution to region 1 is not. We know

that when region 1 is not in equilibrium, the suppliers’ equilibrium solution may be in region 2, by Lemma

1 and Table 5—this turns out to be the case. For the suppliers’ solutions to the regions with asymmetric

product positioning, we consider the following cases on region 6:

1.When |l1 − l2| ∈
[

c1+c2−2v+4θ
θ , 1

2

]
or equivalently v− c1+c2

2 ≥ 2θ− θ2 |l1 − l2|, the suppliers’ solution to region 6,

equivalent in objective value of region 2 by (SP26), is in equilibrium according to Table 5. The suppliers’

solution to region 3 is not in equilibrium—the equilibrium may instead lie in regions 4, 5, or 6, by

Lemma 1 and Table 5. The fact that only v− c1+c2

2 >
7
2θ|l1 − l2| for region 4 has a non-empty intersection

with v − c1+c2

2 ≥ 2θ − θ2 |l1 − l2| means region 4 is also not in equilibrium, leaving only regions 5 and 6

as candidates for an equilibrium. Likewise, we argue that region 5 is not in equilibrium, because only

v− c1+c2

2 >
5
3θ−

θ
2 |l1 − l2| for region 5 has a non-empty intersection with v− c1+c2

2 ≥ 2θ− θ2 |l1 − l2|. We can

conclude that the suppliers’ solutions in regions 2 and 6 are the only possible equilibria.

2.When |l1− l2| ∈
(
0, c1+c2−2v+4θ

θ

)
or equivalently 3θ

2 ≤ v− c1+c2

2 < 2θ− θ2 |l1− l2|, the suppliers’ solution to region

6 is not in equilibrium—the equilibrium may instead lie in regions 3, 4, or 5, by Lemma 1 and Table 5.

We also know that the suppliers’ solution to region 3 under the condition imposed on the channel added

value is not in equilibrium, leaving regions 4, 5, or 6 as candidates for an equilibrium. Combining the

two observations, we need only consider regions 4 and 5. Now by Lemma 2, neither region 4 nor region

5 can form an equilibrium, because there is incentive to maximally differentiate the product positions.

Therefore, the only equilibrium lies in region 2.
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Furthermore, the minimal set for region 6 to be in equilibrium requires v− c1+c2

2 ≥ 2θ (by setting |l1 − l2| ↓ 0

in the channel added value condition that defines sub-case 1), while the minimal set for region 6 to not be

in equilibrium requires 3θ
2 ≤ v− c1+c2

2 <
7θ
4 (by setting |l1 − l2| = 1

2 in the channel added value condition that

defines sub-case 2). Observe that in these two sets, the choice of |l1 − l2| can be arbitrary without affecting

the solution characteristics (in or not in equilibrium) of region 6. Lastly for the segment 7θ
4 ≤ v− c1+c2

2 < 2θ,

region 6 can be in or not in equilibrium depending on the two cases on |l1− l2| that we previously examined.

Case II: When v− c1+c2

2 ≤ θ, we compare the upper bound θ for this case with the inequalities in Table 5.

For the two regions (region 1 and 2) with symmetric product positioning, we observe that the suppliers’

solution to region 1 is in equilibrium, but region 2 is not in equilibrium. We know that when region 2 is

not in equilibrium, the suppliers’ equilibrium solution may be in region 1, by Lemma 1 and Table 5—this

turns out to be the case. For the suppliers’ solutions to the regions with asymmetric product positioning,

we consider the following cases on region 3:

1.When |l1 − l2| ∈
[

2v−c1−c2

4θ , 1
2

]
or equivalently v− c1+c2

2 ≤ 2θ|l1 − l2|, the suppliers’ solution to region 3, equiv-

alent in objective value of region 1 by (SP13), is in equilibrium according to Table 5. The suppliers’

solution to region 6 is not in equilibrium—the equilibrium may instead lie in regions 3, 4, or 5, by Lemma

1 and Table 5. The fact that only v − c1+c2

2 < 17
6 θ|l1 − l2| for region 5 has a non-empty intersection with

v− c1+c2

2 ≤ 2θ|l1 − l2| means region 5 is also not in equilibrium, leaving only regions 3 and 4 as possible

candidates for an equilibrium. Likewise, we argue that region 4 is not in equilibrium, because only

v− c1+c2

2 < 3θ|l1 − l2| for region 4 has a non-empty intersection with v− c1+c2

2 ≤ 2θ|l1 − l2|. We can conclude

that the suppliers’ solutions to regions 1 and 3 are the only possible equilibria.

2.When |l1 − l2| ∈
(
0, 2v−c1−c2

4θ

)
or equivalently v− c1+c2

2 > 2θ|l1 − l2|, the suppliers’ solution to region 3 is not

in equilibrium—the equilibrium may instead lie in regions 4, 5, or 6, by Lemma 1 and Table 5. We also

know that the suppliers’ solution to region 6 under the condition imposed on the channel added value

is not in equilibrium, leaving regions 3, 4, or 5 as candidates for an equilibrium. Combining the two

observations, we need only consider regions 4 and 5. Now by Lemma 2, neither region 4 nor region

5 can form an equilibrium, because there is incentive to maximally differentiate the product positions.

Therefore, the only equilibrium lies in region 1.

Case III: When θ < v − c1+c2

2 < 3
2θ, neither region 2 nor region 6 is in equilibrium according to Table 5.

Similarly neither region 1 nor region 3 is in equilibrium. Lastly by Lemma 2, neither region 4 nor region 5

can form an equilibrium. Therefore, an equilibrium does not exist in this case.

Appendix B: Technical Details of Benchmark Systems

Proof of Theorem 2: First we establish a side proposition.

Proposition 2. When product positions are symmetric, the retailer’s optimal solution can be segmented as the

following:

• Region 1 (v− c1+c2

2 <
θ
2 ) - Separable solution is optimal;

• Region 2 (v− c1+c2

2 >
θ
2 ) - Barely touching solution is optimal.
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When product positions are asymmetric, the retailer’s optimal solution can be segmented as the following:

• Region 3 (v− c1+c2

2 < θ|l1 − l2|) - Separable solution is optimal;

• Region 4 (θ|l1 − l2| < v− c1+c2

2 <
3
2θ|l1 − l2|) - The solution where one end barely touches and the other end does

not touch is optimal;

• Region 5 ( 3
2θ|l1 − l2| < v− c1+c2

2 < θ−
1
2θ|l1 − l2|) - The solution where one end overlaps and the other end does

not touch is optimal;

• Region 6 (v − c1+c2

2 > θ−
1
2θ|l1 − l2|) - The solution where one end overlaps and the other end barely touches is

optimal.

The solution to each region is summarized in Table 6.

Proof: We simply replace wi in Proposition 1 with ci. Q.E.D.

Regions p∗1 p∗2 π∗

1, 3 v+c1
2

v+c2
2

(v−c1)2

2θ +
(v−c2)2

2θ

2 v+ c1
4 −

c2
4 −

θ
4 v+ c2

4 −
c1
4 −

θ
4 v+ (c1−c2)2

4θ − c1+c2
2 −

θ
4

4 v+ c1−c2
4 −

θ
2 |l1 − l2| v− c1−c2

4 −
θ
2 |l1 − l2| (2v− c1 − c2)|l1 − l2| −θ|l1 − l2|2 +

(c1−c2)2

4θ

5 v+c1
2 + θ

4 |l1 − l2|
v+c2

2 + θ
4 |l1 − l2| 1

4θ

(
v− c1 +

θ
2 |l1 − l2|

)2

+ 1
4θ

(
v− c2 +

θ
2 |l1 − l2|

)2
+ 1

8θ (c1 − c2)2

6 c1−c2
4 + v+ θ

2 |l1 − l2| − θ2
c2−c1

4 + v+ θ
2 |l1 − l2| − θ2 v− θ2 +

θ
2 |l1 − l2| −

c1+c2
2 +

(c1−c2)2

4θ
Table 6 Summary of Results for Retailer’s Problem in Fully Centralized System

We can now show that the incentives exist for maximum product differentiation in regions 4, 5 and 6, if

the respective solutions lie in the interior of the said regions. In other words, it is optimal for the monopolist

player to maximally differentiate the two products, i.e. |l1 − l2|= 1
2 . The optimal profit for each region can be

found under the column π∗ in Table 6.

Region 4’s optimal profit increases in |l1 − l2| if

∂π∗

∂|l1 − l2|
> 0 ⇒ v−

c1 + c2

2
> θ|l1 − l2|,

which turns out to be the left boundary of region 4 (see Figure 6 with wi replaced with ci) and is thus always

satisfied. When |l1− l2| ↑ 1
2 , region 4’s optimal profit becomes that of region 2. We can therefore conclude that

region 4’s solution is always dominated by region 2.

Region 5’s optimal profit increases in |l1 − l2| if

∂π∗

∂|l1 − l2|
> 0 ⇒ v−

c1 + c2

2
>−

1
2
θ|l1 − l2|,

which is always satisfied because ci ≤ v. Under |l1 − l2| ↑ 1
2 , region 5 becomes degenerate in the limit, i.e.

c2 = 2v−
3θ
2
− c1. (37)

Region 5’s optimal profit then becomes (v−c1)2

θ − 3
2 (v− c1)+ 17θ

16 , which is the same as region 2’s optimal profit

with (37) plugged in. Therefore region 5’s solution is always dominated by region 2.
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Region 6’s optimal profit is linear in |l1 − l2|. The coefficient in front of |l1 − l2| is θ2 > 0. Thus, region 6’s

optimal profit always increases in |l1 − l2|. When |l1 − l2| ↑ 1
2 , region 6’s optimal profit becomes that of region

2 in the limit. We can therefore conclude that region 6’s solution is always dominated by region 2.

When |l1 − l2| = 1
2 , we have established previously that regions 4, 5, and 6 effectively consolidate into a

region 2 (barely touching on both ends) solution, which is governed by the channel added value condition

v − c1+c2

2 > θ2 . On the other hand, when v − c1+c2

2 < θ2 , we end up with a solution that corresponds to either

region 1 or region 3 (separable product domains)12. We can therefore conclude with the two segments

defined in the theorem statement.

Solution to (SP13’): The objective function is concave, and the constraint is linear. Therefore, the KKT

conditions are both sufficient and necessary. The Lagrangian is:

L(w, λ) = (w1 − c1)
v−w1

θ
+ (w2 − c2)

v−w2

θ
+λ(w1 −w2 −α).

The KKT conditions 5wL(w, λ) = 0 yield the following:

w1 =
v+ c1 +λθ

2
; w2 =

v+ c2 +λθ
2

. (38)

Assuming that strict complementarity holds, we have two cases to consider:

1.λ= 0⇔ interior solution is optimal.

(38)⇒ w∗1 =
v+ c1

2
; w∗2 =

v+ c2

2
; (39)

⇒ w∗1 +w∗2 = v+
c1 + c2

2
> α;

⇒ For region 1, v−
c1 + c2

2
< θ; for region 3, v−

c1 + c2

2
< 2θ|l1 − l2|;

⇒ π∗ =
(v− c1)2

4θ
+

(v− c2)2

4θ
. (40)

2.λ > 0⇔ boundary solution is optimal.

(38)⇒ w1 +w2 = v+λθ+
c1 + c2

2
= α;

⇒ λ=
α− v
θ
−

c1 + c2

2θ
> 0;

⇒ For region 1, v−
c1 + c2

2
> θ; for region 3, v−

c1 + c2

2
> 2θ|l1 − l2|.

The optimal boundary solution for region 1 is, therefore,

w∗1 = v−
θ
2
+

c1 − c2

4
; w∗2 = v−

θ
2
+

c2 − c1

4
;

π∗ = v−
θ
2
−

c1 + c2

2
+

(c1 − c2)2

8θ
. (41)

The optimal boundary solution for region 3 is, therefore,

w∗1 = v−θ|l1 − l2|+
c1 − c2

4
; w∗2 = v−θ|l1 − l2|+

c2 − c1

4
;

π∗ = 2|l1 − l2|v− 2θ|l1 − l2|
2 − (c1 + c2)|l1 − l2|+

(c1 − c2)2

8θ
. (42)

Observe that the optimal profit for the boundary solution of region 3 increases in |l1 − l2|, because

∂π∗

∂|l1 − l2|
> 0 ⇒ v−

c1 + c2

2
> 2θ|l1 − l2|,

which is exactly the condition under which region 3 has an optimal boundary solution.

12 The upper bound that defines region 3, i.e., θ|l1 − l2|, becomes θ2 , when |l1 − l2|= 1
2 .
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Solution to (SP26’): The Lagrangian is:

L(w, λ) = (w1 − c1)
(1

2
−

w1

2θ
+

w2

2θ

)
+ (w2 − c2)

(1
2
−

w2

2θ
+

w1

2θ

)
+λ(α−w1 −w2).

The KKT conditions 5wL(w, λ) = 0 yield the following:

w1 −w2 =
c1 − c2

2
+
θ
2
−θλ; w1 −w2 =

c1 − c2

2
−
θ
2
+θλ.

Clearly, we have that
θ

2
−θλ=−

θ
2
+θλ ⇒ λ=

1
2
> 0.

Therefore, the constraint is always active, and the optimal solution for region 2 is

w∗1 = v−
θ
2
+

c1 − c2

4
; w∗2 = v−

θ
2
+

c2 − c1

4
; (43)

π∗ = v−
θ
2
−

c1 + c2

2
+

(c1 − c2)2

8θ
. (44)

Observe that (44) is the same as (41), the optimal boundary solution of region 1, since they share the same

boundary. Similarly, the optimal solution for region 6 is

w∗1 = v−θ+
θ
2
|l1 − l2|+

c1 − c2

4
; w∗2 = v−θ+

θ
2
|l1 − l2|+

c2 − c1

4
;

π∗ = v−θ+
θ
2
|l1 − l2| −

c1 + c2

2
+

(c1 − c2)2

8θ
. (45)

Since (44) ≥ (45), the optimal profit π∗ for region 2 always dominates that of region 6 for the monopolist

supplier. It is also evident that the optimal profit π∗ for region 6 increases in |l1 − l2|, because θ > 0.

Solution to (SP4’): The Lagrangian is:

L(w, μ,λ) =(w1 − c1)
(
|l1 − l2| −

w1

2θ
+

w2

2θ

)
+ (w2 − c2)

(
|l1 − l2| −

w2

2θ
+

w1

2θ

)

+μ(w1 +w2 − 2v+ 3θ|l1 − l2|)+λ(2v− 2θ|l1 − l2| −w1 −w2)
.

The KKT conditions 5wL(w, μ,λ) = 0 yield the following:

w1 −w2 =
c1 − c2

2
+θ|l1 − l2|+θ(μ−λ); w1 −w2 =

c1 − c2

2
−θ|l1 − l2| −θ(μ−λ).

Clearly, we have that

θ|l1 − l2|+θ(μ−λ) =−θ|l1 − l2| −θ(μ−λ) ⇒ μ−λ=−|l1 − l2|.

Recall that we have assumed |l1 − l2| to be strictly greater than 0. μ and λ cannot both be positive, since the

upper and lower bounds cannot both be active at the same time. μ and λ cannot both be 0, since 0 ,−|l1− l2|.

If μ > 0 and λ = 0, then we have μ = −|l1 − l2| < 0, a contradiction to condition imposed on the Lagrange

multiplier μ≥ 0.

The only possibility is therefore μ = 0 and λ > 0, which leads to λ = |l1 − l2| > 0. This implies that region

4’s optimal solution for the monopolist supplier always lies at the bound, where w1 +w2 = 2v− 2θ|l1 − l2|, or

equivalently where v− w1+w2

2 = θ|l1 − l2|. Solving the following system jointly yields the optimal solution:




w1 −w2 =
c1−c2

2 ;

w1 +w2 = 2v− 2θ|l1 − l2|;

⇒ w∗1 = v−θ|l1 − l2|+
c1 − c2

4
; w∗2 = v−θ|l1 − l2|+

c2 − c1

4
;

π∗ = 2|l1 − l2|v− 2θ|l1 − l2|
2 − (c1 + c2)|l1 − l2|+

(c1 − c2)2

8θ
. (46)

Observe that (46) is equivalent to (42), the optimal boundary solution of region 3, as these two regions share

the same boundary.
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Solution to (SP5’): The objective function is concave, and the constraint is linear. Therefore, the KKT

conditions are both sufficient and necessary. The Lagrangian is:

L(w, μ,λ) =(w1 − c1)
(1

4
|l1 − l2|+

v
2θ

+
w2

4θ
−

3w1

4θ

)
+ (w2 − c2)

(1
4
|l1 − l2|+

v
2θ

+
w1

4θ
−

3w2

4θ

)

+μ(w1 +w2 − (2v− 2θ+θ|l1 − l2|))+λ(2v− 3θ|l1 − l2| −w1 −w2).

The KKT conditions 5wL(w, μ,λ) = 0 yield the following:

3w1 −w2 = v+
θ
2
|l1 − l2|+

3c1 − c2

2
+ 2θ(μ−λ); 3w2 −w1 = v+

θ
2
|l1 − l2|+

3c2 − c1

2
+ 2θ(μ−λ);

⇒ w1 =
v
2
+
θ
4
|l1 − l2|+

c1

2
+θ(μ−λ); w2 =

v
2
+
θ
4
|l1 − l2|+

c2

2
+θ(μ−λ); (47)

w1 +w2 = v+
θ
2
|l1 − l2|+

c1 + c2

2
+ 2θ(μ−λ).

There are 3 cases to consider.

1.μ= 0, λ > 0⇔ the upper bound on w1 +w2 is active.

(47)⇒ w∗1 = v−
3
2
θ|l1 − l2|+

c1 − c2

4
; w∗2 = v−

3
2
θ|l1 − l2|+

c2 − c1

4
;

π∗ = 2|l1 − l2|v− 3θ|l1 − l2|
2 − (c1 + c2)|l1 − l2|+

(c1 − c2)2

8θ
. (48)

By λ > 0, we have that

v−
c1 + c2

2
<

7
2
θ|l1 − l2|.

2.μ > 0, λ= 0⇔ the lower bound on w1 +w2 is active.

(47)⇒ w∗1 = v+
θ
2
|l1 − l2| −θ+

c1 − c2

4
; w∗2 = v+

θ
2
|l1 − l2| −θ+

c2 − c1

4
;

π∗ = v+
θ
2
|l1 − l2| −θ−

c1 + c2

2
+

(c1 − c2)2

8θ
. (49)

By μ > 0, we have that

v−
c1 + c2

2
> 2θ−

1
2
θ|l1 − l2|.

Observe that (49) is equivalent to (45), the optimal boundary solution of region 6, since these two regions

share the same boundary. π∗ increases in |l1 − l2|, because θ > 0.

3.μ= 0, λ= 0⇔ region 5 has an interior solution.

(47)⇒ w∗1 =
v
2
+
θ
4
|l1 − l2|+

c1

2
; w∗2 =

v
2
+
θ
4
|l1 − l2|+

c2

2
.

π∗ =
(v− c1)2

8θ
+

(v− c2)2

8θ
+

(c1 − c2)2

16θ
+
|l1 − l2|

4
v+
|l1 − l2|2

16
θ−
|l1 − l2|

8
(c1 + c2) (50)

Plugging w∗1 +w∗2 into the constraints of (SP5’) yields

7
2
θ|l1 − l2|< v−

c1 + c2

2
< 2θ−

1
2
θ|l1 − l2|.

Observe that (50) increases in |l1 − l2| if

∂π∗

∂|l1 − l2|
> 0 ⇒ v−

c1 + c2

2
>−

1
2
θ|l1 − l2|,

which is always satisfied since ci ≤ v.



34

Proof of Theorem 3: We want to show that only regions 1, 2, and 3 have viable solutions that result in an

equilibrium for the monopolist supplier—in other words, he will initiate the equilibrium that the retailer

will also regard as optimal. For all other regions, we will show that the monopolist supplier has incentives

to maximally differentiate the products to improve category profit. In fact, the solutions associated with

those regions will either converge to the optimal solution for region 2, or be strictly dominated by it.

From the solution to (SP13’), we know that (42), the boundary solution for region 3, increases in |l1 − l2|.

When |l1 − l2| ↑ 1
2 , (42) approaches (44), the optimal solution for region 2, from below. The same asymptotic

argument can be made for (46), the solution to region 4 derived from (SP4’), since it shares the same boundary

as region 3.

From the solution to (SP26’), we know that (45), the solution to region 6, also increases in |l1 − l2|. When

|l1 − l2| ↑ 1
2 ,

(45) = v−
3
4
θ−

c1 + c2

2
+

(c1 − c2)2

8θ
≤ v−

θ
2
−

c1 + c2

2
+

(c1 − c2)2

8θ
= (44).

We can make the same argument for (49), the boundary solution that region 5 shares with region 6, according

to the solution to (SP5’).

We observe that (48), the other boundary solution of region 5, is less than (46), the solution of region 4,

under any |l1 − l2| ∈ (0, 1
2 ], and therefore cannot be an equilibrium for the monopolist supplier. Lastly, we

know that (50), the interior solution to (SP5’), increases in |l1− l2|. When |l1− l2| ↑ 1
2 , the domain of this solution

degenerates into a single point, i.e.,

v−
c1 + c2

2
=

7
4
θ ⇒ c2 = 2v− c1 −

7
2
θ.

Substituting the expression on c2 from above into (50) gives a supplier profit of

(v− c1)2

2θ
+

81θ
32
−

7
4

(v− c1),

which is less than
(v− c1)2

2θ
+

89θ
32
−

7
4

(v− c1),

i.e., region 2’s optimal solution with the expression above on c2 substituted into (44).

In summary, we see that the monopolist supplier is better off with a separable domain solution (as in

regions 1 or 3), when the channel added value is below θ. Conversely when the channel added value is

above θ, he is better off with a solution that allow the domains of the maximally differentiated products

extend the entire market (as in region 2).

Appendix C: Technical Details of Model Comparison

Proof of Theorem 4: By Observation 1, we consider the following cases:

• 0≤ v− c1+c2

2 <
θ
2 : All three systems have optimal solutions from regions 1 or 3. For the centralized system,

the total channel profit corresponding to regions 1 or 3 is shown in Table 6 to be

Π13
C =

(v− c1)2

2θ
+

(v− c2)2

2θ
.
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For the decentralized system, the total channel profit is the sum of π∗1 and π∗2 in (27) and the retailer’s profit

in regions 1 or 3 from Table 1 ( (v−w1)2

2θ + (v−w2)2

2θ ) with the optimal wholesale prices in (26) plugged in:

Π13
D =

3(v− c1)2

8θ
+

3(v− c2)2

8θ
.

For the monopolist supplier system, the total channel profit is the sum of π∗ in (40) and the retailer’s profit

in regions 1 or 3 from Table 1 ( (v−w1)2

2θ + (v−w2)2

2θ ) with the optimal wholesale prices in (39) plugged in:

Π13
MS =

3(v− c1)2

8θ
+

3(v− c2)2

8θ
.

It is clear that

Π13
C ≥Π

13
D =Π13

MS.

• θ
2 ≤ v − c1+c2

2 ≤ θ: The decentralized system and the monopolist supplier system still have optimal

solutions from regions 1 or 3, expressed as Π13
D and Π13

MS. Both are less efficient than the centralized system

in terms of channel profit.

• 3
2θ ≤ v − c1+c2

2 < 7
4θ: All three systems have optimal solutions from region 2. For the fully centralized

system, the total channel profit (same as retailer profit) corresponding to region 2 is shown in Table 6 to be

Π2
C = v+

(c1 − c2)2

4θ
−

c1 + c2

2
−
θ
4
.

For the decentralized system, the total channel profit is the sum of π∗1 and π∗2 in (30) and the retailer’s profit

in region 2 from Table 1 (v+ (w1−w2)2

4θ − w1+w2

2 − θ4 ) with the optimal wholesale prices in (28) plugged in, i.e.,

Π2
D = v+

5(c1 − c2)2

36θ
−

c1 + c2

2
−
θ
4
.

For the monopolist supplier system, the total channel profit is the sum of π∗ in (44) and the retailer’s profit

in region 2 from Table 1 (v+ (w1−w2)2

4θ − w1+w2

2 − θ4 ) with the optimal wholesale prices in (43) plugged in

Π2
MS = v+

3(c1 − c2)2

16θ
−

c1 + c2

2
−
θ
4
.

It is clear that

Π2
C ≥Π

2
MS ≥Π

2
D.

• v− c1+c2

2 ≥
7
4θ: The centralized and monopolist supplier system still have optimal solutions from region

2, expressed as Π2
C and Π2

MS, while the decentralized system has an optimal solution from region 6. For the

decentralized system, the total channel profit is the sum of π∗1 and π∗2 in (30) and the retailer’s profit in region

6 from Table 1 (v+ (w1−w2)2

4θ − w1+w2

2 − θ2 +
θ
2 |l1 − l2|) with the optimal wholesale prices in (28) plugged in, i.e.,

Π6
D = v+

5(c1 − c2)2

36θ
−

c1 + c2

2
−
θ
2
+
θ
2
|l1 − l2|.

Since 0< |l1 − l2| ≤ 1
2 , and therefore

Π2
D ≥Π

6
D,

it is clear that

Π2
C ≥Π

2
MS ≥Π

2
D ≥Π

6
D.
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Positioning Distortion: Recall that positioning distortion occurs when v − c1+c2

2 ≥ 7
4θ, where region 6

solutions are optimal. In addition, we note that region 2 solutions are in fact borderline cases for region 6

solutions. From the proof of Theorem 4, we know that

Π2
D −Π

6
D =
θ
4
−
θ
2
|l1 − l2|,

which we define as the loss in channel profit due to positioning distortion.

Cost Difference Distortion: We demonstrate algebraically the elimination of channel inefficiency when

we set c1 = c2 by comparing the results from the decentralized system and the monopolist supplier system

against the fully centralized system. Recall that cost difference distortion occurs when v − c1+c2

2 > θ. Fur-

thermore, we only consider cases where the product positions are maximally differentiated and product

domains cover the entire market, i.e., region 2 solutions.

From the proof of Theorem 4, and letting c1 = c2 = c, it is clear that

Π2
C =Π2

MS =Π2
D = v− c−

θ
4
,

implying that there is no loss in channel inefficiency when cost difference is removed.
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