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Abstract

In this paper we describe the challenges of Bayesian computation in Finance. We show that empirical
asset pricing leads to a nonlinear non-Gaussian state space model for the evolutions of asset returns
and derivative prices. Bayesian methods extract latent state variables and estimate parameters by
calculating the posterior distributions of interest. We describe the use of direct estimation methods
such as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods based on
particle filtering (PF). Our approach also allows for an on-line model assessment via sequential Bayes
factors. We illustrate our approach in two examples. First, sequential inference for extracting latent
stochastic volatility and jump states from daily data throughout the credit crisis of 2007-2008 and
secondly, an equilibrium-based asset pricing model for SP500 put options.

Keywords: Asset pricing, Stochastic Volatility, Financial Econometrics, Markov chain Monte Carlo,
Particle filtering, Options.

1 Introduction

Modern-day finance uses arbitrage and equilibrium arguments to derive asset prices as a function of
state variables and parameters of the underlying dynamics of the economy. Many applications require
extracting information from asset returns and derivative prices such as options or to understand macro-
finance models such as consumption-based asset pricing models. To do this the researcher needs to
combine information from different sources, asset returns on the one hand and derivative prices on the
other. A natural approach to provide inference is Bayesian (Berger, 1985, Bernardo and Smith, 1994 and
Gamerman and Lopes, 2007).

Our computational challenges arise from the inherent nonlinearities that arise in the pricing equation,
in particular through the dependence on parameters. Duffie (1996) and Johannes and Polson (2009)
show that empirical asset pricing problems can be viewed as a nonlinear state space models. These
so-called affine models provide a natural framework for addressing the problem as well. Whilst affine
pricing models in continuous time so a long way to describe the evolution of derivative prices, empirically
extracting the latent state variables and parameters that drive prices has up until now received less attention
due to computational challenges. In this paper, we address these challenges by using simulation-based
methods, such as Markov chain Monte Carlo (MCMC), Forward filtering backward sampling (FFBS)
and particle filter (PF). Hence we solve the inverse problem of filtering state variables and estimating
parameters given empirical realizations on returns and derivative prices.

The statistical tools that we describe include MCMC methods, with particular emphasis on the FFBS
algorithm of Carter and Kohn (1994) and Frühwirth-Schnatter (1994). For sequential methods we de-
scribe PF algorithms, with particular emphasis to the sequential importance sampling with resampling
(SISR) filter of Gordon et al. (1993) and the particle learning (PL) algorithm of Lopes et al. (2010).
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This current research shows how to also estimate parameters such as agents’ preferences from empirical
data. In many cases the agents will be given the underlying parameters and the problem becomes one of
filtering the hidden states as conditioning information arrives.

The rest of the paper is outlined as follows. Section 2 describes asset pricing problems and Bayesian
inference for these problems. Section 3 describes sequential Bayesian computation. Section 4 provides
an illustration to equilibrium-based stochastic volatility models. Finally, Section 5 concludes.

2 Empirical Bayesian Asset Pricing

In order to solve the inference problem, namely calculating the joint posterior p(θ,Xt|Y t) where Y t =
(Y1, . . . , Yt) is a set of discretely observed returns, we have to pick a suitable time-discretization of the
continuous-time model and then perform Bayesian inference on the ensuing state space model. We use
an Euler discretization.

In order to make our discretization an accurate representation of the continuous time model, we may
discretize at a higher fequency than that of the oberved data. In this case, we simulate additional state
variables between the observations via the Euler discretization scheme. This introduces the concept of
missing data. These missing data are drawn via a Gibbs step.

One novel feature of Bayesian methods is that they allow data in the form of observations of derivative
prices to aid in the estimation problem. For example, suppose that we observe a call price C(Xt, θ) or a
variance swap price. This information can be combined with the current posterior distribution on states
and price, namely p(XT , θ|Y T ), to obtain sharper parameter estimates.

We now provide the relevant Bayesian calculations. The conditional likelihood can be written as

p(Rt+1, Pt+1|Xt+1, θ) = p(Rt+1|Xt+1)p(Pt+1|Xt+1, θ)

p(Pt+1|Xt+1, θ) ∼ N(F (Xt, θ), σ2
D)

where σD is a pricing error of say (1, 5)% and F (Xt, θ) describes the pricing formula obtained from equi-
librium arguments. In the discretized system, log-returns are given by Rt+1 = Yt+1 − Yt = ln(St+1/St)
and p(Rt+1|Xt+1) describes the evolution of asset returns.

The goal of empirical asset pricing is to learn about the risk neutral and objective parameters (θQ, θP),
respectively. Moreover, one can also recover filtered estimates of the state variablesXt+1, namely volatil-
ity, Vt+1, jump times, Jt+1 and jump sizes, and the model specification from the observed asset returns
and derivative prices. In general, we have a joint system with data Yt+1 = (Rt+1, Pt+1) corresponding
to returns and derivative prices evolving according to the system(

Pt+1

Rt+1

)
=
(
A(θP, θQ)Xt+1 +B(θP, θQ)

µP

)
+
(

σDε
D
t+1√

Vt+1ε
R
t+1

)
.

Here σD is a pricing error and there exist pricing formulas forA(θP, θQ) andB(θP, θQ). See Chernov and
Ghysels (2000) and Polson and Stroud (2003) for further discussion. Traditional pure inversion methods
infer parameters by first taking the derivative price as given and then try and match state and parameter
values to the given price, Pt, by inversion, namely (X̂t, θ̂) = C−1 (Pt). However, taking the time series
of implied states X̂t can also lead to parameter estimates that are inconsistent.
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Posterior Distribution. The Bayesian posterior distribution now uses both returns and derivative pric-
ing information to estimate (θP, Xt) and implicitly determine θQ. This is given by

p(θP, θQ, Xt|Y t) ∝ p(Rt|θP, Xt)p(P t|θP, θQ, Xt)p(Xt|θP)p(θP, θQ)

where Yt = (Rt, Pt) contains returns and prices from the equilibrium model.
Hence we can sequentially filter p(θP, θQ, Xt+1|Y t+1). For very small pricing errors the derivative

price information will give very precise estimates of Xt+1 which in turn will precisely estimate the pa-
rameters of the system. However, too restrictive will lead to noisy co-variance estimates and the derivative
prices will be in conflict with the physical model evolution which is maybe a sign of model misspecifica-
tion.

3 Bayesian Inference via SMC

Here we review the particle methods that are developed for state filtering and sequential parameter learn-
ing with and without derivative price information. Let Xt denote a latent state variable, θ underlying
parameters and observed data Yt at time t. This might just be returns Rt or a combination of returns
and derivative prices (Rt, Dt). Then, the models considered in the paper are instances of the following
general state-space model

(Yt|Xt−1, θ) ∼ p(Yt|Xt−1, θ) (1)

(Xt|Xt−1, θ) ∼ p(Xt|Xt−1, θ) (2)

for t = 1, . . . , T and X0 ∼ p(X0|θ). The parameter θ is kept fixed (and omitted) for the moment. There
are three filtering and learning posterior distributions:

1. Filtering: computation of or sampling from p(Xt|Y t) on-line for t = 1, . . . , T ;

2. Filtering and learning: computation of and/or sample from the posterior p(θ,Xt|Y t) from which
we can calculate marginals p(Xt|Y t) and p(θ|Y t) for t = 1, . . . , T ; and

3. Smoothing: computation of or sampling from the full joint distribution p(θ,XT |Y T ).

Predictive distributions are also straightforward to compute as forward functionals of the process
taking into account this posterior uncertainty about parameters. The optimal Bayesian nonlinear filters
(under squared error loss) are X̂t = E

(
Xt|Y t

)
and θ̂ = E

(
θ|Y t

)
. Given these filtered posterior estimates

of the states and the parameters we can then provide estimates of the following dynamics: i) physical and
risk-neutral: P and Q dynamics; ii) market price of risk: given a specification of market prices of risk we
can calculate the posterior p(λ|Y T ) given a panel of derivative prices (calls, variance swaps).

Particle filters. Unfortunately, closed-form solution for the filtering and smoothing distributions is only
available for simple cases. For the general state-space model, the filtered distributions are temporally
connected via the following recursive propagation/update equations:

p(Xt+1|Y t) =
∫
p(Xt+1|Xt)p(Xt|Y t)dXt (3)

p(Xt+1|Y t+1) ∝ p(Yt+1)p(Xt+1|Y t) (4)
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i.e. the propagation rule emulates the prior distribution of Xt+1 (a high dimensional integral) to be
combined with the likelihood p(Xt+1|Y t+1) via Bayes’ theorem (also a function of a high-dimensional
integral).

We use particle filter algorithms to sequentially update the particle set {X(1)
t , . . . , X

(N)
t } to the par-

ticle set {X(1)
t+1, . . . , X

(N)
t+1} once Yt+1 become available. Particle filters provide a natural alternative to

MCMC methods which are computationally intensive for the sequential inference problem (see Johannes
and Polson, 2009). The posterior distribution p(Xt|Y t) for the filtering and learning distribution on states
and parameters is approximated by

pN (Xt|Y t) =
1
N

N∑
i=1

δ
X

(i)
t

(Xt)

based on the particle set {X(i)
t , i = 1, . . . , N}, where δz(·) denotes the delta-Dirac mass located in z .

We need to show how to efficiently update particles. More precisely, after observing Yt+1, we need to
efficiently produce a new particle set {X(i)

t+1, i = 1, . . . , N} that approximates p(Xt+1|Y t+1). We review
the seminal sample-importance resample or bootstrap filter of Gordon et al. (1993) and the particle
learning schemes of Lopes et al. (2010). A recent and thorough literature review of existing methods and
recent advances in sequential Monte Carlo is provided by Cappé et al. (2007).

3.1 The Sample-Importance Resample (SIR) Filter

The classical bootstrap filter is also well known as the sequential importance sample with resampling
(SISR) filter, and can be described in two steps mimicking the above propagation/update rule (equations
(3) and (4)).

Let the particle set {X(i)
t , i = 1, . . . , N} approximate p(Xt|Y t).

1. Propagate: Draw X̃
(i)
t+1 ∼ p(Xt+1|X(i)

t ) and compute associated (unnormalized) weights w(i)
t+1 ∝

p(Yt+1|X(i)
t+1), for i = 1, . . . , N ;

2. Resample: X(i)
t+1 = X̃

(ki)
t+1 , where ki ∼ Multinomial(w(1)

t+1, . . . , w
(N)
t+1), for i = 1, . . . , N .

Now, the particle set {X(i)
t+1, i = 1, . . . , N} approximate p(Xt+1|Y t+1). In words, the propagation step

generates particles that approximate the prior distribution at time t + 1, i.e. p(Xt+1|Y t) (equation (3)).
Then, a simple SIR argument (reweighing prior draws with their likelihoods) transforms prior particles
into posterior particles that approximate p(Xt+1|Y t+1) (equation (4)).

Despite (or due to) its attractive simplicity and generality, the SISR algorithm suffers from particle
degeneracy and is bounded to break down after a few hundred observations, even in the simplest scenarios,
such as the local level model. Additionally, SIR filters tend to become even more unstable when sequential
parameter learning is dealt with. We propose below a particle filter that overcome these obstacles in a
large class of dynamic models.

3.2 Particle Learning

Bayes’ rule links these to the next filtering distribution through Kalman-type updating. This takes the
form of a smoothing and a prediction step that reverses the standard order of the propagation/update rule
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of equations (3) and (4). More precisely,

p(Xt|Y t+1, θ) ∝ p(Yt+1|Xt, θ)p(Xt|Y t, θ)

p(Xt+1|Y t+1, θ) =
∫
p(Xt+1|Xt, θ)p(Xt|Y t+1, θ)dXt

p(θ|Xt+1, Y t+1, θ) = p(θ|Zt+1)

where Zt+1 = Z(Zt, Xt+1, Yt+1) is a vector of conditional sufficient statistics for θ. This leads us to
the following particle simulation algorithm. As before, let the particle set {(Xt, Zt, θ)(i), i = 1, . . . , N}
approximate p(Xt, θ, Zt|Y t).

1. Resample: (X̃t, Z̃t, θ̃)(i) = (Xt, Zt, θ)(k
i), where ki ∼ Multinomial(w(1)

t , . . . , w
(N)
t ) and (unnor-

malized) weights w(j)
t ∝ p(Yt+1|X(j)

t , θ(j)), for j = 1, . . . , N ;

2. Propagate: Draw X
(i)
t+1 from p(Xt+1|X̃(i)

t , θ̃(i), Yt+1), for i = 1, . . . , N ;

3. Update sufficient statistics: Z(i)
t+1 = Z(Z̃(i)

t , X
(i)
t+1, Yt+1);

4. Parameter learning: θ|Z(i)
t+1 ∼ p(θ|Z

(i)
t+1).

Central to PL algorithms is the possibility of directly sampling from the joint posterior distribution of
state (augmented or not) and parameter conditional sufficient statistics. There are a number of advantages
to using particle learning: i) optimal filtering distributions in sequential parameter learning cases (Pitt and
Shephard, 1999); ii) parameter sufficient statistics for Gaussian and conditionally Gaussian state-space
models (Storvik, 2002); iii) straightforward particle smoothing (Godsill et al., 2004); v) state sufficient
statistics reduces Monte Carlo error (Chen and Liu, 2000); and iv) alternative to standard MCMC methods
in state-space models (Carvalho et al., 2009). Lopes et al. (2010) introduces PL as a framework for
(sequential) posterior inference for a large class of dynamic and static models.

3.3 The 2007-2008 Credit Crisis: Extracting Volatility and Jumps

Lopes and Polson (2010) used particle filtering methods to estimate volatility and examine volatility
dynamics for three financial time series (S&P500, NDX100 and XLF) during the early part of the credit
crisis. Standard and Poor’s SP500 stock index and the Nasdaq NDX 100 index are well known. The XLF
index is an equity index for the prices for US financial firms. They compared pure stochastic volatility
models to stochastic volatility models with jumps. More specifically, the stochastic volatility jump model
includes the possibility of jumps to asset prices and one possible model is

dSt

St
= µ+

√
VtdB

P
t + d

Nt+1∑
s=Nt

Zs


d log Vt = κv(θv − log Vt) + σvdB

V
t

where the additional term in the equity price evolution describes the jump process and is absent in the pure
stochastic volatility model. The parameter µ is an expected rate of return and the parameters governing
the volatility evolution are κv, θv and σv. The Brownian motions (BP

t , B
V
t ) are possibly correlated giving

rise to a leverage effect. The probabilistic evolution P describes what is known as the physical dynamics
as opposed to the risk-neutral dynamics Q which is used for pricing. Sequential model choice shows
how the evidence in support of the stochastic volatility jump model accumulates over time as market
turbulence increases (Figure 1).
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Figure 1: Sequential (log) Bayes factor for the SV with jumps model versus the pure SV model for the
year 2007.

4 Bayesian Inference via MCMC

In this section we outline a simple and robust approach to the estimation of non-linear state-space models
derived from discretized asset pricing models. We illustrate the approach on asset pricing derived from the
equilibrium conditions of a fully specified economic model. Our approach is to discretize the states and
then apply the FFBS sampling algorithm (forward-filtering, backward-sampling, Frühwirth-Schnatter,
1994, Carter and Kohn, 1994) as an alternative to the general MCMC scheme of Carlin, Polson and
Stoffer (1992).

Our exposition and examples will assume a one-dimensional state space model. In higher dimensional
cases, we can update the components of the state one at a time in a Gibbs sampler. The parameter θ is
kept fixed during the FFBS step and is usually sampled jointly. Hore et al. (2009), for instance, used a
mixture of various Metropolis-Hastings chains to sample from p(θ|XT , Y T ).

The rest of this section is largely based on Hore et al. (2009). They derive option prices in a general
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equilibrium setting under recursive preferences and time-varying growth rates. The key distinction from
the option prices from the previous section is that the market prices of risks are determined endogenously
from the solution of the agent’s utility maximization problem under recursive preferences and stochas-
tic growth rates. This highlights the strength of our estimation procedure. We can apply our Bayesian
methodology to estimate deep parameters of a dynamic general equilibrium model and obtain full infer-
ence on the underlying states (and parameters as well) given the data on prices (or return) and/or quantity
dynamics that are implied by the economic system. It takes a valuable step forward in giving us inference
on economic parameters that guide us to understand dynamic rational expectations models that form the
building block of structural asset pricing problems.

4.1 Forward Filtering, Backward Sampling

A general, nonlinear state-space model is specified by the distributions

p(X0), p(Xt |Xt−1), p(Yt |Xt, Xt−1).

The first two distributions determine the distribution of the latent states {Xt} and the third distribution
gives the distribution of the the observable {Yt} given the current and previous states. Often the observa-
tion equation is given as p(Yt |Xt) so that the current observation only depends on the current state. We
will need the generalization given above for our financial application.

Given the three distributions above, the joint distribution of (X0, X
T , Y T ), whereZt = (Z1, . . . , Zt),

is given by

p(X0, X
T , Y T ) = p(X0)

T∏
t=1

p(Xt | Xt−1)
T∏

t=1

p(Yt | Xt, Xt−1). (5)

We now review the basic steps involved in FFBS. After we have finished our review we will discuss
the attractive simplicity of the state discretization strategy. FFBS consists of first forward filtering (FF)
and then backward sampling (BS). The forward filtering step recursively updates

p(Xt−1, Xt |Y t) ⇒ p(Xt, Xt+1 |Y t+1).

The backward sampling draws from the joint distribution of the states given the data using

p(X1, X2, . . . , XT |Y T ) = p(XT , XT−1 |Y T )
1∏

t=T−2

p(Xt |Xt+1, Xt+2, . . . , XT , Y
T ).

That is, we first draw the last two states given all the data and then work backwards in time drawing each
state conditional on all the subsequent ones.

4.1.1 Forward Filtering

We do the forward filtering (FF) iteration in two steps: an evolution step and an update step.

FF Evolution. In the first step, we extend our state knowledge at time t to include the future state using
the state equation:

p(Xt−1, Xt, Xt+1 | Y t) = p(Xt−1, Xt |Y t) p(Xt+1 | Xt, Xt−1, Y
t)

= p(Xt−1, Xt |Y t) p(Xt+1 | Xt).
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The first term on the right hand side is what we assume we know from the previous iteration, i.e. the
time t posterior distribution of (Xt−1, Xt), while the second term is the state equation of the state-space
model. We then margin out Xt−1 to obtain p(Xt, Xt+1 | Y t):

p(Xt−1, Xt, Xt+1 | Y t)⇒ p(Xt, Xt+1 | Y t).

Alternatively, we can first margin out Xt−1 from p(Xt−1, Xt | Y t) and then use the state equation:

p(Xt, Xt+1 | Y t) = p(Xt | Y t) p(Xt+1 | Xt).

This first step may be viewed as computing our prior knowledge of (Xt, Xt+1) given Y t, our observations
up to time t.

FF Update. In the second step, we implement the Bayes’ theorem to update our distribution of (Xt, Xt+1)
to incorporate the additional information in Yt+1. Keeping in mind that Y t+1 = (Y t, Yt+1),

p(Xt+1, Xt | Y t+1) ∝ p(Xt+1, Xt, Yt+1 | Y t)
= p(Xt, Xt+1 | Y t) p(Yt+1 | Xt, Xt+1, Y

t)
= p(Xt, Xt+1 | Y t) p(Yt+1 | Xt, Xt+1).

The first term on the right hand side is available from the above FF evolution step, while the second term
is the observation equation of the state-space model. The FF step is really just Bayes theorem repeated
over time.

4.1.2 Backward Sampling

The backward sampling step depends on the observation that

p(Xt |Xt+1, Xt+2, . . . , XT , Y
T ) = p(Xt | Y t, Xt+1, Yt+1)

= p(Xt | Xt+1, Y
t+1).

(6)

Let Z̃t = (Zt, Zt+1, . . . , ZT ). So superscript tmeans everything up to and including t and superscript
combined with a ∼ on top means from t on including t. Using this notation equation (6) becomes

p(Xt | Xt+1, X̃
t+2, Y t, Yt+1, Ỹ

t+2) = p(Xt | Xt+1, Y
t, Yt+1).

Stated in terms of conditional independence, this is equivalent to say that

Xt ⊥ (X̃t+2, Ỹ t+2) | Xt+1, Y
t, Yt+1,

where ⊥ indicates independence. If the state space model is written as a DAG (directed acyclic graph)
and then converted to an undirected graph, this conditional independence statement is obvious. We can
also see the property given by equation (6) directly from the joint distribution of (XT , Y T ) by first noting
that

p(Xt−1, Xt, Y
t | Xt+1, Yt+1, X̃

t+2, Ỹ t+2) = p(Xt−1, Xt, Y
t | Xt+1, Yt+1). (7)

Since the seven quantities in both sides of the above comprise all of (XT , Y T ), this relation may be
easily seen simply by looking at the full joint given in equation (5) and remembering that the conditional
is proportional to the joint. That is, we can rewrite equation (5) as

p(X0, X
T , Y T ) = p(X0) p(Xt−1 | X0) p(Xt | Xt−1) p(Xt+1 | Xt) p(X̃t+2 | Xt+1)

× p(Y t | Xt) p(Yt+1 | Xt+1, Xt) p(Ỹ t+2 | Xt+1, X̃
t+2)

and then equation (7) becomes apparent. Equation (6) then is obtained by first further conditioning on Y t

and the margining out Xt−1.
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4.1.3 Discretized FFBS

Now that the essentials of FFBS have been laid out, we can review the necessary computations and
see that they are easily performed given a state discretization. Let each X takes on values in the grid
(x1, x2, . . . , xM ). Then p(Xt−1, Xt | Y t) may be represented by an M ×M matrix with rows corre-
sponding to Xt−1 and columns corresponding to Xt. We then obtain the marginal for Xt by summing
the rows. We then create the joint distribution of (Xt, Xt+1) by constructing the matrix whose (i, j) ele-
ment is p(Xt = xi | Y t) p(Xt+1 = xj | Xt = xi). To update to conditioning on Y t+1, we multiply each
element of this matrix by p(Yt+1 | Xt = xi, Xt+1 = xj) and then renormalize so that the sum over all ele-
ments of the matrix is equal to one. For the BS step we can easily compute p(Xt = xi | Xt+1 = xj , Y

t+1)
from the matrices representing the joints p(Xt, Xt+1 | Y t+1) which we must store while doing the FF
step.

4.2 Equilibrium Put Option Pricing

In this section we sketch for the reader the continuous time general equilibrium model in Hore et al.
(2009). The model simultaneously determines consumption dynamics and option prices given preferences
and capital accumulation dynamics. The above application of FFBS is used to estimate the discretized
version of the model.

At a very high level, the full state space dynamics of equilibrium quantities and the underlying latent
variable is given by

dCt

Ct
= µC(Xt) dt+ a11(Xt) dBk + a12(Xt) dBx (8)

pti = f(Xt, Si, τti, Rt) (9)

dXt = δ(X̄ −Xt) dt+ σxdBx (10)

where the Brownian motion terms Bk and Bx are correlated. There is a single state variable Xt (here
t denotes continuous time) which is the expected return on production technology. Ct denotes the path
of consumption in the economy under equilibrium and pti be the option prices consistent with equilib-
rium consumption dynamics. The ith option has strike price Si, time till expiration τit, and Rt is the
equilibrium wealth upon which the option is written.

We orthogonalize the Brownian motion terms and express the shocks driven by independent Brownian
motions. We can then write the model as

dCt

Ct
= µC(Xt) dt+ a11(Xt) dBk + a12(Xt) dBu

pti = f(Xt, Si, τti, Rt) i = 1, . . . , I
dXt = δ(X̄ −Xt) dt+ a21(Xt) dBk + a22(Xt) dBu

whereBk andBu are independent Brownian motions and pit is the price of the ith put option having strike
price Si and expiration time τit, for i = 1, . . . , I , while Rt is the price of the underlying asset upon which
the option is written. The parameters of the model are δ and X̄ . The functions µC , aij , and f are complex.
They also depend on other model parameters, but this dependence is suppressed in order to highlight the
state-space nature of the model. If we let θ denote these suppressed parameters then θ includes, for
example, utility parameters that capture the risk aversion, elasticity of inter-temporal substitution, and
time discount factor. The functions that describe the consumption process are derived by maximizing
the expected utility of the consumption time path subject to constraints driven by the evolution of the
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expected return on production. The option is written on equilibrium wealth Rt determined in equilibrium
by capital growth and current consumption level.

To form a discrete time version of the model over time interval ∆t, we discretize the consumption
and state equations and then add independent error to the option pricing equations. Let gt+1 be the
consumption growth from t to t+ 1. Our discretized model is

gt+1 = µg(Xt) + a11(Xt)
√

∆t Zt1 + a12(Xt)
√

∆t Zt2

pti = f(Xt, Si, τti, Rt) + σ εti i = 1, . . . , I
Xt+1 = α+ ρXt + a21(Xt)

√
∆t Zt1 + a22(Xt)

√
∆t Zt2

where µg(Xt) = µC(Xt)∆t, ρ = 1 − δX̄ , α = (1 − ρ)∆t and all Zti and εti independent and
identically distributed standard normal shocks. To put this model in our general form we let Wt =
a11(Xt)

√
∆t Zt1 + a12(Xt)

√
∆t Zt2 and Vt = a21(Xt)

√
∆t Zt1 + a22(Xt)

√
∆t Zt2. We then draw

Vt from its marginal distribution and Wt from its conditional distribution given Vt, or equivalently, its
conditional distribution given Xt+1 and Xt. This gives rise to the following nonlinear state space model

gt+1 = µg(Xt) +Wt

pti = f(Xt, Si, τti, Rt) + σ εti i = 1, . . . , I
Xt+1 = α+ ρXt + Vt.

where Wt ∼ p(Wt|Xt+1, Xt). The state equation could not be simpler, it is just an AR(1). The observa-
tion equations relate the observed relative put prices and consumption growth to the current and previous
state as in our general prescription.

Inference for this complex model is now conceptually straightforward. At the top level, we have Gibbs
sampler that alternates between p(θ|XT ) and p(XT |θ). Drawing the states given θ using the discretized
FFBS is quite simple. The only drawback is that since the function f is very expensive to compute it
is necessary to precompute all possible p(yt|Xt, Xt−1) where yt varies over all the observed values and
both Xt−1 and Xt vary over the grid values. The more difficult step is to draw from p(θ|XT ). Hore et al.
(2009), for instance, used a mixture of various Metropolis-Hastings chains.

Figure 2 shows the option data and state inference. Time is discretized to be months. Data on four
different options corresponding to different strikes were used. The top panel plot the time series of relative
option prices. The four options differ in their strike prices The other two panels show the inference for
the states Xt with t now denoting the month. The marginal distribution of each state is indicated by the
vertical dashed line. Such inference is straightforwardly obtained from our FFBS draws. The difference
between the two plots is the prior on the smoothness of the state evolution.

Inference of complex functions of our states and parameters are easily obtained given the MCMC
draws. A quantity of economic interest is the risk-premia. The risk-premia in Figure 3 is clearly counter-
cyclical. Higher growth rates imply lower risk-premia and vice- versa. In bad times, the high precau-
tionary savings motivation is consistent with high risk-premia. The agent feels more risk-averse at a time
when the probability of a wealth loss is high. Clearly, the agent’s demand for insurance is high and he
is willing to pay more for put options in these states. Likewise, in good states the precautionary savings
motive dissipates and the agents risk-premia is low. In these states, the agent is not fearful of a wealth loss
and his willingness to pay for put options to insure his wealth is low. This explains the counter-cyclical
risk-premia pattern that we filter out of the time-series of put option prices. For further discussion of
modle specification and derivatives pricing and returns see Broadie et al. (2007, 2009).

Note that the difficulty in drawing θ also makes sequential estimation via particle filtering a practically
infeasible alternative. While particle filtering might work for the draw of XT |θ sequential, i.e. a pure
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Figure 2: The top panel shows the time-series plot of the four option prices. The next two panels show
the posterior distribution of the time-series of the underlying states corresponding to a loose and tight
prior setting. The dashed line represents the 95% posterior band around each state.
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Figure 3: Time-Series of long-run risk estimated from option prices. Using the posterior distribution of
parameters and the state, we compute the time-series of long-run risk. The median time-series estimate
is presented in the above plot with the dotted line representing the 95% posterior interval at each point.
The top time-series plot corresponds to loose prior, whereas the bottom time-series plot corresponds to
the tight prior.
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state learning case, it is not a straightforward matter to get joint inference for XT and θ, i.e. a state and
parameter learning case. Liu and West (2001), for instance, who sequentially approximates p(λ|yt) by
a multivariate normal density, is an unreasonable alternative here given the highly nonlinear nature of
θ. Similarly, it would be hard to implement particle filter and particle learning algorithms (see Section
3), since the posterior distribution of XT and θ can not be represented by a small dimensional set of
conditional sufficient statistics. The discretized FFBS scheme seems to be the best available alternative.

5 Conclusion

Bayesian approaches are natural in the analysis of financial models. It has long been recognized that
Bayesian thinking is relevant to fundamental questions about risk and uncertainty. Many modern finan-
cial moderns have a sequential structure expressed in terms of dynamics of latent variables. In these
models, the basic Bayesian advantage in coherent assessment of uncertainty is coupled with powerful
computational methods.

In this paper we have reviewed two approaches to the Bayesian analysis of sequential models and
attempted to illustrate ways to apply them to models derived from financial and economic theory. Particle
filtering methods allow us to quickly and dynamically update our inferences about state and, in some
cases, parameters. The suggested use of FFBS is much slower and more suited when complete joint
inference is needed for a states over a fixed time period and underlying model parameters. The advantage
of this approach is its simplicity and wide applicability without asking the user to make difficult choices
about algorithm details.
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