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Abstract 

 

We present a method that dynamically designs elicitation questions for estimating preferences, 

focusing on the parameters of cumulative prospect theory and time discounting models. Typical-

ly these parameters are elicited by presenting decision makers with a series of choices between 

alternatives, gambles or delayed payments. The method dynamically (i.e., adaptively) designs 

such choices to optimize the information provided by each choice, while leveraging the distribu-

tion of the parameters across decision makers (heterogeneity) and capturing response error. We 

use an online experiment to compare our approach to a standard approach used in the literature 

that requires comparable task completion time. We assess predictive accuracy in an out-of-

sample task and completion time for both methods. For risk preferences, our results indicate that 

the proposed method predicts subjects’ willingness to pay for a set of out-of-sample gambles 

significantly more accurately, while taking respondents about the same time to complete. For 

time preferences, both methods predict out-of-sample preferences equally well while the pro-

posed method takes significantly less completion time. For risk and for time preferences, average 

completion time for our approach is approximately three minutes. Finally, we briefly review 

three studies that used the proposed methodology with various populations, and discuss the po-

tential benefits of the proposed methodology for research and practice. 

 

 

Keywords:  Prospect Theory, Time Discounting, Bayesian Statistics, Adaptive Experimental 

Design, Revealed Preference. 
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1. Introduction 

The development of behavioral models, such as Prospect Theory (PT) (Kahneman and Tversky 

1979; Tversky and Kahneman 1992) or time discounting models (Frederick et al. 2002 and refer-

ences therein) has inspired an enormous amount of experimental and observational research in 

both laboratory and field settings (e.g., Barberis et al. 2001; Camerer et al. 2003; Harrison et al. 

2002; Tanaka et al. 2010 and references therein). These papers typically elicit the parameters of a 

model (e.g., PT), by asking subjects to make decisions about alternatives (e.g., gambles), and 

then use these parameters to reach empirical conclusions about people’s behavior. For example, 

the recent work of Tanaka et al. (2010) examines how Vietnamese villagers’ risk and time prefe-

rences relate to various socio-economic variables and choices. The feasibility of such experimen-

tal or field studies and their empirical conclusions may depend on the quality of the parameter 

estimates as well as the time required for respondents to complete the elicitation tasks.  As these 

studies become larger, use more diverse sets of participants and move into settings where there is 

less control (e.g., online studies or field studies in the developing world), improving the accuracy 

and time efficiency of the elicitation methods become paramount. 

To this purpose, in this paper we present a novel parametric Dynamic Experiments for 

Estimating Preferences (DEEP) methodology. We apply this methodology to the elicitation of 

the parameters of Cumulative Prospect Theory (CPT) (Tversky and Kahneman 1992) and a Qua-

si-hyperbolic Time Discounting (QTD) model (Benhabib et al. 2010; Frederick et al. 2002; Laib-

son 1997; Phelps and Pollak 1968). Although the methodology is developed for estimating pa-

rameters of specific models, namely CPT and QTD, it is quite general and can be also adapted to 

other functional forms and kinds of preferences, for example social preferences. Our work relies 

on concepts from the preference measurement literature coming predominantly from marketing 

(e.g., Allenby and Rossi 1999; Lenk et al. 1996; Green and Rao 1972; Rossi and Allenby 2003; 

Srinivasan and Shocker 1973), bridging that literature with the preference assessment literature 

in decision theory.  

The main contribution of this paper is methodological. Our methodology addresses cer-

tain limitations of many existing parametric methods for eliciting risk and time preferences by 

dynamically (i.e., adaptively) optimizing the sequence of questions presented to each subject 

while  leveraging the distribution of the parameters across individuals (heterogeneity) and mod-
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eling response error explicitly. Our adaptive questionnaire design method is combined with a 

hierarchical Bayes method for estimating the parameters given the data. The estimation and 

questionnaire design methods may also be used independently, i.e., the estimation method may 

be applied to questionnaires that were not designed using the proposed questionnaire design me-

thod, and vice versa. The use of our methodology is made easy for the experimenter by automat-

ically pre-generating a table of all possible question paths which can be used as a lookup table 

during the study, as done in our experiments below.1   

Using an online experiment, we compare this methodology to a titration method routinely 

used in psychology and marketing (Weber et al. 2007; Zauberman 2003) and experimental eco-

nomics, where it is often called a price-list method (Ashraf et al. 2006; Harrison et al. 2002; 

Meier and Sprenger 2009). The specific titration method we use as a benchmark is adapted from 

Tanaka et al. (2010) because it is one of the few studies that assess models of both risk and time, 

and has comparable completion times. For risk preferences, our method performs significantly 

better on out-of-sample predictions and requires similar response time; for time preferences, our 

method performs similarly well on out-of-sample predictions and significantly better on response 

time. Each elicitation task requires, on average less than three minutes. The proposed methodol-

ogy produces parameter values consistent with those reported in the literature. We also briefly 

review other studies that have used the proposed methodology with various populations. These 

studies further support our empirical findings of fast completion times and estimates being con-

sistent with those reported in the literature, and illustrate how the proposed method may enable 

researchers to uncover relations between time and risk preferences and other covariates or beha-

viors. 

The paper is organized as follows. After reviewing extant related methodologies and in-

troducing the notation, we present the estimation method in Section 2 and our questionnaire de-

sign method in Section 3. We compare these methods to the benchmark adapted from Tanaka et 

al. (2010) using an online experiment in Section 4. We conclude in Section 5 where we also dis-

cuss practical benefits of the proposed method and briefly review three other recent studies in 

which it has been applied. 

 

                                                 
1 This table, as well as the code that was used to create it, to estimate the parameters, and to construct the online in-
terface, are publicly available upon request from the authors. 
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1.1 Related Methodologies 

A number of methodologies for measuring parameters of preference models such as CPT or 

QTD have been developed in the decision analysis area (e.g., Abdellaoui et al. 2008; Wakker and 

Deneffe 1996 among others). These methods differ in many respects, such as the type of elicita-

tion responses (e.g., payoff or probability), whether they use choices or indifference judgments, 

whether the questions are chained, whether parametric forms are assumed, and so on. However, 

few of the parametric methods explicitly leverage the distribution of the parameters across indi-

viduals (heterogeneity) to inform and improve individual-level parameter estimates. Exceptions 

include the recent work of Bruhin et al. (2010) who apply latent-class analysis to the estimation 

of probability distortion, 2 and Jarnebrant et al. (2009) and Nilsson et al. (2011) who estimate 

prospect theory parameters using hierarchical Bayes methods. By contrast, our approach captures 

and leverages heterogeneity in parameter values both when designing questionnaires and when 

estimating the parameters. Moreover, traditional methods often use adaptive questions, called 

staircase methods in psychophysics, but typically employ a dynamic bisection search process in 

order to zero in on a point or small interval where preference switches. The questions in our de-

signs are adaptively developed with the only restriction from previous questions being that each 

new question adds the most information in a certain statistical sense, given the respondent’s res-

ponses to the previous questions. One recent approach that is comparable to ours is that of Wang 

et al. (2010). These authors use a similar principle of selecting questions adaptively in order to 

maximize information, where information is measured using KL divergence. At least two differ-

ences are worth noting between that and our approach. First, the questionnaire design approach 

proposed by Wang et al. (2010) requires discretizing the distribution of the parameters. For ex-

ample, in one of their studies, the authors design questions assuming that each parameter may 

take only 10 possible values. In contrast, our questionnaire design approach is designed to deal 

with continuous parameter spaces, i.e., it allows dealing with continuous distributions on the pa-

rameters and infinite sets of possible parameter values. Second, Wang et al. (2010) apply their 

approach to the simultaneous estimation of risk aversion and loss aversion. In contrast, our ap-

                                                 

2 Latent-class analysis has a long history in marketing (see Kamakura and Russell 1989 for one of the earlier appli-
cations). Comparisons of latent-class with hierarchical Bayes approaches as we use here, have suggested that both fit 
the data equally well overall (see for example Andrews, Ainslie and Currim 2002 and Andrews, Ansari and Currim 
2002). 
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proach for CPT also measures probability distortion, and we apply our approach to the measure 

of QTD parameters as well.  

The dynamic questionnaire design approach and the estimation approach used in this pa-

per are based on two key developments in the large literature on preference measurement me-

thods: hierarchical Bayes estimation (Allenby and Rossi 1999; Rossi and Allenby 2003; Rossi et 

al. 2005), and recently developed adaptive design methods (Abernethy et al. 2008; Sawtooth 

Software 1996; Toubia et al. 2003, 2004, 2007). The first is a statistical approach for estimating 

parameters for different subjects simultaneously while modeling and leveraging the distribution 

(heterogeneity) of these parameters across people. The latter optimizes experimental designs dy-

namically. Although both have been widely and successfully used for preference measurement in 

marketing both by researchers and practitioners, to the best of our knowledge they have not been 

combined for the purpose of dynamically eliciting parameters of either risk or time preferences. 

Finally, we note that while we focus on particular risk and time preference models here (CPT for 

risk and QTD for time), the framework can also apply to others.  

1.2 Background and Notation 

For simplicity we discuss in Sections 2 and 3 the methodology using a general notation that ap-

plies to any parametrically specified model of risk and/or time preferences. This reflects some 

overlap in the notation for CPT and QTD that we clarify as necessary.  

1.2.1 Risk Preferences and Cumulative Prospect Theory 

PT (Kahneman and Tversky 1979) and its extension CPT (Tversky and Kahneman 1992) are 

widely used descriptive models of choice under risk. CPT has three main features: a value func-

tion defined on gains and losses, which accounts for the fact that people are sensitive to changes 

in wealth rather than total wealth; loss aversion, which reflects that people are more sensitive to 

losses than to gains of the same magnitude; and probability weighting, which captures the fact 

that people tend to weigh probabilities in a non-linear fashion, particularly near certainty. CPT 

allows probability weighting to differ for gains and losses (Tversky and Kahneman 1992), but 

for simplicity we assume here, as in other work (e.g., Tanaka et al.  2010), that probability 

weighting is the same for gains and losses. For simplicity, we also assume that the curvature of 
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the value function is the same for gains and losses. Neither of these assumptions is necessary in 

our approach. 

The gambles we use are defined by {x,p;y} such that the outcome of the gamble is x with 

probability p, and y with probability 1 – p. We assume that the CPT probability weighting func-

tion is as proposed by Prelec (1998). Therefore, a decision maker’s preferences for gambles are 

defined by three parameters {α,σ,λ}, which capture respectively the distortion of probabilities, 

the curvature of the value function, and loss aversion. Formally, the value of a gamble to an indi-

vidual U(x,p,y,α,σ,λ) is given by (without loss of generality, we assume |x| > |y|; otherwise x and 

y may be swapped): 
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 We elicit the CPT parameters by asking decision makers to make a series of choices be-

tween pairs of gambles. We index decision makers by i (i=1,…I) and denote by wi the vector of 

parameters for decision maker i: wi = [αi; σi; λi]. We index questions by j (j = 1,…, J), such that 

question j for respondent i consists in choosing between gamble };,{ 111

ijijij ypx and gamble 

};,{ 222

ijijij ypx . Without loss of generality, we assume that the first gamble };,{ 111

ijijij ypx  is always 

chosen over the second gamble };,{ 222

ijijij ypx  (otherwise we just re-label the gambles). 

1.2.2 Time Preferences and Quasi-Hyperbolic Discounting 

In experimental studies of time preferences, subjects are typically faced with choices between a 

smaller-sooner reward and a larger-later reward. The choice alternatives take the form (x, t), 

meaning a reward x to be received t periods (e.g., days) from now. The model we consider to 

represent preferences for payoffs occurring in time is a discounted utility model U(x,t)=v(x)d(t) 

where v is the utility of receiving reward x and d is the discount function – as noted above other 

models can be used. By and large, the literature on delayed reward preferences is concerned with 

the shape and nature of the discount function d. Classic forms are exponential discounting (the 

standard model in Economics, with constant discount rate) and hyperbolic discounting, which 
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implies a discount rate decreasing with time. Some models allow discounting to be a function of 

payoff x, in addition to delay (e.g., Baucells and Heukamp 2011). Here we use a “quasi-

hyperbolic” discount function (Angeletos et al. 2001; Benhabib et al. 2010; Frederick et al. 2002; 

Laibson 1997; Phelps and Pollak 1968) and a linear value function of payoff.3 Specifically, the 

QTD model we estimate is of the form (Benhabib et al. 2010; Laibson 1997; Phelps and Pollak 

1968): 

)(),( txdtxU =  
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For β < 1, the discount function presents a discontinuous drop at t = 0, which reflects the empiri-

cal observation that the present t = 0 is overweighed relative to any future t > 0. This is also 

called “present bias” (O'Donoghue and Rabin 1999). Our approach may be extended to other 

functional forms, but we focus on quasi-hyperbolic discounting here for simplicity and due to the 

popularity of this model.  

We elicit the vector of QTD parameters wi = [βi; ri] of decision maker i through a series 

of choices between pairs of delayed payments – where the delay of an immediate payment is ze-

ro. Question j for respondent i consists of choosing between },{ 11

ijij tx  and },{ 22
ijij tx . Again, without 

loss of generality we label as 1 the alternative chosen by the respondent. Notice the use of nota-

tion U and wi both for QTD and CPT. 

2. Hierarchical Bayes Estimation 

We begin by reviewing the parameter estimation methodology that we use in conjunction with 

our proposed dynamic elicitation method. This estimation method may be used with any ques-

tionnaire design method that produces a series of independent pairwise choices between gambles 

(for CPT) or delayed payments (for QTD). Although we work with pairwise choice data, the me-

thodology can be applied for other types of questions (e.g., choices between more than two alter-

natives, certainty equivalents, willingness-to-pay, etc).   

                                                 

3This linearity assumption is not necessary. For example, risk and time preferences may be estimated jointly, in 
which case the same value function may be used in risk and time choices. See Appendix A for details. In our expe-
riment, in order to make the comparison with the method of Tanaka et al. (2010) cleaner, we estimated risk and time 
preferences separately and assumed a linear value function when estimating time preferences. 
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We assume that we have responses to J choice questions from I respondents as noted 

above. We estimate the value function parameters simultaneously for all respondents using a hie-

rarchical Bayes framework (Allenby and Rossi 1999; Rossi and Allenby 2003; Rossi et al. 2005). 

This framework allows us to capture response error while leveraging the distribution of the pa-

rameters across decision makers. For ease of exposition, we build up the method by introducing 

each of these two features in sequence, and then discuss how the parameters are estimated by 

sampling from their posterior distribution. 

2.1. Setup of the Estimation Method 

2.1.1 Response Error 

We assume that faced with a choice between two options (gambles or delayed payments) a deci-

sion maker will not systematically choose the one with the higher value. Such deviations may be 

interpreted as being the result of unobservable perturbations to the decision maker’s preferences, 

or simply response error. The existence of noise in the decision makers’ choices has long been 

recognized in the literature (e.g., Luce 1958; Laskey and Fischer 1987). There are many ways to 

model response error (e.g., Hey and Orme 1994). We make a particular choice here but other 

models could be used. We introduce response error by modeling the probability that decision 

maker i chooses option 1 over option 2 in question j using a logistic specification common in 

choice modeling, and used previously in the estimation of risk and time preference parameters 

(see for example Tanaka et al. 2010; Tom et al. 2007): 
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)),,,(.exp()),,,(.exp(

)),,,(.exp(
222111

111

iijijijiijijij

iijijij

wypxUwypxU

wypxU

δδ

δ

+
 

for CPT, and   

Pij= 
)),,(.exp()),,(.exp(

)),,(.exp(
2211

11

iijijiijij

iijij

wtxUwtxU

wtxU

δδ

δ

+
 

for QTD. Parameter δ captures the amount of response error (equivalent to a logit scale parame-

ter). Higher values of δ imply less response error (the choice probabilities converge to 0 or 1).  

2.1.2 Simultaneous Estimation across Decision Makers  

Instead of estimating the parameters corresponding to each decision maker independently as in 

traditional decision analysis methods, we estimate the parameters for all individuals simulta-
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neously and leverage the distribution of parameters across individuals. Such simultaneous esti-

mation has shown to lead to major improvements in estimation accuracy in other preference 

measurement setups (Allenby and Rossi 1999; Rossi and Allenby 2003; Rossi et al. 2005). We 

do so by formulating a Bayesian prior distribution on wi. While any prior distribution may be 

used, the most common in the preference measurement literature is the normal distribution (often 

truncated). Formally, we have: 

                      ),(~];;[ 0 DwTNw iiii λσα=  for CPT; and wi = [βi;ri] ),(~ 0 DwTN for QTD,  

where we truncate the normal distribution to ensure that the parameters remain in an acceptable 

range (for CPT we impose ]2,05.0[∈iα , ]2,05.0[∈iσ , ]10,0[∈iλ ; for QTD we impose 

]2,0[∈iβ and ]05.0,0[∈ir ). Intuitively, the prior distribution effectively shrinks wi towards a 

common vector w0 (the “average” from which everyone deviates). The amount of shrinkage is 

governed by the covariance matrix of the prior distribution, D.4 Using Bayes theorem, the prior 

distribution on wi is combined with the likelihood implied by the logistic probabilities defined 

above to obtain a posterior distribution on wi. Hierarchical Bayes estimation draws values from 

this posterior distribution to produce estimates of the parameters. It is important to note that the 

fact that the prior distribution on wi is normal does not imply that the final estimates will follow a 

normal distribution. Since the prior is combined with the likelihood, the shape of the posterior 

distribution does not necessarily coincide with the shape of the prior distribution. Other priors, 

such as mixtures of normal distributions or highly flexible semiparametric distributions, may be 

used as well (see for example Ansari and Mela 2003; Kim et al. 2004). 

The values of the parameters of the prior distribution on wi, w0 and D, are usually not 

fixed a priori. Hierarchical Bayes allows capturing uncertainty on w0 and D by treating them as 

random variables themselves. A prior distribution is specified on w0 and D by the researcher, and 

a posterior distribution is obtained for these parameters by combining this prior with the data (us-

ing Bayes theorem). In other words, a prior distribution on the parameters of the prior distribu-

tion themselves is formulated, hence the hierarchical nature of the model. The prior on wi is re-

ferred to as the first-stage prior, and the priors on w0 and D as the second-stage priors. The 

                                                 

4The matrix D is a 3x3 matrix for CPT and 2x2 for QTD, and w0 is a 3-dimensional vector for CPT and 2-

dimensional for QTD. 
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second-stage priors are usually selected to be as uninformative as possible, in order to let the 

value of w0 and D be determined primarily by the data (see below).  

As a more general setup, it is possible that the similarities across decision makers be dri-

ven by similarities in covariates that influence the preference model parameters. For example, 

Tanaka et al. (2010) explore the relation between the CPT parameters and various demographic 

variables for Vietnamese villagers. Our model allows us to capture the effect of such covariates 

on the parameters through the prior distribution on wi. In particular, in situations in which a giv-

en set of covariates are thought to influence wi, the prior distribution on wi may be replaced with 

(see for example Allenby and Ginter 1995 or Lenk et al. 1996):  

),.(~];;[ DzTNw iiiii Θ= λσα  for CPT and ),.(~];[ DzTNrw iiii Θ= β for QTD 

where zi is a set of covariates for respondent i (including an intercept), and Θ is a matrix captur-

ing the relationships between these covariates and the mean of the first-stage prior (this matrix is 

estimated) – note again the abuse of notation by using the same symbol Θ for both CPT and 

QTD. Details are provided in Appendix A. For ease of exposition we focus here on the case in 

which covariates are not used. 

2.2 Estimation  

We now combine the likelihood function (capturing the link between value and response proba-

bilities), the first-stage prior (capturing similarities across decision makers), and the second-stage 

prior (prior distribution on the parameters of the first-stage prior) in the following hierarchical 

Bayes model for CPT: 

Likelihood: ∏
+ji iijijijiijijij
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First-stage prior:  ),(~];;[ 0 DwTNw iiii λσα=  

   δ: diffuse (improper) on 
+ℜ  

Second-stage prior:  w0: diffuse (improper) on 
3+ℜ  

D ~ Inverse Wishart(η0,η0.∆0) 

and similarly for QTD, (replacing U, w0, and wi accordingly). With the exception of the specifi-

cation of the likelihood function which is specific to risk and time preferences, the specifications 

of all our distributions are standard in the hierarchical Bayes literature (see for example Rossi 
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and Allenby 2003 or Rossi et al. 2005). We select an inverse Wishart distribution on D because it 

is conjugate with the likelihood function implied by ),(~ 0 DwTNwi , i.e., the posterior distribu-

tion on D is inverse Wishart as well. We use diffuse improper priors on δ and w0 (i.e., the priors 

on these parameters are completely “flat” and do not favor any specific value – see Appendix A 

for details).  

Hierarchical Bayes estimation consists of sampling from the posterior distribution of the 

parameters. The posterior distribution is simply given by Bayes’ rule: 

)().().().,|}({).},{|()|,,},({ 000 δδδ PDPwPDwwPwdataPdataDwwP iii ∝  where 

)},{|( δiwdataP  is given by the likelihood function, ),|}({ 0 DwwP i  is given by the first-stage 

prior, and )(),(),( 0 δPDPwP are the priors on w0, D, and δ respectively. Drawing from this 

posterior distribution is achieved by using a Markov Chain Monte Carlo (MCMC) algorithm. 

Details are provided in Appendix A. MCMC provides a set of values drawn from the posterior 

distribution, which may be used to produce point estimates of the parameters, or to make other 

types of inference. Point estimates, on which our analyses are based, are typically obtained by 

averaging the draws from the MCMC, which approximates the mean of the posterior distribu-

tion. 

3. Dynamic Questionnaire Design  

In the previous section we described a method for estimating the model parameters given choices 

between gambles or delayed payments made by a panel of decision makers. We now propose a 

new methodology for dynamically selecting the pairs of gambles or delayed payments presented 

to each decision maker. We focus on choices between gambles for CPT and delayed payments 

for QTD as often done in the literature (e.g., Fehr and Goette 2007; Tanaka et al. 2010; Tom et 

al. 2007). As noted above, other types of questions (e.g., certainty equivalents) can be dynami-

cally designed in a similar way.5  

 Our approach is based on principles from the experimental design literature (Ford et al. 

1989; Kuhfeld et al. 1994; McFadden 1974; Steinberg and Hunter 1984, and references therein). 

                                                 

5 Note however that in cases in which the response variable is continuous rather than discrete, pre-computing all the 
possible question paths (as we did in our implementation) would not be feasible. However, as the computing time 
required between questions is short, it would still be possible to construct questions in real-time without any notice-
able delay for the respondent. 
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These principles have been used to develop dynamic methodologies for preference elicitation be-

fore, for example for conjoint analysis in Marketing (Abernethy et al. 2008; Sawtooth Software 

1996; Toubia et al. 2003, 2004, 2007). Before describing the method in details, we present and 

explain the main criterion that constitutes the foundations of the method.  

3.1. Questionnaire Design Criterion 

Let us consider a decision maker who has responded to q binary choice questions. Our challenge 

is to construct the (q+1)th question for that decision maker, which in the case of CPT will consist 

of a pair of gambles denoted by ( },,{ )1()1()1(

A

qi

A

qi

A

qi ypx +++ , },,{ )1()1()1(

B

qi

B

qi

B

qi ypx +++ ), and in the case of 

QTD will consist of a pair of delayed payments denoted by ( },{ A

ij

A

ij tx , },{ B

ij

B

ij tx ) (A and B will be 

labeled 1 and 2 after the decision maker’s choice, i.e., the preferred alternative will be relabeled 

as 1). The central idea of our method, used in the rich literature on experimental design, is to de-

sign questionnaires such that the asymptotic covariance matrix of the maximum likelihood esti-

mate (MLE) of the relevant parameters is as “small” as possible, according to some defined 

measure. Intuitively, this ensures that the parameters are elicited with as little uncertainty as 

possible. For example, in the unidimensional case, the covariance matrix is simply the variance 

of that estimate, which governs the confidence interval around the estimate. In the multidimen-

sional case, the covariance matrix governs the size and the shape of the confidence ellipsoid 

around the parameter estimates (Greene 2000).  

 It has been shown (see for example McFadden 1974 and Newey and McFadden 1994) 

that under general conditions, the asymptotic covariance matrix of the MLE is equal to the in-

verse of the Hessian (i.e., second derivative matrix) of the log-likelihood function (taken at the 

maximum likelihood estimate). Therefore, reducing the asymptotic covariance matrix of the 

MLE is achieved by maximizing some norm of the Hessian of the likelihood function. Different 

norms can and have been used, such as the absolute value of the determinant, the absolute value 

of the largest eigenvalue, the trace norm, etc. Given our Bayesian framework, a reasonable de-

sign criterion using the same insight is that each new question should maximize the Hessian of 

the posterior distribution at its mode. The mode of the posterior distribution is also called the 

“maximum a posteriori estimate” (De Groot 1970). Intuitively, maximizing the Hessian of the 

posterior distribution at its mode is likely to decrease the variance of the posterior distribution, 

therefore decreasing our uncertainty on the decision maker’s parameters (Abernethy et al. 
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2008).6  

 In summary, the design criterion behind our method is to construct questions that maxim-

ize the Hessian of the posterior distribution at its mode. Applying this criterion decreases the va-

riance of the posterior distribution on the decision maker’s vector of parameters. We now show 

how we implement this criterion. 

3.2. Technical Details of the Method 

Implementing the design criterion outlined above requires performing the following computa-

tions between the qth and (q+1)th question for each decision maker and for each value of q: (i) 

identify the mode of the posterior distribution (the posterior distribution changes after each new 

question), (ii) identify the question that maximizes a norm of the expected value of the Hessian 

of the posterior at its mode. These computations are efficiently performed as follows: 

(i) Identify the mode of the posterior distribution: Allowing the parameters w0, D and δ to be up-

dated between each question or even between each respondent would result in excessive delays. 

Therefore, our questionnaire design method relies on a prior distribution formed before starting 

to collect the data: )ˆ,ˆ(~ 0 DwNwi
and on a prior point estimate of δ, δ̂ . The parameters 0ŵ , D̂ 

and δ̂ are set before the start of the data collection, and only the posterior of wi 
changes after each 

question. After the end of the data collection, all these parameters are estimated as described in 

the previous section. These initial values could be obtained from a pre-test with a relatively small 

number of respondents (Toubia et al. 2007), from prior beliefs (Huber and Zwerina 1996; Sándor 

and Wedel 2001) or from previous studies (e.g., Wu and Gonzalez 1996 for CPT parameters). 

Note that the prior )ˆ,ˆ( 0 DwN does not have to be informative. Given the assumed prior distribu-

tion, the posterior likelihood on decision maker i’s parameters after q questions is: 
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for CPT, and similarly for QTD . The mode of this posterior may be computed very quickly by 

                                                 

6
One could also consider the Hessian at the mean or other summary statistics of the posterior, which, however, 

would be computationally challenging as estimating the posterior mean requires sampling from the posterior distri-
bution. Using the mode only provides a conservative estimate of the benefits of using the proposed approach, and it 
is our hope that future work will explore variations.  
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maximizing the log of this expression using Newton’s method. Let ˆ
iqw be the mode of the post-

erior based on q questions. 

(ii) Identify the question that maximizes the Hessian: We refer to the set of possible questions as 

“candidate” questions. These questions consist of all possible pairs of gambles or delayed pay-

ments from a candidate set – see below the choices we made in our specific implementation.7 

Candidate pairs of alternatives are evaluated based on their effect on the Hessian of the posterior 

at its mode, and the (q+1)th question is chosen to maximally increase a norm of this Hessian. Fol-

lowing the literature on experimental design, we use the absolute value of the determinant as the 

norm of the Hessian. In the case of CPT the Hessian of the posterior likelihood on decision mak-

er i’s parameters after q questions, computed at ˆ
iqw , is equal to 
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is the probability that 

the decision maker chooses gamble A (computed based on ˆ
iqw ), and 
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qiiq wypxypxhH +++++++ is the value of the Hessian after (q+1) questions 

if gamble A is chosen. The case of QTD is similar, with the appropriate changes in notations and 

definitions. 

In summary, questions are constructed adaptively by performing the following computa-

tions between the qth and the (q+1)th question, for each respondent i and for all values of q:  

                                                 

7 In our implementation we only considered pairs of gambles in which there was no first-order stochastic domin-
ance. 
8 Our approach is consistent with Bayesian Experimental Design (Chaloner and Verdinelli 1995). Our utility func-
tion is the Hessian of the posterior at the mode of the posterior. Our optimization is approximate to the extent that 

we approximate with , and we compute pA and pB based on the point estimate instead 

of the entire posterior after q questions. 
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• Update the value of the mode of the posterior distribution, ˆ
iqw . 

• Out of all candidate questions that have not been shown to that respondent, select the one that 

will maximize the expected value of the determinant of the Hessian of the posterior distribu-

tion evaluated at its mode. 

In order to further reduce delays between questions and simplify the use of DEEP, we 

computed all possible question paths once and created a large contingency table that indicates 

which question should be asked following any possible sequence of previous questions and an-

swers (in our implementation with 16 and 20 questions for CPT and QTD respectively, the num-

ber of rows in the table is 216-1=65,535 and 220-1=1,048,575 , where each row contains a ques-

tion, the question that precedes it in the path, and the answer to that preceding question that 

would lead to the question). During the questionnaire, questions are designed by simply looking 

up the correct values in that table. Our code is available upon request and can be used to generate 

such tables of questions for any setting. 

3.3. Practical Considerations 

When applying the proposed approach in practice, two kinds of initial inputs must be considered  

(i) the set of candidate gambles (for CPT) and delayed payments (for QDT) from which the ques-

tions will be constructed, and (ii) the values of the prior parameters 0ŵ , D̂ and δ̂ . The first set of 

inputs depends on the domain and range of payoffs over which preferences are to be elicited. 

This consideration is a premise to any preference assessment method. The second set of inputs 

involves prior knowledge about typical or plausible parameter values. 

 For the CPT case, in our implementation the candidate set of gambles is a fractional fac-

torial set of gambles, defined on a range of outcomes similar to the one used by Tanaka et al.  

(2010) (with a thousand Vietnamese dong replaced with one US dollar). In particular we used a 

subset of all gambles {x,p,y} where x∈{1,30,40,100,1000}, p∈{0.1,0.3,0.5,0.7,0.9}, y∈{-20,-

15,-10,-5,5,10,30}, with x and y in US dollars. For the QTD case we used a fractional factorial 

set of alternatives (x,t) where 

x∈{5,10,15,20,30,50,80,95,96,97,98,99,100,120,150,245,246,247,248,249,250} and 
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t∈{0,3,7,14,30,60,90}, with x in US dollars and t in days.9 Clearly other values can be used de-

pending on the subjects, the domain over which preferences need to be modeled, and other con-

textual conditions. Regarding the value of the prior parameters, we used values based on the av-

erage values reported in the literature for 0ŵ : ]2.2;8.0;6.0[ˆ
0 =w and ]008.0;8.0[ˆ

0 =w for CPT and 

QTD, respectively, and large diagonal matrices for D̂  (we used ID 100ˆ =  where I is the identity 

matrix). These values make the prior less informative (large D), and make the comparisons with 

the benchmark method in the next section more conservative. Finally we recommend using 1ˆ =δ . 

Recall that these values are used only when designing questions, as these parameters are esti-

mated using hierarchical Bayes once the data have been collected. 

 In summary, the complete DEEP method consists of: a) designing questions dynamically 

using the approach developed in this section; b) based on the answers to the questions, estimating 

the respondents’ parameters using the estimation method reviewed in Section 2. We now discuss 

an online study that compared DEEP to a benchmark adapted from Tanaka et al. (2010). 

4. Online Study 

We tested DEEP using an online study. The purpose of this study was not to conduct a “horse 

race” with all existing parameter estimation methods in the decision analysis literature, which 

can be the subject of another extensive empirical project, but rather to examine whether the esti-

mated parameters using DEEP are consistent with typical values reported in the literature, and to 

compare its estimation accuracy and time efficiency to those of a common methodology that re-

quires comparable task completion time, which we briefly review next.  

4.1. Benchmark 

We compared DEEP to a method adapted from Tanaka et al. (2010), because it provides a 

benchmark for both risk and time preferences, uses an approach that is common in psychology 

and economics, is suitable for online administration, and, as also shown below, requires task 

completion times comparable to DEEP.  

For the CPT case, subjects were shown three lists of gambles (with 14, 14 and 7 gambles 

respectively), identical to Tanaka et al. (2010, Table 2), except that our amounts were in US dol-
                                                 

9 Some of the amounts are very close (e.g., 95, 96, 97, 98, 99, 100) in order to estimate the time preferences of very 
patient subjects more reliably (e.g., someone who would prefer 98 dollars in 3 months over 95 dollars today). 
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lars instead of 1,000 Vietnamese dongs. Each list, presented on a single screen, shows pairs of 

gambles on each row, with the gamble on the right becoming more and more attractive from row 

to row (the gambles on the left are constant in the first two lists and less and less attractive from 

row to row in the third). Subjects are asked to indicate on which row they start preferring the 

gamble on the right, if at all. A screenshot of the second series is provided in Figure B5 in Ap-

pendix B. Such lists asking subjects to identify switching points are often used in practice be-

cause they offer a good compromise of reliability and time efficiency. For example, they are 

more time efficient and easier to implement than bisection methods that require a series of choice 

iterations to elicit one indifference point, and more reliable than asking directly for indifference 

values. The three series were designed by Tanaka et al. (2010) in such a way that the three CPT 

parameters can be directly and uniquely calculated from the three switching points. In particular, 

α and σ are determined jointly from the switching points in the first two lists (see Tanaka et al. 

2010, Table A.1). The loss aversion parameter λ is then determined from the switching point in 

the third list, conditional on the values of the other two parameters elicited from the first two 

lists.  

For QTD, our benchmark again followed Tanaka et al. (2010), using US dollars instead 

of 1000 dongs. In this case subjects were shown 15 series of 5 choices between two delayed 

payment options. In each set one of the options was fixed while the other was changing from 

least to most desirable. An example is shown in Figure B6 in Appendix B. Effectively subjects 

evaluated 75 choices (monotonicity in the subjects’ choices within each set was not enforced).  

Tanaka et al. (2010) do not estimate QTD parameters at the individual level, but instead use non-

linear least squares to estimate a set of aggregate parameters, allowing for the effect of individu-

al-level covariates on the parameters. In order to make the comparison with DEEP cleaner, we 

produced individual-level estimates of the QTD parameters in the Benchmark QTD condition, 

using the same hierarchical Bayes estimation framework as the one used in the DEEP condi-

tion.10 

                                                 
10 Using the estimation method in Tanaka et al. (2010) did not alter our experimental conclusions.  
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4.2. Study Design  

We used an online panel of subjects recruited using Amazon’s Mechanical Turk who were paid  

$2 for their participation, and also could play one of their (randomly selected) choices for real if 

they were randomly selected. Data from this pool has been used to replicate many standard deci-

sion-making studies such as the Asian Disease problem (Paolacci et al. 2010), and have both in-

ter-item and test-retest reliabilities that are equivalent to traditional methods (Buhrmester et al. 

2011). We used a 2 x 2 between-subject design. Subjects were randomly assigned to either a time 

preference measurement condition or a risk preference measurement condition, and to DEEP or 

to the Benchmark method outlined above. For risk preferences (CPT model), we had 137 sub-

jects assigned to DEEP and 133 assigned to the benchmark. For time preferences (QTD model), 

we had 150 subjects assigned to DEEP and 146 to the benchmark.  

All subjects first saw a welcome page with instructions about the tasks, and were asked to 

answer a few simple questions to ensure they understood the subsequent choice questions. For 

example, for the CPT conditions, subjects were shown a gamble, e.g., {$20, 0.7; $5}, and they 

were asked questions such as “What is the maximum amount you could win if you played this 

gamble?” or “Which outcome is most likely?” Subjects who would not answer correctly these 

comprehension questions returned to the instructions page.  

Following these instructions, all subjects were asked to complete an external validity 

task, which we used to assess the estimation accuracy of the two methods. The external validity 

task was administered first, so that it would be untainted by, hence comparable between, the two 

elicitation methods (DEEP and Benchmark).  

The external validity task for CPT consisted of asking the subjects to indicate their wil-

lingness to pay (WTP) for 8 gambles. The gambles for the 8 WTP questions for CPT formed a 

fractional factorial design with x∈{$50,$100,$500,$1000}, p∈{0.05,0.4,0.6,0.8} and y∈{-$20,-

$10,$5,$20}. The set was chosen such that all gambles had an expected value ranging from $15 

to $80. The list and an example of these WTP questions are shown in Table B1 and Figure B1 

respectively, in Appendix B.  

The external validity task for QTD consisted of 8 questions asking the subjects to specify 

the amount of money that would make them indifferent between a smaller-sooner reward and a 

larger-later reward. The format of the task was similar to that in Benhabib et al. (2010). Each 

subject was asked 4 acceleration questions (eliciting the amount of money y that would make the 
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subject indifferent between receiving x in t days and y today) followed by 4 delay questions (eli-

citing the amount of money y that would make the subject indifferent between receiving x today 

and y in t days). For each subject and in each block, the 4 time-$amount combinations (x,t) were 

drawn randomly without replacement from the 9 possible combinations obtained by crossing 

($10,$30,$100) with (3 days,30 days,180 days). An example is shown in Figure B2 in Appendix 

B.  

In the CPT conditions we removed all subjects who provided any WTP in the external 

validity task that was either zero for a gamble that only had positive outcomes, or was higher 

than the maximum amount in the gamble. We were left with 125 subjects for DEEP and 128 for 

the benchmark. No subjects were removed in the QTD conditions, to allow for the possibility 

that some subjects may have a preference for longer delays, a phenomenon known as negative 

time preference (Loewenstein and Prelec 1991) or future-bias (Ashraf et al. 2006; Meier and 

Sprenger 2010). After subjects completed the external validity questions they either completed 

the DEEP or the Benchmark elicitation task for CPT or QTD. For the elicitation of CPT parame-

ters, DEEP asked 16 questions designed according to the proposed adaptive method. A screen-

shot of one such question is shown in Figure B3 in Appendix B. For QTD, DEEP asked 20 ques-

tions designed according to the proposed adaptive method. A screenshot of one such question is 

shown in Figure B4 in Appendix B.  

In summary, our final data come from the following 4 conditions:  

Condition 1 (DEEP CPT, N=125): 8 WTP questions (external validity task) followed by 16 

DEEP CPT questions; 

Condition 2 (Benchmark CPT, N=128): 8 WTP questions (external validity task) followed by 

the 3 lists of 14, 14 and 7 gambles from the benchmark CPT method; 

Condition 3 (DEEP QTD, N=150): 8 indifference questions (external validity task) followed 

by 20 DEEP QTD questions; 

Condition 4 (Benchmark QTD, N=146): 8 indifference questions (external validity task) fol-

lowed by 15 sets of 5 choices from the benchmark QTD method. 

 For incentive compatibility, we followed a standard practice in the literature: the subjects 

were informed at the beginning and reminded throughout the survey that one in every 100 partic-

ipants would be selected at random and receive an alternative based on the preferences that he or 

she indicated during the survey. For those selected, one of the questions answered would be se-
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lected randomly and the option chosen would be delivered (see Starmer and Sugden 1991 for a 

treatment of this random lottery procedure). 

Adaptive questionnaires raise issues with incentive compatibility, as subjects may poten-

tially misrepresent their true preferences early in the questionnaire in order to induce more favor-

able future questions (Harrison 1986). As noted by Wang et al. (2010), this concern may be more 

theoretical than empirical, especially if no information is provided to subjects about how ques-

tions are constructed. Some solutions to this problem have been proposed by these authors and 

others. For example, payoffs may be determined based on one question selected ex-ante out of 

all possible questions (unbeknownst to the subjects). If this question was not part of a subject’s 

questionnaire, it would be asked at the end of the questionnaire. Another possible solution is to 

infer the subjects’ responses to such preselected questions based on their responses to the ques-

tionnaire. This latter approach was used and validated in the marketing literature by Ding (2007). 

Designing incentive compatible studies for adaptive questionnaires is a subject of ongoing re-

search, beyond the scope of this paper.  

4.3 Experimental Results 

4.3.1 Face Validity and Completion Times 

Table 1 reports the means and standard deviations of the estimated CPT parameter values across 

all subjects for the DEEP and the Benchmark conditions. Histograms of the parameter distribu-

tions are shown in Figure 1. The estimated CPT parameters are generally consistent with those 

obtained by others (e.g., Tversky and Kahneman 1992; Wu and Gonzalez 1996), providing face 

validity for the proposed methodology. Our estimates are also reasonably close to those from the 

study by Tanaka et al.  (2010), one of the few studies that assessed both risk and time prefe-

rences. Tanaka et al. (2010) obtained α around 0.74 and σ around 0.61. A replication of their ex-

periment with Chinese farmers, by Liu (2008), obtained average estimated values of 0.69 and 

0.48, respectively. Our average estimates of λ  are also within the range of 1.42 to 4.8 reported in 

other studies (see for example Abdellaoui et al. 2007 for details), and are similar to both the titra-

tor and pricing results of Gaechter et al (2011).  

Comparing DEEP to the Benchmark, the differences in the average probability weighting 

and loss aversion parameters between the two methods are significant (p < 0.01), while the dif-
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ference in the average value function curvature parameter is not. In particular, the Benchmark 

condition generates higher loss aversion estimates, while DEEP estimates are closer to the typi-

cal values often observed (around 2). Moreover, the individual parameter estimates obtained by 

the Benchmark method are more spread out (much more for λ) than those obtained by the DEEP 

method, as evidenced by the larger standard deviations in Table 1 and the histograms of the es-

timated parameters in Figure 1. Note that differences in the ranges across methods are not inhe-

rent to the questionnaire design or estimation methods. The ranges of possible parameter esti-

mates are indeed similar for DEEP vs. the Benchmark. Finally, our estimate of δ (the response 

error parameter in our method) for DEEP is 0.918. 

 

[INSERT TABLE 1 AND FIGURE 1 ABOUT HERE] 

 

We also report the correlation coefficients between the CPT parameters estimated by the 

DEEP method. 11 The correlation between σ and λ is negative and statistically significant (ρ=-

0.674, p < .01); that between α and σ is also negative and significant, but small (ρ=-0.215, p < 

0.02); that between α and λ is not significant (ρ=0.045). The correlation between σ and λ indi-

cates that individuals with higher σ (value function closer to linear) tend to have lower loss aver-

sion, that is, their value function tends to be uniformly straighter across both the loss and the gain 

domains. This is consistent with the speculation that some people use more rational strategies 

that might affect both parameters of the value function (Hsee and Rottenstreich 2004). In CPT, 

an individual’s risk attitude is jointly determined by the degree of value function curvature and 

the degree of probability weighting. The significant, but small negative correlation between σ 

and α indicates that more curvature in an individual’s value function (lower σ) tends to be asso-

ciated with less probability transformation (higher α). In other words, this suggests that risk atti-

tude tends to be carried more strongly by probability weighting for some individuals, while dri-

ven by non-linear valuation of outcomes for others. In a recent study, Qiu and Steiger (2011) 

found no significant correlation between probability weighting and value function curvature in 

the gain domain. They inferred from this that it is necessary to have both in order to adequately 

                                                 

11 None of the correlations between the CPT parameters estimated by the Benchmark method is significant at the 

p<0.05 level. 
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capture individuals’ risk attitudes. Although our results are different, the small correlation also 

supports the idea that both elements may be needed to capture the variety of individuals’ risk 

preference types.  

The results for the time preference conditions are reported in Table 2. Our time prefe-

rence estimates are in the range obtained from incentive compatible field studies that estimated 

QTD preferences (Ashraf et al. 2006; Meier and Sprenger 2009; Meier and Sprenger 2010). The 

average discount rate in the DEEP (respectively, Benchmark) condition is equivalent to a 

monthly discount factor of 0.808 (respectively, 0.895). The mean values of the present bias pa-

rameter for DEEP and the Benchmark method are very close, but the estimated discount rate 

from DEEP is higher than that of the Benchmark method (this difference is significant, p < .01). 

In addition, we observe a strong negative correlation between β and r in both the DEEP and 

Benchmark estimates, -0.696 and -0.613, respectively (both p < .01), that is, stronger present-

bias (lower β) is associated with higher discounting of the future. Similar correlations between 

discount rates and present bias have been reported elsewhere (Meier and Sprenger 2009). Final-

ly, our estimate of δ for DEEP is 1.045.  

 

[INSERT TABLE 2 ABOUT HERE] 

 

We also report the average time it took subjects to complete the main task, that is, either 

the DEEP or Benchmark elicitation task for each of the 4 conditions (excluding the external va-

lidity task and the brief introductory task, which were identical for the DEEP and Benchmark 

conditions). These results are summarized in Table 3. For the elicitation of risk preferences, the 

DEEP method and the Benchmark method take about the same time on average (the difference in 

means or medians is not significant). For the elicitation of time preferences, DEEP takes signifi-

cantly less time than the Benchmark method. This difference is significant whether the compari-

son is done on means or medians (p < .01). 

From the subjects’ standpoint, the DEEP method is relatively easy: a few one-shot choice 

questions (appropriately designed for maximum informativeness). Completion time is often a 

concern in designing preference assessment experiments, because lengthy questionnaires may 

cause subjects’ responses to become unreliable due to boredom or fatigue, and/or may reduce 

completion rates (Deutskens et al. 2004; Galesic and Bosnjak 2009). The fast completion time 
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offered by DEEP is an attractive feature, particularly for deployment in field studies or on-line 

surveys, where subjects are not as “captive” as in a lab.  

Finally, we note that, as expected, there were no differences between the durations of the 

external validity task for the two CPT conditions, nor for the two QTD conditions.  All took 

about 2 minutes. 

 

[INSERT TABLE 3 ABOUT HERE] 

4.3.2 External Validity Task: Prediction Accuracy 

We now compare DEEP and the Benchmark method on their performance in predicting subjects’ 

responses to the external validity task questions. Based on each subject’s estimated preference 

model parameters, we can calculate predicted responses to the external validity questions for this 

subject and compare them to the subject’s actual responses. For the CPT conditions we calculate 

predicted WTP by assuming segregation of the stated payment from the gamble (Thaler 1985). 

That is, we calculate the WTP such that the disutility of the payment is compensated by the utili-

ty of the gamble, according to the CPT model. There is experimental evidence in support of se-

gregation, that is, subjects do not formulate their WTP by mentally subtracting a buying price 

from the gamble’s outcomes and evaluating the gamble net of the price (Casey and Delquié 

1995). In the QTD conditions, we calculate the dollar amount that would achieve indifference 

between the two options, i.e., equate their utilities, according to each subject’s estimated QTD 

parameters. 

For each subject we computed the Mean Absolute Deviation (MAD) as well as the Root 

Mean Square Error (RMSE) between the predicted and the elicited responses across the 8 exter-

nal validity questions. We then computed the median of these values across the subjects and 

compared DEEP with the Benchmark both for CPT and for QTD.12 The results are shown in Ta-

ble 4. DEEP produces significantly more accurate predictions compared to the Benchmark me-

thod for CPT. For QTD, there is no difference between the prediction accuracy of DEEP and 

                                                 

12 We use medians for comparison because the estimated WTP for a few subjects in Condition 2 (CPT, benchmark) 
are extremely large – and unrealistic – thus grossly inflating the mean. Huge predicted WTP values result from a 
few subjects in Condition 2 (CPT, Benchmark) having extremely small σ (the value function parameter) and very 
low λ (the loss aversion parameter). 
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Benchmark. Note however, that for QTD the benchmark method asked many more questions 

(presenting 75 choices) and took significantly more time to complete.  

 

[INSERT TABLE 4 ABOUT HERE] 

4.3.3 Summary of Results 

We conducted an online survey involving more than 500 subjects to compare the proposed 

DEEP method of preference elicitation with a Benchmark method. The DEEP method produced 

parameter estimates that are commensurate with previous findings. The risk preference (CPT) 

and time preference (QTP) parameters obtained from DEEP and the Benchmark are different, but 

all are in the ranges identified in the literature. DEEP leads to better out-of-sample predictive ac-

curacy for equal time efficiency on the CPT model, and equal predictive accuracy with greater 

time efficiency on the QTD model.  

5. Discussion 

There is a growing interest in relating behavioral decision theories to real world decisions in 

areas such as consumer finance (e.g., credit, retirement savings, investment, insurance), and 

health (e.g., nutrition, exercising, substance abuse, medical testing). Success in establishing such 

links will be highly dependent on our ability to develop time efficient and accurate methods to 

measure the behavioral characteristics of economic agents. The proposed methodology has been 

already used in several such studies, allowing us to further assess its efficiency (time completion 

as well as face validity of the estimated parameters) in practice and among different subject pop-

ulations. We briefly review three such studies first, and then discuss opportunities for future re-

search.  

5.1 Case Studies Using DEEP 

We report in Table 5 the mean, median, and standard deviation of the completion times, from 

three studies that used the proposed methodology. In all studies completion times were compara-

ble to the ones of our online study above, even though quite different populations were used. In 

addition to the time necessary to complete the assessment task, both time and risk preference eli-

citations were preceded by a short introduction to the questions, and a test of understanding of 
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basic concepts. The median time required to complete the instructions and the elicitation task 

ranged from 1.5 minutes to 4.1 minutes across studies. Moreover, in all studies the estimated 

CPT and QTD parameters were generally consistent with those obtained by others (e.g., Tanaka 

et al. 2010; Tversky and Kahneman 1992; Wu and Gonzalez 1996), providing further evidence 

for the face validity of the proposed methodology.  

[INSERT TABLE 5 ABOUT HERE] 

The first study (Johnson et al. 2010) examined the mortgage decisions of an online panel 

of 244 homeowners whose average age was 39.6. The purpose of that study was to compare the 

risk and time preferences of homeowners who owed more on their mortgage than the value of the 

property to those who did not. A standard titration methodology was also used in that study as a 

benchmark. An important finding of that study was that, while the standard titration methodolo-

gy did not reveal any differences between these two kinds of  homeowners, DEEP found that 

those who had negative equity had significantly larger discount rates r as well as present bias 

(smaller β). This is consistent with the idea that present bias overweighs the immediate value of 

home possession, and that high discount rates lead to underestimating the longer-run difficulty of 

meeting payments. These results are consistent with results in other areas of credit (Ashraf et al. 

2006; Meier and Sprenger 2009; Meier and Sprenger 2010), providing further face validity to the 

proposed methodology, and also indicating the potential of DEEP to uncover empirical findings 

that other methods (e.g., the titration one also used in that study) might not.  

A second study (Appelt et al. 2011) examined when potential retirees would start claim-

ing Social security benefits. The subjects to this online survey were older (mean age = 60.2), and 

had lower household incomes (median about $35,000, below the US median), yet completed 

both DEEP time and DEEP risk within comparable completion times as in the other studies. The 

decision to retire earlier for a reduced payment or to retire later for a greater payment is a classic 

intertemporal choice between lower benefits now and larger benefits later. The authors found 

that the present-bias parameter (β) was related to the decision to claim earlier at a reduced 

monthly payment, but only for those who currently faced the decision, that is, those for whom 

retirement was a “now” option.  

A third study (Carney et al. 2011) used estimates provided by the DEEP method to relate 

measures of current and prenatal hormone levels to risk and time preferences (see Sapienza et al. 
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2009; Stanton et al. 2011 for related discussions). The subjects were MBA students. Interesting-

ly, while the median completion time was similar to the other studies, there was a group of stu-

dents who had much longer response times. Self-reports from these MBA students suggested that 

they were calculating expected value and discounted utility for the DEEP questions. The authors 

find for example that among male subjects, lower 2D:4D ratio (ratio of the lengths of the second 

and fourth fingers – a lower ratio is a measure of higher exposure to testosterone in the uterus) is 

associated with lower values of λ and higher values of σ. 

These three case studies demonstrate that the DEEP methodology can be applied to many 

populations to produce estimates of time and risk preferences. But, like any method, it has its ad-

vantages and disadvantages. While it can have some startup costs, such as building the table of 

all possible question paths (in new applications) and estimation, these costs are invisible from the 

subjects’ perspective. It seems quite practical for inclusion in online surveys that might involve a 

large number of subjects. However, in situations where there are few subjects, or where subjects 

may be available for extended elicitation processes, such as in laboratory settings, other methods 

might be preferred. As illustrated in these case studies, DEEP does suggest that preference elici-

tation of relatively complex behavioral models, like Cumulative Prospect Theory, and Quasi-

Hyperbolic discounting can now be included in unattended online research. 

5.2 Discussion and Future Work 

We proposed a novel methodology for estimating parameters of decision models such as CPT 

and QTD. The method augments traditional approaches to preference elicitation in decision 

analysis and bridges the preference measurement literature in marketing with the preference as-

sessment literature in decision theory. The proposed methodology dynamically (i.e., adaptively) 

optimizes the sequence of questions presented to each subject while modeling response error and 

leveraging the distribution of the parameters across individuals (heterogeneity). The parameters 

are estimated using hierarchical Bayes.  

In our online study comparing the proposed method to a standard approach used in the li-

terature, the proposed method either performed significantly better on out-of-sample predictions 

(for CPT) or took significantly less time to complete (for QTD). This study, as well three other 

studies that have used the proposed method, also suggest that the parameters estimated using 

DEEP have good face validity. The three other studies briefly reviewed also illustrate how the 
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proposed method may enable researchers to uncover relations between time and risk preferences 

and other covariates or behaviors. Moreover, the proposed methodology can be deployed by re-

searchers easily with the use of an automatically pre-computed table of question paths, as done in 

our online implementation. 

While our online study as well as the other studies reviewed here indicate the benefits of 

the DEEP methodology, a lot needs to be done to better understand its potential strengths and 

weaknesses. We close by briefly discussing some issues whose study may both shed light to the 

limitations of the proposed methodology as well as lead to potential improvements.  

Traditionally, the appeal of adaptive methods has been statistical efficiency and minimi-

zation of potentially expensive subjects’ time, making studies of large or online populations 

practically more feasible. However there are reasons to suspect that adaptive methods are attrac-

tive because of other specific characteristics. First, by limiting the number of questions that are 

posed to the subject, adaptive methods may minimize the cognitive resources required to assess 

preferences. The possibility that resource depletion occurs with an increased number of questions 

seems likely (Vohs et al. 2008), and recent evidence suggests that some context effects, such as 

selection of a default option, increase with depletion (Levav et al. 2010). Thus by focusing atten-

tion on questions that are most (statistically) informative, adaptive methods might produce esti-

mates that are less contaminated by context effects in addition to being less influenced by the 

random error produced by fatigue. Testing this and potentially improving DEEP is a possible re-

search direction. 

A second possible advantage of adaptive methods is that they focus more quickly on the 

set of questions that are most relevant to portraying the decision maker’s preferences. While the 

algorithm is designed to decrease our uncertainty on the decision maker’s preference parameters, 

from the decision maker’s perspective it may be seen as eliminating less relevant questions. This 

may also limit the possibility of range effects due to irrelevant extreme values that might be pre-

sented to the decision maker.  

Finally, as we have mentioned we have focused on the estimation of parameters for spe-

cific models, namely CPT and QTD, but the proposed approach can be applied to any preference 

model, potentially also with modified probability distributions and specific question design crite-

ria. The present results suggest that it would be important to further explore the potential of the 

proposed methodology in a broader range of behavioral decision making studies. 
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Tables and Figures 

 

                        Parameter           

           CPT 
             DEEP method 

             N=125 

CPT 
Benchmark method 

  N=128 

Probability Weighting (α) 
Mean 

Median 

St dev 
 

 
0.526 

0.534 

0.151 
 

 
0.655 

0.600 

0.336 
 

Value Function (σ) 
Mean 

Median 

St dev 
 

 

0.473 

0.458 

0.162 
 

 
0.521 

0.500 

0.387 
 

Loss Aversion (λ) 
Mean 

Median 

St dev 
 

 
1.682 

1.775 

0.688 
 

 
4.639 

2.967 

4.141 
 

Table 1: Parameter estimates for DEEP and Benchmark, CPT conditions. 

 

 

 

 

Parameter 

QTD 
DEEP method 

N=150 

QTD 
Benchmark method 

N=146 

Present Bias (β) 
Mean 

Median 

St dev 
 

 
0.974 

1.038 

0.194 
 

 
0.962 

0.979 

0.242 
 

Discount Rate (r) 
Mean 

Median 

St dev 
 

 
0.0071 

0.0041 

0.0071 
 

 
0.0037 

0.0036 

0.0021 
 

Table 2: Parameter estimates for DEEP and Benchmark, QTD conditions. 
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Risk Preferences (CPT model) Time Preferences (QTD model) 

DEEP 
N=125 

Benchmark 
N=128 

DEEP  
N=150 

Benchmark 
N=146 

Mean 2.95 3.26 2.42 4.04 

Median 2.78 2.83 2.07 3.52 

St Dev 1.22 1.76 2.21 2.06 

Table 3: Completion time (in minutes) for each of the four conditions. Bold indicates signifi-

cantly shorter time at p<.05. 

 

 
Risk Preferences (CPT) Time Preferences (QTD) 

DEEP  
N=125 

Benchmark  
N=128 

DEEP  
N=150 

Benchmark  
N=146 

Median of MAD 8.40 12.83 17.31 17.43 

Median of RMSE 11.60 15.21 23.10 23.28 

Table 4: Mean Absolute Deviation (MAD) and Root Mean Square Error (RMSE) between the 

predicted and the observed responses across the 8 external validity questions. Bold indicates sig-

nificantly better at p<.05. 

 

 

Table 5:  Summary of completion times (in minutes) for the 3 reviewed studies that used DEEP.  

 
 

  Mortgage Choice 

N=246 

Social Security  

N=414 

Hormone Levels 

N=173 

CPT 

Mean 2.86 4.61 7.42 

Median  2.32 3.57 3.54 

St Dev 2.59 5.45 18.12 

QTD 

Mean 1.94 2.93 3.27 

Median  1.52 2.47 1.86 

St Dev 1.65 1.86 13.33 
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Figure 1: Distribution of the parameter estimates. Left column is for DEEP, right is for Bench-
mark. First row is α, second is σ, third is λ, fourth is β, fifth is r. Note that the range of possible 
parameter estimates are similar for DEEP and for the Benchmark, and the axes of the figures on 
the left match the axes of the corresponding figures on the right. 
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Appendix A: MCMC algorithm for estimating the CPT and QTD 

parameters 

We consider here the more general setup that allows capturing the effect of covariates on the pa-

rameters through the prior distribution on wi. In particular, we consider the following prior dis-

tribution on wi (see for example Allenby and Ginter 1995 or Lenk et al. 1996):  

wi=[αi;σi;λi]~TN(Θzi,D)for CPT and wi=[βi;ri]~TN(Θzi,D)for QTD 

where zi is a set of covariates for subject i (including an intercept), and Θ is a matrix capturing 

the relationship between these covariates and the mean of the first-stage prior (this matrix is es-

timated) – note again the abuse of notation by using the same symbol Θ for both CPT and QTD. 

For example, if the covariates are age (in years) and gender (binary equal to 1 for male and 0 for 

female) then for CPT the 3x3 dimensional matrix Θ is

3,32,31,3

3,22,21,2

3,12,11,1

θθθ

θθθ

θθθ

=Θ  where θ1,1, θ2,1, θ3,1 

are the intercept parameters for α, σ and λ respectively, θ1,2, θ2,2, θ3,2 capture the effect of age on 

the parameters α, σ and λ respectively, and θ1,3, θ2,3, θ3,3 capture the effect of gender on the para-

meters α, σ and λ respectively. In this case the second-stage prior is defined on Θ and D instead 

of w0 and D. This specification allows us to capture the effects of covariates on the parameters 

directly, in an integrated model estimated in one step, instead of using a two-step approach of es-

timating the parameters first and then regressing them on covariates. Note that the case without 

covariates is a special case of this formulation, in which the covariates are limited to an intercept 

(the vector w0 corresponds to the first column of Θ). Therefore we describe below the estimation 

procedure with covariates, as it nests the formulation without covariates. In our experiment, we 

did not use any covariate in order to make the comparison with the benchmark cleaner. 

 MCMC draws successively each parameter from its posterior distribution conditioning on 

the data and the other parameters. Each parameter is drawn once in each iteration. The resulting 

Markov Chain has the posterior distribution as its equilibrium distribution. For time preferences, 

we use 10,000 iterations as “burn-in” (i.e., these iterations allow the Markov chain to converge to 

its equilibrium distribution and are not saved), followed by 40,000 iterations in which one itera-

tion is saved every 10 iterations. For risk preferences, we use 50,000 iterattions as burn-in fol-

lowed by 50,000 more iterations (convergence tends to be slower). The outcome is a set of draws 
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from the posterior distribution. We now describe how each parameter is updated at each itera-

tion. 

• Update of D: this matrix is drawn directly from its conditional posterior distribution: 
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ii wwwwIIWdatarestDP ηη where IW is the inverse Wi-

shart distribution. We use typical parameter values for the inverse Wishart prior on D: 

η0=p+3 and ∆0=0.1I for CPT and ∆0=
0001.00

01.0
 for QTD (to account for the fact that the 

second parameter is on a smaller scale compared to the others) where p is the number of pa-
rameters in the model (p=3 for CPT and p=2 for QDT). 

 

• Update of {wi}: we use a Metropolis Hastings algorithm, with a normal random walk 

proposal density (with a jump size adapted to keep the acceptance ratio around 30%). 

Constraints on the parameters are enforced with rejection sampling (Allenby et al. 1995). 

For each wi, the acceptance ratio is obtained from: 
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            for CPT, where we replace U appropriately for the QTD case.   
 

• Update of Θ: this matrix is drawn directly from its conditional posterior distribution: 

  )),()((~),|)(( 1
VWVecDZVNdatarestVecP

T −⊗Θ  

where 11 ))(( −−⊗= DZZV
T , Z is the matrix of covariates zi’s (one row per decision mak-

er), W is the matrix of wi’s (one row per decision maker), Vec(X) is the column vector ob-

tained by stacking the columns of a matrix X, and ⊗is the Kronecker product. 

• Update of δ: we use a Metropolis Hastings algorithm, with a normal random walk pro-

posal density (with variance 0.001). The acceptance ratio is obtained from: 
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 where we replace again U appropriate-

ly for the QTD case.  

Finally, note that the CPT and QTD parameters need not be estimated separately. These 

parameters may be estimated jointly, thereby relaxing the assumption of linear value in QTD 

(see for example Andersen et al. 2008). This joint estimation may be performed using a single 

hierarchical Bayes model such as the following: 
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Likelihood: 
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 41

Appendix B  

 

Gamble Outcome 1($) Probability 1 Outcome 2 ($) Probability 2 

1 500 0.05 -10 0.95 

2 50 0.8 20 0.2 

3 100 0.6 5 0.4 

4 50 0.4 20 0.6 

5 1000 0.05 5 0.95 

6 100 0.4 -10 0.6 

7 100 0.8 -20 0.2 

8 50 0.6 -20 0.4 

Table B1: The 8 gambles used in the external validity task for CPT. 

 

 

 

 

Figure B1: Example of external validity task question for CPT. 
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Figure B2: Example of external validity task question for QTD. 

 

 

 

 

 

Figure B3: Example of DEEP question for CPT. 
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Figure B4: Example of DEEP question for QTD. 

 

 

Figure B5: Example of benchmark question for CPT. 
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Figure B6: Example of benchmark question for QTD. 

 


