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ystemic risk refers to the risk of collapse of an entire complex system as a result of the actions taken by the

individual component entities or agents that comprise the system. Systemic risk is an issue of great concern
in modern financial markets as well as, more broadly, in the management of complex business and engineering
systems. We propose an axiomatic framework for the measurement and management of systemic risk based on
the simultaneous analysis of outcomes across agents in the system and over scenarios of nature. Our framework
defines a broad class of systemic risk measures that accomodate a rich set of regulatory preferences. This
general class of systemic risk measures captures many specific measures of systemic risk that have recently been
proposed as special cases and highlights their implicit assumptions. Moreover, the systemic risk measures that
satisfy our conditions yield decentralized decompositions; i.e., the systemic risk can be decomposed into risk
due to individual agents. Furthermore, one can associate a shadow price for systemic risk to each agent that
correctly accounts for the externalities of the agent’s individual decision making on the entire system.

Key words: systemic risk; risk measures; contagion; risk attribution
History: Received August 4, 2011; accepted May 21, 2012, by Gérard P. Cachon, stochastic models and
simulation. Published online in Articles in Advance January 28, 2013.

1. Introduction

The measurement and management of systemic risk
is of fundamental importance in many business and
engineering domains. The manager of a diversified
firm has to assess and control the collective risk of all
individual divisions or business units. The manager
of a supply chain network is interested in the over-
all risk associated with a complex network of sup-
pliers and subcontractors. The manager of an electric
power distribution network is interested in the aggre-
gate risk of the generating stations, transmission facil-
ities, and other entities in the network. As highlighted
by the financial crisis of 2007-2008, one example of
particular interest is the measurement and regulation
of systemic risk of an economy or a financial market.
Although our methods are general and we seek to
develop an understanding of systemic risk manage-
ment broadly, in this paper, we focus on this last case
and use the language of financial markets to present
our work.

Fundamentally, the study of systemic risk in a
financial market involves the simultaneous analysis
of outcomes across all entities (firms) in the economy.
On the other hand, much of the academic literature
on the theoretical foundations for the measurement
and estimation of risk, as well as the main regulatory
standards for risk, have been focused on the study
of individual firms in isolation. We seek to bridge
this gap by developing an axiomatic framework for a
broad class of systemic risk measures.
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Specifically, we are interested in an approach to sys-
temic risk that is based on the analysis of the joint
distribution of profits and losses across all firms in
the economy and states of nature. We consider sys-
temic risk from the perspective of a regulator, who
wishes to express a preference over sets of possi-
ble distributions of outcomes for the entire economy.
One approach to defining a systemic risk measure
is to apply a traditional, single-firm risk measure
such as value-at-risk or conditional value-at-risk to
the distribution of the total profits and losses for all
firms in the economy (e.g., Adrian and Brunnermeier
2009, Acharya et al. 2010b, Tarashev et al. 2010). This
approach treats the entire economy as a portfolio con-
sisting of the constituent firms and the regulator as
a portfolio manager. However, the portfolio approach
suffers from a number of modeling shortcomings.
It implicitly allows the netting of profits and losses
across the portfolio components. This is reasonable
from the perspective of the manager of an investment
portfolio. However, such netting may be undesirable
from the perspective of a systemic regulator who,
typically, is not able to directly cross-subsidize dif-
ferent firms with distinct ownership interests. More-
over, by considering only the total outcome, the
portfolio approach lacks the modeling flexibility to
accommodate preferences over the cross-sectional dis-
tribution of outcomes in an economy. For example,
the regulator may have views on whether it is prefer-
able for a single firm to have a large loss or many
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firms to have small losses, or whether profits at one
firm can subsidize losses at another.

Motivated by these concerns, we define a broad
class of systemic risk measures that can accommodate
a rich set of regulatory preferences. The main contri-
butions of this paper are as follows:

1. We define an axiomatic framework defining
systemic risk and establish an associated structural
decomposition. Our work parallels the axiomatic
approach to single-firm risk measures introduced by
Artzner et al. (1999). Schied (2006) provides a very
good survey of the extensive literature on coherent
and convex risk measures for a single firm. Unlike
the single-firm case, however, we consider a system
or economy that consists of multiple components or
firms. Systemic risk is then defined as a functional on
the joint distribution of outcomes across firms in an
economy and scenarios (states of nature) that satisfy
a set of axioms. Although we impose many axioms
developed originally for single-firm risk measures to
systemic risk measures to address similar concerns,
we introduce two new axioms that are new. In par-
ticular, as in the case of coherent risk measures for
a single firm, we assume the monotonicity and posi-
tive homogeneity of systemic risk. Besides the usual
notion of convexity, we introduce a new risk con-
vexity concept for situations where outcomes are not
directly combined. Additionally, we assume a pref-
erence consistency condition that relates to the inter-
actions between different firms across scenarios. The
latter condition is novel and fundamentally specific to
systemic risk; it has no analog among the typical con-
ditions for single-firm risk measures, and it becomes
trivial if the economy consists of a single firm.

We demonstrate that any systemic risk measure sat-
isfying our definition can be characterized by two
independent components: (1) an aggregation function
that expresses a preference over the cross-sectional
profile of outcomes across firms in a single scenario;
and (2) a base risk measure, similar to existing single-
firm risk measures, that expresses a preference over
the profile of aggregated outcomes across scenarios
of nature. This structural decomposition provides a
clear structural characterization of systemic risk, and
suggests a well-defined procedure to construct such
risk measures by choosing constituent aggregation
functions and base risk measures. This decomposition
highlights the power of the preference consistency
condition.

Our framework includes many recently proposed
systemic risk measures as special cases. For exam-
ple, a number of authors analyze systemic risk by
applying single-firm risk measures to a portfolio con-
sisting of all firms in the economy (e.g., Gauthier et al.
2010, Tarashev et al. 2010). The “systemic expected
shortfall” risk measure of Acharya et al. (2010b)

employs a portfolio approach, with an expected short-
fall base risk measure. An alternative reduced-form
approach to systemic risk involves considering the
price of deposit insurance or other credit insurance
(e.g., Lehar 2005, Huang et al. 2009). Giesecke and
Kim (2011) consider a risk measure defined through
the fraction of failed firms in the economy. The gen-
eral framework in this paper subsumes a number of
these approaches. In §2, we illustrate how portfolio-
based approaches to systemic risk measures such as
the systemic expected shortfall or deposit insurance
can be modeled as special cases in our framework.
However, our framework provides greater flexibil-
ity in modeling systemic risk, allowing, for example,
complex nonlinear interactions between firms.

2. We establish a dual representation for systemic
risk, that allows attribution of risk to individual
agents. We show that any systemic risk measure can
be expressed as the worst-case expected loss over a
family of distributions over scenarios of nature and
the cross-sectional profiles of firms, a generalization
of the dual representation for single-firm coherent risk
measures (Artzner et al. 1999). In many cases, this
representation provides operational benefits by per-
mitting decentralized computation of systemic risk by
the firms in the economy. Moreover, we show that the
dual variables are, in fact, shadow prices for systemic
risk: they represent the marginal increase in systemic
risk as a function of a marginal increase in the loss of
a particular firm in a particular scenario.

In our setting, the dual representation provides a
mechanism for risk attribution. The total systemic
risk can always be apportioned across the constituent
firms in a way that satisfies a “no-undercut” condi-
tion: the systemic risk allocated to any subset of the
firms is no more than the systemic risk those firms
would face as a stand-alone economy. Our alloca-
tion rule is a generalization of the Aumann-Shapley
prices for fair allocation of costs or the Euler allocation
rule for allocating the capital requirements of a port-
folio across constituent subportfolios (Denault 2001,
Buch and Dorfleitner 2008). Similarly, the “marginal
expected shortfall” risk attribution of Acharya et al.
(2010Db) is a special case of our attribution rule.

We show that the risk attribution can properly
account for the externalities imposed on the system
when making decisions involving risk. Specifically,
through a decentralized taxation scheme, the objec-
tive of the regulator can be aligned with the incen-
tives of individual firms. Here, each individual firm
maximizes the difference between its individual util-
ity function and a tax payment that is derived from
the firm’s contribution to the systemic risk.

3. Our methodology extends to a general class of
risk measures. The structural decomposition of a sys-
temic risk function into an aggregation function and
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a base risk measure follows from the preference con-
sistency condition and, therefore, can be extended
to broader classes of risk measures. In §5, we con-
sider homogeneous systemic risk measures. These are
systemic risk measures that are positively homoge-
neous and monotonic, but not necessarily convex.
One example of such a risk measure is that of Adrian
and Brunnermeier (2009), who define a risk mea-
sure based on the value-at-risk of the economy-wide
portfolio. We show that homogeneous systemic risk
measures that satisfy preference consistency can be
decomposed into a single-firm homogeneous base
risk measure and a homogeneous aggregation func-
tion. We describe a risk attribution scheme for a spe-
cial class of piecewise linear homogeneous systemic
risk measures that is a generalization of Aumann-—
Shapley prices. Similarly, a convex, monotonic, but
not necessarily positively homogeneous, systemic risk
measure that satisfies preference consistency can also
be decomposed into a convex monotonic single-firm
risk measure and a convex monotonic aggregation
function.

Other authors have sought to model the structural
mechanisms of interaction between firms in a finan-
cial crisis. Such models explicitly describe the con-
tagion of credit events across firms in an economy
through different structural mechanisms. For exam-
ple, Acharya et al. (2010a) and Staum (2012) consider
asset price contagion; and Eisenberg and Noe (2001),
Liu and Staum (2010), and Cont et al. (2013) con-
sider counterparty contagion. Staum (2013) provides
an excellent survey of the literature on contagion and
systemic risk. In this paper, we take as given a collec-
tion of exogenous outcomes across firms and scenar-
ios of nature. However, we can accomodate aspects
of endogenous, structural mechanisms for contagion
through the choice of risk measure. This is illustrated
in Example 7 in §2.

The rest of this paper is organized as follows: In §2,
we provide an axiomatic definition of a systemic risk
measure. In §2.1, we describe the structural decom-
position of systemic risk; in §2.2, we discuss a num-
ber of examples of systemic risk measures. In §3,
we construct primal and dual variational representa-
tions for systemic risk measures. In §4, we discuss
a systemic risk attribution scheme. In §5, we present
extensions of our theory to homogeneous systemic
risk measures. In the online supplement (available
at http://moallemi.com/ciamac/papers/systemic-risk
-2011.pdf), we demonstrate a decentralized frame-
work for systemic risk management, as well as pro-
vide proofs.

2. Model

We consider a one-period model consisting of a finite
set of firms ¥ and a finite set of future scenarios ().

We define an economy by a matrix X € RI7*1l. Here,
the quantity X; ,, is the loss (or, if negative, the profit)
of firm i in scenario . We denote by X, € R! the
column vector of outcomes in scenario w across all
firms; we refer to this as the cross-sectional profile of
losses across firms of the economy X, in scenario w.
In some examples, we assume there is a probability
distribution p € R over the space of scenarios ). In
these cases, we can interprete the matrix X € RI7/*I
as a random vector that has outcome X, € R”! with
probability p,,.

In the rest of this paper, the following notation is
helpful: the vector 1, € Rl denotes a unit loss of an
individual firm in all scenarios, the vector 1; € R/
denotes a cross-sectional loss profile in a scenario
where each firm has a unit loss, and the matrix 1, £
1,1/, € R denotes an economy with a unit loss
for every firm in every scenario. Similarly, the vec-
tors 0; € R7I, 0, € Rl and the matrix 0, € R7/*I¢
correspond to cases with zero profit or loss for every
firm in every scenario. Given an economy X, a cross-
sectional loss profile x, and a scenario w, the matrix
(x, X_,) € RFIXI?l denotes an economy with loss pro-
file x in scenario w, but where outcomes in all other
scenarios are given by the corresponding columns
in X. Inequalities between pairs of vectors and matri-
ces are to be interpreted componentwise.

A systemic risk measure p is a summary statistic that
quantifies the level of “risk” associated with an econ-
omy X by a single real number p(X). Given two
economies X and Y, if p(X) > p(Y) then we say that
X is riskier than Y and thus less preferred. Hence,
a systemic risk measure implicitly encodes the pref-
erences of a regulator over the universe of possible
economies.

We first review the axiomatic framework for coher-
ent single-firm' risk measures* commonly used in the
literature (Artzner et al. 1999).

DerINITION 1 (SINGLE-FIRM Risk MEASURE). A
single-firm risk measure is a function® p: R’l — R that

!In this paper, we use the term “single-firm” risk measure to refer
to the risk measures for a single entity, i.e., an entity for which the
outcome in every scenario of nature is a single real number. This
is in contrast to the systemic risk measures that we introduce in
Definition 2, where there is a vector of outcomes (one for each
component of the system) in every scenario of nature. Note that a
systemic risk measure could, for example, also be applied in the
case of an individual firm, where the “components” correspond to
divisions of the firm that contribute to the overall risk.

2Qur terminology is slightly nonstandard here: for example, for
single-firm risk measures, Schied (2006, p. 753) defines a “monetary
measure of risk” as satisfying (i) and (v), a “convex measure of
risk” as satisfying (i) and (iii)—(v), and a “coherent measure of risk”
as satisfying (i)—(v).

% In what follows, we sometimes consider single-firm risk measures
p: R > R defined only on the positive orthant. In that case, we
assume that conditions (i)-(iv) are satisfied for all x, y € [R?El !
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satisfies the following conditions (i)—(iv), for all loss
vectors x, y € R of a single firm:

(i) Monotonicity: If x >y, then p(x) > p(y).

(if) Positive homogeneity: For all nonnegative scalars
a>0, p(ax) = ap(x).

(iii) Convexity: Given a scalar 0 < @ <1, p(ax +
(1-ay)) < ap(x) + (1 - )p(y).

(iv) Normalization: p(1,) = 1.
If in addition, a single-firm risk measure satisfies the
following condition (v), it is called coherent:

(v) Cash invariance: For all scalars a € R, p(x + al,)
=p(x) + a.

The conditions for a single-firm risk measure can be
motivated as follows: The monotonicity condition (i)
reflects that, if one firm has greater losses in every
scenario than another, it is less preferred. The posi-
tive homogeneity condition (ii) requires that the risk
increases in proportion to the scale of losses. The
convexity condition (iii) asserts that diversification
reduces risk; i.e., the risk of a firm diversified between
outcomes corresponding to x and y is less than the
weighted risk of the component firms x and y. The
normalization condition (iv) fixes the multiplicative
scaling* of the risk measure. The cash invariance con-
dition (v) allows the interpretation of risk as a cap-
ital requirement: when a certain loss « is added to
the outcome in every scenario, the risk of the firm
increases by exactly a.

Building on the definition for a single-firm risk
measure, we formally define a systemic risk measure
as follows:

DEFINITION 2 (SYsTEMIC Risk MEASURE). A systemic
risk measure is a function p: R7*I? — R that satisfies
the following conditions, for all economies X, Y,Z e
RH\X\Q\:

(I) Monotonicity: If X >Y, then p(X) = p(Y).

(IT) Positive homogeneity: For all nonnegative scalars
a >0, p(aX) = ap(X).

(IIT) Preference consistency: Define a partial order >,
on cross-sectional profiles as follows: Given cross-
sectional profiles x,y € R/, we say that x >, y iff
p(x1})) > p(y1y,). Suppose that, for every scenario w,
X, >, Y, Then, p(X) = p(Y).

(IV) Convexity:

(a) Outcome convexity: Suppose Z = aX +
(1 - a)Y, for a given scalar 0 < @ <1. Then, p(Z) <
ap(X) +(1—a)p(Y).

(b) Risk convexity: Suppose p(Z,1{)) = ap(X,1]) +
(1-a)p(Y,1)), Yo € Q, for a given scalar 0 < a < 1.
Then, p(Z) < ap(X) + (1 — @)p(Y).

(V) Normalization: p(1,) = |7 |.

* Note that in the case of a coherent single-firm risk measure, the
normalization condition (iv) follows from positive homogeneity
and cash invariance. In our work, it will be useful to consider
non-coherent risk measures; hence, we retain this as a separate
condition.

Our definition of a systemic risk measure is justi-
fied as follows: conditions (I) and (II) are similar to the
corresponding conditions for a single-firm risk mea-
sure, and can be justified in a similar manner. The
preference consistency condition (III), on the other
hand, does not have an analog in the single-firm case.
This condition defines an ordering (or, preference
relationship) >, on cross-sectional profiles x, y € Rl
by comparing the systemic risk (according to p)
of the constant economies® x1/, and y1g. If x>, y,
we say that y is preferred to x. Preference consis-
tency requires that if cross-sectional profiles in the
economies X and Y are such that if, in every sce-
nario w, Y, is preferred to X,, the systemic risk of
Y must be consistent with this preference and thus
cannot be greater than the systemic risk of X. When
the economy consists of a single firm, condition (III)
follows from monotonicity.

The preference consistency condition implies inde-
pendence from irrelevant alternatives (see, e.g., Kreps
1988) as follows: Suppose that x,y € RI7I are cross-
sectional loss profiles such that x >, y, i.e.,, y is pre-
ferred to x. Then, for any economy Z € R7*I% and
any scenario w, define (x,Z_,) to be the economy
where outcomes for firms in scenario w are given
by x, and outcomes in all other scenarios are given
by Z, and define (y, Z_,) similarly. Preference con-
sistency implies that p(x,Z_,) > p(y, Z_,). In other
words, if y is preferred to x, then, all else being equal,
any economy that realizes y in some scenario is less
risky to an economy that realizes x in that scenario,
independent of the scenario and of the outcomes in
other scenarios. Thus, by imposing the preference
consistency axiom, we assume that the systemic risk
measure expresses a preference over cross-sectional
profiles that is consistent across scenarios. Introduc-
ing the preference consistency condition is one of the
major contributions of this paper, in that it allows us
to extend the single-firm risk measure to a systemic
risk measure that captures the interaction of many
firms.

The convexity conditions (IV-a) and (IV-b) are both
concerned with the benefits of diversification. Condi-
tion (IV-a), labeled “outcome convexity,” is the usual
notion of convexity: when the economy Z is a diver-
sified mixture of two economies X and Y, the risk
of Z is no greater than the weighted combination of
the risk of economies X and Y. Outcome convexity
is concerned with a portfolio of economies X and Y,
in that we are allowed to add the outcomes from the
two economies and the risk reduction comes from the
fact that outcomes X and Y are possibly correlated.

®Note that, given x € R/, the economy x1], has the same cross-
sectional profile of losses x in every scenario. Hence, we call this a
constant economy.
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Condition (IV-b) is concerned with convexity as it
relates to risk aversion. The context of this condition
is as follows. We have two stages of uncertainty. The
outcome of the first stage is the economy X with prob-
ability a and the economy Y with probability 1 — a.
In the second stage, the scenario w and the firm out-
comes corresponding to w and the economy selected
in the first stage are revealed. Note that in this set-
ting we do not have a portfolio of economies. The
economy Z in condition (IV-b) is such that in every
scenario w € Q the risk p(Z,1/,) is a convex combi-
nation of the risk p(X,1/,) and p(Y,1)); i.e., the out-
comes of economy Z are not subject to the first-stage
randomness. Condition (IV-b) states that the risk of
the average economy Z is at most the convex combi-
nation ap(X) + (1 — a)p(Y). The risk reduction in this
case comes from removing one stage of randomness.
When the economy consists of a single firm, condi-
tion (IV-b) is implied by cash invariance and outcome
convexity.

Finally, the normalization condition (V) requires the
risk of a unit loss by all firms with certainty to be the
total loss, i.e., the number of firms |7|. This is simply
a convenient choice of scaling and is imposed without
loss of generality.

Note that our definition of systemic risk does not
contain a cash invariance condition, as required by
a coherent single-firm risk measure. This is because
we want to allow for systemic risk measures derived
from deposit insurance that are incompatibile with
cash invariance: if all outcomes in the future are
reduced by a deterministic amount, this does not nec-
essarily result in a commensurate reduction in the
price of deposit insurance.

2.1. Structural Decomposition

To assess the systemic risk of an economy, a regula-
tor is concerned with both the cross-sectional profile
of losses across firms and the distribution of aggre-
gate outcomes across scenarios. Thus, to define a risk
preference over the universe of economies, one might
seek to independently express these two types of pref-
erences. We formalize this notion as follows:

DEFINITION 3 (AGGREGATION FUNCTION). A function
A: Rl — R over cross-sectional loss profiles of firms
is an aggregation function if, for all cross-sectional
loss profiles x, y € R7I, it satisfies the following:

(i) Monotonicity: If x >y, then A(x) > A(y).

(ii) Positive homogeneity: For all o > 0, A(ax) =
aA(x).

(iii) Convexity: For all 0 <a <1, A(ax+ (1 —ay)) <
aA(x)+ (1 —a)Ay).

(iv) Normalization: A(15) = |7F|.

An aggregation function provides a summary
statistic that encapsulates a cross-sectional profile of

losses across firms in a single scenario into a real
number, thus expressing a preference over such pro-
files. The conditions (i)-(iv) are analogous to the cor-
responding conditions for a systemic risk measure
and motivated by similar concerns. Subject to these
conditions, the regulator has considerable freedom in
specifying preferences over the distribution of losses
across firms; we see a number of examples of aggre-
gation functions in what follows.

Once the cross-sectional outcomes across firms are
aggregated, the evaluation of systemic risk reduces
to an evaluation of the profile of aggregated out-
comes across scenarios. This can be accomplished by
a single-firm risk measure p,: R!®/ — R (Definition 1),
which we call the base risk measure. The independent
choice of an aggregation function and a base risk
measure provides a clear way to specify preferences
over the universe of economies. The following the-
orem, whose proof is deferred until §2.3, illustrates
how these functions can be composed to yield a sys-
temic risk measure, and that, in fact, all systemic risk
measures admit such a decomposition.

TueoreM 1. (i) A function p: RFXY — R is a sys-
temic risk measure with image Imp = R if and only if
there exists an aggreqation function A: RP! — R with
image ImA = R and a coherent single-firm risk mea-
sure py: RIY — R, such that p is the composition of p,
and A; i.e.,

p(X) = (pgo A)(X) £ po(A(Xy), A(Xy), ..., A(X\m))/
VX e Rl

(ii) A function p: RPN — R is a systemic risk mea-
sure with image Im p = R, if and only if there exists an
aggregation function A: RV — R with image Im A =R,
and a single-firm risk measure py: R} — R, such that p is
the composition of p, and A; i.e.,

p(X) = (poo A)(X) £ Po(A(Xy), A(Xy), .., A(X\m))/
VX e RIZXIN

Note that for a systemic risk measure p the pos-
itive homogeneity and the normalization conditions
imply that Imp is either R or R,. Hence, the two
parts in Theorem 1 state that, in all cases, the choice
of a systemic risk measure is equivalent to the choice
of a base risk measure and an aggregation func-
tion. Furthermore, Theorem 1 does not guarantee the
uniqueness of the base risk measure and aggregation
function corresponding to a particular systemic risk
measure.

As shown in Theorem 1, the key ingredient that
bridges single-firm risk measures to systemic risk
measures is the choice of aggregation function. An
aggregation function allows us to measure the risk of
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aggregate positions as that of a single firm’s positions.
We emphasize that it is the preference consistency
condition in Definition 2 that makes this struc-
tural decomposition possible. In fact, when the other
conditions (including monotonicity, positive homo-
geneity, and convexity) are modified, a similar struc-
tural decomposition result continues to hold so long
as preference consistency is satisfied. For example,
in 85, we provide a structural decomposition when
the convexity condition is dropped and the positive
homogeneity condition is kept; similarly, a structural
decomposition can also be constructed if the positive
homogeneity condition is dropped and the convexity
condition is kept. Simply put, the preference consis-
tency condition connects a reasonable single-firm risk
measure to a systemic version, and one has the free-
dom to choose other appropriate conditions for risk
measure.

2.2. Applications

We now consider some examples to illustrate how the
choice of an aggregation function and a base risk mea-
sure describes a systemic risk measure.

ExampPLE 1 (SysTEMIC EXPECTED SHORTFALL). Con-
sider the aggregation function

Y ox=1)x

i€F

total X) Vxe Rl7| (1)

This aggregation function defines the aggregate loss

of a cross-sectional profile to be the sum of the prof-

its and losses of individual firms. Assume there is a
. . |0

given distribution p € R} over the space of scenar-

ios Q, and define

CVaR,(y) £ maxn‘n‘lze q'y
q Q
subject to 0, <q<p/{, )
159=1,

for all y € R, Here, CVaR,(y) is the expected short-
fall or conditional value at risk of the {-percentile of
the aggregate loss vector y, where 0 < { < 1. By tak-
ing this as the base risk measure, we can define the
systemic risk measure

Pses(X)

This systemic risk measure is closely related® to
the systemic expected shortfall of the economy dis-
cussed by Acharya et al. (2010b). Note that this

£CVaR, (11X, ..., 11 Xq), VX eR7XOL

®Strictly speaking, Acharya et al. (2010b) define a risk measure
via preferences over the collection of returns of individual firms,
whereas we express preferences over the losses, in absolute terms,
experienced by individual firms. This difference is minor, however,
and our risk measures could easily be defined in that setting.

choice of aggregation function treats losses and gains
symmetrically. Furthermore, it allows gains from one
firm to cancel with losses of another firm. This
approach might be undesirable if the regulator cannot
subsidize the losses of some firms with the profits of
others.

ExampLE 2 (DerosiT INSURANCE). Consider the
aggregation function’

Apss () 2 vxeRI 3)

Z xl 4
i€
This aggregation function considers only the losses of
the firms. Assume there is a given distribution p € R
over the space of scenarios (2, and define the base risk
measure to be the expectation

Elyl=p"y, VyeR.

Then, we have

poi(X) = [Z X } VX e RI7HIO
i€eF

In this example, the risk measure is the expected
value of total losses only. When the expectation is
taken over the risk-neutral distribution, p(X) equals
the price of a “deposit insurance” contract that pays
out the losses of insolvent firms. This is similar in
spirit to a number of proposed systemic risk measures
(Lehar 2005, Huang et al. 2009). Note that the aggre-
gation function A, treats losses and gains asymmet-
rically, and does not allow the gains of some firms to
subsidize losses of other firms.

One feature common to both Examples 1 and 2 is
that they are indifferent to how a large loss is spread
out across firms in an economy. In particular, the
aggregation functions A, and A, assign the same
aggregate outcome to a cross-sectional profile where
one firm loses a lot of money and other firms have
zero loss, or a profile where all firms lose an average
amount of money. In practice, a regulator may have a
preference over two such profiles. Through the design
of appropriate aggregation functions, our framework
is sufficiently rich to express such preferences.

ExamPLE 3 (INVESTING WITH PERFORMANCE FEES).
Consider an investor with investments in a collection
of hedge funds indexed by the set . Here, given
a loss profile x € R, we interpret x; as the gross
loss incurred by the investor due to the investment in
the hedge fund i. Consider the following two cases:
(a) the investor is a direct investor in the individual
hedge funds; (b) the investor is indirectly invested in
the individual hedge funds via a fund-of-funds. We
assume that each hedge fund i charges a performance

7Given a scalar z € R, we define z* £ max(z, 0) to be the positive
part of z, and z~ £ max(—z, 0) to be the negative part of z.
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fee that is a fraction v; € [0,1] of the gross profits
(if any) generated by the fund for the investor. The
fund-of-funds charges a performance fee that is a frac-
tion y € [0, 1] of the aggregate profits (if any) of the
investor across all of the funds, net of performance
fees paid to the individual funds. In case (a), the direct
hedge fund investor can express preferences over loss
profiles via the aggregation function

(x4 vixy),

i€F

Aprp(x) £ VxeR 4)

In case (b), the fund-of-funds investor can do so via
the aggregation function

(o )+ (St vn))

ieF i€F

Agor (x)

vxeRl. (5)

These aggregation functions consider the total profit
or loss across all funds to the investor, net of all per-
formance fees.

In the above example, we measure the systemic
risk from a portfolio management viewpoint of an
investor. Here, because of performance fees, losses
and gains must be treated asymmetrically. Moreover,
dispersion risk is important: Holding the gross profit
Y icy X; fixed, the investor prefers to eschew pro-
files where the individual fund outcomes {x;} are
dispersed, and the investor pays fees to the posi-
tively performing funds but does not recover fees
from the negatively performing funds. With modifi-
cations, more complicated performance fee structures
or tax schemes imposed on profits can be captured
by a similar aggregation function. In these examples,
the choice of the base risk measure is left up to the
investor.

In the following examples, we illustrate systemic
risk measures that are not restricted to financial appli-
cations. For complex systems with many interact-
ing components, we can often design systemic risk
measures with specialized structure appropriate for
the application at hand. The examples we consider
involve aggregation functions that are special cases of
the following general class:

ExamMpPLE 4 (OPTIMIZATION AGGREGATION FuUNC-
TION). Given matrices A € RYV! and B € RKV,
a vector ¢ € [F\Rf, and a convex cone # C RN, define
Aopr: R R by

Aopr(x) £ rnlrumlze cly
yer

(6)
subject to Ax <By,

for all loss profiles x € RI. If we assume that, for
example,

3y e such that By>0, 3zeRX such that B'z=c,

then it is not difficult to see that the program (6) is
feasible and bounded for all x, and that Agp is mono-
tonic, positively homogeneous, and convex. Further-
more, if Agpr(15) > 0, ¢ can be rescaled such that
Aopr is normalized as well, and thus is an aggregation
function.

Note that Agpy captures a broad class of aggrega-
tion functions, including all of the previous examples
in this section. In the following examples, we illus-
trate that optimization aggregation functions can be
naturally applied in practical settings, including many
nonfinancial applications.

ExaMPLE 5 (RESOURCE ALLOCATION). Consider a
resource allocation setting, where F denotes a set of
capacitated resources, and ¢ denotes a collection of
activities. Suppose activity a consumes resource v € F
at rate b,, > 0 per unit of activity. Given a loss pro-
file x € R7!, we interpret each loss x, as a shortage
(or, if negative, the surplus) to the available supply
of resource r, relative to a baseline utilized capacity.
Define the aggregation function

Aga(x) £ minimize Y c,u,

54|
ueRl aesd

)

subject to » b,u,>x,, VreF

aesl
Here, each decision variable u, is the reduction (or, if
negative, the increase) of the level of activity a. The
constraint enforces the requirement that consumption
of each resource r across activities be adjusted so as to
accommodate the resource supply reduction x,. The
vector ¢ > 0 specifies the cost associated with reduc-
tions in the level of each activity. Given a resource
supply shock x, Ag,(x) measures the cost of the cor-
responding optimized reduction in activities. Hence,
Agp reflects the preferences of a system manager in a
resource allocation setting.

ExampLE 6 (FLow NETWORK). Consider a network
with vertices 7" and a set § C ¥ x ¥ of directed
edges. Each edge (1, v) € ¥ corresponds to a capaci-
tated link, and the goal of the network manager is to
direct maximal flow from a source s € 7" to a desti-
nation t € 7. Given a loss profile x € R7l, we inter-
pret each loss x, , as a reduction (or, if negative, an
increase) to the capacity of link (u, v) € 7, relative to
a baseline level of utilized capacity. Define the aggre-
gation function

Ane(x) £

> foo

minimize
feR v:(s, v)eF

RI7]
subject to f, o =X, 0, Y(U,0)€F,

Z f(u w) — Z f(w v)

L{llZU UZU'U

Ywe OV\{S, t}.

(8)
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Here, each decision variable f, , represents the
required reduction of flow along the link (u, v). The
first constraint enforces the requirement that flows be
reduced so as to accommodate the capacity shock x,
and the second constraint is a flow balance equation.
Given a capacity shock x, Ayg(x) measures the min-
imal necessary flow reduction and hence reflects the
preferences of a manager in a max-flow setting.

In previous examples, we have viewed outcomes
across firms and scenarios of nature as exogenously
specified and did not consider structural mechanisms
by which the loss of one firm can create losses at other
firms, i.e., contagion. The following example illus-
trates that it is possible to introduce mechanisms for
contagion, through the careful definition of the value
function.

ExaMpPLE 7 (CONTAGION MopEL).® Let F denote a
collection of firms, each of whom has certain assets
and obligations to each other. Let II;; denote the frac-
tion of the total debt of firm i that is owed to firm j.
Let x € RP! denote the loss profile in a particular sce-
nario. Define the aggregation function

Acy (%) £ minimize { ity bi}

7] 7] P Py
yeRL ', beRY i€F i€

subject to b;+y; = x;+ ) My, YieF. (9)

jeF

We interpret x as losses external to the obligations
the firms have to each other. The loss x; must be cov-
ered either by firm i reducing the payments on its
obligations to other firms by an amount y;, or relying
on an injection of external funds from the regulator
in the amount b;. The parameter y > 1 balances the
preferences of the regulator in trading off between,
on one hand, the aggregate shortfalls across the econ-
omy on interfirm obligations ;. y; and, on the other
hand, the cost } ;.5 b; of injecting new capital to sup-
port the economy. The feasibility constraints reflect
the fact that the reduction in payment y; by firm i
results in an additional loss of an amount Il;y; for
firm j. The aggregation function Acy measures the
net systemic cost of the contagion. It is monotonic,
positively homogeneous, and convex. Also, it can be
normalized since Acy(15) > 0.

The contraint in (9) is inspired by the structural con-
tagion model of Eisenberg and Noe (2001). However,
in their model, the firms have limited liability, i.e.,
y <p for some vector p € Rfl of total liabilities, and
there is no external injection of capital, i.e., b £ 0.
In that case, however, the aggregation function would
not be positively homogeneous. Motivated by this
example, an interesting possible extension of our

8 We thank an anonymous reviewer for suggesting this example.

work would be to consider such convex but not pos-
itively homogeneous systemic risk measures.

2.3. Proof of Theorem 1
The two parts in this theorem have essentially one
proof with minor differences. First, suppose that p is
a systemic risk measure. For each loss profile x € RI7/,
define

Ax) 2 p(x1).

In other words, A computes the systemic risk of a
constant economy represented by x. The monotonic-
ity, convexity and positive homogeneity of A holds
because of the monotonicity, convexity, and positive
homogeneity of p. Also, A(15) =|F|, since p(1;) = |F|.
Let @ £ Im(A) be the image of A. We know that
|7 | € @. By the positive homogeneity of A, we con-
clude that R, C @. Suppose there exists an economy
X such that p(X) <0. We can find a vector x € R!
such that x1], < X. So A(x) = p(x1])) < p(X) < 0. By the
positive homogeneity of A, we conclude that R_ C @.
Thus, for part (i), @ =R; for part (ii), @ =R,. For each
vector z € @, define

po(2) £ p(X),
where X is an economy that satisfies

AX,) =2z, YweQ.

First, we show p, is well defined. Suppose two
economies X, Y have that
AX,)=A,), YoeQ.

Because p has preference consistency across scenarios,
we have that

AX,) =p(X,10) = A(Y,) =p(Y,1}), YweQ
= p(X) = p(Y),
AX,) =p(X,10) <A(Y,) =p(Y,1}), YweQ

= p(X) =p(Y).

Thus, we conclude that p(X) = p(Y), and p, is
well defined. Clearly, p, is monotonic and positively
homogeneous, from the monotonicity and positive
homogeneity of A and p. We show that p, is convex.
For two vectors x,y € @, given a scalar 0 < a <1,
define z = ax + (1 — @)y. Define vectors X, Y, Z € RI®
such that

po(y) =p(Y), po(z) =p(Z).

Then, for all scenarios w € (),

po(x) = p(X),

AMZ,)=z,=ax,+(1—a)y,=aA(X,)+(1-a)A(Y,).
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From the risk convexity of p, we have that
po(2) = p(Z) < ap(X) + (1 - a)p(Y)

apy(x) + (1 — a)po ().

This establishes the convexity of p,. In addition,

po(le) = P(‘Zlg)/

where
Aa) = p(a1) = 1.

It follows that py(1,) = 1. For part (i), —1 € @, we can
show py(—1,) = —1 similarly. Now, we can show that
for part (i), for a scalar o € R, by the subadditivity
(as a result of convexity and positive homogeneity)
of p,, we have that

po(x +alg) > po(x) + apy(ly) = po(x) + e

and

po(x — a(—1g)) < po(x) — apy(—1g) = po(x) + .

Hence, p, has the cash invariance property
Po(x + alg) = po(x) + a for part (i).

To summarize, for part (i), we have shown that p,
is a coherent single-firm risk measure; for part (ii),
we have shown that pj is a single-firm risk measure.
From the definition of A and p,, we have the struc-
tural decomposition,

P(X) = (po o A)(X) = po(A(X1), A(Xy), ..., A(Xja))-

For the converse of the theorem, suppose that A is
an aggregation function and p, is a base risk mea-
sure. Because A and p, are monotonic, convex, and
positively homogeneous, it is clear that p has the
properties of monotonicity, convexity, and positive
homogeneity. The normalization condition is due to
that of A and the fact that p,(1,) = 1. To show the
preference consistency of p, consider two economies
X, Y e R7IXI% where, in every scenario o € (),

P(X,10) = (po o A)(X,14) = p(Y, 1) = (g 0 A)(Y,15).
By the monotonicity of p,, we have
AX,)=A(Y,)), YweQ.

Then, by using the monotonicity of p, again, we con-
clude that

p(X) = (pg o A)(X) = (pg o A)(Y) = p(Y).

Now, we show the risk convexity of p. For any three
economies X, Y, Z € R7*I% and any scalar 0 <a <1,
suppose for all scenarios w € (),

(Poo AN)(Z,1g) =p(Z,1,)
= ap(X,1o) + (1 —a)p(Y,10)
= a(pyo A)(X,1q) + (1 —a)(pgo A)(Y,1p).

We know that for part (i), we have that py(+1,) =
+1, and for part (ii), we have py(1y) = 1. Thus, we
can simplify the above equation, for both parts (i)
and (ii), as

AZ,) =aA(X,) + (T -a)A(Y,), Ywel.
Using the convexity of p,, we conclude that, for all
scenarios w € (),

p(Z) = (pyo A)(Z) < alpy o A)(X) + (1 — @) (py 0 A)(Y)
— ap(X) + (1 a)p(Y).

In addition, for part (i), there exists a vector x € RI71
such that A(x) < 0. So we have p(x1)) = A(x) <0
and p(1;) =|7| > 0. By positive homogeneity of p, we
conclude that Im p =R. For part (ii), A(x) >0, for all
x € R, So p(X) > py(0,) =0, for all X e RI7I*IU We
also know that p(1;) = |7 | > 0. By positive homogene-
ity of p, we conclude that Imp=R,.

3. Variational Representations

In this section, we develop two variational representa-
tions for systemic risk measures. In §3.1, we introduce
a primal representation, where the systemic risk is the
value of an optimization problem over a set of accept-
able economies. In §3.2, we develop a dual representa-
tion, where the systemic risk is the worst-case scaled
expected loss across the economy. The dual represen-
tation provides a shadow price to capture the systemic
risk externality of the decision making of individual
firms. This suggests a decentralized framework for
systemic risk based decision making that is further
explored in the online supplement.

3.1. Acceptance Sets and Primal Representation
For the case of coherent single-firm risk measures,
Artzner et al. (1999) describe a representation for the
risk as the minimum quantity of cash that needs to be
injected into each scenario such that the collection of
outcomes is contained in a set of acceptable outcomes.
Motivated by this, we wish to construct a similar pri-
mal representation for systemic risk measures. To do
this, we need the following definition.

DEFINITION 4 (AccePTANCE SET). Consider a finite
set of entities /. An acceptance set over N is a set
¥ C R x R, that is a nonempty closed convex cone,
and that satisfies the following:

(i) Monotonicity: If (m, x;) € ¥, x, e R, and x; > x,,
then (m, x,) € #.

(ii) Epigraph property: If (my,x) € &, m, € R, and
m, > m,, then (m,, x) € ¥.

We take the set of entities ' in Definition 4 either to

be the collection of firms ¥ or scenarios ). In the for-
mer case, when /' =%, (m, x) € R x R¥! is contained
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in the acceptance set if the cross-sectional profile x is
considered acceptable at a given level of “risk expo-
sure” m. The monotonicity property suggests that, at
a fixed level of risk exposure, loss profiles that are
dominated by an acceptable profile are also accept-
able. The epigraph property suggests that if a loss
profile is acceptable at a certain level of risk exposure,
it is also acceptable at higher levels of risk exposure.
Similarly, when N = Q, the acceptance set captures
sets of risk exposures across scenarios, in addition to
an overall risk measure, such that the per scenario
risk exposures are acceptable relative to the overall
risk measure. The properties of acceptance sets follow
from the underlying properties of aggregation func-
tions and base risk measures; in fact, we will shortly
see that acceptance sets are epigraphs of these objects.
Note that, relative to the case considered by Artzner
et al. (1999), we require an additional dimension cor-
responding to the level of risk exposure of the regula-
tor. If a cash invariance assumption held as in Artzner
et al. (1999), this extra dimension could be eliminated,
but in the present context it is necessary.

The following theorem provides a primal represen-
tation to a systemic risk measure, as the value of
an optimization problem over a feasible set defined
through acceptable sets:

THEOREM 2 (PRIMAL REPRESENTATION). Suppose p is
a systemic risk measure. Then, there exist acceptance sets
0 CR xR and B C R x Rl over scenarios and firms,
respectively, such that, for all economies X € R7¥I%l, p(X)
can be expressed as the value of the optimization problem

p(X) :minin?ize m
subject to (m,[) e A,
(I, X,)eB, YweQ,
le RO

(10)

meR,

Furthermore, if p is characterized by a base risk measure
po and an aggQregation function A, ie., p = pyo A, then
the acceptance sets can be taken as the epigraphs of p,
and A; i.e.,

£{(m,z) e R x R®: m > py(z)},
21{(1,x) eRx Rl 1> A(x)).

Proor. Given p, by Theorem 1 a base risk mea-
sure p, and an aggregation function A exist such that
p = poo A. Define ¢ and % to be their epigraphs
through (11). From the properties of p, and A, it is
clear that these are acceptance sets.

Moreover, we have the epigraph representations

(11)

Po(l) = minimize m
meR

subject to (m, ) e A,

A(x) =minimize !
leR
subject to (I, x) € %,

for all I e R, x € RI. Using the fact that p=p,o0 A,
and the epigraph representation of p,, we have for all
X e RI7 \x\ﬂ\’

p(X) = minimize m
meR

subject to (m, A(Xy), ..., A(Xq)) € .

Using the fact that s is monotonic, and applying the
epigraph representation of A, the result follows. 0O

The primal program (10) is easily interpreted: the
vector of decision variables [ defines the regulator’s
minimal risk exposure in each scenario given the cor-
responding cross-sectional loss profile, whereas the
scalar decision variable m is overall systemic risk
given the vector [ of risk exposures across scenarios.

3.2. Dual Representation
In this section, we define a dual representation for
systemic risk measures. This variational representa-
tion provides an alternative way to compute systemic
risk measures and an alternative interpretation of
their meaning. Moreover, it provides certain compu-
tational and operational advantages. In §4, we show
that the dual representation also provides the basis of
a risk attribution rule.

To begin, suppose p =p, oA is a systemic risk mea-
sure. As in Theorem 2, take the epigraphs of p, and A
as the acceptance sets s¢ and 9%, respectively. Define

st* £ {(my, 7) € R x RI:
mm—7'1>0,¥(m, ) e}, (12)
2((&,EeRxRIL g1—-ETx>0,V(,x)e%}). (13)
Up to a sign change, s¢* and %* are the dual cones to
s and %, respectively. Then, the following theorem,

whose full proof can be found in the online supple-
ment, holds.

THEOREM 3. Suppose p = pyo A is a systemic risk mea-
sure characterized by an aggregation function A and a base
risk measure p,. Then, for all economies X € R7IXI%, p(X)
can be expressed as the value of the optimization problem

p(X)= max1mlze Y Y E X

i€F weQ)

subject to (1, 7) € ¥, (14)
(7Tw/'—'w)€ *, Ywe ),

7 eR  EeRIIxal

In addition, feasible points (i, E)
satisfy

7?209,

for this problem must

|

1,7 <1, >0, LE<|F|7'. (15)
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To interpret the dual problem (14), observe that (15)
implies that, for feasible (7, E), 7 is a substochastic
vector. This can be interpreted as a probability distri-
bution over the augmented set of scenarios QU {w,},
where o, is an additional, artificial scenario in which
every firm has a zero outcome. Define the matrix E €
RIZIKI0l by

N g /@, ifm,>0,

i, 0

>

otherwise,

for each firm i and scenario w. Then, the objective in

(14) becomes
Z ﬁ-w Z Ei, in, w’

wel) ieF

where (15) implies that

Ywe)

In other words, the dual objective is the worst-case
expected loss, over some set of feasible probability dis-
tributions # and scaling functions E, of a scaled econ-
omy in which the participation of the |7| firms in the
economy in scenario o is rescaled according to the
vector &, ,,, ..., Eg/,,- This is analogous to the robust
interpretation of a single-firm coherent risk measure
as a worst-case expected loss.

The following is an immediate corollary of
Theorem 3:

COROLLARY 1. Suppose that p is a systemic risk mea-
sure with dual representation (14). Given an economy X,
if (7r*, E*) is a dual optimal solution, then E* is a subgra-
dient of p at X.

Corollary 1 suggests another interpretation of the
optimal dual solution E* for an economy X. The
quantity = , is the minimal marginal increase in sys-
temic risk as a function of a marginal increase in the
losses of firm 7 in scenario . In other words, Z; , cap-
tures the externalities imposed by the decision mak-
ing of a firm on the system regulator, and hence is a
shadow price for systemic risk. Note that these shadow
prices can vary both by scenario—incremental losses
in some scenarios may have a much larger impact
than in other scenarios—and by the identity of the
firm. These shadow prices could be used to coordi-
nate decision making by individual firms with the
goals of the regulator. For example, it is possible
to design tax schemes based on these prices, in the
spirit of Acharya et al. (2010b), such that individ-
ual firms optimize their portfolios to distribute profits
and losses across scenarios in a way that is aligned
with the concerns of the regulator. This topic is fur-
ther explored in the online supplement.

The dual optimization problem (14) may also lead
to useful decentralized schemes for computing sys-
temic risk. Here, a centralized regulator can seek
to choose optimal values for the dual variables
(7, E), while relying on constituent firms to compute
their individual weighted profits and losses, scaled
according to each putative choice of dual variables.
The utility of the dual representation from analytical,
operational, and computational perspectives is illus-
trated by the following examples.

ExampLE 8 (TotaL ProrIT AND Loss). Consider the
total profit and loss (P&L) aggregation function A,
defined by (1). For this aggregation function, it is easy
to see that

B =1{(&, &15) eRx R & eR, ).

Then, the dual representation (14) takes the simplified

form
p(X) = maximize Y > 7,X;

TeRIQl g
7ER i€F weQ)

subject to (1, 7) € st*.

In Example 8, the base risk measure (and thus the
constraint set $/*) has not been specified. However,
independent of this choice, given an optimal dual
solution 7*, a shadow price for systemic risk for each
firm i in a scenario w is given by 7} and is inde-
pendent of the identity of the firm. This is consistent
with the choice of aggregation function: the impact
of a marginal increase in the loss of any firm is the
same, because the sum total of all profits and losses
is of concern.

ExampLE 9 (ToraL Loss). Consider the total loss
aggregation function A, defined by (3). Then, we
have that

B ={(&, é) eR x RFI: 05 < éi $ols ).

Thus, the dual representation (14) takes the simplified
form
p(X) =maximize Y > 7, (X; )"
#eRII ieT weQ '

subject to (1, 7) € o*.

In Example 9, given an optimal dual solution 7*, a
shadow price for systemic risk for firm i in scenario w
is given by 7} if X; , >0, and is 0 otherwise. This is
because a firm can only marginally impact the sys-
temic risk in scenarios where it is not profitable.

ExampLE 10 (CVAR). Suppose, given 0 < { <1, the
aggregation function is taken to be

1
Aeun(@) 2inf {17114+ 2 30507

ieF
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This corresponds to the aggregate total profits and
losses of the worst {-percentile of firms in the cross-
sectional profile, i.e., it is analogous to the CVaR, risk
measure of (2), but taken across firms rather than sce-
narios. Then, we have that

by, i 1o
D1, 1E=4151.
Thus, the dual representation (14) takes the simplified

form

={<fo,é>eRxR'7: 0,<é=<

p(X) =

rnax1m1ze Y Y E X

i€ weQ)
subject to (1, 7) € 4,
0,

IA
|
IA

Lty
1] |F |7,

- Q
7eRI,

G
i
Il

QQ

= e RI7IxII,

In Example 10, a shadow price for systemic risk
E; ., in general, depends both on the identity of the
firm i and the particular scenario w.

4. Risk Attribution

In this section, we consider the problem of attribut-
ing or allocating the systemic risk across the firms
that compose the economy. The spirit here is to iden-
tify systemically risky institutions, and quantify their
overall impact on the risk in the economy. Motivated
by the discussion of shadow prices in §3.2, consider
the following definition:

DEFINITION 5 (RISK ATTRIBUTION). Suppose p is a
systemic risk measure, with dual decomposition (14).
For each economy X € R7¥I%l, define .((X) c RI7/*I¢
to be the set of dual optimal solutions for p(X). Given
a shadow price for systemic risk E* € #((X), we define
a vector y*(X, E*) € Rl, with component

YiX,ENE Y ELLX .
we)

as the systemic risk attributable to firm i. We define
the set of all attribution vectors as

Y2y (X E

Note that the attribution rule is unique if the dual
optimal solution for p(X) is unique at X.

This definition allocates systemic risk to each firm
according its entire profile of profits and losses across
scenarios, where each profit or loss is valued accord-
ing to the appropriate shadow price for systemic risk.
Note that the risk allocation is an immediate by-
product of the dual representation, and hence requires
no computation if the dual solution is available.

The allocation of Definition 5 has a number of desir-
able properties. First, because Theorem 3 guarantees

): B e M(X)).

that the dual optimum equals p(X), it is immediate

that
=29

ieF

Yy'eYy.

In other words, the individual risk attributions add
up to the total systemic risk. Second, following Corol-
lary 1, the sensitivity of the attribution y; of firm i to a
change in the loss X; , in some scenario w is precisely
the shadow price for systemic risk. Hence, the local
incentives created by this allocation are aligned with
the systemic risk objective. Finally, the risk attribution
that we propose has the following fairness property:

THEOREM 4. Fix a systemic risk measure p. Let X €
RIZIXI denote a given economy. For a vector a € R7,
define r(c) to be the systemic risk associated with an econ-
omy ax X that has outcomes for firm i in scenario w
given by «;X; ,. Then, for any risk attribution y* € Y,
a’y* <r(a).

Proor. From the dual representation in Theorem 3,
we have that

r(@) = maximize Yo B X,

i€F we)

subject to (1, 7) € 0¥, (16)
(7, BE,) B, VoeQ,
7 eRIY,  EeRIX

Suppose y* is obtained by a dual optimal solution =*.
Because E* is a feasible solution of the dual represen-
tation of p(X) in (14), E* is also a feasible solution
of the dual representation of r(«) in (16), for any a.
The objective value achieved by E* in (16) is a'y*,
which can be no greater than the optimal value r(a),
ie, a'y*<r(a). O

Theorem 4 is a no-undercut result, in the spirit of
Denault (2001). Here, r(«) is the systemic risk associ-
ated with an economy where each firm i participates
proportionally to the factor a; > 0. The result states
that, if a fractional coalition of firms specified by the
vector @ form a new economy a* X, the systemic risk
of that economy r(a) £ p(a * X) is at least as large as
the weighted sum of risk attributed to the firms in the
original economy. Thus, the risk attribution is fair: the
risk attributed to any fractional coalition is no greater
than it would incur as a standalone economy.

The risk attribution we propose is closely related to
prices of Aumann and Shapley (1974) for allocating
the cost in a fractional coalition game. If we assume
that r is differentiable at the point a =1, then by
positive homogeneity, it is differentiable on the ray
{t1;: t = 0}. The Aumann-Shapley prices are then
defined by

1
yAS 2 / Vr(t1,) dt = Vr(1,).
0
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The last equality follows from the fact that r is
positively homogeneous, and is sometimes referred
to as the Euler allocation rule or gradient alloca-
tion rule (Denault 2001, Buch and Dorfleitner 2008).
In fact, when these latter attribution rules are well
defined, they correspond with our notion of risk
allocation:

THEOREM 5. Given a systemic risk measure p and an
economy X € RTXI if o is differentiable at X, then
the risk attribution y* is unique and coincides with the
Aumann-Shapley prices y*S.

Proor. Under the hypothesis, r(«) defined in The-
orem 4 is differentiable at a = 1;. Observing that
the constraint set in (16) is compact, we can apply
Danskin’s theorem (Bertsekas 1999) to (16) to obtain

or(a)
(9(14 Z i, 1, w

1 wel)

for all firms i , where E* € R71¥I9l is the unique dual
optimal solution for p(X). Therefore, y*5=y*. O

Note that the work of Denault (2001), Fischer
(2003), and Buch and Dorfleitner (2008) suggests the
gradient allocation rule for risk attribution in a portfo-
lio setting; that setting is a special case of systemic risk
measure corresponding to the total P&L aggregation
function A,y of (1). In that case, the gradient alloca-
tion rule is identical to our dual risk attribution y*.
Our dual risk attribution y*, however, requires no dif-
ferentiability assumption, and can apply to a more
general class of aggregation functions. When p is not
differentiable at X, several attribution rules y* are pos-
sible and how to choose among them may require
further investigation. Related discussion on risk attri-
bution can be found in the work of Tsanakas (2009)
and Cherny and Orlov (2011).

5. Homogeneous Systemic

Risk Measures

In this section, we extend our analysis to value-at-
risk-like measures that are monotonic and positively
homogeneous but nonconvex. Value-at-risk (VaR)
(see, e.g., Jorion 2006) is a single-firm risk measure
of particular importance, because it is extensively
used in the practice of financial risk management.
Originally developed by practitioners in the financial
industry, it is widely employed both by firm man-
agers and regulators to compute and manage mar-
ket risk—in fact, VaR is the preferred measurement
of market risk of the Basel II regulatory regime. The
popularity of VaR as a single-firm risk measure has
motivated a number of VaR-based measures of sys-
temic risk, such as the CoVaR measure proposed by
Adrian and Brunnermeier (2009).

The VaR at a confidence level { € (0, 1) is defined as
follows: Suppose x € Rl is a vector of losses across
scenarios (), and that p € [R{LQ' with 1,p =1 is a prob-
ability distribution over €. Then, the VaR of the ran-
dom loss x is the minimum loss threshold value / such
that the probability of the loss exceeding I is at most
1-¢; e,

VaRg(x)éinf{leR: > pwsl—g’}. (17)

we:x,>]

From the definition of VaR, it is clear that this risk
measure is positively homogeneous, monotonic, nor-
malized, and cash invariant; i.e., it satisfies condi-
tions (i), (ii), (iv), and (v) of Definition 1. However, it
is not convex.

The lack of convexity is the principal difference
between homogeneous risk measures and the (con-
vex) risk measures defined in §2. Aside from their
wide use in practice, homogeneous risk measures
have also generated some interest in the literature
(e.g., Kou et al. 2013, Cerreia-Vioglio et al. 2011). Our
goal here is to illustrate the impact of the absence of
this axiom on our framework for systemic risk.

In what follows, we investigate the impact of
dropping the convexity requirement for systemic risk
measures. In §5.1, we give a complete structural
decomposition for homogeneous risk measures. The
benefit from this analysis is twofold. First, as in the
case with convex systemic risk measures discussed in
the previous sections, the characterization gives us a
rule for constructing homogeneous systemic risk mea-
sures from a homogeneous base risk measure and
homogeneous aggregation functions. The second and
equally important benefit is that the characterization
elucidates the implicit assumptions that are being
made when one combines single-firm homogeneous
risk measures to create a systemic risk measure. As a
by-product of our characterization, in §5.2 we show
that homogeneous systemic measures have a con-
vex representation. Finally, in §5.4 we consider some
examples of homogeneous systemic risk measures.

5.1. Structural Decomposition
Motivated by the discussion above, we define homo-
geneous systemic risk measures as follows:

DerINITION 6 (HOMOGENEOUS SYSTEMIC Risk MEA-
SURE). A homogeneous systemic risk measure is a
function p: R — R that satisfies the following
conditions, for all economies X, Y € RIZIxIl:

(I) Monotonicity: X > Y implies p(X) > p(Y).

(IT) Positive homogeneity: For all « > 0 and p(aX) =
ap(X).

(IlT) Preference consistency: p(X,15) > p(Y, 1)),
Y e, implies p(X) > p(Y).

(IV) Normalization: p(1y) = |F]|.
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We define homogeneous single-firm risk measures
and homogeneous aggregation functions as follows:

DerINITION 7 (HOMOGENEOUS SINGLE-FIRM Risk
MEASURE). A homogeneous single-firm risk measure
is a function’ p: Rl — R that, for all loss vectors
x,y € R of a single firm, satisfies the following
conditions:

(i) Monotonicity: If x >y, then p(x) > p(y).

(if) Positive homogeneity: For all nonnegative scalars
a>0, p(ax) = ap(x).

(iii) Normalization: p(1g) = 1.

DEerINITION 8 (HOMOGENEOUS AGGREGATION FUNC-
TION). A function A: R”! — R over cross-sectional loss
profiles of firms is a homogeneous aggregation func-
tion if, for all cross-sectional loss profiles x, y € RI71, it
satisfies the following:

(i) Monotonicity: If x >y, then A(x) > A(y).

(ii) Positive homogeneity: For all a > 0, A(ax) =
aA(x).

(iii) Normalization: A(15) =|F]|.

The (convex) single-firm risk measures and the
(convex) aggregation functions defined earlier in Def-
initions 1 and 3 are in fact also homogeneous single
measures and aggregation functions, respectively; in
addition, those functions are also convex.

Homogeneous systemic risk measures admit a
structural decomposition analogous to that of Theo-
rem 1, as follows:

THEOREM 6. (i) A function p: RV — R is a homo-
geneous systemic risk measure with image Im p =R if and
only if there exists a homogeneous aggregation function
A: RVl — R and a homogeneous single-firm risk measure
po: R — R with py(+1,,) = 1 such that p is the com-
position of p, and A; i.e.,

p(X) = (pgo A)(X) £ po(A(X7), A(Xy), ..., A(X|n|))-

(ii) A function p: RFIXIY — R is a homogeneous sys-
temic risk measure with image Imp =R, if and only if
there exists a homogeneous aggregation function A: R7I —
R with ImA = R, and a homogeneous single-firm risk
measure py: [RELQ‘ — R such that p is the composition of p,
and A; i.e.,

p(X) = (pyo A)(X) £ po(A(Xy), A(Xy), -, A(X|sz|))~

Proor. The proof is a simplified version of the
proof of Theorem 1, because, in this case, it is not nec-
essary to establish convexity. It is thus omitted. O

Observe that, comparing Theorem 1 and Theo-
rem 6, preference consistency condition (III) is key to

9 As was the case with Definition 1, we sometimes consider homo-
geneous single-firm risk measures p: R"' — R defined only on the
positive orthant. In that case, we assume that conditions (i) and (ii)
are satisfied for all x,y € R

establishing this structural decomposition. The other
conditions, namely, homogeneity and monotonicity,
imply these same properties for the single-firm risk
measure p, and the aggregation function A.

5.2. Convex Representation

In this section, we develop a convex representation
for homogeneous (nonconvex) systemic risk measures
as the pointwise minima of a collection of convex risk
functions. To begin, consider the following lemma, a
proof of which that follows the argument of Castellani
(2000) is provided in the online supplement:

LemmMa 1. A function g: R" — R is positively homoge-
neous and monotonic if and only if there exists an index
set & where, for each s € ¥, g9 R" - R U {oo} is a
positively homogeneous, monotonic, and convex extended
real-valued function, such that

g(x)= minimize ¢9(x), VxeR"
Se.

The following is a corollary of Lemma 1. It estab-
lishes a representation for homogeneous systemic risk
measures in terms of convex single-firm risk measures
and aggregation functions.

COROLLARY 2. Suppose p is a homogeneous systemic
risk measure with Imp = R. For all economies X €
RV p(X) can be expressed as the value of the opti-
mization problem

p(X)= minimize p"(A®(X)),..., AG (X))
teg, 51€7, ..., 80 €S
(18)

Here, & and T are index sets. For each s € &, the aggre-
gation function A®: R7! — R U {0} satisfies conditions
(i)-(iii) of Definition 3 (i.e., monotonicity, positive homo-
geneity, convexity). For each t € I, the single-firm risk
measure p: R — R U (oo} satisfies conditions (i)—(iii)
of Definition 1 (i.e., monotonicity, positive homogeneity,
convexity).

Proor. The result follows by first applying Theo-
rem 6 to obtain the representation p = p,o A in terms
of a homogeneous single-firm base risk measure p,
and a homogeneous aggregation function A, and then
applying Lemma 1 to p, and A. O

As an example of this construction, consider the
following:

ExamPLE 11 (VAR). Define the single-firm base mea-
sure py(x) = VaR,(x) to be the value-at-risk defined
in (17), given a uniform probability distribution p £
1,/|Q| and a confidence level ¢ € (0, 1). In this case,
we have that py(x) = x|}, where k* £ [Z|Q|] and, for
each 1 <k < |Q], x; is the kth order statistic of the
vector x. Define g% € Rl to be a vector with the first
|Q)| —k components equal to 1, and the rest equal to 0,
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and define 7 C RI®*I?l to be the set of |Q| x |Q] per-
mutation matrices. Then, we have that

19| |2
po(X) = 3 xp— 2 Xy
s k=k* +1
= max x'Pg*) —max x"Pg* Y

i (P)
=min X
PeT PeT PeT P,

where, for each P J

REE max x x'(Qq") — Pgth)

is a convex base risk measure.

5.3. Risk Attribution

Next, we discuss the issue of attributing the total risk
p(X) across the || firms in the economy. We show
below that a good risk attribution rule exists for a
subset of homogeneous systemic risk measures that
includes VaR.

For a systemic risk measure p, an economy X, and a
vector o € [RR |, define r (a) p(a*X), where ax X is
defined by settmg the outcomes for firm 7 in scenario
o to a;X; ,. In this setting, a risk allocation function WI”7!
takes as inputs two arguments, namely, the function
Ty RY' - R and a vector of fractional participation
ae le‘, and returns a risk allocation to each firm. The
following are certain desirable properties for ¥ that
are typically assumed in the literature (e.g., Billera
and Heath 1982). Suppose we have any two systemic
risk measures p; and p,.

1. Full risk allocation: aT\If“'(r a)=r,(a).

2 Additivity: ¥Y\(r, , a {)"(rp ,a)

) @)

3 Monotonicity: If 1, (@) > r, (a), for all a € R/,

then

\Plg‘(rpi +

vl(r, @)= ¥(r,  a), VaeR

4. Rescaling invariance: For a vector 8 € Rf', define
Bxa% (Bay, By, ..., Bmam)- If "5, (@) = T’pz(ﬁ * a),
then
vl B xa)

L P1

=81, , ), VieF

5. Consistency: If there is a function 7 such that

r(@) =7(1}a), then
vl(r, a) =V'(F,1la), VieT

Here, ¥ is a single-firm cost allocation function.

Note that for the general class of differentiable
risk functions r, Billera and Heath (1982) show
that Aumann-Shapley prices are the only attribu-
tion rule that satisfies all five properties. For piece-
wise linear risk functions, Haimanko (2001) shows
that the Mertens (1988) mechanism is the unique cost

allocation scheme that satisfies the five properties.
Specifically, the Mertens mechanism ¥, is given by

1
Wi @ 2| [ Decortad],  a9)

where ¢; € Rl is the ith unit vector, the expectation is
taken over a random vector C € R7! of independent
standard Cauchy random variables, and

D, r(a) & lim r(a+ eu) —r(a)
€e— +D € D (20)
1’((,1{) A lim u+evr(a) - ur(a)
u v e—071 € !

are directional derivatives of r(«), given directions
u,veR7l

We propose the Mertens mechanism for the attribu-
tion rules in the context of piecewise linear systemic
risk measures. The following lemma gives a sufficient
condition for a homogeneous systemic risk measures
p to be piecewise linear. Recall that p is generated by
index sets ¥ and J in Corollary 2.

LEMMA 2. Suppose index sets & and T are finite, A
is a piecewise linear continuous function for all s € &, and
p is a piecewise linear continuous function for all t € T
Then the homogeneous systemic risk measure p generated
by index sets & and T is piecewise linear and continuous.

Proor. It is immediate from the representation in
Corollary 2. O

Suppose the hypothesis of Lemma 2 is satisfied.
Then, r,(a) is clearly piecewise linear. Thus, the
Mertens mechanism can be used for risk attribu-
tion. Note that this attribution scheme does not have
the no-undercut property introduced in Theorem 4.
Furthermore, risk attribution for general nondifferen-
tiable systemic risk measures beyond this piecewise
linear class is an area for future investigation.

5.4. Examples
In this section, we describe examples of homogeneous
systemic risk measures.

ExaMpLE 12 (VAR). Consider the aggregation func-
tion A (x) 2 1x of (1), i.e., the total profit and loss
across all firms. Given a probability distribution p
over the scenarios ) and a confidence level ¢, con-
sider the value-at-risk function VaR, of (17) as a base
risk measure. Then the homogeneous systemic risk
measure

Pvar (X) £

is simply the value-at-risk of the aggregated out-
comes. Note that A, and VaR, are piecewise linear
and continuous.

When the probability measure p over the scenar-
ios is arbitrary, we can consider conditional probability
measures of the form P(w | A), where A C ) denotes

(VaR; 0 Ayo)(X) = VaRg(I;Xv ey 1;X\m)
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a set of stress scenarios. This conditional variation
of the value-at-risk is in the same spirit as the
CoVaR measure defined by Adrian and Brunnermeier
(2009). Unlike them, we only condition on subsets of
the exogenously defined scenarios. This restriction is
required to be able to compare different sets of out-
comes on the same set of scenarios.

In this example, we can also illustrate the Mertens
mechanism for risk attribution. For ease of exposi-
tion, assume that the probability distribution over
scenarios is given by the uniform distribution, i.e.,
p£1,/|Q]. As in Example 11, the risk py,p(X) takes
the value (1]X)., i.e., the k*th order statistic of the
aggregated losses across all firms. Now, assume that
this value is achieved by a unique scenario w*, so that
pvar (X) =11 X.. Then, in fact, for all t > 0, ryz (t15) =
pvar (1X) = t12X,.. Also, in this case, ry,z will be a
linear function in the neighborhood of each o = t1;.
Thus, we have the directional derivatives

DurVaR(tlg) = uTXm*I Du,eirVaR(tlﬁ) =X

1, w*7
for all directions u. Then, the risk attribution to firm
i according to the Mertens mechanism (19) simplifies
to become _

WI‘\Z,li(rVaR/ 1;)=X
In other words, the risk attribution of firm i will be
the loss incurred by the firm in the critical scenario
w*. More generally, if the value-at-risk is achieved in
multiple scenarios, the risk attribution for each firm
will be an average of losses across these scenarios.

i, w*e

ExampLE 13 (ComoNOTONIC Risk MEASURES). Fol-
lowing Kou et al. (2013), one can define homogeneous
aggregation functions of the form

Ed

A(x) £ Z YieX[k)/
k=1

where vy € Rfl, 17y =17, and x}; denotes the kth
order statistic of the vector x. Note that the value-
at-risk and the median are special cases of this risk
function. Fix a probability measure p over the sce-
narios. Combining this aggregation function with the
homogeneous single-firm risk measure

po(x) £p'x,

we get the homogeneous systemic risk measure

p(X) = (poo M)(X) = 3 p,AX,).

wel)

Note that A and p, are piecewise linear and continu-
ous. Because all comonotonic risk measures are homo-
geneous risk measures, it follows that all our results
in this section apply to such risk measures.
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