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are time-varying. While time-varying risk preferences induce the stan-
dard positive relation between the dividend yield and expected re-
turns, time-varying expected dividend growth induces a negative re-
lation between them. These offsetting effects reduce the ability of the
dividend yield to forecast returns and eliminate its ability to forecast
dividend growth, as observed in the data. The model links the pre-
dictability of returns to that of dividend growth, suggesting specific
changes to standard linear predictive regressions for both. The
model’s predictions are confirmed empirically.
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I. Introduction

The predictability of stock market returns at long horizons has been at
the center of much empirical and theoretical research in finance in the
last decade. For the market as a whole, high prices, normalized by
dividends, for example, forecast low future returns, whereas they do not
predict high future dividend growth. This evidence has deep implica-
tions for both finance and macroeconomics. In particular, it has been
interpreted as additional evidence of a time-varying price of risk. Still,
the statistical evidence is weak, inconsistent across time periods, and
different across different assets. This has led many to challenge the
ability of valuation ratios to predict future returns. The behavior of the
aggregate market during the 1990s, which saw high price/dividend ra-
tios and high returns, has only intensified a debate that remains at the
center of current research in asset pricing.1

We show that a general equilibrium model in which both investors’
preferences for risk and their expectations of future dividend growth
are time-varying goes a long way toward explaining these empirical find-
ings. In particular, while time-varying risk preferences induce the stan-
dard positive relation between dividend yields and expected returns,
time-varying expected dividend growth induces a negative relation be-
tween them in equilibrium. These offsetting effects reduce the ability
of the dividend yield to forecast future returns and, essentially, eliminate
its ability to forecast future dividend growth. In our model, the extent
to which these effects cancel each other depends on the properties of
the asset’s cash flow process, thereby yielding different predictions
across different portfolios. We also show that traditional linear predictive
regressions for both returns and dividend growth should be adjusted
in specific ways to fully capture the informational content of prices. The
modified forecasting regressions indeed show that both future dividend
growth and future returns are strongly predictable, lending empirical
support to the economic mechanism we propose.

Our model combines two ingredients. First, we introduce a new model
to describe the cash flow processes of individual assets that is parsi-
monious, tractable within a general equilibrium framework, and, most

1 For predictability, see, e.g., Campbell and Shiller (1988), Fama and French (1988),
Hodrick (1992), Lamont (1998), and Lettau and Ludvigson (2001). For the time-varying
market price of aggregate risk, see, e.g., the discussion in Campbell, Lo, and MacKinlay
(1997, p. 496) or Campbell and Cochrane (1999, p. 206). For an early discussion on the
performance of predictability regression during the 1990s, see Cochrane (1997, p. 10).
For evidence on individual stocks, see Vuolteenaho (2002). On some of the relevant
econometric issues, see Richardson and Stock (1989) and Stambaugh (1999).
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important, fits well the properties of cash flow data.2 Rather than mod-
eling the dividend processes of individual assets, we specify processes
for the fraction (share) that each asset contributes to total consumption.
The shares are bounded between zero and one, and, in addition, they
sum up to a value that is always less than or equal to one in every period.
We also assume that no asset will dominate the economy, even in the
long run. For this reason, we assume that these shares mean-revert to
a long-run value that is strictly less than one. Finally, our cash flow model
allows for sources of consumption other than financial assets, such as
labor income and government transfers, breaking the standard, but
unappealing, market-clearing condition that equates dividends with con-
sumption. As a second ingredient we use an external habit persistence
model, similar to the one of Campbell and Cochrane (1999), which
produces time-varying preferences for risk and thus a time-varying ag-
gregate premium that agents require to hold risky assets.

We first solve for the price/dividend ratio of an individual security
and show that it is a linear function of a variable that proxies for ex-
pected dividend growth, a variable that proxies for investors’ aggregate
risk tolerance, and, importantly, an interaction term. For a given ex-
pected dividend growth, a decrease in risk tolerance increases the equity
premia on all assets and decreases their price/dividend ratios. That is,
the variation in risk preferences induces the standard negative relation
between price/dividend ratios and expected returns. However, for a
given investors’ attitude toward risk, an increase in the asset’s expected
dividend growth yields both an increase in its price/dividend ratio and
an increase in its equity premium. That is, changes in expected dividend
growth induce a positive relation between price/dividend ratios and ex-
pected excess returns, contrary to the common wisdom on return pre-
dictability. The reason is that an increase in expected dividend growth
implies that the asset pays farther ahead in the future, making its price
more sensitive to shocks to the aggregate discount rate, that is, to fluc-
tuations in the investors’ risk preferences. Since this additional volatility
of the asset is perfectly correlated with changes in investors’ attitude
toward risk, it must be priced, and thus the premium is larger. In equi-
librium, however, this increase in the premium is not sufficient to offset
the increase in the price/dividend ratio that stems from a higher ex-
pected dividend growth, so the positive relation between price/dividend
ratios and expected future returns remains, though attenuated.

Notice that it is the combination of time-varying expected dividend
growth and time-varying aggregate risk preferences that generates this

2 Our model is related to the general equilibrium models of Bossaerts and Green (1989),
who also model dividend processes directly, and Brock (1982), though his is in a production
economy framework. See also Bakshi and Chen (1997), Abel (1999), Bekaert and Gren-
adier (2001), Bansal, Dittmar, and Lundblad (2002), and Ang and Liu (2003).
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effect: were either of the two constant, the effect would vanish. Impor-
tantly, then, the dividend yield may be at times a poor predictor for
future returns since it may vary opposite to expected excess returns.

Our framework suggests a simple correction to the standard predict-
ability regression to disentangle the conflicting effects that shocks to
expected dividend growth and to the preferences for risk have on the
expected excess returns of individual assets. We show that the expected
excess rate of return of an asset is a linear function not only of its
dividend yield but also of its consumption/price ratio, a result for which
we find empirical support for the set of industry portfolios that we use
in our empirical tests. In addition, simulations show that the magnitude
of the effects generated by our model matches the one in the data.

The predictability of stock returns is only one side of the coin. Fluc-
tuations in price/dividend ratios must predict changes in expected re-
turns, changes in the dividend growth, or both. In the data, aggregate
dividend growth, though, is not predicted by past price/dividend ratios
of the market portfolio. This is to be expected. We show that an asset’s
expected dividend growth is indeed linear in its price/dividend ratio,
but the slope coefficient is itself a function of the variable driving
changes in the aggregate preferences for risk. Thus linear regressions
that fail to correct for these changes do not reveal the information on
future dividend growth contained in price/dividend ratios. As before,
the model suggests a straightforward adjustment to the dividend growth
predictability regressions: divide the price/dividend ratio by the cor-
responding price/consumption ratio, which enters as a control for
changes in risk preferences, to obtain the share of dividends to con-
sumption as a forecasting variable for dividend growth. Our empirical
tests find considerable support for this simple adjustment, both for the
aggregate market and for the set of industry portfolios, and confirm
that dividend growth is indeed forecastable—although not by the price/
dividend ratio. Importantly, these results obtain in simulated data as
well.

Finally, we link the predictability of dividend growth to the predict-
ability of returns. We show that those assets characterized by a slow
mean reversion of expected dividend growth should have returns that
are better predicted by the dividend yield. Instead, if the mean reversion
is fast, the consumption/price ratio should be a better predictor of
returns. We provide empirical evidence to corroborate this prediction.

In addition to the voluminous literature on long-term predictability,
surveyed, for instance, in Campbell et al. (1997) and Cochrane (2000),
this paper relates to recent empirical work on the relation between
valuation ratios, equity returns, and dividend growth. First, our model
provides theoretical support for the empirical findings of Vuolteenaho
(2002), who shows that for individual assets, changes in expected returns
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and changes in expected cash flow growth are positively related, specially
for small stocks. Second, Lettau and Ludvigson (2003) find that aggre-
gate dividends are forecastable, but not by the price/dividend ratio, and
argue for the existence of common components in expected returns
and dividend growth, which they assume exogenously. Our model shows
that this common component should be expected in equilibrium, since
positive changes in expected dividend growth naturally increase the
asset’s riskiness and thus its required premium.

We introduce the model in Section II. The theoretical and empirical
results are contained in Sections III and IV, respectively. Section V pre-
sents conclusions. Proofs are contained in the Appendix.

II. The Model

A. Preferences

The economy is composed of a representative consumer who maximizes

� �

�rtE u(C , X , t)dt p E e log (C � X )dt , (1)� t t � t t[ ] [ ]
0 0

where denotes the habit level and r denotes the subjective discountXt

rate. We assume throughout that habit is external to the individual; that
is, an individual’s habit level is determined by aggregate consumption
rather than by his own.3

The effect of habit persistence on the agent’s attitudes toward risk
can be conveniently summarized by the surplus/consumption ratio, , de-St

fined as

C � Xt tS p . (2)t Ct

Movements of this surplus produce fluctuations of the local curvature
of the utility function, , and hence they translate naturally into the1/St

3 On habit persistence and asset pricing, see Sundaresan (1989), Abel (1990), Constan-
tinides (1990), Detemple and Zapatero (1991), Ferson and Constantinides (1991), Daniel
and Marshall (1997), Chapman (1998), Li (2001), and Wachter (2001). These papers
focus on questions different from the present one.
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corresponding variation on the prices and returns of financial assets.4

Thus, the particular assumptions on the dynamics of are of criticalSt

importance. Campbell and Cochrane (1999) assume that followslog (S )t
a mean-reverting process with shocks that are conditionally perfectly
correlated with innovations in consumption growth. For tractability, we
find it convenient instead to impose the stochastic structure on the
inverse of the surplus/consumption ratio, which we denote :Yt

1 C 1tY p p p 1 1. (3)t S C � X 1 � (X /C )t t t t t

Throughout we refer to as the inverse surplus. Analogously to CampbellYt

and Cochrane (1999), we assume that it follows a mean-reverting pro-
cess, perfectly negatively correlated with innovations in consumption
growth:

dY p k(Y � Y )dt � a(Y � l)(dc � E [dc ]), (4)t t t t t t

where is the long-run mean of the inverse surplus and k is the speedY
of the mean reversion. Here , and we assume that it followsc p log (C )t t

the process
1dc p m dt � jdB , (5)t c c t

where is the mean consumption growth, is a scalar, and is1m j 1 0 Bc c t

a Brownian motion.
The parameter in (4) captures the impact of unexpected con-a 1 0

sumption growth on the inverse surplus process. A negative innovation
to consumption growth, for example, results in an increase in the inverse
surplus or, equivalently, a decrease in the surplus level, capturing the
intuition that the consumption level moves farther away from a slow-Ct

moving habit . The parameter ensures a lower bound for theX l ≥ 1t

inverse surplus and an upper bound for the surplus itself. For instance,
if the surplus is to live in [0, .1] (as in the calibration of CampbellSt

and Cochrane [1999]), then , and this can be guaranteedY � [10, �]t

by setting . Clearly, we assume that .l p 10 Y 1 l

Finally, in our model, as in Campbell and Cochrane (1999), habit is
implicitly defined as , and as a consequence, we mustX p C (1 � S )t t t

ensure that its joint properties with aggregate consumption conform to

4 As in Campbell and Cochrane (1999), we term the local curvature of the�(u /u )CCC C t

utility function. However, in our setting, the same calculations as in the appendix of
Campbell and Cochrane (1998) imply a value of the Arrow-Pratt coefficient of relative
risk aversion equal to

r
RRA p Y� (Y � Y),t t

r� k

where as in eq. (3). With a slight abuse of terminology then, we refer to asY p 1/S Yt t t

the degree of risk aversion.
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economic intuition. Specifically, we impose the restriction that
for all to guarantee that positive shocks to aggregateCov (dC , dX ) 1 0 St t t t

consumption result in a utility loss for the individual agent. For this to
be the case, it is enough to bound the parameter a by , that is,a(l)

�a ≤ a(l) p (2l � 1) � 2 l(l�1), (6)

which we assume holds throughout.5

B. The Cash Flow Model

There are n risky financial assets paying a dividend rate, , in unitsi n{D }t ip1

of a homogeneous and perishable consumption good. We assume that
agents’ total income is made up of these n cash flows plus other proceeds
such as labor income and government transfers. Let be the aggregate0Dt

income flow that is not financial in nature. Thus agents’ total income
is given by . As the consumption good is immediately perishable,n i� Dtip0

in equilibrium, total income equals total consumption and, hence,
.n iC p � Dt tip0

Rather than modeling the process for the dividend rates themselves,
we assume that the share of consumption that each asset produces,

iDtis p for i p 1, … , n, (7)t Ct

evolves according to a mean-reverting process of the form6

i i i i i i ′¯ds p f(s � s )dt � s j (s )dB , (8)t t t t t

where is an N-dimensional row vector of standard1 NB p (B , … , B )t t t

Brownian motions, is asset i’s average long-term consumptionis̄ � [0, 1)
share, is the speed of mean reversion, andif

n

i i j j i i ij (s ) p v � s v p [j (s ), j (s ), … , j (s )] (9)�t t 1 t 2 t N t
jp0

is an N-dimensional row vector of volatilities, with i i iv p [v , v , … ,1 2

for a row vector of constants with . Theiv ] i p 0, 1, … , n N ≤ n � 1N

term is parametrically indeterminate; that is, adding a constantij (s )t
vector to all the ’s leaves the share processes unaltered. For analyticaliv

5 It is enough to guarantee that
2 2Cov (dC , dX ) p C [(1 � S ) � aS (1 � lS )]j 1 0t t t t t t t c

for . We thank George Constantinides for pointing this out to us.minS p (1 � a)/2la
6 The process for the alternative source of income, , follows immediately from the fact0st

that . For the model’s implications for the relation of labor income to stockn0 is p 1 �� st tip1

returns, see Santos and Veronesi (2001).
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convenience, we then renormalize the constants, ’s, foriv i p 0, 1,
, so that… , n

n

j js̄ v p 0. (10)�
jp0

The share process described in (8) has a number of reasonable prop-
erties. The functional form of the volatility term (9) arises for any ho-
moskedastic dividend growth model. That is, if we denote id pt

(9) results from any model of the form ,i i i i ′log (D ), dd p m(D)dt � v dBt t t t

as it is immediate to verify by applying Ito’s lemma to is pt

. Tighter assumptions, in contrast, are imposed on the driftni jD /(� D )t tjp0

of (8), and this is the essence of our cash flow model. It is an econom-
ically sensible assumption that no asset should dominate the whole econ-
omy, and for this reason we impose that the process is mean-reverting.
In addition, we show in the Appendix that, in order to guarantee that
dividends are positive, that is, , and that total income equals totalis ≥ 0t

consumption, that is, it is enough to assume thatn ni i¯� s p 1, � s !tip0 ip1

and , which we do throughout.ni j j¯1 f 1 � s fjp1

Finally, the covariance between share and consumption growth is
given by

nids dCt t i j jCov , p v � v s , (11)�t CF CF t( )is C jp0t t

where .i iv p v jCF 1 c

The sign of this covariance, which given (10) is largely determined
by the sign of characterizes asset i as a good or a bad hedge againstiv ,CF

adverse consumption shocks. If, say, the covariance is negative, then the
asset is a larger fraction of consumption when consumption shrinks,
and hence it serves as a partial hedge against bad times.

1. Implications of the Share Model for Cash Flows

A straightforward application of Ito’s lemma shows that i id p log (D )t t

follows the process7

i i i ′dd p m (s )dt � j (s )dB ,t D t D t t

where

is̄ 1i i i i ′m (s ) p m � f � 1 � j (s )j (s ) , (12)D t c t t( ) 2ist

7 Even if for some asset i we have , the share itself is strictly positive if it wasis̄ p 0
positive at time . Thus there are no difficulties in taking the logarithm of .it p 0 st
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and

i ij (s ) p j � j (s ), (13)D t c t

where .j p (j , 0, … , 0)c c

The drift of the dividend growth process, (12), is given by that of
consumption plus two additional terms. The first term is governed by
fluctuations in around its long-run value of one. If, for instance,i is̄/st

, asset i experiences high dividend growth in order to “catch up”i is̄/s 1 1t

to its long-run share of consumption, . We call the relative share,i i i¯ ¯s s/st

and it is our proxy for expected dividend growth. The second term in
(12) is the usual Jensen’s inequality term. The asset then can experience
dividend growth rates that are, say, well above those of consumption for
long periods of time, but eventually it must grow at a rate that is con-
sistent with that of consumption; otherwise the asset will eventually dom-
inate the economy. Modeling this long-run connection between con-
sumption and dividends is important, particularly if one is interested
in the long-run predictability of returns or, more generally, low-fre-
quency moments of the return distribution.

The diffusion component, (13), depends on the vector of share pro-
cesses, . This heteroskedasticity is a consequence of both the restrictionst

that the shares of the different financial assets add up to a process
bounded between zero and one and the assumption that log consump-
tion is given by (5). We find that the magnitude of this heteroskedasticity,
however, is negligible compared to the volatility level.

Finally, the covariance between dividend and consumption growth is
given by

n

i 2 i j jCov (dd , dc ) p j � v � s v , (14)�t t t c CF t CF
jp0

where was defined in (11). The normalization in (10) implies thativCF

the unconditional expected covariance between dividend growth and
consumption is given by as .ni 2 i j i¯E[Cov (dd , dc )] p j � v � s v p 0t t t c CF CFjp0

In summary, then, our cash flow model rests on two assumptions.
First, log dividends and log consumption are cointegrated, and their
levels are in a fixed long-run relation given by . Second, as shown inis̄
(12), the relative share should predict future dividend growth. Wei is̄/st

show in Section IV that there is strong empirical support for both
assumptions.

III. Prices, Future Dividend Growth, and Expected Returns

In this section we investigate the way prices reflect information about
changes in expected returns, in dividend growth, or in both. We assume
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the existence of a representative investor. Then if asset g pays gD pt

at time t, the price at time t isgs Ct t

�
u (C � X )c t tg �r(t�t) gP p E e D dtt t � t[ [ ] ]u (C � X )t c t t

�
Ct �r(t�t) gp E e s Y dt . (15)t � t t[ ]Yt t

Closed-form solutions obtain whenever the expectation in (15) can be
solved, which, under suitable conditions,8 is identical to solving

�r(t�t) gE [e s Y ]. (16)t t t

Excess returns are then given by g g g gdR p [(dP � s C dt)/P ] � r dt.t t t t t t

A. The Total Wealth Portfolio

For the total wealth portfolio, , and hence . Then we cang gD p C s p 1t t t

show the following result.
Proposition 1. (a) The price/consumption ratio of the total wealth

portfolio is given by

TW r � kYStP 1t p . (17)( )C r r � kt

(b) The process for excess returns on the total wealth portfolio is given
by , whereTW TW TW 1dR p m (S )dt � j (S )dBt R t R t t

TW TWm (S ) p [1 � a(1 � lS )]j (S )j (18)R t t R t c

and

kYS(1 � lS )at t
TWj (S ) p 1 � j . (19)R t c[ ]kYS � rt

Expression (17) neatly captures the mechanism embedded in habit
persistence models. A positive innovation in aggregate consumption
increases , which decreases the local curvature of the utility function,St

making the investor less “risk averse,” and hence the increase in
.TWP /Ct t

The expected excess return and volatility of returns of the total wealth
portfolio, (18) and (19), are plotted in figure 1c. As intuition suggests,
for high values of , both and are decreasing in . How-TW TWS m (S ) j (S ) St R t R t t

8 We assume that the process for is such that . Thus we can invoke� �r(t�t)Y E [ e Y dt] ! �∫tt t t

Fubini’s theorem to justify the inversion of integration and expectation implicit in (16).
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Fig. 1.—Aggregate quantities. a, Stationary density function of . b, Price/consumptionSt

ratio of the total wealth portfolio. c, Expected excess returns and volatility of returns of the
total wealth portfolio, and the risk-free rate. d, Sharpe ratio of the total wealth portfolio.
The parameters used are those of table 1 below.

ever, they are increasing in for very low values of . The reason isS St t

that as , its volatility must necessarily vanish in order to preventS r 0t

from becoming negative; otherwise the marginal utility of consump-St

tion could become negative. This results in a lower volatility of returns
and, thus, in a decrease in the expected excess return. To gauge the
quantitative importance of the backward-bending side of both TWm (S )R t

and , figure 1a shows the stationary density of . Notice that thisTWj (S ) SR t t

density has a relatively thin left-hand-side tail, and thus this effect does
not seem quantitatively important. Finally, the Sharpe ratio, [1 �

, increases monotonically as drops (fig. 1d).9a(1 � lS )]j St c t

B. Individual Securities

In this case , the share of asset i, and now the expectation ing is p st t

(16) depends on the term . To highlight the main novel implicationsis Yt t

9 This follows from (18) and (19). In the case of log utility with no habit, i.e., a p 0
and , for and , , and (Ru-TW TW 2 TWY p Y p l p 1 S p 1/Y t ≥ 0 P /C p 1/r m p j j p jt t t t R c R c

binstein 1976).
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of our model for predictability, we study first the simpler case in which
all assets have equal cash flow risk, that is, identical covariance between
dividend growth and consumption growth. In this case, we obtain a
closed-form solution for prices. We cover next the case in which there
are cross-sectional differences in cash flow risk. In this case, we can still
obtain closed-form solutions for prices in the absence of habit persis-
tence and an extremely accurate approximate solution when both habit
persistence and cross-sectional differences in cash flow risk are present.

1. Price/Dividend Ratios and Predictability Regressions with Equal
Cash Flow Risk

Assume that in (14) so that for alli i 2v p 0 Cov (dd , dc ) p j i p 1,CF t t c

.10 Then we can prove the following proposition.… , n
Proposition 2. Let for all . Then (a) theiv p 0 i p 0, 1, 2, … , nCF

price/dividend ratio is given by

i i i¯ ¯P s st i i i ip a � a S � a � a S , (20)0 1 t 2 3 ti i iD s st t t

where , , , and are all positive and are given in (A8) in thei i i ia a a a0 1 2 3

Appendix. (b) The expected excess return of asset i is given by

kYS a(1 � lS )t t
i 2E [dR ] p [1 � a(1 � lS )] 1 � j , (21)t t t ci i{ }¯kYS � r[1 � f(s/s )]t t

where is given in (A11) in the Appendix and is such thatf(7) f(1) p
and .′0 f ! 0
Equation (20) shows that a high relative share , which signals highi is̄/st

expected dividend growth (see [12]), translates into a high price/div-
idend ratio. The price/dividend ratio is a linear function of the surplus/
consumption ratio as well. Intuitively, a high surplus/consumptionSt

ratio implies a lower aggregate expected return and, thus, a higher
price/dividend ratio. Moreover, as captured by the interaction term in
(20), a high relative share increases the price/dividend ratio more the
larger the surplus/consumption ratio, , since future cash flows are inSt

this case less heavily discounted.
Expected excess returns, expression (21), are driven by both the sur-

plus/consumption ratio and the relative share, . The properties ofi i¯S s/st t

with respect to , and the economic intuition behind them, areiE [dR ] St t t

similar to those of the total wealth portfolio, and in the interest of space

10 This is a general result: In a general equilibrium setting, since for any t we have
, the only case in which all assets have identical cash flow risk is the case inn iS D p Cip0 t t

which their dividend growth has a covariance with consumption growth that equals the
variance of consumption growth itself.
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we do not repeat them here. Instead, for a given , the expected excessSt

return is increasing in the relative share since the function ini is̄/s f(7)t

(21) is decreasing in it. The reason is that when is high, asset i paysi is̄/st

the bulk of its dividend far in the future; thus it is naturally more sensitive
to movements in the stochastic discount factor than an otherwise iden-
tical asset whose cash flows are paid earlier and, thus, are less heavily
discounted. This sensitivity is naturally priced as it correlates with the
stochastic discount factor and hence results in a higher required pre-
mium. Still, in equilibrium, the higher premium is not sufficient to offset
the increase in the price/dividend ratio stemming from the higher
expected dividend growth. A high relative share then translates into
both high price/dividend ratios and high expected excess returns.

Notice then the key implication of the model: time-varying risk pref-
erences ( ) and time-varying expected dividend growth ( ) have op-i i¯S s/st t

posite implications for the relation between expected returns and price/
dividend ratios. Whereas the first induces the standard negative relation
between price/dividend ratios and expected excess returns, the second
induces a positive relation between them. The next proposition shows
how to correct the predictability regressions, for both returns and div-
idend growth, to account for the complex interaction between changes
in expected dividend growth and changes in risk preferences.

Proposition 3. Let for all . Then (a) theiv p 0 i p 0, 1, 2, … , nCF

expected excess rate of return can be written as

iD Ct ti i i iE [dR ] p b (S ) � b (S ) � b (S ) , (22)t t 0 t 1 t 2 ti iP Pt t

where , , are given in (A12) in the Appendix. (b) Theib (S ) j p 0, 1, 2j t

expected log dividend growth can be written as

iPti i iE [dd] p m (S , s ) � m (S ) , (23)t 0 t t 1 t iDt

where is given in (A13) in the Appendix, andim (S , s )0 t t

ifim (S ) p . (24)1 t i ia � a S2 3 t

Expected excess returns, equation (22), are linear in both the divi-
dend yield and the consumption/price ratio. These two predictors are
obviously not orthogonal, but each “picks” a different side of return
predictability. Intuitively, as seen in (20), the price/dividend ratio de-
pends directly on the relative share , and hence it is more sensitivei is̄/st

to changes in expected excess returns that result from shocks to the
relative share. In contrast, it follows immediately from (20) by multi-
plying both sides by that the price/consumption ratio is lineari is p D /Ct t t
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Fig. 2.—Predictive regression coefficients. a and b, Theoretical slope coefficients andb (S)1

on the dividend/price ratio and consumption/price ratio, respectively, in the returnb (S)2

predictability regression. c and d, Theoretical intercept and slope coefficientm (S, s)0

on the price/dividend ratio in the dividend growth predictability regression. In additionm (S)1

to the parameters in table 1, all plots use or 0.05, and orf p 0.5 v p 2/10,000 �
.2/10,000

in . Thus it is relatively less sensitive to changes in and relativelyi i i¯s s/st t

more to changes in the surplus . As a consequence, the consumption/St

price ratio captures better variation in that results from fluctu-iE [dR ]t t

ations in the aggregate discount as proxied by .St

Figures 2a and b plot and against .11 The nonlineari ib (S ) b (S ) S1 t 2 t t

pattern of these coefficients is inherited from the form of the expected
return on the total wealth portfolio, discussed in Section IIIA, and it
implies that return predictability is stronger during “bad” times, since
the overall size of expected returns is higher.12 Figures 2a and b also
shows that a low speed of mean reversion yields a high slope coef-if

ficient for the dividend yield, , and a low coefficient on the con-ib (S )1 t

11 Figure 2 reports the coefficients and also for various values of the averageb (S) b (S)1 2

cash flow risk parameter . Section IIIB2 shows that a result similar to (22) holds alsoivCF

when , although approximately.iv ( 0CF
12 Still, simulations show that this state dependency has a minor effect on the degree

of predictability of returns when both and are included in the regression, as weD/P C/P
discuss in Sec. IV.
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sumption/price ratio, .13 Indeed, the lower the , the more it takesi ib (S ) f2 t

for to revert to , which implies a greater long-term covariance be-i i¯s st

tween expected excess returns and dividend yields, since they both move
slowly together with and thus the higher coefficient on , andi i i is̄/s D /Pt t t

the lower one on .iC /Pt t

Part b of proposition 3 shows that the ability of the price/dividend
ratio to predict future dividend growth is mediated by the surplus/
consumption ratio. In particular, the size of the coefficient de-im (S )1 t

pends inversely on . If, say, increases but the relative share staysS St t

constant, the price/dividend ratio will increase as well, but the coeffi-
cient will decrease to offset the change in and leave thei i im (S ) P/D1 t t t

forecast of future dividend growth unaltered. Figures 2c and d plot both
, for , and as a function of for two different valuesi i¯m (s , S ) s p s m (S ) S0 t t t 1 t t

of the speed of mean reversion . A smaller mean-reversion coefficientif

leads, not surprisingly, to a lower slope coefficient on the price/if

dividend ratio, since the same happens to the relative share itself.i is̄/st

To uncover the information on future dividend growth that the price/
dividend ratio contains, we can then proxy the denominator of im (S )1 t

by , which, as already argued, is relatively more sensitive to changesiP/Ct t

in . Given that , though, (23) collapses simply to a versioni iS s p D /Ct t t t

of equation (12). That is, dividend growth should be predicted by the
asset’s inverse share, , which is, in the context of our model, thei1/st

only variable needed to do so.

2. Price/Dividend Ratios and Predictability Regressions with
Heterogeneous Cash Flow Risk

Differences in cash flow risk are a key component in determining cross-
sectional differences in asset pricing. We study first the case without
habit persistence to better isolate the effect that cash flow risk has on
expected returns.

Proposition 4. Let and , that is,a p 0 Y p Y p l p 1 u(C , X ,t t t

. Then (a) the price/dividend ratio of the�rtt) p u(C , t) p e log (C )t t

asset i is

i i i¯P 1 f st p 1 � . (25)( )i i i[ ]D r � f r st t

13 That is decreasing in holds always, whereas, in contrast, that is ani i ib (S ) f b (S )1 t 2 t

increasing function of holds only for parameter values that are empirically relevant,if
but not in general.
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(b) The expected excess return of asset i is given by

ni j jv �� v sCF CF tjp0
i 2E [dR ] p j � . (26)t t c i i i¯1 � (f/r)(s/s )t

(c) The expected excess return of asset i, , can be written asiE [dR ]t t

iDti iE [dR ] p b � b (s ) , (27)t t 0 1 t iPt

where and2b p j0 c

ni j jv �� v sCF CF tjp0
ib (s ) p . (28)1 t ir � f

In this version of the model, the price/dividend ratio and expected
dividend growth are perfectly correlated, and, as before, a high relative
share results in a high price/dividend ratio.14 The ratio also affectsi is̄/st

the level of expected excess return of asset i. The intuition is straight-
forward. Notice first that the numerator in (26) is simply the covariance
between share and consumption growth (see eq. [11]). Then, if this
covariance is, say, positive, a low relative share translates into a high
expected excess return, since now the asset, which pays when con-
sumption is high, is a large fraction of consumption and is thus risky.
This effect is weighted by the ratio . A shock to has a relativelyi if/r st

higher percentage impact on the price of the asset the lower the ratio
, because either the shock to the share is more persistent (low )i if/r f

or it has a higher weight in the pricing function (high r).
The implications for predictability, (27), are now immediate. If, for

example, the covariance between share and consumption growth is pos-
itive, a high dividend yield should predict high future returns. As in
Section IIIB1, and for the same reason, a low speed of mean reversion

will induce a large coefficient on the dividend yield. In addition,i if b (s )1 t

the higher the covariance between share and consumption growth, as
approximated by , the higher the slope coefficient , since in thisi iv b (s )CF 1 t

case expected returns are higher whereas the dividend yield is not af-
fected as it is independent of .15ivCF

Closed-form solutions, in contrast, are not available when we combine
differences in cash flow risk with habit persistence. Still, the Appendix

14 Notice that in the limit, as , we have that for all t, and the Gordon modeli i i¯f r � s ≈ st

obtains, with constant dividend growth and a constant price/dividend ratio .i i �1P /D p rt t
15 The cash flow risk parameter does not enter into the pricing equation (25). UnderivCF

logarithmic preferences, substitution and wealth effects exactly balance each other out: a
high yields a higher discount in its price because of the substitution effect but a higherivCF

expected return, which induces a wealth effect.
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shows that an accurate approximation of the price/dividend ratio is
given by

i i i¯ ¯P s st i i i iˆ ˆ ˆ ˆ≈ a � a S � a � a S , (29)0 1 t 2 3 ti i iD s st t t

where , , , and are given in (A15) in the Appendix. Numericali i i iˆ ˆ ˆ ˆa a a a0 1 2 3

computations show that the approximation error of using (29) is less
than 0.1 percent. Expression (29) has a functional form identical to
that of (20) in Section IIIB1. Now, though, the coefficients depend on
the average cash flow risk parameter , and, generally, a high tendsi iv vCF CF

to decrease .16 It follows from (29) that the predictability equationsi iP/Dt t

hold approximately as well, that is,

iD Ct ti i i iˆ ˆ ˆE [dR ] ≈ b (S ) � b (S ) � b (S ) (30)t t 0 t 1 t 2 ti iP Pt t

and

iPti i iˆ ˆE[dd ] ≈ m (S , s ) � m (S ) , (31)t 0 t t 1 t iDt

where , , , and are given in the Appendixiˆ ˆ ˆb (S ) j p 0, 1, 2 m (S , s ) m (S )j t 0 t t 1 t

and are comparable to their counterparts in Section IIIB1. Now, of
course, , , depend on as well. Figures 2a and b showi ib̂ (S ) j p 0, 1, 2 vj t CF

though that cross-sectional differences in generate small cross-sec-ivCF

tional differences in the predictability coefficients, and . Fi-i iˆ ˆb (S ) b (S )1 t 2 t

nally, figure 2d shows that is increasing in . A high impliesi im̂ (S ) v v1 t CF CF

that the price/dividend ratio is more sensitive to cash flow risk, which
is correlated with expected dividend growth, that is, the relative share

. Movements in the relative share are then more correlated withi is̄/st

movements in the price/dividend ratio and, thus, the increase in
.m̂ (S )1 t

IV. Empirical Evaluation

A. Data, Construction of the Cash Flow Series, and Cointegration Tests

Quarterly dividends, returns, market equity, and other financial series
are obtained from the Center for Research in Security Prices (CRSP)
database, for the sample period 1947–2001. We focus our empirical
exercises on a set of 20 value-weighted industry portfolios. The use of

16 Briefly, the essential technical problem is that the drift rate of , where ,i i idq q p s Yt t t t

contains the quadratic Ito term , which complicates the computation ofni j j(Y � l)s � s vt t t CFjp1

the expectation in (15). Our estimates in Sec. IVB show that this term is negligible, and
thus we approximate with a process defined as .ni i i i i j jˆ ˆq q dq p dq � (Y � l)s � s v dtt t t t t t t CFjp1
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portfolios has become a relatively standard procedure in the financial
literature in order to mitigate the residual variance of returns. In our
case, the use of portfolios enables us to obtain relatively smooth cash
flow data that are a priori consistent with the underlying model for cash
flows put forward in this paper (eq. [8]). More explicitly, our general
equilibrium model focuses on infinitely lived assets. For this reason, we
choose to concentrate our empirical exercises on a very coarse definition
of industries—the first two standard industrial classification (SIC)
codes17—which are likely to generate cash flows for a very long time.
The secular trend of an industry, if any, can then be interpreted in our
framework as a convergence toward its long-term mean , which is as-is̄
sumed to be known by agents, a strong assumption that we discuss
further in Section V.

A detailed description of the construction of the cash flow series is
contained in the Appendix, and it follows Bansal et al. (2002) and
Hansen, Heaton, and Li (2002). Our cash flow series includes both
dividends and share repurchases; our construction of the repurchases
series is similar to that of Jagannathan, Stephens, and Weisbach (2000)
and Grullon and Michaely (2002). With some abuse of terminology we
use the expressions “cash flow” and “dividend” interchangeably through-
out. Finally, consumption is defined as per capita consumption of non-
durables plus services, is seasonally adjusted, and is obtained from the
National Income and Product Accounts (NIPA). We use the personal
consumption expenditures deflator to convert nominal quantities into
real quantities, whenever necessary.

From dividends and consumption, we construct our key cash flow
variable . Our framework assumes that for every asset i,i is p D /Ct t t

, which is stationary, and hence that log div-i ilog (D ) � log (C ) p log (s )t t t

idend and log consumption are cointegrated series with cointegrating
vector [1, �1]. In column 5 of panel C in table 1, we test the null
hypothesis of no cointegration by using the cointegration test developed
by Horvath and Watson (1995), a test that explicitly exploits knowledge
of the cointegrating vector under the alternative hypothesis, as in our
case. First, as can be seen in the very last line of the panel, log dividends
and log consumption are indeed cointegrated for the case of the market
portfolio, since we can reject the null of no cointegration at the 1
percent level. At the individual industry level, we can reject the null of
no cointegration for 12 industries at the 5 percent level—seven of which
at the 1 percent level. Failure to reject no cointegration for some in-
dustries is to be expected even within our model since while the share

17 The two-digit SIC groupings are similar to those employed by Moskowitz and Grinblatt
(1999). The SIC codes are obtained from CRSP, which reports the time series of industry
classification codes. Although the Compustat classification is considered to be more ac-
curate, the series is modified only from 1994, which leads to a survival bias.



TABLE 1
Model Parameters and Moments of Aggregate Quantities

A. Preference Parameters and Consumption Parameters

r Y k l a mC jC

.04 34 .16 20.00 79.39 .02 .01

B. Aggregate Moments

E(R)
(1)

Vol(R)
(2)

E(r )f
(3)

Vol(r )f
(4)

Ave(PC)
(5)

Sharpe
Ratio
(6)

Data .07 .16 .01 .01 30 .46
Model .07 .23 .01 .04 30 .31

C. Share Process

Industry

is̄
(1)

if
(2)

vi

(#1,000)
(3)

Cov (dc,dd)
(4)

Horvath-
Watson

Test
(5)

Construction .04 .52 �.12 .05 14.26*
Railroads .09 .20 �.47 �.30 12.91**
Retail .04 .20 �.09 .08 22.95*
Petroleum .52 .16 �.20 �.02 12.29**
Mining .05 .16 �.33 �.15 3.93
Electrical equipment .09 .14 �.21 �.03 10.21**
Apparel .01 .12 �.16 .01 6.18
Machinery .12 .11 �.10 .08 19.92*
Paper .05 .11 �.19 �.02 14.13*
Other transportation .01 .09 �.06 .11 11.03**
Department stores .09 .09 �.03 .15 14.83*
Transportation

equipment .25 .08 .27 .44 7.91
Manufacturing .05 .06 �.13 .05 3.63
Other .17 .06 �.08 .09 11.85**
Fabricated metals .03 .05 �.17 .00 21.13*
Financial .05 .04 �.02 .15 27.30*
Chemical .29 .03 �.14 .03 9.33***
Primary metals .12 .01 �.32 �.14 1.19
Utilities .10 .00 �.06 .11 4.85
Food .15 .00 �.09 .09 5.30
Market portfolio 2.22 .07 �.10 .07 16.70*

Note.—Panel A: Annualized preference and consumption process parameters chosen to calibrate the mean average
excess returns, the average price/consumption ratio, the average risk-free rate and its volatility, and the Sharpe ratio of the
market portfolio. Panel B: Expected excess return of the market portfolio, ; standard deviation of returns of the marketE(R)
portfolio, ; expected risk-free rate, ; standard deviation of the risk-free rate, , average price/consumptionVol(R) E(r ) Vol(r )f f

ratio, Ave(PC); and Sharpe ratio of the market portfolio. Panel C: Estimates of the long-run mean, , and the speed ofis̄
mean reversion , cash flow risk, , and covariance between dividend growth and consumption growth, , fori i if v Cov (dd , dc )CF t t

each industry. Industries are ordered, in this and subsequent tables, according to the parameter . Col. 5 describes theif
likelihood ratio statistic for testing the null of no cointegration vs. the alternative of cointegration with the prespecified
cointegrating vector as described in Horvath and Watson (1995). All entries in the table are in annual units.

* Those industries for which the null of no cointegration can be rejected at the 1 percent level.
** Those industries for which the null of no cointegration can be rejected at the 5 percent level.
*** Those industries for which the null of no cointegration can be rejected at the 10 percent level.
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slowly converges to its long-run value , it may entail a trend in thei i¯s st

data due to a small sample.

B. Choice of Parameters

As in Campbell and Cochrane (1999), we choose preference parameters
to match basic moments of the market portfolio. We use the stationary
distribution of the process , given in equation (A3) in the Appendix,Yt

to calibrate these parameters to the market expected excess rate of
return, its Sharpe ratio, and the mean risk-free rate.18 In addition, sim-
ulations show that a high value of l is necessary to match the long-run
predictability of stock returns at reasonable levels, and for this reason
we set . This level implies a lower bound for the local curvaturel p 20
of the utility function that matches that of Campbell and Cochrane
(1999). We also set to match the steady-state value of the in-Y p 34
stantaneous local curvature of the utility function in Campbell and Coch-
rane (1999).19 Panel A of table 1 lists the values of the remaining pa-
rameters. Panel B contains the moments obtained for the aggregate
portfolio.

As for the share process (8), we estimate the speed of mean reversion
and the long-term mean by applying time-series linear regressionsi i¯f s

to their discretized version. In order to estimate the parameter ’s, weivCF

appeal to the relation (14), which, under condition (10), implies that
. Since is constant, we thereforei iv p E[Cov (dd , dc )] � Var (dc ) E [dc ]CF t t t t t t

simply find that . The results of the esti-i iv p Cov (dd , dc ) � Var (dc )CF t t t

mation are contained in panel C. Given the central role that the speed
of mean reversion parameter plays in the interpretation of our resultsif

below, we have ordered the industries by the decreasing size of the
estimated .if

C. The Model’s Pricing Ability

Table 2 reports the results of both cross-sectional and time-series re-
gressions of the form

iPt i i i îln p a � a ln (PD ) � e , (32)0 1 t t( )iDt

18 We match the unconditional moments for the total wealth portfolio with the average
values for the market portfolio in the data. Clearly the two portfolios are different, but
simulations show that their unconditional moments are similar. The availability of ananalytical
formula for the stationary density of favors the use of the total wealth portfolio for cali-Yt

bration purposes.
19 This value of is slightly higher than the one in Campbell and Cochrane (1999). TheY

steady-state surplus/consumption ratio of these authors is . Given that they workS p .0676
with rather than with , their steady-state local curvature is . Theg p 2 g p 1 g/S ≈ 29.6
difference is due to the fact that our results match the numerical average in our generated
Campbell and Cochrane surplus/consumption series.
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TABLE 2
Price/Dividend Ratios

Surplus from
Consumption Surplus from mkt mktP /D

a0 a1
2R a0 a1

2R

A. All Industries

1.43 (.30) .55 (.09) .20 1.45 (.30) .55 (.09) .20

B. Individual Industries

Construction 1.88 (.66) .38 (.18) .17 1.28 (.43) .57 (.12) .49
Railroads 1.18 (.35) .54 (.11) .42 .50 (.46) .75 (.14) .59
Retail 2.27 (.61) .36 (.17) .11 .80 (.39) .82 (.12) .55
Petroleum 1.55 (.46) .44 (.13) .21 .20 (.29) .86 (.09) .76
Mining 1.39 (.83) .62 (.22) .33 1.31 (.48) .65 (.13) .57
Electric equipment 2.53 (.52) .28 (.15) .04 �.78 (.41) 1.31 (.13) .67
Apparel 1.36 (.35) .52 (.11) .32 1.27 (.30) .55 (.10) .49
Machinery 1.63 (.41) .57 (.13) .16 .73 (.41) .85 (.13) .53
Paper 2.19 (.39) .33 (.12) .11 .19 (.48) .96 (.15) .60
Other transportation .47 (.51) .90 (.15) .48 .27 (.27) .98 (.08) .68
Department stores 1.37 (.64) .63 (.19) .19 �.30 (.31) 1.15 (.09) .73
Transportation equipment 1.65 (.62) .38 (.18) .14 .85 (.26) .64 (.07) .58
Manufacturing 2.68 (.65) .31 (.21) .04 �.00 (.55) 1.13 (.18) .47
Other 2.11 (.58) .35 (.18) .10 .16 (.44) .95 (.14) .69
Fabricated metals 1.79 (.56) .44 (.17) .13 �.17 (.32) 1.04 (.10) .79
Financial 2.28 (.41) .29 (.12) .09 .05 (.20) .99 (.06) .84
Chemical 2.47 (.39) .27 (.13) .08 �.03 (.24) 1.04 (.07) .81
Primary metals 1.28 (.41) .52 (.12) .28 .63 (.39) .72 (.12) .61
Utilities 1.93 (.58) .27 (.18) .06 .88 (.73) .60 (.23) .26
Food 2.44 (.61) .24 (.18) .06 .45 (.41) .86 (.13) .65

Note.—Panel A: Parameter estimates of the cross-sectional regressiondf63.eps

iPt i îln p a � a ln (PD ) � e ,0 1 t t( )iDt

where is the price/dividend ratio implied by the model. That is, given the parameter values for the cash flow processes,îPDt

preference, and consumption contained in table 1, we feed our pricing formula, eq. (29), the observed consumption and
dividend realizations to obtain . The results are reported both for the case in which the surplus/consumption ratio isîPDt

obtained from consumption shocks and also for the case in which the total wealth portfolio is approximated by the market
portfolio and expression (17) is used to obtain a time series of . Standard errors are in parentheses. We use the Fama-St

MacBeth methodology, and standard errors are adjusted for heteroskedasticity and autocorrelation. Adjusted ’s are also2R
reported. Panel B: Parameter estimates of analogous time-series regressions, industry by industry. Standard errors are adjusted
for heteroskedasticity and autocorrelation. The sample period is 1947–2001, and the data are quarterly.

where is the model-implied price/dividend ratio, obtained by feed-îPDt

ing into formula (29) the realized time series of the relative share and
the surplus/consumption ratio for the parameter values contained in
table 1. We use two proxies for the surplus/consumption ratio , whichSt

is not observed. The first is obtained from innovations in real con-
sumption growth, . We use this series toD̂B p (1/j)(Dc � E [Dc ])t c t�1 t t�1

approximate the Brownian motion appearing in the process for the
inverse surplus in (4) and thus compute for all t. The secondY S p 1/Yt t t

proxy relies on approximating the total wealth price/consumption ratio,
, by the price/dividend ratio of the market, . InvertingTW mkt mktP /C P /Dt t t t

formula (17), we can then extract from for all t.mkt mktS P /Dt t t
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Panel A of table 2 reports the result of Fama-MacBeth (1973) cross-
sectional regressions, where is regressed, period by period, oni iln (P/D )t t

a constant and the model-implied ln . The table reports the averageî(PD )t
intercept and slope, together with their standard errors, which are
Newey-West adjusted for heteroskedasticity and autocorrelation. Note
first that, independently of whether is extracted from consumptionSt

growth or from the market price/dividend ratio, the average slope co-
efficient, a1, is .55 and is significantly different from zero at the 5 percent
level. Still, we can reject that and . The model then isa p 0 a p 10 1

able to generate a substantial component of the cross-sectional disper-
sion of the price/dividend ratios observed in the data, although not
completely.

Panel B reports the results of time-series regressions, industry by in-
dustry, as in (32). When is extracted from real consumption, the slopeSt

coefficient is significantly different from zero for most industries,ia1

namely, 15 out of 20. In other words, even when only cash flows and
consumption data are used in the fitting exercise, and in particular no
information from asset prices contaminates the inference, the model
shows that relative shares and surplus combine to yield a good descrip-
tion of the dynamics of asset prices. When we use information from the
price/dividend ratio of the market portfolio to compute , the resultsSt

improve substantially, and essentially all regression coefficients are dif-
ferent from zero. Moreover, in this case we cannot reject the null that

and for 14 of the 20 industries in our sample. Figure 3i ia p 0 a p 10 1

provides a visual impression of the results contained in panel B of table
2 by plotting the log price/dividend ratios of the market portfolio and
three industries, financials, paper, and utilities (solid-dot line), together
with the corresponding model predictions (dotted line). These three
industries were chosen because they provided the best, the median, and
the worst fit in terms of the of the time-series regression (32).2R

D. The Predictability of Dividend Growth

Our cash flow model implies that the relative share forecasts future
dividend growth. To test this implication we run

i i i iDd p b � b X � e for t p 1, 4, and 7 years, (33)t,t�t 0 X t t,t�t

where is either , , or, in a multivariate regression, both ofi i i i¯X s/s P/Dt t t t

them.
Panel A of table 3 shows the results for the market portfolio. The

relative share is a strongly significant predictor of dividend growth at
the aggregate level with ’s equal to 5 percent, 31 percent, and 412R
percent for the one-, four-, and seven-year horizons, respectively. Instead
the price/dividend ratio is never significant, and, moreover, it enters
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Fig. 3.—Log price/dividend ratios: a, market portfolio; b, financials; c, paper; and d, utilities.
All panels plot the log price/dividend ratio in the data (solid dot) and implied by the model
(dotted). The model-implied plots use the relative share from the data, and the surplus/i is̄ /st

consumption ratio , as arguments in the price function. For the market portfolio, theSt

surplus is computed from consumption shocks, whereas for the three industry portfoliosSt

it is extracted from the price/dividend ratio of the market portfolio itself. The three industries
are those with the highest, median, and lowest from a time-series regression of price/2R
dividend ratios onto the model-implied counterparts (table 2).

with the wrong sign—a standard result in the predictability literature.
There is then substantial predictability of dividend growth at the ag-
gregate level, but the price/dividend ratio is not capturing it.20

For individual industries, panel B of table 3 reports the results of a
pooled regression (33), with fixed industry effects, for the same three
horizons. The relative share is again the strongest predictor of futurei is̄/st

dividend growth, with ’s equal to 6 percent, 20 percent, and 24 per-2R
cent for the three horizons, respectively. Now, however, also the price/
dividend ratio enters significantly for the one- and four-year horizons,

20 Ang and Bekaert (2001) find that dividend and earnings yields predict cash flow growth
in a cross section of five countries at short horizons, and Ang (2002) finds predictability
using dividend yields in the United States for the sample period 1927–2000. Lettau and
Ludvigson (2003) find predictability in dividend growth at longer horizons at the aggregate
level using a variable that measures deviations of consumption from a stable relation with
dividends from human and nonhuman (financial) wealth. Ribeiro (2003) finds that the ratio
of dividends to labor income also contains information about future dividend growth.
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TABLE 3
The Predictability of Dividend Growth

Relative Share
Price/Dividend

Ratio Multivariate Regression
i is̄ /st

(1)

2R
(2)

i iP /Dt t

(3)

2R
(4)

i is̄ /st

(5)

i iP /Dt t

(6)

2R
(7)

A. Market Portfolio

Horizon:
1-year .11* (.05) .05 �.43 (1.57) .00 .11* (.05) �.09 (1.57) .04
4-year .68* (.26) .31 �.75 (7.51) .00 .68* (.27) .62 (6.22) .30
7-year .92* (.26) .41 �6.83 (8.28) .05 .89* (.32) �4.10 (6.59) .41

B. Pooled Regressions

Horizon:
1-year .09* (.02) .06 3.69* (.76) .04 .08* (.02) 2.82* (.63) .08
4-year .28* (.06) .20 8.38* (2.50) .10 .25* (.06) 5.43* (1.91) .23
7-year .35* (.09) .24 5.83* (2.72) .10 .34* (.09) 3.12 (2.07) .24

C. Individual Industries (Four-Year Horizon)

Construction .68* (.29) .35 15.80 (15.63) .07 .65* (.27) 10.65 (8.44) .36
Railroads .58* (.14) .37 33.70* (8.00) .29 .43* (.13) 13.46* (4.23) .38
Retail .49* (.23) .19 8.32 (5.99) .10 .41* (.19) 3.93 (6.46) .19
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Petroleum .60* (.17) .31 7.36 (12.47) .02 .60* (.15) .97 (6.22) .29
Mining .30 (.23) .08 16.07* (8.20) .22 .03 (.24) 15.49 (10.09) .20
Electrical equipment .67* (.14) .29 1.99 (5.98) .01 .71* (.15) 3.80 (5.37) .30
Apparel .44* (.08) .39 12.49 (8.49) .11 .44* (.09) �.63 (4.00) .37
Machinery .64* (.09) .43 12.22 (7.36) .19 .59* (.06) 9.55* (3.34) .54
Paper .72* (.18) .38 1.24 (3.91) .00 .73* (.14) 2.55 (2.08) .38
Other transportation .66* (.14) .40 12.05 (10.08) .13 .69* (.13) �1.68 (5.32) .39
Department stores .87* (.31) .43 6.85 (6.18) .08 .86* (.31) .08 (3.51) .42
Transportation equipment .43* (.09) .34 38.71* (16.22) .27 .34* (.09) 26.78* (13.04) .44
Manufacturing .11 (.13) .03 .06 (1.60) .00 .11 (.14) .21 (1.60) .01
Other .37* (.15) .27 3.53 (6.06) .01 .37* (.15) 3.04 (4.77) .27
Fabricated metals .74* (.22) .34 13.81 (9.39) .18 .63* (.19) 6.78 (7.92) .37
Financial .54* (.20) .19 �5.13 (6.14) .03 .55* (.22) �5.61 (5.21) .21
Chemical .12 (.15) .02 �5.85 (3.42) .08 .17 (.15) �6.71 (3.51) .10
Primary metals .11* (.04) .17 32.61 (16.79) .26 .04 (.04) 26.60 (20.01) .26
Utilities �.09 (.07) .07 8.26* (3.47) .16 �.02 (.07) 7.66* (3.23) .14
Food �.16 (.15) .05 �2.11 (9.01) .01 �.16 (.16) �1.60 (8.92) .03

Note.—Dividend growth predictability regressions for market portfolio (panel A), pooled individual industries (panel B), and individual industries (panel C). For each of the three cases,
the predictive regression isdf64.eps

Dd p a � bX � e ,t,t�k t t�k

where denotes the cumulative dividend growth between time t and , and is either the relative share , the price/dividend ratio , or both (multivariate regression). TheiDd t � t X s̄/s P /Dt,t�t t t t t

pooled regression in panel B uses fixed effects. For each regression we report the corresponding Newey-West adjusted standard errors (in parentheses), where the number of lags is double
the number of years in the forecasting horizon. Cols. 2, 4, and 7 report the adjusted ’s. The sample period is 1947–2001. Data are annual.2R

* Statistically significant at the 5 percent level.
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although its predictive power is much weaker: the never exceeds 102R
percent across horizons. In a multivariate regression, the relative share
remains the strongest predictor.21

Panel C of table 3 reports the predictive regression results for indi-
vidual industries. In the interest of space we report only the four-year
regression. As can be seen, and in line with the results of panel B, the
relative share is a significant predictor of future dividend growth for 15
of the 20 industries, with ’s above 30 percent in 10 cases. Among the2R
industries for which the relative share does not forecast future dividend
growth are those for which the null of no cointegration could not be
rejected (see table 1), such as mining, food, utilities, and manufacturing,
so the lack of forecasting ability of the relative share is perhaps less
surprising. The price/dividend ratio, in contrast, is significant for only
four of the 20 industries. As before, the relative share remains the strong-
est predictor of the two in the multivariate regression.22

1. Price/Dividend Ratios and Future Dividend Growth

The price/dividend ratio is, at best, a weak predictor of future dividend
growth. Is this weak forecasting ability of the price/dividend ratio to be
expected even in the presence of substantial dividend growth predict-
ability? To address this question, we run regression (33) in simulated
data and compare the results to those in table 3. For this purpose we
obtain 40,000 quarters of artificial data by generating dividend and
consumption shocks for the processes described in Section II using the
parameter values in table 1.

The results are contained in panel A of table 4, for the one- and four-
year horizons. The price/dividend ratio is a substantially worse predictor
of future dividend growth than the relative share , since the formeri is̄/st

is always associated with a much smaller than the latter. Indeed, for2R
10 out of 20 industries, the associated with the price/dividend ratio2R
is less than half that associated with . To put it differently, althoughi is̄/st

the model entails a substantial predictability of future dividend growth
across industries, the price/dividend ratio fails to capture it.

We can use the simulation results also to compare the magnitudes of
the predictive regression coefficients obtained in the data, panel C of

21 Our cash flow model implies that the relative share should be the only predictori is̄ /st

of future dividend growth. Thus the finding that the price/dividend ratio still remainsi iP /Dt t

significant in the multivariate regression can be taken as a rejection of the cash flow model.
Still price/dividend ratios are likely to be less affected by measurement error than dividend/
consumption ratios, and this can account for this result.

22 For the one- and seven-year horizons, the relative share is significant for 10 and 15
industries, respectively. Instead, the price/dividend ratio is significant for only eight and four
industries for these two horizons. In addition, neither the significance of the relative share
nor the ’s were affected by the inclusion of lagged dividend growth.2R



understanding predictability 27

TABLE 4
Predictability of Dividend Growth: Simulations

Industry

One-Year Horizon Four-Year Horizon
i is̄ /st

(1)

2R
(2)

i iP /Dt t

(3)

2R
(4)

i is̄ /st

(5)

2R
(6)

i iP /Dt t

(7)

2R
(8)

A. Simulation Results

Market portfolio .07 .03 .50 .01 .25 .09 1.97 .02
Construction .38 .21 9.66 .15 .86 .30 22.11 .22
Railroads .19 .11 4.99 .08 .59 .24 15.35 .17
Retail .18 .09 3.14 .04 .59 .21 10.10 .09
Petroleum .16 .08 2.34 .04 .51 .19 7.36 .08
Mining .13 .08 4.00 .06 .44 .18 13.23 .14
Electrical equipment .14 .07 1.85 .03 .46 .17 6.28 .07
Apparel .11 .06 2.82 .04 .39 .15 9.94 .10
Machinery .11 .06 2.37 .03 .38 .14 8.54 .08
Paper .10 .05 1.58 .02 .36 .13 5.57 .06
Department stores .09 .05 2.81 .04 .32 .13 10.03 .09
Other transportation .08 .04 1.59 .02 .29 .11 5.84 .05
Transportation equipment .07 .04 2.24 .02 .26 .10 8.04 .06
Other .06 .03 1.19 .01 .20 .08 4.42 .03
Manufacturing .06 .03 .76 .01 .24 .09 3.05 .02
Fabricated metals .06 .03 1.37 .02 .22 .09 5.00 .04
Financial .04 .02 .73 .01 .16 .06 3.35 .02
Chemical .03 .02 .70 .01 .11 .05 3.15 .02
Primary metals .01 .01 .88 .01 .03 .02 3.35 .02
Utilities .00 .00 �.06 .00 .00 .00 �.33 .00
Food .00 .00 .20 .00 .00 .01 .92 .00

B. Data vs. Model Predictions

a0 .07
(.03)

.05
(.02)

2.07
(1.23)

.05
(.02)

.17
(.10)

.14
(.04)

3.09
(4.20)

.08
(.03)

a1 .83
(.30)

.58
(.32)

1.14
(.66)

.45
(.55)

.83
(.22)

.91
(.27)

1.03
(.45)

.46
(.42)

2R .39 .20 .24 .07 .40 .25 .19 .07

Note.—Panel A: Simulation results of the time-series regressions for , 4 years for the marketi i iDd p a � bX � e k p 1t,t�k t t�k

portfolio (first row) and each of the 20 industry portfolios. The term denotes the cumulative dividend growth betweeniDdt,t�t

time t and , and the regressor is either , the industry i’s relative share, or , the price/dividend ratio.i i i i i i¯t � t X p s /s X p P /Dt t t t t

Simulations are based on 40,000 quarters of dividend and consumption data. Panel B: Results of the cross-sectional regression
of the coefficients of the dividend growth predictability regression on their population counterparts obtained in simulations,
i.e.,df65.eps

data,i simulation,iˆ ˆb p a � a b � e,X 0 1 X

where is the data coefficient associated with either the relative share or the price/dividend ratio (from table 3 for thedata,ib̂X

four-year regression) and is the population counterpart (from panel A). Cols. 2, 4, 6, and 8 report the correspondingsimulation,ib̂X

cross-sectional regression of the data on its population counterpart. For each cross-sectional regression, we report the2R
standard errors (in parentheses) and the ’s.2R

table 3, with those in simulations that we may take as population values.
The magnitude of the coefficients is similar. For the four-year regression,
we can reject that the coefficients in table 3 are different from their
population counterparts for only five out of the 20 industries. In ad-
dition, and as in the data, the increases with the horizon, although2R
it is slightly lower than the one obtained in the data, with values that
range from 30 percent to 0 percent at the four-year horizon. Finally, in
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results not reported here, for the one-year horizon we can never reject
the null that the coefficients on are equal in the data and ini is̄/st

simulations.
To see whether the model captures the observed cross-sectional dif-

ferences in dividend growth predictability, we also regress cross-section-
ally the coefficients obtained from the predictive regressions in the
empirical data on their population counterparts. That is, we run

data,i simulation,i iˆ ˆb p a � a b � e , (34)X 0 1 X

where . This exercise allows for a simple metric to eval-i i i i¯X � {s/s , P/D }t t t t

uate the model: the intercept, , should equal zero and the slopea 0

coefficient, , should equal one. The results are in panel B of table 4.a 1

Start with the case of the relative share. For both the one-year and
four-year horizons, the slope is significantly different from zero anda 1

positive, and it is not significantly different from one. The intercept
is statistically different from zero at the one-year horizon, but not ata 0

the four-year horizon. That is, the cross-sectional variation in the pre-
dictability of future dividend growth implied by the model matches the
data well. Indeed, at the four-year horizon, even regressing the predictive
regression in the data on its population counterpart results in a slope2R
coefficient that is positive and significantly different from zero, buta 1

not significantly different from one. For the one-year horizon, instead,
the slope for the regression is positive but insignificant. Similar2a R1

results hold for the price/dividend ratio.
A noticeable difference between the results in table 3 and table 4 is

that the level of the ’s in the data is generally higher than in the2R
simulations, which may be the result of small-sample problems. To ad-
dress this issue, we simulate 1,000 samples of artificial data of 54 years
each. On each sample, we performed the same predictive regressions,
thereby obtaining the distribution of the regression coefficients as well
as that of the ’s. The results for the four-year-ahead predictive re-2R
gressions case are plotted in figure 4a.23

In each of the subpanels we report the 90 percent confidence intervals
for the coefficient on the relative share, the price/dividend ratio, and
the (solid lines) along with its estimated value from the data (stars)2R
for each of the industries in our sample. Recall that the industries are
ordered according to the decreasing size of the speed of mean reversion
coefficient, . The first plot in figure 4a shows that indeed the confi-if

dence bands display the predicted downward-sloping pattern, and,
moreover, the data coefficients nicely fit in these bands for all but two
cases. As for the , all but one of the ’s from the data lie inside the2 2R R

23 Results for the one-year predictive regression are similar.
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Fig. 4.—Small-sample simulation results. a, For each quantity reported on the title of each
panel and for each of the 20 industries on the horizontal axis, we report the 90 percent
confidence bands obtained through the simulation of 1,000 samples of 55 years each (solid
lines) and the data estimates (stars). The first two panels refer to the four-year-ahead pre-
dictive regression of future dividend growth using the relative share as predictor, andi is̄ /st

the second two panels refer to the four-year-ahead predictive regression of future dividend
growth using the price/dividend ratio as predictor. Industries are ordered on thei iP /Dt t

horizontal axis inversely to the size of their respective speed of mean reversion , estimatedif
in table 1 (industry 1 has the largest speed of mean reversion f). b, Same quantities as in
a, but for the multivariate four-year-ahead predictive regression of future returns, where both
the dividend yield and the consumption/price ratio are used as predictors.i i iD /P C /Pt t t t

90 percent confidence interval obtained from simulations. Notice,
though, that, in general, the data ’s are biased upward compared to2R
their counterparts in table 4. As for the price/dividend ratios, for all
but five industries, the regression coefficient in the data fits into the
confidence bands obtained from simulations. In addition, from the last
subpanel in figure 4a, the predictive power of the price/dividend ratio
is smaller than the one of the relative share, as already discussed.
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E. The Predictability of Stock Returns

Our model provides for a role for both the dividend yield and the
consumption/price ratio in the return predictability regressions. To test
this implication we run

iD Ct ti i i i ir p b � b � b � e , (35)t,t�t 0 D/P C/P t,t�t( ) ( )i iP Pt t

where denotes the cumulative log excess return on asset i betweenirt,t�t

t and , and , 4, and 7 years.t � t t p 1
Panel A of table 5 reports the result of running (35) for the aggregate

market portfolio. Columns 1–3 show the familiar pattern regarding re-
turn predictability: Both the regression coefficient and increase with2R
the forecasting horizon. Interestingly, the predictability of future return
is rather strong, notwithstanding the inclusion of the 1990s in the sam-
ple, which was known to have reduced significantly the predictive ability
of the dividend yield. The reason is that our dividend series accounts
for repurchases, which has mitigated the drop in the dividend yield in
the 1990s. The multivariate regression instead shows that the consump-
tion/price ratio has no predictive power for future returns. This result
is consistent with our model, however, since the speed of mean reversion
of the relative share of the market is quite low, only as shownif p .07
in table 1, thereby yielding a stronger role for the dividend yield than
for the consumption/price ratio in the predictability regression. Sim-
ulations, contained in table 6 and discussed below, confirm this finding.

Panel B of table 5 reports the result of a pooled predictive regression
with fixed industry effects. The dividend yield is still a strong predictor
of future returns. Now, however, the consumption/price ratio also enters
significantly in the multivariate regression, showing that at the individual
industry level, a second predictor is necessary to uncover the infor-
mation that prices contain about future returns. This finding is consis-
tent with our model since, as shown in table 1, many industries have a
faster mean reversion of the share process than the market and thus
the stronger the role of for individual industries.iC /Pt t

This intuition is confirmed when we look at individual industries.
Panel C reports the four-year-ahead predictive regression for each in-
dustry in our sample. The dividend yield alone predicts future returns
for nine of the 20 industries, especially for those cases in which the
speed of mean reversion is low, as the model requires. When we add
the consumption/price ratio in the multivariate regression, the number
of industries for which returns are predictable increases to 13 out of
20. In many occasions, the adjusted jumps up significantly, from2R
levels such as 3 percent (mining) and 8 percent (petroleum) to 37
percent and 48 percent, respectively. In addition, and consistently with



TABLE 5
Predictability of Returns: Dividend Yields and Consumption/Price Ratio

Univariate Multivariate

i iD /Pt t

(1)

2R
(2)

i iD /Pt t

(3)

iC /Pt t

(4)

Adjusted
2R

(5)

A. Market Portfolio

Horizon:
1-year 4.78* (1.46) .12 4.78* (1.47) �28.81 (57.64) .12
4-year 11.72* (5.29) .24 11.72* (5.22) 55.57 (230.48) .24
7-year 25.42* (5.95) .49 25.42* (5.83) 54.77 (267.17) .49

B. Pooled Regression

Horizon:
1-year 2.94* (.38) .06 2.94* (.36) .41* (.11) .07
4-year 7.40* (1.24) .15 7.40* (1.17) 1.10* (.29) .17
7-year 13.84* (2.18) .25 13.84* (2.05) 1.97* (.47) .29

C. Individual Industries (Four-Year Horizon)

Construction 4.03 (3.06) .08 4.03 (2.15) 2.01 (1.16) .16
Railroads 4.06* (1.61) .11 4.06* (1.10) 3.50* (1.39) .18
Retail 11.37* (4.85) .29 11.37* (4.86) .35 (1.48) .29
Petroleum 3.89 (2.20) .08 3.89* (.92) 58.56* (7.23) .48
Mining 2.89 (3.39) .03 2.89* (1.19) 9.67* (1.99) .37
Electrical equipment 14.00 (7.76) .17 14.00 (7.60) 5.33 (7.60) .18
Apparel 9.72* (3.47) .25 9.72* (2.44) .53* (.25) .31
Machinery 4.44 (6.85) .03 4.44 (3.64) 26.96* (4.35) .53
Paper 15.53* (3.54) .39 15.53* (2.00) 6.98* (1.49) .53
Other transportation 10.31 (6.36) .16 10.31* (4.10) 2.13* (1.00) .27
Department stores 9.86 (5.51) .17 9.86 (5.28) 2.53 (3.23) .17
Transportation

equipment 5.97 (3.77) .10 5.97 (3.95) 10.29 (6.22) .18
Manufacturing 13.56* (6.90) .19 13.56* (6.50) 3.79* (1.66) .26
Other 7.18 (5.62) .08 7.18 (5.57) 3.18 (5.67) .08
Fabricated metals 12.46* (3.50) .33 12.46* (3.43) .87 (1.14) .33
Financial 14.63* (5.51) .25 14.63* (5.48) .61 (2.37) .25
Chemical 18.99* (4.01) .38 18.99* (4.34) �17.63 (21.13) .41
Primary metals 9.35 (5.69) .19 9.35 (5.68) .36 (1.11) .19
Utilities 2.89 (2.67) .05 2.89 (2.67) .01 (2.17) .05
Food 13.78* (4.83) .31 13.78* (4.81) �7.65 (4.56) .36

Note.—Return predictability regressions for the market portfolio (panel A), pooled individual industries (panel B), and
individual industries (panel C). For each of the three cases, the predictive regression isdf66.eps

r p a � bX � e ,t,t�k t t�k

where denotes the cumulative log excess return between time t and , , or , where their t � t X p D /P X p [D /P , C /P ]t,t�t t t t t t t t t

consumption/price ratio is orthogonalized with respect to the dividend yield. The pooled regression in panel B uses fixed
effects. For each regression we report the corresponding Newey-West adjusted standard errors (in parentheses), where the
number of lags is double the number of years in the forecasting horizon. The sample period is 1947–2001. Data are quarterly.

* Statistically significant at the 5 percent level.
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our model, most of the cases in which the consumption/price ratio is
significant occur for industries that have a strong mean-reverting share

.24if

Finally, the theoretical results in (30) and figure 2a suggest that the
regression coefficients and should also depend on the surplus/i ib bD/P C/P

consumption ratio. Yet simulations of the model, reported next, show
that and capture most of the information on dividendi i iD /P C /Pt t t t

growth and the aggregate discount, which is at the source of the pre-
dictability result. That is, while adding the consumption/price ratio may
even double the (adjusted) in a predictive regression, the inclusion2R
of the valuation ratios interacted with , for instance, increases theSt

adjusted by less than 1 percent. This is also confirmed in the data:2R
adding improves little the predictive power of (35). We omit theseSt

additional results in the interest of space.

1. Simulation Evidence

Panel A of table 6 reports the results of predictive regressions (35) on
a 40,000-quarter sample of artificial data. As was the case in the data,
the predictability of the market portfolio return is unaffected by the
consumption/price ratio. At the industry level, in contrast, the con-
sumption/price ratio adds substantially to the predictability of the div-
idend yield, especially for industries with a high speed of mean reversion

. For instance, for a number of industries, the (adjusted) goes fromi 2f R
the 7–8 percent range to the 14–15 percent range.

The regression coefficients obtained from data are of the same order
of magnitude as the simulated ones, for both the dividend yield and
the consumption/price ratio, although the data show a much higher
dispersion of the coefficients. For the four-year horizon, for all but three
industries we cannot reject the hypothesis that the coefficient on

is the same in the data and in simulations. In the multivariatei iD /Pt t

regression, we can reject that the coefficient on in the data equalsiC /Pt t

its population counterpart for six cases.25

Panel B of table 6 shows that the model captures the cross-sectional
differences in predictability, since the predictive regression coefficients
from the data nicely line up with the population ones obtained in sim-
ulations, for both one and four years. For instance, a cross-sectional

24 For the one- and seven-year-ahead forecasting regressions, the dividend yield is significant
for 15 and 14 industries, respectively. In the multivariate regression, is significant iniC /Pt t

five and 10 industries for the two horizons, respectively.
25 In results not reported here, for the one-year regression, for all but one industry we

cannot reject the null that the coefficients in the data and the simulations are the same. For
the coefficient on in the multivariate regression, we can reject the same null for onlyiC /Pt t

three industries.
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regression of the univariate four-year predictability regression coeffi-
cient obtained from the data (table 5) on its population counter-ibD/P

part, similar to (34) in subsection D, results in an intercept that is
statistically not different from zero and a slope coefficient that is strongly
different from zero and not different from one. The results concerning

are very similar, and we omit a discussion in the interest of space.bC/P

As was the case in the dividend growth predictability regressions, the
results related to ’s are the weakest. The slope coefficients have the2R
right sign for the four-year-ahead predictive regression results—that is,
those industries that display more return predictability according to the
model do as well in the data—but they are not significantly different
from zero. Indeed from panel A of table 6, we see that the ’s are2R
lower in simulation than the corresponding ones in the empirical data.
There are two reasons for this difference. The first is that we were unable
to match the volatility of returns to its empirical counterpart in the
calibration. As shown in table 1, the volatility of returns in our model
is 23 percent versus the 16 percent observed in the historical sample.
Although population values for average predictability can be obtained
by resorting to the long sample, the would clearly be lower because2R
of the higher volatility implied by our model.

The second reason is that the is biased upward relative to the2R
population one because of the highly persistent nature of both the
dividend yield and the consumption/price ratio. To investigate this po-
tential small-sample problem, we turn to the 1,000 samples of 54 years
each introduced in Section IVD. The results are reported in figure 4b.
There we show the data estimates (stars) together with the 90 percent
confidence bands (solid lines) obtained out of the 1,000 samples, for

, , and . The two slope coefficients are within the 90 percenti i 2b b RD/P C/P

confidence bands for 19 and 14 of the 20 industries, respectively. As
shown in the last panel, the simulated confidence bands for the ’s2R
are rather wide, and only five out of the 20 ’s in the data do not fall2R
within these bands.

F. The Connection between Dividend Growth and Return Predictability

Where do the cross-sectional differences in the ability of the dividend
yield or the consumption/price ratio to predict future returns come
from? We showed in Section III that a high speed of mean reversion

should be associated with a low (regression) coefficient of the divi-if

dend yield and a high coefficient of the consumption/price ratio. In
contrast, differences in the cash flow risk parameter had little impactivCF

on and . To check whether these predictions are met in thei ib bD/P C/P
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TABLE 6
Predictability of Returns: Simulations

One-Year Horizon Four-Year Horizon

Univariate Multivariate Univariate Multivariate

Industry i iD /Pt t
2R i iD /Pt t *iC /Pt t

2R i iD /Pt t
2R i iD /Pt t *iC /Pt t

2R

A. Simulation Results

Market portfolio 4.00 .06 4.00 39.99 .06 10.37 .15 10.37 98.91 .15
Construction 2.15 .03 2.15 1.34 .06 5.53 .08 5.53 3.46 .15
Railroads 2.17 .03 2.17 3.12 .06 5.40 .07 5.40 8.49 .15
Retail 3.36 .05 3.36 1.44 .06 8.61 .12 8.61 3.87 .15
Petroleum 3.59 .06 3.59 14.57 .06 9.32 .14 9.32 38.75 .15
Mining 2.29 .03 2.29 1.48 .06 5.76 .08 5.76 3.93 .14
Electrical equipment 3.44 .05 3.44 3.56 .06 8.96 .13 8.96 8.85 .15
Apparel 2.96 .04 2.96 .32 .06 7.62 .10 7.62 .83 .14
Machinery 3.27 .05 3.27 3.75 .06 8.38 .12 8.38 9.58 .15
Paper 3.71 .06 3.71 1.25 .06 9.67 .14 9.67 2.99 .15
Other transportation 2.55 .03 2.55 .41 .06 6.50 .08 6.50 1.08 .14
Department stores 3.42 .05 3.42 2.67 .06 8.87 .12 8.87 6.76 .15
Transportation equipment 2.94 .04 2.94 6.50 .06 7.74 .09 7.74 16.23 .14
Manufacturing 3.54 .05 3.54 1.27 .06 9.20 .13 9.20 3.22 .15
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Other 3.76 .06 3.76 4.65 .06 9.62 .13 9.62 12.80 .15
Fabricated metals 3.58 .05 3.58 .69 .06 9.19 .12 9.19 1.84 .15
Financial 3.74 .05 3.74 .99 .06 9.60 .13 9.60 2.49 .15
Chemical 3.62 .05 3.62 5.62 .06 9.36 .13 9.36 13.27 .15
Primary metals 3.78 .04 3.78 .46 .05 9.77 .09 9.77 1.27 .11
Utilities 4.17 .06 4.17 .00 .06 10.88 .15 10.88 .00 .15
Food 4.16 .06 4.16 .00 .06 10.77 .13 10.77 .00 .13

B. Data vs. Model Predictions

a0 �.26
(1.45)

.01
(.05)

�.26
(1.45)

�1.19
(.65)

.24
(.09)

�2.00
(4.38)

.00
(.10)

�2.00
(4.38)

�3.26
(1.85)

.17
(.32)

a1 1.15
(.50)

1.48
(1.02)

1.15
(.50)

.89
(.30)

�2.22
(1.55)

1.34
(.57)

1.60
(.95)

1.34
(.57)

1.27
(.31)

.73
(2.30)

2R .20 .11 .20 .48 .04 .20 .12 .20 .57 .00

Note.—Panel A: Return predictability univariate regressions on and multivariate regressions on and in simulated data for one- and four-year horizons. Simulationsi i i i iD /P D /P C /Pt t t t t t

are based on 40,000 quarters of dividend and consumption data. Results pertain to both the market portfolio (row 1) and the 20 industries. Panel B: Results of the cross-sectional regression
of the coefficients and the ’s of the return predictability regression, reported in table 5 for the four-year regression, on their population counterparts obtained in simulations, i.e.,2Rdf67.eps

data,i simulation,iˆ ˆb p a � a b � e,X 0 1 X

2 data,i 2 simulation,i(R ) p a � a (R ) � e,0 1

where is the data coefficient associated with either the dividend yield or the consumption/price ratio, is the corresponding , and and are theirdata,i 2 data,i 2 simulation,i 2 simulation,iˆ ˆb (R ) R b (R )X X

population counterparts. We report the standard errors (in parentheses) for each coefficient and the .2R
* Times 1,000.
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TABLE 7
Source of Return Predictability

Horizon a0 a1 (/100)a2
2R

A. Data: vs. andi ib f vD/P

1-year 3.87 (.53) �4.81 (1.74) �15.36 (17.55) .13
4-year 11.38 (1.62) �16.14 (5.66) 10.13 (63.84) .15
7-year 23.01 (3.02) �35.05 (10.58) 55.40 (132.86) .21

vs. andi ib f vC/P

1-year .36 (.95) 7.78 (7.12) �.22 (36.28) .04
4-year 2.76 (3.16) 24.04 (26.40) �13.33 (111.26) .04
7-year 7.26 (3.84) 28.04 (36.56) �65.60 (159.60) .03

B. Simulations: vs. andi ib f vD/P

1-year 3.78 (.17) �3.62 (.66) 5.19 (9.67) .51
4-year 9.82 (.44) �9.50 (1.75) 16.38 (25.35) .50
7-year 11.26 (.51) �10.92 (2.09) 18.85 (28.89) .49

vs. andi ib f vC/P

1-year 2.68 (.86) 3.15 (5.53) 23.91 (37.01) .02
4-year 6.73 (2.18) 8.67 (14.55) 52.53 (95.15) .02
7-year 7.87 (2.51) 9.96 (17.34) 52.68 (107.54) .01

Note.—Panel A: The first panel reports the result of the cross-sectional regression of the predictive regression coefficient
(from table 5) on the speed of mean reversion for the share, , and cash flow risk parameter, (from table 1). Thei i ib f vD/P CF

second panel in panel A reports the same quantities but for the predictive regression coefficient . Here andib b bC/P D/P C/P

denote the regression coefficients in the return predictability regressiondf68.eps

iD Ct ti i i i ir p b � b � b � e for k p 1, 4, 7 years,t,t�k 0 D/P C/P t,t�t( ) ( )i iP Pt t

where the data are quarterly and the sample period is 1947–2001. Results are for the one-, four-, and seven-year horizons.
Panel B: Same as panel A but for simulated data, which consist of 40,000 quarters of simulated dividend and consumption
data.

data, table 7 reports the results of the following linear cross-sectional
regressions:

i i i ib p a � a f � a v � e (36)D/P 0 1 2 CF

and

i i i ib p a � a f � a v � e , (37)C/P 0 1 2 CF

where and are the regression coefficients obtained from thei ib bD/P C/P

return predictive regression (35), and and are the characteristicsi if vCF

of the industry portfolio cash flow process in table 1. We run these two
cross-sectional regressions for each of the three predictive horizons,

, 4, and 7 years.t p 1
Panel A of table 7 shows that for regression (36), the slope coefficient
is negative, as the model predicts, and statistically significant for alla1

three horizons. In addition, becomes more negative with horizon ta1

since the dispersion of increases with it. The coefficient on ,i ib vD/P CF

, is, in contrast, never significant for any horizon. As already suggesteda2
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by figure 2, cross-sectional variation in has little impact on the cross-ivCF

sectional variation of . For the regression (37), panel A shows thatibD/P

and for all horizons, though they are never significantlya 1 0 a ! 01 2

different from zero.
Panel B of table 7 reports the same cross-sectional regression results,

but now for simulated data. We also report standard errors for the
simulated data since the cross-sectional regression is made with only 20
portfolios, and thus the coefficients from simulations are less likely to
constitute “population values.” The results are similar to those observed
in the empirical data: the coefficient a1 in regression (36) is negative,
significantly different from zero, and of similar magnitude for all ho-
rizons. All the other coefficients, in either (36) or (37), are not signif-
icantly different from zero. The effect of and on is limitedi i if v bCF C/P

even in simulations. In contrast, the model successfully reproduces the
link between return predictability and the underlying cash flow prop-
erties of the asset, captured by the strong negative relationship between

and .i if bD/P

V. Conclusions

Prices, which are observable, contain information about expected re-
turns and expected future cash flows, which are not. In this paper we
combine a novel model of cash flows with the stochastic discount factor
model introduced by Campbell and Cochrane (1999) that allows for a
complete characterization of individual price/dividend ratios and ex-
pected excess returns. The model produces several new insights about
the relationship between valuation ratios, expected returns, and ex-
pected future cash flows. First, while changes in risk preferences gen-
erate the traditional negative relation between price/dividend ratios and
expected returns, the variation in expected dividend growth generates
a positive one. Intuitively, a higher expected dividend growth implies
both a higher price/dividend ratio and a riskier asset since its cash flows
are expected farther in the future. The asset’s duration is longer, and
thus the expected return is higher. Second, these offsetting effects
weaken the ability of the dividend yield to forecast returns and essentially
eliminate its ability to predict future dividend growth. Third, predictive
regressions for returns should include both the dividend yield and the
consumption/price ratio to disentangle the effect that changes in risk
preferences and expected dividend growth have on prices and returns.
Fourth, there is a direct link between the predictability of future cash
flows—by the share of dividends over consumption in our model—and
the ability of the dividend yield to predict future returns. We use sim-
ulations to quantify the magnitude of these empirical predictions and
find that they are met with substantial support in the data.
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We argued that the cash flow model introduced in this paper has a
number of attractive properties such as tractability and plausibility. A
strong assumption, though, is that agents have perfect knowledge of
the long-term average size of each industry. This assumption can be
relaxed, however, to assume that agents learn about this long-run relative
size over time, thereby implying a time-varying expected long-term av-
erage size . To see the effect of this extension intuitively, con-i i¯ ¯s p E [s]t t

sider the effect of a positive dividend shock that places the current share
above its long-run mean. When the long-run mean is known, thisis̄
shock signals poor dividend growth in the future as the share mean-
reverts to . For this reason the price/dividend ratio decreases in re-is̄
sponse to a positive dividend shock. In contrast, in the presence of
learning effects, the agent may actually update upward his expectation

. Hence, the price may react more strongly to positive newsi i¯ ¯s p E [s]t t

about cash flows, inducing possibly a positive correlation between the
price/dividend ratio and current dividend shocks.

As both Campbell (2000, p. 1529) and Cochrane (2001, p. 11) have
recently emphasized, focusing on prices and not only on returns should
be the ultimate object of interest in the field of asset pricing. Prices
contain useful information about unobserved agents’ expectation on
returns and future cash flows. For instance, much has been made re-
cently of the role of conditioning information in tests of the cross section
of stock returns. The selection of variables that are useful as proxies for
the agents’ information set may be greatly helped by looking at whether
they can capture the time-series and cross-sectional variation observed
in price/dividend ratios. This paper makes progress in this direction by
emphasizing an empirically relevant model that allows for closed-form
solutions of the present value relations.

Appendix

A. Cash Flow Data

The cash flow series that we use in this paper includes both dividend distributions
and share repurchases; our construction of the latter follows closely that of
Jagannathan et al. (2000) and Grullon and Michaely (2002).26 Repurchases are
defined as total expenditure on the purchase of common and preferred stocks
(Compustat data item 115) minus any reduction in value (redemption value,
Compustat data item 56) of the net number of preferred stocks outstanding
(not available for banks, utilities, and insurance companies). Our empirical
exercise focuses on a set of 20 industry portfolios, identified by their first two
SIC codes. Following Fama and French (1992), we form the portfolios in July
of every year by assigning firms to them according to their SIC classification.

26 We thank Harry DeAngelo for suggestions and insightful comments in constructing the
data.
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Time series of value-weighted returns and cash flows are then calculated for
each of the portfolios.

Given the aggregate cash flow data for dividends and repurchases as well as
the series for returns, we then follow a procedure similar to Bansal et al. (2002)
and Hansen et al. (2002) to construct cash flow series that are consistent with
an initial investment in each industry, as our model requires. To understand
the logic, it is useful to concentrate on an individual firm. The methodology
naturally extends to industries as well as the market as a whole. Consider then
a firm i. Let and be the price per share and the number of shares out-i ip Nt t

standing at the beginning of period t, and let and be the total amounti i˜ ˜D Ft,t�1 t,t�1

of dividends and repurchases made between t and . If an investor purchasest � 1
shares at the beginning of time t for , the total amount of cash flowsi in P p n pt t t t

obtained at time is thent � 1

nti i i i i i˜ ˜D p (D � F ) p (d � f )P , (A1)t,t�1 t�1 t,t�1 t�1 t�1 tiNt

where, denoting the market capitalization by , we denotei i iV p N p d pt t t t�1

and . If we assume that repurchases occur at the end ofi i i i i˜ ˜D /V f p F /Vt,t�1 t t�1 t,t�1 t

period t, then the total amount of shares outstanding after repurchases (but
before new issues) is . At time , the investor theni i i i˜N p N � (F /p ) t � 1t�1 t t,t�1 t�1

holds shares. This implies that, for every t,i i in p n � (n /N )(N � N )t�1 t t t t t�1

i i i ip (N � N )pt�1 t t�1 t�1i i i i i iP p n p p n p � p P (h � f ), (A2)t�1 t�1 t�1 t t t t�1 t�1i i i[ ]p N pt t t

where is the capital gain from an investment at time t. We applyi i ih p p /pt�1 t�1 t

equations (A1) and (A2) recursively to compute the cash flows of value-weighted
industry portfolios as well as of the market portfolio. We smooth the dividend
series to correct for seasonalities by using a trailing four-quarter average. We
finally assume that the total initial investment made at time (1947) equalst p 0
the total market capitalization at that time, divided by the population ,Mt

. The flow of dividends in (A1) therefore can be interpreted as thej jP p V /M0 0 0

cash flows to a typical (representative) investor in the economy who invested in
1947.

What is the corresponding consumption that flows to this representativeCt

investor? We simply assume that it is given by the per capita aggregate con-
sumption , where is defined as total consumption expenditures of˜ ˜C p C /M Ct t t t

nondurables plus services, obtained from the NIPA for the period 1947–2001.
The definition has three appealing features: First, it is the natural˜C p C /Mt t t

assumption in an economy in which population grows at the same rate as the
economy. Second, it is not contaminated by variables that are related to prices,
as other plausible definitions would have it. Third, data strongly endorse it, as
we find that is in fact strongly cointegrated with , whereA Alog (C ) log (D ) Dt t t

denote the aggregate dividends constructed according to the procedure above
(see table 1).27

Whenever we need to convert nominal quantities into real ones, we use the

27 Our empirical findings turn out to be rather insensitive to the rescaling of both dividends
and consumption. Using simply the total amount of dividends paid every period t from each
industry and using total market capitalization as price level , for instance, yield very similarPt

results. Other types of rescaling also had minor effects on the results in this paper.
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personal consumption expenditures deflator, also obtained from the NIPA
tables.

B. The Calibration of Preference Parameters

The stationary density for the process Y in equation (4) depends on only three
parameters, , l, and , and it is given by2 2Y b p k/a jc

Y � l
�2b�2exp �2b # (Y � l)( )[ ]Y � l

w(Y ) p . (A3)
Y � l� �2b�2exp �2b # (y � l) dy∫l [ ]( )y � l

We use equation (A3) to compute the unconditional moments of aggregate
variables. We match these unconditional moments to their sample counterparts
in the calibration described in Section V. Specifically, we choose the parameters

, l, k, and a to match the following moments,Y

TWP E[dR ]tTW f 2E[dR ] E[r (Y )] E[j (Y )] E (Y ) ,t rf TW 2[ ] �C E[(dR ) ]t

to the corresponding sample counterparts. For instance, for the Sharpe ratio,
we make

� TWTW m (Y )w(Y )dY∫lE[dR ]t p p data.
�TW 2 TW 2� �E[(dR ) ] FFj (Y )FF w(Y )dY∫t l

C. The Share Process

We prove the claim made in Section IIB that and for all t. Theni is ≥ 0 � s p 1t tip0

process described in equation (8) is a special case of a more general vector
autoregression model with

n

i j i i ′ ′ds p s l dt � s (v � s v)dB ,�( )t t ji t t t
jp0

where v is an matrix, (a) , and (b)0 n ′N # N v p [v , … , v ] , l 1 0 l pji ii

. A solution to this system of stochastic differential equations is known�� l ikk(i

to exist (see Liptser and Shiryaev 1977, vol. 1, chap. 9). In addition, iPr (s 1t

for all finite t, and it is easy to see that if , thenn ni i0) p 1 � s p 1 � s p 10 tip0 ip0

for all , as . Finally, we have to show that (8) cann it 1 0 d(� s ) p 0dt � 0dB p 0t tip0

be obtained as a special case for a choice of the parameters . We concentratel ji

then only on the drift. First, for , we can impose the conditioni p 1, … , n
, so thatn0 js p 1 �� st tjp1

n n n

j 0 j js l p s l � s l p l � s (l � l ).� � �t ji t 0i t ji 0i t ji 0i
jp0 jp1 jp1
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Thus, imposing the restriction and for , 0, we findi i¯l p f s l � l p 0 j ( i0i ji 0i

that the drift of share isidst

n

j i i i i i i i i¯ ¯ ¯s l p f s � s (l � l ) p f s � s (l � f s ).� t ji t ii 0i t ii
jp0

The next step is to show that we can define without violatingi i i¯l � f s p �fii

conditions a and b above. Imposing condition b, we have l p �� l pii ikk(i

. Since the restrictions above hold for each , we have�l �� l k p 1, … , ni0 ikk(i,0

. Thus , which implies thatk k k k¯ ¯l p l p f s 1 0 � l p � f sik 0k ikk(i,0 k(i,0

i i i i k k¯ ¯l � f s p �f iff l p f � f s .�ii i0
k(0

We notice that was still a free parameter so far. Clearly, condition a is thenl i0

also satisfied if for all i, which occurs if for all .ni k k¯l 1 0 f 1 � f s i p 1, … , ni0 kp1

D. Proofs

We assume throughout that . Define for convenience� �rtE[ e Y dt] ! � j p (j ,∫0 t c c

. From (4), an application of Ito’s lemma yields the process for0, … , 0) S pt

:1/Yt

dSt 2 2 2 ′p [k(1 � YS ) � (1 � lS ) a j ]dt � (1 � lS )ajdB . (A4)t t c t c tSt

The pricing kernel is given by

Yt�ftm p u (C , X , t) p e , (A5)t c t t Ct

and it follows the process , where′dm /m p �r dt � j dBt t t m t

2 2r p f � m � j � k(1 � YS ) � a(1 � lS )j (A6)t c c t t c

and

j p �[1 � a(1 � S l)]j . (A7)m t c

Proof of Propositions 1 and 2

Proposition 1 is a special case of the result in proposition 2, for for all t.is p 1t

Part a. From (15) with and the fact that almost surely, weg i is p s s Y ! Yt t t�t t�t t�t

can use the Fubini theorem and invert the order of integration: iP pt

. The assumption implies that ,� i i i(C /Y ) E [s Y ]dt E [ds dc ] p 0 E [ds dY ] p 0∫tt t t t�t t�t t t t t t t

and thus28

ii i i i i �f t �kt¯ ¯E [s Y ] p E [s ]E [Y ] p [s � (s � s )e ][Y � (Y � Y )e ].t t�t t�t t t�t t t�t t t

28 It can be checked that (see Karatzas and Shreve 1991, p.�k(t�t)E [Y ] p Y�(Y � Y)et t t

361, eq. 6.34).
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When this expression is substituted in the pricing formula, tedious calculus
derivations yield equation (20) with

1ia p ,0 ir � k � f

kY
i ia p a ,1 0 ir � f

ifi ia p a ,2 0
r � k

if kY 1 1i ia p a � . (A8)3 0 ( )ir r � k r � f

Part b. An application of Ito’s lemma to (20), together with (A4), yields
, wherei i idP/P p m dt � j dBt t P,t P,t t

i i i i¯(a � a S )s j(s) � (a s � a s )S(1 � lS )aj0 1 t t i 3 1 t t t cij p j � . (A9)P,t c i i i i i i i i¯ ¯s a � a S s � a s � a sSt 0 1 t t 2 3 t

The excess return process has the same diffusioni i i idR p [(dP � D dt)/P ] � r dtt t t t t

as (A9), . Equilibrium requires that , where the sto-i i i i ′j p j E[dR ] p �j jR,t P,t t R,t m

chastic discount factor is in (A5). Since for all i, we haveiE[ds dc ] p 0t t

, which implies′j(s)j p 0i m

i i i¯(a s � a s )S(1 � lS )a3 1 t t ti 2E[dR ] p [1 � a(1 � S l)] 1 � j . (A10)t t ci i i i i i i i[ ]¯ ¯s a � a S s � a s � a sSt 0 1 t t 2 3 t

Finally, when we substitute for ’s from (A8), a little algebra shows thatiaj

i i i kY¯a s � a s3 1 t p ,i i i i i i i i i i¯ ¯s a � a s � (a s � a s )S ¯r[ f(s/s ) � 1] � kYSt 0 2 1 t 3 t t t

where

i i¯f s
1 �i is̄ r � k stf p � 1. (A11)( )i i¯s 1 1 s rt if � �( )i i ir � k r � f s r � ft

In addition, it is immediate to see that and for all x. Q.E.D.′f(1) p 0 f (x) ! 0

Proof of Proposition 3

Part a. From (A10) and (20) we have

Cti i i i 2¯E[dR ] p [1 � a(1 � S l)] 1 � (a s � a s )S(1 � lS )a j .t t 3 1 t t t ci[ ]Pt
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When we define and define , equation (22) followsi iD p s C j (S ) p S(1 � lS )at t t S t t t

with

2b (S ) p [1 � a(1 � S l)]j ,0 t t c

1b (S ) p b (S)a j (S ),1 t 0 i S t

i¯b (S ) p b (S )j (S )a s . (A12)2 t 0 t S t 3

Part b follows immediately from collecting in the price/dividend ratio for-i is̄/st

mula (20) and substituting it into (12), where we obtain, in addition to m (S )1 t

as in (24), the intercept

i ia � a S0 1 t 1i i i i i ′m (S , s ) p m � f � f � j (s )j (s ) . (A13)0 t t c t ti i 2a � a S2 3 t

Q.E.D.

Proof of Proposition 4

Part a. As in the proof of proposition 2, from and�i �rt iP p C e E [s ]dt∫tt t t t�t

, the result (25) follows.ii i i i �f t¯ ¯E [s ] p s � (s � s )et t�t t

Part b. From Ito’s lemma applied to (25) we have ,i i idP/P p j dB � o(dt)t t P,t t

where collects all the dt terms ando(dt)

�1i i¯f sij p j � 1 � j(s ).P,t c t( )ir st

As in part b of proposition 2, from , the fact that andi i ′ i iE[dR ] p �j j j p jt R,t m R,t P,t

that with no habit , the result follows from .n′ i j jj p j j(s )j p v �� v sm c t c CF CF tjp0

Part c follows trivially from parts a and b on substitution. Q.E.D.

Sketch of the Derivation of General Approximate Pricing Formulas

Let . As in the proof of proposition 2, we can writei i iq p s Y P pt t t t

. From Ito’s lemma,� �rt i(C /Y ) e E [q ]dt∫0t t t t�t

n

i i i i i i i i i j j¯dq p f(Y s � q ) � k(s Y � q ) � a(Y � l)s v � (Y � l)s s v dt�t t t t t t t CF t t t CF[ ]
jp1

n

i j i ′� q v � s v � s (Y � l)aj dB .�( )t i t j t t c t[ ]
jp1

We now use (10) and approximate the term byn nj j j j� s v E[� s v ] pt CF t CFjp1 jp1

. Thus the pricing is based on the approximating processn j j¯� s v p 0CFjp1

i i i i i i i i¯dq p [f sY � (kY � alv )s � (f � k � av )q ]dtt t CF t CF t

n

i j i ′� q v � s v � s (Y � l)aj dB .�( )t i t j t t c t[ ]
jp1
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Define . This evolves according to the systemi i ′Z p (Y , q , s ) dZ p (A �t t t t t 0

, where ,′ i i ′¯A Z )dt � S(Y , s )dB A p (kY, 0, f s )1 t t t t 0

�k 0 0
i i i i i¯A p f s �(f � k � av ) kY � lav ,1 CF CF( )

i0 0 �f

and is a appropriate matrix. We assume throughout that iS(Y , s ) 3 # n f �t t

. Since admits the three distinct real eigenvalues ,ik � av 1 0 A l p �k l p1 1 2

, and , we have , withti i i�(f � k � av ) l p �f E [Z ] p W(t)Z � W(t � s)A ds∫tCF 3 t t�t t 0

, where is the diagonal matrix with�1W(t) p U exp (L 7 t)U exp (L 7 t)
, and is the matrix of associated eigenvectors. Direct com-l ti[exp (L 7 t)] p e Uii

putation shows that
l t1e 0 0 

ii kY � lavCF¯f si l t l t l t l t l t1 2 2 3 2( )W t p (e � e ) e (e � e ) .i i if � av k � avCF CF 
l t30 0 e 

Therefore,
t

iE [q ] p e E [Z ] p e W(t)Z � e W(t � s)A ds,t t�t 2 t t�t 2 t � 2 0
0

where . At this point, it is just a matter of tedious algebra to showe p (0, 1, 0)2

that the two terms in

� � � t

�r(t�t) i �rt �rtE e q dt p e e W(t)Z dt � e e W(t � s)A dsdt (A14)t � t � 2 t � � 2 0[ ]
t 0 0 0

are given by
� t ikY kY � lavCF

�rt i i iˆ ¯e e W(t � s)A dsdt p a f s � ,� � 2 0 0 i[ ]r(r � k) r(r � f )0 0

� ii kY � lavCF¯f si�rt i i iˆe e W(t)Z dt p a Y � q � s ,( )� 2 t 0 t t t
r � k r � k0

where . Substituting into (A14), we find (29) withi i i �1â p (r � k � f � av )0 CF

ikY � lavCF
i iˆ ˆa p a ,1 0 ir � f

ifi iˆ ˆa p a ,2 0
r � k

ii kY kY � lavCFfi iˆ ˆa p a � . (A15)( )3 0 ir r � k r � f

We finally compute the formula for expected returns. From (29), the diffusion
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of the capital gain return process is as in equation (A9), with the ’si i idP/P at t j

replaced by ’s. The same argument implies that expected returns must be giveniâj

by . Computing this product explicitly, using the fact thati i ′E[dR ] p �j jt R,t m

and the definition , we then findi i i i i i i i i i iˆ ˆ ˆ ˆ¯ ¯P/C p s a � a S s � a s � a sS D p s Ct t t 0 1 t t 2 3 t t t t

iDti 2 i i ′ˆ ˆE[dR ] p [1 � a(1 � S l)] j � (a � a S )j(s)jt t 0 1 t i ci[ Pt

iC Dt ti i i 2ˆ ˆ¯� a s � a S(1 � lS )aj .3 1 t t( )i i ]P Pt t

Finally, we use the approximation to approximate
n j j i� s v ≈ 0 j(s)j p v �t CF i c CFjp1

to obtain equation (30) with in (A12), and
n j j i ˆ� s v ≈ v b (S ) p b (S )t CF CF 0 t 0 tjp1

ivCFi i iˆ ˆ ˆ ˆ ˆb (S ) p b (S )(a � a S ) � a j (S) ,1 t 0 t 0 1 t 1 S2[ ]jc

i iˆ ˆ ˆ ¯b (S ) p b (S )a s j (S), (A16)2 t 0 t 3 S

where recall that . The derivation regarding the predicta-j (S) p S(1 � l S )aS t t t

bility of dividend growth is the same as in proposition 3. Q.E.D.
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