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Abstract

This paper considers the problem of sequential parameter and state estimation in

stochastic volatility jump diffusion models. We describe the existing methods, the

particle and practical filter, and then develop algorithms to apply these methods to

the case of stochastic volatility models with jumps. We analyze the performance of

both approaches using both simulated and S&P 500 index return data. On simulated

data, we find that the algorithms are both effective in estimating jumps, volatility

and parameters. On S&P 500 index data, the practical filter appears to outperform

the particle filter.
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1 Introduction

Models incorporating time-varying volatility are essential for practical finance applications

such as option pricing, portfolio choice, and risk management. Due to their importance,

a large amount of recent research has addressed two related modeling issues: developing

accurate time series models of asset returns and developing new methods for estimating

these increasingly complicated models. Stochastic volatility models capture important

empirical features such as mean-reversion in volatility and leverage effects and can also

be extended to incorporate rare jump movements in returns (see, for example, Andersen,

Benzoni, and Lund (2001) and Chernov, et al. (2003)). Despite the difficulties posed by

these complicated models, there are now a wide-range of methods capable of estimating

these models, including simulated and efficient methods of moments, simulated maximum

likelihood, and Markov Chain Monte Carlo (MCMC).

In this paper we focus on a different aspect of the estimation problem: sequential estima-

tion of parameters and states. This problem is essential for practical financial applications.

For example, portfolio allocation and option pricing problems require that portfolio weights

and option prices must be updated at a high frequency to reflect changes in volatility and

the agent’s views of the parameters. Despite its importance, the sequential problem has

received little attention in literature in part due its difficulty.

In addition to the usual problems encountered when estimating models with stochastic

volatility and jumps, sequential estimation adds an additional hurdle: computational cost.

Most estimation approaches for models with stochastic volatility and jumps are computa-

tionally intensive and it is not practical to repeatedly apply these algorithms to perform

sequential estimation. Thus, we require algorithms that can be applied sequentially on

large data sets in a reasonable amount of computing time.

Recent research on sequential estimation focusses on alternative schemes for imple-

menting sequential Bayesian inference. Bayesian methods are particularly attractive for

sequential estimation for three reasons. First, the posterior distribution is, by definition,
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the optimal filter. Second, an expansion of the posterior via Bayes rule provides a num-

ber of alternative ways of sampling the posterior, thus providing flexibility for alternative

approaches to the problem. Third, Bayesian inference quantifies the uncertainty in the

parameters and states which can be used for Bayesian decision makers and to construct

finite sample confidence intervals.

In this paper, we focus on two related but different approaches for Bayesian sequential

inference. The first, called practical filtering was developed in Johannes, Polson and Stroud

(2001) and Stroud, Polson and Muller (2003) and uses an MCMC algorithm based on fixed-

lag filtering. The practical filtering approach has been previously been applied in pure

stochastic volatility models. The second approach, called particle filtering (e.g., Gordon,

Salmond, and Smith (1993), Pitt and Shephard (1999)), has been applied in a wide range

of setting for state variable filtering. Recently, Storvik (2002) extended the particle filtering

approach to the case of sequential parameter estimation by relying on a low dimension set

of sufficient statistics in the conditional posterior distribution and applied it in a number

of simple cases. Stroud, Polson and Muller (2003) and Johannes, Polson and Stroud (2002)

extended Storvik’s approach to the case of stochastic volatility models.

In this paper, we further extend these methods to allow for jumps in returns and com-

pare the relative merits of MCMC based and particle filtering based methods. Jumps add

an additional challenge due to their rare nature. Since there are typically only a couple

of jumps per year, it is especially difficult to learn about the parameters determining the

jumps as most of the data provides little, if any, information about the jump process. We

first perform some sampling experiments using simulated data to document the algorithms’

efficiency and then apply the algorithms to real data using historical S&P 500 index re-

turns. Real data examples are of particular interest as it provides insight regarding how

the algorithms handle model misspecification, as the simple models we consider are likely

misspecified.

The paper is outlined as follows. The next section discusses the sequential approach to

estimation. Section 3 describes the particle and practical filter and provides the details of
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the algorithms for the models we consider. Section 4 provides examples using simulated

data and real data examples with S&P 500 returns. Section 5 concludes.

2 Estimation of Stochastic Volatility Jump Diffusions

The log stochastic volatility model is a benchmark for modeling stochastic volatility. How-

ever, recent research indicates that this model is not flexible enough to capture all of the

empirical features of equity returns. For example, the model has a difficult time generating

features such as the stock market crash of 1987. More formal evidence on shortcomings of

pure stochastic volatility models are given in Andersen, Benzoni and Lund (2001), Eraker,

Johannes and Polson (2003), and Chernov, Ghysels, Gallant and Tauchen (2003) document

the importance of adding jumps in returns. There is also significant evidence from the in-

dex option pricing literature that jumps, in addition to stochastic volatility, are required to

match observed prices (see, for example, Bakshi, Cao and Chen (1997), Bates (2000) and

Pan (2002)).

We therefore add a discrete-time jump term in returns to the log stochastic volatility

model

Yt+1 =
p
Vt+1εt+1 + Jt+1Zt+1

log(Vt+1) = αv + βv log(Vt) + σvηt+1

where P (Jt) = λ, Zt ∼ N (µz, σ2z), and εt and ηt are i.i.d. standard normal variables.

Define Θ = (λ, µz, σz,αv, βv, σv) as the parameter vector, let ψ = (αv, βv) the volatility

mean reversion parameters, and Xt = log (Vt) the log volatilities. We use the approach in

Kim, et al. (1998) to approximate the distribution of log [(Yt − JtZt)2] by a 7-component
mixture of normals. The mixture indicators are It and (m∗i , v

∗
i , π

∗
i ) for i = 1, . . . , 7 are

the mixture parameters. We also define the collection of observations and state variables

by Y1,t = (Y1, . . . , Yt), V1,t = (V1, . . . , Vt), X1,t = (X1, . . . , Xt), J1,t = (J1, . . . , Jt), Z1,t =

(Z1, . . . , Zt), and I1,t = (I1, . . . , It).
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Given a time series of observations, Y1,T , the usual estimation problem is to estimate the

parameters, Θ, and the unobserved states, L1,T , from the observed data. In our case, the la-

tent variables include the jump times, jump sizes and volatility states. In a Bayesian setting,

this information is summarized by the posterior distribution, p (Θ, L1,T |Y1,T ). Samples from
this distribution are usually obtained via MCMC methods by iteratively sampling from the

complete conditional distributions, p (L1,T |Θ, Y1,T ) and p (Θ|L1,T , Y1,T ). From these sam-

ples, it is straightforward to obtain smoothed estimates of the parameters and states. For

example, the posterior mean for the parameters or for volatility, is estimated as

E [Θ|Y1,T ] ≈ 1

G

GX
g=1

Θ(g)

and

E [Vt|Y1,T ] ≈ 1

G

GX
g=1

V
(g)
t

where G is the number of samples generated in the MCMC algorithm, Θ(g) is the parameter

draw and V (g)t is variance draw from the gth iteration. The Ergodic Theorem for Markov

Chains provides the limiting theorem justifying the Monte Carlo estimates.

It is important to recognize the smoothed nature of these estimators. When estimating

volatility, the estimator uses the information embedded in the entire sample. Thus, for

example, to estimate Vt, the posterior uses information in the entire data set. When

volatility is persistent, it is clear that both future and past information is informative about

Vt. However, for practical applications, researchers do not have the luxury of waiting to

receive tomorrow’s data to estimate today’s volatility. They estimate the volatilities based

on current information in a timely and efficient manner.

This sequential problem is solved by sequentially computing p (Θ, Lt|Y1,t) for t = 1, ..., T .
This is the online estimation procedure and we stress that methods must be able to compute

these distributions in practice and not only in theory. For example, in theory one could

estimate this density as a marginal from p (Θ, L1,t|Y1,t) , which, in turn, can be computed by
repeatedly applying standard MCMC algorithms. However, for large t, a MCMC algorithm,
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efficiently programmed might take, for example, 5 minutes to compute. Repeating this

hundreds or thousands of times for large daily data sets is clearly is not computationally

feasible.

Both of the practical and particle filtering algorithms approximate the true density,

p (Θ, Lt|Y1,t). The particle filter approximates this density via a discretization whereby the
distribution of (Θ, Lt) is approximated by a finite set of particles. The practical filter, on

the other hand, approximates a conditional density in the MCMC algorithm, effectively

limiting the influence that observations in the distant past can have regarding the current

state.

Before discussing these algorithms in detail, we must specify the full conditional poste-

rior distributions. The joint posterior for the states and parameters is

p(J1,t, Z1,t, X0,t,Θ|Y1,t) ∝ p(Y1,t|J1,t, Z1,t, X0,t) p(J1,t|Θ) p(Z1,t|Θ) p(X0,t|Θ) p(Θ)

=

tY
τ=1

p(Yτ |Jτ , Zτ , Xτ ) p(Jτ |Θ) p(Zτ |Θ) p(Xτ |Xτ−1,Θ) p(Θ).

where p (Θ) is the prior distribution of the parameters. We assume the following conjugate

priors for the parameters

λ ∼ Beta(S0, F0)

(µz,σ
2
z) ∼ N (µz|m0, k

−1
0 σ2z) IG(σ2z|a0, b0)

(ψ,σ2v) ∼ N (ψ|ψ0,Ψ−10 σ2v) IG(σ2v|c0, d0).

Given the conjugate priors, the complete parameter posterior conditionals are

p(λ| . . .) ∝ p(J1,t|λ) p(λ) = Beta(St, Ft)

p(µz, σ
2
z| . . .) ∝ p(Z1,t|µz, σ2z) p(µz, σ2z) = N (µz|mt, k

−1
t σ2z) IG(σ2z|at, bt)

p(ψ, σ2v| . . .) ∝ p(X0,t|ψ, σ2v) p(ψ, σ2v) = N (ψ|ψt,Ψ−1t σ2v) IG(σ2v|ct, dt)

where for notational simplicity p(y| . . .) refers to the conditional distribution of y given all
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other relevant variables. For the latent variables,

p(Jt| . . .) ∝ p(Yt|Jt, Zt,Xt) p(Jt|λ) = Bern(λt)

p(Zt| . . .) ∝ p(Yt|Jt, Zt,Xt) p(Zt|µz, σ2z) = N (µz,t, σ2z,t)
p(X0,t| . . .) ∝ p(Y1,t|J1,t, Z1,t, X1,t) p(X0,t|ψ, σ2v) = (Not recognizable)

p̃(X0,t| . . .) ∝ p̃(Y1,t|J1,t, Z1,t, X1,t, I1,t) p(X0,t|ψ, σ2v) = N (µx,Σx) (FFBS)
p̃(It| . . .) ∝ p̃(Yt|Jt, Zt,Xt, It) p̃(It) = Mult(π∗1,t, . . . , π

∗
7,t).

Note that the distribution p(X0,t|...) is not a known distribution and FFBS refers to
the forward-filtering, backward-sampling algorithm (see Johannes and Polson (2002) for

a description of the details). For completeness, we now give analytic forms for the pa-

rameters in the conditional posteriors. Let S =
Pt

τ=1 Jτ be the number of jumps, and

ψ̂ = (HTH)−1HTX, where H = (H1, . . . , Ht)
T and Ht = (1, Xt−1)T and X = X1,t. We

also denote by Y ∗t = log [(Yt − JtZt)2] the transformed observation in the Kim et al. (1998)
model. The updating recursions for the sufficient statistics are given below.

λt =
λN (Yt|µz, Vt + σ2z)

λN (Yt|µz, Vt + σ2z) + (1− λ)N (Yt|0, Vt)
µz,t = σ2z,t

¡
(σ2z)

−1µz + JtYtV
−1
t

¢
, σ2z,t =

¡
(σ2z)

−1 + JtV −1t

¢−1
Y ∗t = Xt +m

∗
It +

p
v∗It²

∗
t

Xt+1 = αv + βvXt + σvηt+1

π∗t,i =
π∗i N (Y ∗t |Xt +m∗i , v∗i )P7
j=1 π

∗
j N

¡
Y ∗t |Xt +m∗j , v∗j

¢
St = S0 + S, Ft = F0 + t− S

mt = k−1t (k0m0 +
tX

τ=1

JτZτ ), kt = k0 + S

at = a0 + St, bt = b0 +
tX

τ=1

Jτ (Zτ − Z̄)2

ψt = Ψ−1t (Ψ0ψ0 +Hψ̂), Ψt = Ψ0 +HH
T

ct = c0 + t, dt = d0 +
tX

τ=1

(Xτ −Hτ ψ̂)
2
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The only complication in the conditional structure of the model is the conditional

posterior for the log volatility states, Xt. As noted above, the conditional posterior,

p(X0,t| . . .), is not a known distribution. There are two ways to deal with this. First,
following Jacquier, Polson and Rossi (1994) we could break this t−dimensional conditional
into a set of 1−dimensional distribution and perform single-state updating. The algorithm
provides accurate inference, but convergence tends to be slow. For the practical filtering

algorithm to run quickly, we must be able to quickly draw the states and generate an algo-

rithm that converges rapidly. For this reason, we consider the approximation of Kim, et.

al. (1998).

3 Approaches for Sequential Estimation

3.1 Particle Filtering

Consider a discrete time setting where we refer to Lt as the latent variables, Yt the observed

prices, and Y0,t = (Y1, ..., Yt)
0 as the vector of observed states up to time t. There are a

number of densities associated with the filtering problem which we now define:

p (Lt|Y1,t) : filtering density
p (Lt+1|Y0,t) : predictive density
p (Yt|Lt) : likelihood

p (Lt+1|Lt) : state transition

Bayes rule links the predictive and filtering densities through the identity

p (Lt+1|Y1,t+1) = p (Yt+1|Lt+1) p (Lt+1|Y0,t)
p (Yt+1|Y0,t)

where

p (Lt+1|Y1,t) =
Z
p (Lt+1|Lt) p (Lt|Y1,t) dLt.
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Particle filtering, also known as the bootstrap filter, was first formally introduced in

Gordon, Salmond, and Smith (1993), who also discussed the problem of sequential pa-

rameter learning. We refer the reader to the edited volume by Doucet, de Freitas, and

Gordon (2001) for a detailed discussion of the historical development of the particle filter,

convergence theorems and potential improvements.

The key to particle filtering is an approximation of the (continuous) distribution of

the random variable Lt conditional on Y0,t by a discrete probability distribution, that is,

the distribution Lt|Y0,t is approximated by a set of particles,
n
L
(i)
t

oN
i=1
with probability

π1t , ..., π
N
t . By assuming the distribution is approximated with particles, we can estimate

the filtering and predictive densities via: (pN refers to an estimated density)

pN (Lt|Y1,t) =
NX
i=1

δ
L
(i)
t
πit

pN (Lt+1|Y0,t) =
NX
i=1

p
³
Lt+1|L(i)t

´
πit,

where δ is the Dirac function. As the number N of particles increases, the accuracy of the

discrete approximation to the continuous random variable improves. When combined with

the conditional likelihood, the filtering density at time t+ 1 is defined via the recursion:

pN (Lt+1|Y1,t+1) ∝ p (Yt+1|Lt+1)
NX
i=1

p
³
Lt+1|L(i)t

´
πit.

As pointed out in Gordon, Salmond and Smith (1993), the particle filter only requires

that the likelihood function, p (Yt+1|Lt+1), can be evaluated and the states can be sampled
from their conditional distribution, p (Lt+1|Lt). Given these mild requirements, the par-
ticle filter applies in an extremely broad class of models, including nearly all state space

models of practical interest. The key to the particle filtering is to propagate particles with

high importance weights and to develop an efficient algorithm for propagating particles

forward from time t to time t+ 1. We use the sampling/importance resampling procedure

of Smith and Gelfand (1992). In practice, this procedure can be improved for many appli-

cations using additional sampling methods such as those introduced in Carpenter, Clifford,
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and Fearnhead (1999) and Pitt and Shephard (1999). We use the auxiliary particle filter

approach of Pitt and Shephard (1999).

Storvik (2002) has developed an extension of the particle filter that applies to states and

parameters in certain cases. The key assumption is that the marginal posterior distribution

for the parameters, p (Θ|L1,t, Y1,t), is analytically tractable and depends on the observed
data and latent variables through a set of sufficient statistics which is straightforward to

update. For example, in a jump model, conditional on the latent states, the jump intensity

posterior depends only on total number of jumps, in this case a natural sufficient statistic.

If we denote st+1 = S (st, Lt, Yt) as the sufficient statistic which can be computed

using the previous sufficient statistic, st, as well as the previous prices and states, the

particle filtering algorithm would consist of the following steps. First, assume a particle

representation of the joint distribution, (Θ, Lt) ∼ p (Θ, Lt|Y1,t). Second, the algorithm then
draws

Θ ∼ p (Θ|st) and Lt+1 ∼ p (Lt+1|Lt,Θ)

and then finally re-weights (Θ, Lt+1) with weights proportional to the observation equation,

p (Yt+1|Lt+1,Θ).
Consider the following algorithm:

1. Initialization: given N initial particles representing the latent states, parameters and

sufficient statistics,
³
Θ(g), L

(g)
t

´
and

³
s
(g)
t

´
, and let ω(g)t be the associated weights.

2. Sequential updating: for each re-sampled particle:

(a) generate Θ(g) ∼ p
³
Θ|s(g)t

´
(b) generate L(g)t+1 ∼ p

³
Lt+1|L(g)t ,Θ(g)

´
(c) update the sufficient statistics, st+1 = S

³
s
(g)
t , L

(g)
t+1, Yt+1

´
(d) Compute updated weights wit+1 = w

i
tp(Yt|Lit+1).
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3. Resample the particles Lit+1 with probabilities proportional to w
i
t+1.

In addition, we use the auxiliary particle filter of Pitt and Shephard (1998) between steps

1 and 2. In our experience, this approach is most helpful when there is some misspecification

and the auxiliary particle filter prevents the algorithm from getting stuck.

Details of the particle filtering algorithm To apply particle filtering algorithm from

above to the jump diffusion model, we need to specify the sufficient statistics which natu-

rally arise in the conditional posteriors. The complete algorithm is given by:

1. For i = 1, . . . , N : initialize si0 = (S0, F0,m0, k0, a0, b0,ψ0,Ψ0, c0, d0) and generate

Xi
0 ∼ p(X0).

2. For t = 1, . . . , T and i = 1, . . . , N :

(a) Generate λi ∼ p(λ|Xi
0,t−1, J

i
0,t−1, Z

i
0,t−1, Y1,t) = p(λ|sit−1)

(b) Generate (µiz,σ
i
z) ∼ p(µz, σz|X i

0,t−1, J
i
0,t−1, Z

i
0,t−1, Y1,t) = p(µz, σz|sit−1)

(c) Generate (ψi, σiv) ∼ p(ψ,σv|X i
0,t−1, J

i
0,t−1, Z

i
0,t−1, Y1,t) = p(ψ, σv|sit−1)

(d) Generate J it ∼ p(Jt|λi)
(e) Generate Zit ∼ p(Zt|µiz,σiz)
(f) Generate X i

t ∼ p(Xt|X i
t−1,ψ

i,σiv)

(g) Update sufficient statistics sit = s(s
i
t−1, J

i
t , Z

i
t , X

i
t)

(h) Update augmented particles X̃ i
t = (J

i
t , Z

i
t ,X

i
t ,Θ

i, sit)

(i) Compute weights wit = w
i
t−1p(Yt|J it , Zit , X i

t).

3. Resample particles X̃ i
t with probabilities proportional to w

i
t.

As mentioned above, between steps 1 and 2 we use an auxiliary step to “peak ahead”

to improve the performance of the algorithm. All of these steps are straightforward given
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that the parameter posteriors are recognizable distributions and the state transitions are

easy to simulate.

3.2 Practical Filtering

To understand the practical filter, we first describe the generic MCMC algorithm and then

discuss the development of the practical filter in the case of SVJ models. Consider the

following MCMC algorithm: given Θ(g) and L(g)1,t , draw

Θ(g+1) ∼ p
³
Θ|L(g)1,t , Y1,t

´
L
(g+1)
1,t ∼ p ¡L1,t|Θ(g+1), Y1,t

¢
the last step usually consists of separately drawing jump times, sizes and volatilities in

blocks:

J
(g+1)
1,T ∼ p

³
J1,t|Θ(g+1), Z

(g)
1,t , V

(g)
1,t , Y1,t

´
Z
(g+1)
1,t ∼ p

³
Z1,t|Θ(g+1), V

(g)
1,t , J

(g+1)
1,t , Y1,t

´
V
(g+1)
1,t ∼ p

³
V1,t|Θ(g+1), Z

(g+1)
1,t , J

(g+1)
1,t , Y1,t

´
.

For large G, these samples are draws from p (Θ, V1,t, Z1,t, J1,t|Y1,t).
The practical filter relies on the following decomposition of the joint distribution of

parameters and states:

p (Θ, Lt|Y1,t) =
Z
p (Θ, Lt|L1,t−k, Y1,t) p (L1,t−k|Y1,t) dX1,t−k.

This decomposition shows that the filtering distribution is a mixture of the lag-filtering

distribution, p (L1,t−k|Y1,t).
This suggests the following approximate filtering algorithm:

1. Initialization: for g = 1, ..., G, set Θ(g) = Θ0 where Θ0 are the initial values of the

chain.
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2. Burn-in (initial smoothing step): for t = 1, ..., t0 and for g = 1, ..., G, simulate

(Θ, L1,k) ∼ p (Θ, L1,k|Y1,t). Set
³
Θ(g), eL(g)0,t−k´ equal to the last imputed ³Θ, eL0,t−k´.

3. Sequential updating: for t = t0 + 1, ..., T and for g = 1, ..., G generate

Lt−k+1,t ∼ p
³
Lt−k+1,t|Θ, eL(g)0,t−k, Yt−k+1,t´

Θ ∼ p
³
Θ|eL(g)0,t−k, Lt−k+1,t, Y1,t´

and set
³
Θ, eL(g)t−k+1´ equal to the last imputed (Θ, Lt−k+1) pair and leave eL(g)t−k un-

changed.

There are three separate issues that effect the efficiency and accuracy of the algorithm.

First, in theory, as k increases, the algorithm will uncover the true density as the approx-

imation disappears. However, the computational costs increase with k and therefore in

principle one would prefer, if possible to choose a small k. Second, for each time step t,

we need to make G draws from posterior and G must be sufficiently large so that we can

safely assume that the algorithm has converged. Therefore, it is important to construct an

efficient algorithm in the sense that it converges very quickly to its equilibrium distribution.

Third, at each stage, it is helpful if the draws from the conditional posteriors are exact,

that is, that the algorithm uses the Gibbs sampler.

Details of the algorithm For completeness, we now provide the details of the algorithm

for the stochastic volatility jump-diffusion model given above:

1. For g = 1, . . . , G, generate (Θ(g),X
(g)
0,1 , J

(g)
1 , Z

(g)
1 ) ∼ p(Θ, X0,1, J1, Z1).

2. For t = 1, . . . , t0 and g = 1, . . . , G

(a) Set Θ0 = Θ(g) and (J01,t, Z
0
1,t) = (0, 0).

(b) For i = 1, . . . , I:

13



i. Generate Xi
0,t ∼ p(X0,t|J i−11,t , Z

i−1
1,t ,Θ

i−1, Y1,t)

ii. Generate J i1,t ∼ p(J1,t|X i
0,t, Z

i−1
1,t ,Θ

i−1, Y1,t)

iii. Generate Zi1,t ∼ p(Z1,t|Xi
0,t, J

i
1,t,Θ

i−1, Y1,t)

iv. Generate Θi ∼ p(Θ|X i
0,t, J

i
1,t, Z

i
1,t, Y1,t)

(c) Set (Θ(g), X̃
(g)
0 ) = (Θ

I, XI
0 ).

3. For t = t0 + 1, . . . , T :

(a) For g = 1, . . . , G, set Θ0 = Θ(g) and (J0t−k+1,t, Z
0
t−k+1,t) = (0, 0).

(b) For i = 1, . . . , I

i. Generate Xi
t−k+1,t ∼ p(Xt−k+1,t|X̃(g)

t−k, J
i−1
t−k+1,t, Z

i−1
t−k+1,t,Θ

i−1, Yt−k+1,t)

ii. Generate J it−k+1,t ∼ p(Jt−k+1,t|X i
t−k+1,t, Z

i−1
t−k+1,t,Θ

i−1, Yt−k+1,t)

iii. Generate Zit−k+1,t ∼ p(Zt−k+1,t|X i
t−k+1,t, J

i
t−k+1,t,Θ

i−1, Yt−k+1,t)

iv. Generate Θi ∼ p(Θ|X̃(g)
0,t−k,X

i
t−k+1,t, J

i
t−k+1,t, Z

i
t−k+1,t, Y1,t)

(c) Set (Θ(g), X
(g)
t−k+1) = (Θ

I , XI
t−k+1).

4 Applications

We consider two applications of the algorithms: one with simulated data and one with S&P

500 index data.

4.1 Simulated data

We simulated 1000 daily observations using the following parameter values:

Jump Process: λ = 0.01, µz = −0.04, σz = 0.05
Volatility Process : αv = 0, βv = 0.98, σv = 0.1.

14



These parameters are roughly consistent with observed equity return data, see, for example,

Johannes, Kumar, and Polson (1998). As in Stroud, Polson and Muller (2002), we had

difficulty learning the volatility of volatility parameter, and so we kept this parameter fixed

throughout for both models.

Figures 1 and 2 display the sequential posterior summaries for the particle and practical

filter, respectively. The same data were used for both filtering approaches. The top of each

subplot indicates the state variable or parameter. For the volatility (annualized) and the

parameters, the plots contain the posterior median and the (2.5,97.5)% posterior quantiles,

while the plots for the jump times and sizes contain the true jump times or size (dots)

and the posterior mean. In the case of jump times, it is posterior probability that a jump

occurred.

A number of points emerge. First, both algorithms are able to successfully identify

nearly all of the jumps. The only jump that was substantively missed was at data point

40 and was about -3.75%. Both algorithms identified a small jump, less than 1%, with

20% probability. As daily volatility was more than 1%, it is not difficult for the model

to generate this move with negative shock to εt and a small jump. Effectively, the jump

was too small for the algorithm to detect it. Moreover, the parameter posteriors for the

jump process the algorithm were not very informative at this early stage in the algorithm

and thus it was not able to identify the move as a jump. Both algorithms obtained similar

estimates for the other jump times and sizes.

Second, the jump parameter posteriors appear to be collapsing nicely to their true val-

ues, for both algorithms. While we begin with relatively uninformative priors, for example,

for the jump mean the (2.5,97.5)% confidence band is roughly (7,-11)%, it is evidence from

the rapid revisions in jump parameter posteriors that the posterior quickly updates. For

example, at approximately data point 250 a large jump, about -8%, arrived that was cor-

rectly identified by the algorithm. At the same time, the posterior means for the jump

mean, the jump variance, and the jump intensity all decreased with the posterior variances

falling also. Even though jumps are rare as the jump intensity is one percent, the sequential

15
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Figure 1: Sequential particle filtering estimates for 1000 simulated data points. The particle

filter for N=25,000 particles. The algorithm took 8 minutes to run.
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Figure 2: Sequential practical filter estimates for 1000 simulated data points. The practical

filter was run with G = 250, I = 10, and k = 25. The algorithm took 8 minutes to run.
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estimates are able to accurately estimate the parameters even with the small samples.

Third, the volatility parameter estimates are similar to those in Stroud, Polson and

Muller (2003). The speed of mean reversion is accurately estimated and the estimates of

αv are slightly downward biased, as is common in the literature. Fourth, as indicated in the

Figures, both algorithms are extremely computationally efficient as each algorithm takes

about 8 minutes. In the case of the practical filter, we chose the combinations of G = 250,

I = 10, and k = 25 so that the computing time was roughly equal in computing time to

the particle filter. The computational efficiency of the algorithms imply that for practical

applications, one could likely drastically increase N , G, I and k to obtain more accurate

approximations to the posterior while still retaining computationally feasibly algorithms.

Finally, a general comparison of the two algorithms indicates that the particle filter

posteriors are much smoother than those of the practical filter. Stroud, Polson and Muller

(2003) found that the practical filter posteriors were more accurate when compared to the

true posterior (as estimated by full sample MCMC) than those of the particle filter. It is

very likely that the practical filter is more efficiently exploring the posterior distribution

than the particle filter. A more detailed simulation design is required for more concrete

conclusions regarding the relative merits of these algorithms on simulated data.

4.2 S&P 500

To analyze the performance of the algorithms using real data, we consider daily S&P 500

index returns from 1984-2000. As in the previous case, we set σv = 0.10 and learned the

other parameters. The S&P data set offers an additional challenge as it is roughly four

times as large as the simulated data. If there are degeneracies in the algorithms, we are

likely to see them more clearly in the longer time series.

Figures 3 and 4 summarize the sequential estimation using particle and practical fil-

ter, respectively. Unlike the simulated data examples in the previous sections, the two

algorithms now generate some fundamental differences. First, with regard to the Crash of

18



1987, the two algorithms generate different state variable estimates. On October 19 and

20, 1987, the particle filter estimates jump sizes of -12% and 9% while the practical filter

estimates them to be -22% and +8% (the actual moves were -22 and 9%). In addition,

the 97.5th quantile for the volatility state peaked at about 50% for the particle filter but

was over 60% for the practical filter. Since daily volatility was less than 2% and the jump

contribution was only -12% using the particle filter, this implies that the model required

more than a 5 standard deviation shock in εt to generate the Crash. While possible, it is

highly unlikely and we conjecture that the particle filter was not able to simulate enough

particles that generated large negative jump sizes. As pointed out by Pitt and Shephard

(1999) particle filtering algorithms can have difficulties dealing with outliers.

Second, the parameter posteriors for µz, σz and λ are substantively different. For

example, the posterior mean for µz with the practical filter is more negative and has fewer

spikes that the corresponding one from the particle filter. Similarly, the posterior median

for σz is higher for the practical filter. Most noticeable, the posterior confidence bands

for λ are much wider with the practical filter. This is similar to some of the findings in

Stroud, Polson and Muller (2003) who attribute it to a more accurate representation by

the practical filter. Finally, the results are similar for the two approaches for αv and βv. In

conclusion, a comparison of the two algorithms indicates they have important differences,

and we conjecture that for the given parameters and simulation scheme (choice of G, N ,

etc.), that the practical filter more thoroughly samples from the posterior distribution.

5 Conclusions

This paper extends existing sequential algorithms to the case of stochastic volatility jump-

diffusion models. We find that both practical and particle filtering provide accurate infer-

ence for simulated data, while the two approaches generate substantive differences for the

S&P 500 data.
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Figure 3: Sequential particle filtering estimates for S&P 500 index returns from 1984-2000.

The particle filter was run with N = 25, 000 particles. The algorithm took approximately

35 minutes to run. 20
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Figure 4: Sequential practical filter estimates for S&P 500 data from 1984-2000. The prac-

tical filter was run with G = 250, I = 10, and k = 25. The algorithm took approximately

37 minutes to run. 21



In the future, we plan a number of extensions. First, we plan more detailed simulation

experiments to try and further identify differences in the algorithms. For example, do either

of the algorithms rapidly degenerate at the size of the data set increases? How do the algo-

rithms perform with other choices for the parameters? Given the computational efficiency

of the algorithms, these simulations experiments are clearly feasible. Second, there are a

number of potential extensions which are straightforward to perform. Like Johannes, Pol-

son and Stroud (2002), we could consider continuous-time models and augment the state

vector by filling in missing data. Also, it would be useful to consider more general models

such those with square-root stochastic volatility and/or jumps in volatility.

Finally, as in Polson, Stroud, and Muller (2003), we found it difficult to learn certain

parameters, namely σv. There are at least two potential causes of this problem. The

marginal posterior for σv appears to have some long-memory properties, that is, data points

far in the past have a strong influence on σv. This implies that the mixing assumption in

the practical filter that observations past k-lags have little influence beyong the sufficient

statistics may not be appropriate. Another potential cause could lie in the high posterior

correlation between σv and βv. One potential cause of this is the prior on βv which is

normally distributed and places positive probability that βv ≥ 1. It would be interesting to
investigate the links between stationarity assumptions on βv and estimating σv by imposing,

for example, a normal prior truncated above at βv = 1. Alternatively, there may different

parameterizations or simulation steps that can be implemented to improve the algorithms

performance with respect to σv.
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