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Abstract

This chapter discusses Markov Chain Monte Carlo (MCMC) based methods for es-

timating continuous-time asset pricing models. We describe the Bayesian approach to

empirical asset pricing, the mechanics of MCMC algorithms and the strong theoretical

underpinnings of MCMC algorithms. We provide a tutorial on building MCMC algo-

rithms and show how to estimate equity price models with factors such as stochastic

expected returns, stochastic volatility and jumps, multi-factor term structure models

with stochastic volatility, time-varying central tendancy or jumps and regime switching

models.
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1 Introduction

Dynamic asset pricing theory uses equilibrium and arbitrage based arguments to derive asset

prices conditional on a state variable model, parameters and market prices of risk. Empirical

analysis of dynamic asset pricing models tackles the inverse problem: extracting information

about the state variables and the parameters from the observed asset prices. The solution

to this inverse problem is the distribution of the parameters, Θ, and state variables, X,

conditional on observed prices, Y , which we denote by p (Θ,X|Y ) . Through the marginal
distributions p (Θ|Y ) and p (X|Y ) this distribution summarizes parameter estimation and
state variable estimation and also provides specification diagnostics.

As an example, consider a model of an equity price, St, whose variance, Vt, follows a

square-root process

dSt
St

= (rt + ηvVt) dt+
p
VtdW

s
t (1)

dVt = κv (θv − Vt) dt+ σv
p
VtdW

v
t (2)

3



where W s
t and W

v
t are two scalar Brownian motions with correlation ρ and rt is the instan-

taneous spot interest rate. In this model, the goal of empirical asset pricing is to learn about

the volatility states, V = {Vt}Tt=1, the parameters that drive the evolution of the volatility
process, κv, θv, σv and ρ, the risk premium, ηv, and assess model specification from observed

prices, Y = {St}Tt=1. Parameter inference and volatility estimation are summarized by the dis-
tributions p (κv, θv, σv, ρ, ηv|Y ) and p (V |Y ), respectively, which are marginals from the joint

distribution, p (κv, θv,σv, ρ, ηv, V |Y ).
Characterizing p (Θ, X|Y ) in continuous-time models is difficult for a number of reasons.

First, the data are observed discretely while the models specify that asset prices and state

variables evolve continuously through time. Second, in most interesting models, there are state

variables which are latent from the perspective of the econometrician. Third, in practical

problems p (Θ,X|Y ) is typically of very high dimension due to the dimension of the state
vector. Fourth, most continuous time models generate transition distributions for prices and

state variables that are non-normal and non-standard (e.g., models with stochastic volatility

or jumps). Finally, in term structure and option pricing models, parameters enter nonlinearly

or even in a non-analytic form as the implicit solution to ordinary or partial differential

equations.

This chapter provides a description of MCMC methods and describes how they overcome

these difficulties to generate samples from p (Θ, X|Y ). We provide a general description of
the Bayesian approach to estimation, a detailed discussion of the components of MCMC

algorithms and their convergence properties and, finally, we show how to estimate a number

of popular asset pricing models with MCMC methods.

We consider the following applications: equity price models with time-varying expected

returns, stochastic volatility and jumps; dynamic term structure models with time-varying

central tendency and stochastic volatility; regime-switching diffusion models and equity option

pricing models. In each case, we start with the simplest model to develop intuition on the

mechanics of MCMC and then sequentially proceed to more complicated models. For example,

with equity price models we start with a geometric Brownian motion model and then consider

the addition of Poisson driven jumps, stochastic volatility and stochastic expected returns.

Finally, we show how to add option price data.

Our approach begins with an interpretation of continuous-time asset pricing models as

state space models (see also Duffie (1996)). Specifically, the observation equation consists of

4



the conditional distribution of observed asset prices given state variables and parameters and

the evolution equation consists of the dynamics of state variables given the parameters. For

example, in the stochastic volatility model above, (1) is the observation equation and (2) is

the state evolution. All of the asset pricing models we consider take the form of a nonlinear,

non-Gaussian state space model.

Inference for parameters and state variables in nonlinear, non-Gaussian state space models

is difficult, for the reasons mentioned above. If the parameters were known and the state space

model were linear and Gaussian, the Kalman filter provides the posterior distribution of the

state variables, p (X|Y ). Similarly, if the state variables were known, parameter estimation,
characterizing p (Θ|Y ), is straightforward. MCMC, on the other hand, provides a general
methodology that applies in nonlinear and non-Gaussian state models and, unlike classical

filtering methods, provides the distribution of both the state variables and the parameters

given the data, p (Θ, X|Y ). In fact, the Kalman filter is a MCMC algorithm in the case of a

linear and Gaussian state space model with known parameters.

MCMC methods are particularly attractive for practical finance applications for several

reasons. First, MCMC is a unified estimation procedure which simultaneously estimates both

parameters and state variables. This implies, for example, that it is straightforward to separate

out the effects of jumps and stochastic volatility in models of interest rates or equity prices.

Instead of resorting to approximate filters or noisy latent variable proxies which are often used

in the literature, MCMC computes the distribution of the state variables and parameters given

the observed data.

Second, MCMC methods account for estimation and model risk. Estimation risk is the

inherent risk present in estimating parameters or state variables. Increasingly in practical

problems, estimation risk is serious issue whose impact must be quantified. For example,

estimation risk is a very important component of optimal portfolio allocations. MCMC also

allows the researcher to quantify model risk, the uncertainty over the choice of model.

Finally, MCMC is solely a conditional simulation methodology, and therefore avoids any

maximization and long unconditional state variable simulation. Because of this, MCMC

estimation is typically extremely fast in terms of computing time. The practical implication

of this is that it allows the researcher to obtain answers in much shorter periods of time than

competing methods. Moreover, it allows the researcher to perform Monte Carlo simulations to

guarantee that the estimation procedure accurately estimates the objects of interest, a feature
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not shared by many other methods.

The chapter is outlined as follows. The next section provides a brief, non-technical overview

of MCMC methods highlighting the major components of MCMC algorithms. Section 3 dis-

cusses the Bayesian approach to estimation of continuous time asset pricing models. Section

4 discusses a number of prominent models and examples that fit nicely into the state space

approach. Section 5 discusses the general mechanics and convergence of MCMC algorithms.

Section 6 provides practical recommendations for users of MCMC. Section 7 discusses MCMC

inference in models of equity prices and option prices and Section 8 covers a variety of term

structure models. Section 9 discusses estimation and model risk and, finally, section 10 con-

cludes.

2 Overview of MCMC

MCMC is a conditional simulation methodology that generates random samples from a given

target distribution, in our case p (Θ, X|Y ). The key to MCMC is a remarkable result known as
the Hammersley-Clifford theorem. This theorem states that a joint distribution can be char-

acterized by its complete set of conditional distributions. In our setting, the theorem implies

that knowledge of p (X|Θ, Y ) and p (Θ|X,Y ) completely characterize the joint distribution
p (Θ, X|Y ).
MCMC provides the recipe for combining the information in these distributions to char-

acterize p (Θ, X|Y ). Consider the following algorithm: given two initial draws, X(0) and

Θ(0), draw X(1) ∼ p
¡
X|Θ(0), Y

¢
and then Θ(1) ∼ p

¡
Θ|X(1), Y

¢
. Continuing in this fash-

ion, the algorithm generates a sequence of random variables
©
X(g),Θ(g)

ªG
g=1
. This sequence

is a Markov Chain with attractive limiting properties: the distribution of the chain converges

to p (Θ, X|Y ), its equilibrium distribution, under a number of metrics and mild conditions.

The key to the success of MCMC algorithms is that it is easier to characterize two con-

ditional densities, p (X|Θ, Y ) and p (Θ|X, Y ), then one joint density, p (Θ, X|Y ), of higher
dimension. In many models, the distribution of state variables conditional on parameters and

data, p (X|Θ, Y ) , can be computed using standard filtering techniques. For example, in the
case of a linear and Gaussian model, the Kalman filter provides p (X|Θ, Y ). Similarly, the
distribution of the parameters given observed data and state variables, p (Θ|X, Y ), is typically
easy to simulate as the state variables are observed.
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If p (Θ|X,Y ) and p (X|Θ, Y ) are known in closed form and can be directly drawn from, the
algorithm described above is known as a Gibbs sampler. In other cases, it may not be possible

to directly sample from one or both of the conditional conditional distributions. In this case,

sampling methods known as Metropolis-Hastings algorithms apply. These algorithms use a

two step procedure. The first step samples a candidate draw from a proposal density which

may be chosen to approximate the desired conditional distribution, and, in the second step,

accepts or rejects this draw based on a specified acceptance criterion. Together, Gibbs steps

and Metropolis-Hastings steps combine to generate what is known as MCMC algorithms.

These random samples can be used for parameter and state variable estimation using the

Monte Carlo method, hence the name Markov Chain Monte Carlo. For example, a point

estimate of the parameter, Θi, is typically the marginal posterior mean:

E (Θi|Y ) =
Z
p (Θi|Y ) dΘi ≈ 1

G

XG

g=1
Θ(g)
i .

In many cases, this simple Monte Carlo estimate can be improved using a technique known as

Rao-Blackwellization. If there is an analytical form for the conditional density, p
³
Θi|Θ(g)

−i , X
(g), Y

´
where Θ−i refers to all of the elements of Θ except Θi, we can take advantage of the condi-

tioning information to estimate the marginal posterior mean as

E (Θi|Y ) = E [E [Θi|Θ−i, X, Y ] |Y ] ≈ 1

G

GX
g=1

E
h
Θi|Θ(g)

−i , X
(g), Y

i
.

Gelfand and Smith (1992) show that this estimator has a lower variance than the simple

Monte Carlo estimate.

Estimation of the marginal posterior distribution for the state variables is similar using

p (X|Y ), but it is now important to focus on a number of different densities, depending on
how the conditioning information is used. To understand the issues, we let Y T denote the

full sample and Y t denote the sample up to time t. There are three main problems that are

associated with state variable estimation:

Smoothing : p
¡
Xt|Y T

¢
t = 1, ..., T

Filtering : p
¡
Xt|Y t

¢
t = 1, ..., T

Forecasting : p
¡
Xt+1|Y t

¢
t = 1, ..., T.
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The filtering and forecasting problems are inherently sequential while the smoothing problem

is static. With samples from p (Θ, X|Y ) we can only estimate the smoothing distribution.
Recent work shows that it is straightforward to obtain the filtering density, p (Xt|Y t), using
MCMC methods (see, Johannes, Polson and Stroud (2001) and Muller, Polson and Stroud

(2001)).

Returning to the smoothing problem, notice that the marginal smoothing distribution can

be written as

p (Xt|Y ) =
Z
p (Θ, X|Y ) dΘdX−t ≈ 1

G

GX
g=1

p
³
Xt|Θ(g)

i , X
(g)
−t , Y

´
and the posterior mean is commonly reported as the estimate of the state variable at time t,cXt = E [Xt|Y ]. This approach takes into account parameter estimation risk as the posterior
integrates out the parameters and should be contrasted with classical methods which estimate

state variables conditional on parameters: cXt ³bΘ´ = E
h
Xt|bΘ, Y i. It also easy to estimate

the posterior standard deviation which measures estimation risk.

It is also straightforward to build credible sets, an analog to the classic confidence interval.

For example, in the case of a parameter, a (1− α) per cent credible set is the subset of the

marginal posterior distribution, C, such that 1 − α =
R
C
p (Θi|Y ) dΘi and can be estimated

based on the quantiles of
©
Θ(g)

ªG
g=1
. Since the credible set is not unique, one can report the

highest posterior credible set which is the smallest set C of the marginal posterior distribution

with 1− α per cent credibility.

The limiting properties of MCMC estimators, as G → ∞, are also of interest. There are
two types of convergence operating simultaneously. First, there is convergence in distribution

of the Markov Chain
©
X(g),Θ(g)

ªG
g=1

to p (Θ,X|Y ). Second, there is the convergence of the
partial sums, 1

G

PG
g=1 f

¡
Θ(g), X(g)

¢
to the conditional expectationE [f (Θ, X) |Y ]. It turns out

that convergence of both of these is guaranteed by the Ergodic Theorem for Markov Chains,

and the conditions under which it holds can be generically verified for MCMC algorithms. In

many cases, these limiting results can often be sharpened by deriving the rate of convergence

of the Markov chain. In practice, geometric or even polynomial convergence rates are common.

Finally, it is also straightforward to the use the output of MCMC algorithms to provide

model specification diagnostics. Formal Bayesian diagnostic tools such as Odds ratios or Bayes

Factors can be computed using the output of MCMC algorithms, see, e.g., Kass and Raftery

(1995) or Han and Carlin (2000) for reviews of the large literature analyzing this issue. These
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provide finite sample results for model comparison. Estimates of state variables from MCMC

algorithms also provide informal, but powerful diagnostics, as the properties of the estimated

path of the state variables can be contrasted the model implied properties.

We now discuss the general estimation problem in greater detail.

3 Bayesian Inference and Asset Pricing Models

The Bayesian approach to inference in asset pricing models requires a number of modeling

components: the likelihood, the state variable dynamics and parameter distributions. For-

mally, empirical asset pricing takes a given set of discretely observed asset prices, Y = {Yt}Tt=1
and seeks to learn about the parameters and the state variables, that is, to characterize

p (Θ, X|Y ). It is useful to decompose p (Θ,X|Y ) via Bayes rule into

p (Θ,X|Y ) ∝ p (Y |X,Θ) p (X|Θ) p (Θ) . (3)

Here p (Y |X,Θ) is the likelihood function, p (X|Θ) is the distribution of the state variables
arising from the parametric model specification and p (Θ) is the prior distribution of the

parameters. The distribution p (X|Θ) is given by a parametric model specification and p (Θ)
summarizing any non-sample information about the parameters.

The likelihood function and the state variables can be decomposed, assuming a Markov

evolution, into its components:

p (Y |X,Θ) = p (Y1, ..., YT |X,Θ) =
TY
t=1

p (Yt|Yt−1, Xt−1,Θ)

and

p (X|Θ) =
TY
t=1

p (Xt|Xt−1,Θ)

where, for simplicity, we normalize the time span between observations to 1.

Since Y are observed prices, the likelihood function is just the distribution of the incre-

ments in the asset price conditional on the parameters and state variables. At this stage, it

is important to recognize that we utilize the full-information or data augmented likelihood

function, p (Y |X,Θ) , which conditions on the state variables in addition to the parameters.
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This differs from the marginal or classical likelihood function, p (Y |Θ), which integrates or
marginalizes out the latent variables from the augmented likelihood:

p (Y |Θ) =
Z
p (Y,X|Θ) dX =

Z
p (Y |X,Θ) p (X|Θ) dX

In most models of interest in finance, there are latent variables (at least from the perspec-

tive of the econometrician) and analytical computation of the likelihood function is generally

intractable, making maximum likelihood unattractive. MCMC methods, in contrast, directly

deal with the latent variables by using the augmented likelihood and provide a likelihood

based approach when direct maximum likelihood is infeasible.

In order to construct an MCMC algorithm, we need to be able to evaluate the condi-

tional distributions of interest in the likelihood and state dynamics, p (Yt+1|Yt,Xt,Θ) and
p (Xt+1|Xt,Θ). In the setting of continuous-time models, the conditional distributions of the
asset prices and state variables arise as solutions to a parameterized stochastic differential

equations. We now discuss the connection between the likelihood, state variables dynamics,

asset pricing models and stochastic differential equations. We also discuss the role of the

parameter distribution.

3.1 Prices and the Likelihood Function

There are two types of likelihoods that arise in practice. In the first case, which is common in

models of equity prices or exchange rates, the dynamics of the prices are directly modeled as

the solution to a stochastic differential equation. In the second case, which is common in the

case of option pricing and term structure modeling, there is a deterministic function between

prices and state variables and parameters which requires special attention.

In the first case, asset prices solve the parameterized stochastic integral equation

Yt+1 = Yt +

Z t+1

t

µy (Ys, Xs,Θ) ds+

Z t+1

t

σy (Ys, Xs,Θ) dWs +

Nt+1X
j=Nt

ξ
j
,

where the dynamics are driven by the state variables, a vector of Brownian motions {Wt}t≥0,
and vector point process {Nt}t≥0 with stochastic intensity λt, and ξj is a jump with Fτj−
distribution Πτj−. All of these random variables are defined on a filtered probability space
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¡
Ω,F , {Ft}t≥0 , P

¢
and we assume that characteristics have sufficient regularity for a well-

defined solution to exist. The distribution implied by the solution of the stochastic differential

equation, p (Yt+1|Yt, Xt,Θ), generates the likelihood function.
In the second case, at least one of the asset prices is a known function of the state variables

and parameters, Yt = f (Xt,Θ) . The econometrician observes neither the parameters nor the

state variables. Classic examples are multifactor term structure and option pricing models.

In multi-factor term structure models, the short rate process, rs, is often assumed to be a

function of a set of state variables, rs = r (Xs), and bond prices are given by

f (Xt,Θ) = E
Q
h
e−

R T
t
r(Xs)ds|Xt

i
whereQ is an equivalent martingale measure on the original probability space and the function

f can be computed either analytically or as the solution to ordinary or partial differential

equation. In models of option prices, f (Xt,Θ), is given as

f (Xt,Θ) = E
Q
h
e−

R T
t
r(Xs)ds (XT −K)+ |Xt

i
in the case of a call option where (·)+ denotes the positive component. More generally, the
Fundamental Theorem of Asset pricing (see, e.g, Duffie (2001)), asserts the existence of a

probability measure Q, equivalent to P, such that prices are discounted expected values of

payoffs under Q.

In term structure and option pricing applications, the observation equation is technically

a degenerate distribution as the prices are known, with probability one conditional on state

variables and parameters. In this case, if the parameters were actually known, the state

variables can often be inverted from observed prices, Xt = f−1 (Yt,Θ). An example of this is
implying volatility from observed option prices. However, in practice, the parameters are not

known and researchers commonly assume there exists a pricing error, εt. In this case of an

additive pricing error,

Yt = f (Xt,Θ) + εt

where εt ∼ N (0,Σε).

There are two justifications for using a pricing error. First, there is often a genuine concern

with noisy price observations generated by the bid-ask spread. An excellent example of this

is an at-the-money option price on an equity index like the S&P 100 or 500 which typically
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has a bid-ask spread equal to at least 5-10% of the value of the option. In fixed income, zero

coupon or par bond yields are often extrapolated which also generates measurement error.

Second, the pricing error can be useful as a tool to break stochastic singularities between

the prices and the state variables which occurs when there are more observed asset prices than

state variables. This is often used in option pricing and fixed income settings, see, for example,

Chen and Scott (1993), Bates (1996, 2000) or Pan (2001). Even if the econometrician does

not believe the prices are observed with error, the addition of an extremely small pricing error

can be viewed as a tool to simplify econometric analysis.

3.2 State Variable Dynamics

Explicit in the asset prices are a set of state variables, Xt, that are also modeled as solutions

to stochastic differential equations (SDEs). We now provide a discussion of the three types

of state variable specifications most often used in applications: first, diffusion models; second

jump-diffusion models and third, Markov switching diffusions.

First, since the seminal work of Merton (1971) and Black and Scholes (1973), researchers

commonly specify state variables as diffusions. Here, the state variables dynamics are gener-

ated by

Xt+1 = Xt +

Z t+1

t

µ (Xs,Θ) ds +

Z t+1

t

σ (Xs,Θ) dWs

where againWt is a vector of Brownian motions under the P-measure and we assume sufficient

regularity on µ, σ and X0 for a well-behaved solution to exist.

The defining characteristics of a diffusion are the continuous sample path and its Markov

structure. A common way to relax the continuity assumption is to introduce a marked point

process in addition to the diffusion component. Specifically, a point process (Nt) counts the

number of jump times {τ j}∞j=1 prior to time t. At each time τ j a mark or jump, ξj arrives

and induces a discontinuity in the state variables, Xτj −Xτj− = ξj. Between jumps, the state

variables diffuse which implies that Xt solves

Xt+1 = Xt +

Z t+1

t

µ (Xs,Θ) ds+

Z t+∆

t

σ (Xs,Θ) dWs +

Nt+1X
j=Nt

ξj. (4)

Now, in addition to µ and σ, the dynamics of the state variables are characterized by the

arrival intensity of point process, λt = λ (Xt), and the Fτj− conditional distribution of the
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jump sizes, Π
¡
Xτj−,Θ

¢
.

Third, the drift and diffusion coefficients could randomly jump over time which leads to a

regime switching model. This is in sharp contrast to the previous model where the levels of

the state variables jump. We assume that the drift and diffusion coefficients are functions of

a continuous-time, discrete state Markov chain, Zt, which is characterized by a set of states,

Z = {Z1, ..., Zk}, and a transition rate function λ (i, j) which is interpreted as the conditional

probability of the chain moving from state i to state j in an instant:

P [Zt+dt = j|Zt = i] = λ (i, j) dt.

In this case, Xt solves

Xt+∆ = Xt +

Z t+∆

t

µ (Xs, Zs,Θ) ds+

Z t+∆

t

σ (Xs, Zs,Θ) dWs

where again, we assume sufficient regularity for well-behaved solutions to exist.

3.3 Parameter Distribution

The final component of the joint posterior distribution is the prior distribution of the pa-

rameters, p (Θ). This represent non-sample information regarding the parameters and we

always choose a parameterized distribution. This implies that the researcher must choose

both a distribution for the prior and the parameters that index the distribution. Through

both the choice of distribution and prior parameters, the researcher can impose non-sample

information or, alternatively, choose to impose little information. In the latter case, an “unin-

formative” or diffuse prior is one that provide little or no information regarding the location

of the parameters.

When possible we use standard conjugate prior distributions (see, for example Raiffa and

Schaeffer (1961) or DeGroot (1970)) which provide a convenient way of finding closed-form,

easy to simulate, conditional posteriors. A conjugate prior is a distribution for which the

conditional posterior is the same distribution with different parameters.

For example, consider a geometric Brownian motion model for returns which implies that

continuously compounded returns, Yt, are normally distributed, Yt ∼ N (µ, σ2). Assuming

a normal prior on µ, µ ∼ N (a,A), the conditionl posterior distribution p (µ|σ2, Y ) is also
normally distributed, N (a∗, A∗), where the starred parameters depend on the data, sample
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size and on a and A. In this case, the posterior mean is a weighted combination of the prior

mean and the sample information, with the weights determined by the relative variances.

Choosing A to be very large captures generates an uninformative prior. For the variance

parameter, the inverted gamma distribution is also conjugate (see Appendix A). Bernardo

and Smith (1995) provide a detailed discussion and list of conjugate priors.

In some cases, researchers may specify a flat prior, which is completely uninformative. For

example, in a geometric Brownian motion model of returns, Yt ∼ N (µ, σ2), it is common to
assume a flat prior distribution for the mean by setting p (µ, σ2) ∝ σ−1. While a flat prior
distribution may represent lack of knowledge, it may also also lead to serious computational

problems as a flat prior is not proper, that is, it does not integrate to one.

To see this, note that the parameter posterior is given by

p (Θ|Y ) ∝ p (Y |Θ) p (Θ) .
For inference, this distribution must be proper, that

R
Θ
p (Θ|Y ) dΘ = 1. In many cases, flat

priors can lead to improper posterior. This is especially true in state space models where the

the marginal likelihood, p (Y |Θ), is unavailable in closed form and it is impossible to check

the propriety of the posterior. Additionally, as we discuss later, joint posterior propriety is

a necessary condition for MCMC algorithms to converge. This implies that one motivation

for using diffuse proper priors is a computational tool for implementation via MCMC. For a

recent review of noninformative priors, see Kass and Wasserman (1996).

There are often statistical and economic motivations for using informative priors. For

example, in many mixture models, priors must at least partially informative to overcome

degeneracies in the likelihood. Take, for example, Merton’s (1976) jump diffusion model for

log-returns Yt = log (St+∆/St). In this case, returns are given by

Yt = µ+ σ (Wt+∆ −Wt) +

Nt+∆X
j=Nt

ξj

and the jump sizes are normally distributed with mean µJ and variance σ2J . As shown by

Lindgren (1978), Kiefer (1978) and Honore (1997), the maximum likelihood estimator is not

defined as the likelihood takes infinite values from some parameters. This problem does not

arise when using an informative prior, as the prior will typically preclude these degeneracies.

Another use of informative priors is using the prior to impose stationarity on the state vari-

ables. Models of interest rates and stochastic volatility often indicate near-unit-root behavior.
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In the stochastic volatility model discussed earlier, κv is often very small which introduces

near-unit root behavior. For practical applications such as option pricing or portfolio forma-

tion, one often wants to impose mean-reversion to guarantee stationarity. This enters via the

prior on the speed of mean reversion that imposes that κv are positive and are bounded away

from zero.

For regime-switching models, the prior distribution p (Θ) can be used to solve a number

of identification problems. First, the labeling problem of identifying the states i and j. The

most common way of avoiding this problem is to impose a prior that orders the mean and

variance parameters. One practical advantage of MCMC methods are that they can easily

handle truncated and ordered parameter spaces, and hence provide a natural approach for

regime switching models.

It is increasingly common in many application to impose economically motivated priors.

For example, Pastor and Stambaugh (2000) use the prior to represent an investor’s degree of

belief over a multifactor model of equity returns. In other cases, an economically motivated

prior might impose that risk premium are positive, for example.

In practice, researchers often perform sensitivity analysis to gauge the impact of certain

prior parameters on the parameter posterior. Occasionally, the posterior for certain may

depend critically on the choice. As the posterior is just the product of the likelihood and the

prior, this only indicates that the likelihood does not provide any information regarding the

location of these parameters. The extreme of this is when the parameters are not identified

by the likelihood and the posterior is equal to the prior.

3.4 Time-Discretization

Before applying MCMC methods in specific cases, there is an important issue which must be

discussed. The state variable dynamics and the likelihood are both abstractly given as condi-

tional distribution arising from the solution of stochastic differential equations, p (Xt+1|Xt,Θ)
and p (Yt+1|Yt, Xt,Θ). Only in a few simple cases, e.g., a square root process, Gaussian process
or geometric Brownian motion, is the transition density of the prices or the state variables

known in closed form.

To see the problem, consider a diffusive specification for the state variables. We know

explicitly recognize the length of time between observations and denote it by ∆. Previously,

we specified generically that∆ = 1. The conditional distribution ofXt+∆ givenXt is generated
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by

Xt+∆ = Xt +

Z t+∆

t

µ (Xs,Θ) ds+

Z t+∆

t

σ (Xs,Θ) dWs.

The induced distribution of the state increments, Xt+∆ − Xt, is difficult to characterize
because the distributions of

R t+∆
t

µ (Xs,Θ) ds and
R t+∆
t

σ (Xs,Θ) dWs are not generally known.

However, if the drift and diffusion functions are continuous functions of the state, it is not

unreasonable to assume for short time increments thatZ t+∆

t

µ (Xs,Θ) ds ≈ µ (Xt,Θ)∆ andZ t+∆

t

σ (Xs,Θ) dWs ≈ σ (Xt,Θ) (Wt+∆ −Wt) .

These approximations lead to the following “Euler” approximation for the state variables:

Xt+∆ = Xt + µ (Xt,Θ)∆+ σ (Xt,Θ) {Wt+∆ −Wt} .

This discretization implies that the distribution of the increments is conditionally normal,

p (Xt+∆ −Xt|Xt,Θ) ∼ N (µ (Xt,Θ)∆,Σ (Xt,Θ)∆) ,

where Σ = σσ0 and the state dynamics, p (X|Θ), are given by the product of normal distrib-
utions.

Poisson driven jumps or discrete-state Markov can similarly be dealt with. Consider, for

example, the case of jump-diffusion state variables. For example, in the case of a jump-

diffusion, (4). The only difference in this case is that we time-discretize the point process that

generates jump times. The point process, Nt, has the property that

Prob(Nt+∆ −Nt = 1) ≈ λt∆.

To discretization of the point process, we define an indicator variable Jt+∆ and assume that

Jt+∆ = 1 (with probability λt∆). Similarly, the jump size distribution is approximated by

ξt+∆ ∼ Π (Xt,Θ). This implies that a time-discretization of the jump-diffusion model is given

by:

Xt+∆ = Xt + µ (Xt,Θ)∆+ σ (Xt,Θ) {Wt+∆ −Wt}+ Jt+∆ξt+∆.
Platen and Rebolledo (1985) or Liu and Li (2000) provide formal justifications for these

approximations.
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Given the discretization, it is common in models with jumps to expand the state space to

include the jump times and the jump sizes. The jump-augmented state vector now consists

of [Xt, Jt, ξt]. However, and this is the key to the MCMC approach, the distribution of the

increment is normally distributed, conditional on current state and the jump times and sizes:

Xt+∆|Xt, Jxt+∆, ξxt+∆ ∼ N
¡
Xt + µt∆+ J

x
t+∆ξ

x
t+∆,σtσ

0
t∆
¢

where we have suppressed the dependence of the drift and diffusion on the parameters and

state variables. Time discretization of a Markov chain proceeds similarly.

The time discretization generates a much simpler conditional distribution structure and

allows the use of standard MCMC techniques. As an approximation, it is important to check

that this does not introduce any systematic biases. One method of checking the accuracy of

this Euler approximation is to perform a simulation study to check that the discretization is

not introducing any substantive biases. For example, in an equity price model with stochastic

volatility, jumps in returns and jump in volatility, Eraker, Johannes and Polson (2001) docu-

ment that there is not any systematic biases in parameter estimates, while Johannes, Kumar

and Polson (1998) show that in Merton’s jump-diffusion model, the discretization bias is neg-

ligible. As noted by Pritsker (1997, 1998) and Johannes (2001), the sampling variation (due

to finite samples) typically dwarfs any discretization bias when data is sampled at reasonably

high frequencies such as daily.

In other cases the Euler approximation may not provide an accurate approximation to the

true dynamics. MCMC solves this problem by using a novel method developed by Eraker

(1997), Elerian Shephard and Chib (2000) and Jones (1999) to “fill in” asset price or state

variable values at times in between observation dates. To see how this works, assume that

data is observed at a frequency of ∆. The augmentation introduces an additional ”missing”

observation Xt+∆
2
of the state variable at time t+∆/2 thus discretizing at a finer partition.

Now, given an Euler approximation for the dynamics over the intervals
£
t, t+ ∆

2

¤
and£

t+ ∆
2
, t+∆

¤
, the dynamics of the state variables between the observation dates is

Xt+∆ = Xt +
h
µ (Xt,Θ) + µ

³
Xt+∆

2
,Θ
´i ∆
2

+σ (Xt,Θ)
n
Wt+∆

2
−Wt

o
+ σ

³
Xt+∆

2
,Θ
´n
Wt+∆ −Wt+∆

2

o
.

If we treat Xt+∆
2
as an additional state variable that we simulate along with the other state

variables and the parameters then MCMC algorithms are straightforward to apply. A number
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of multi-factor interest rate models have been applied by Eraker (1997) and Jones (2001) and

in the scalar diffusion case by Elerian Shephard and Chib (2000).

4 Asset Pricing Models

This section describes models that conveniently fit into framework developed above and are

especially well-suited for MCMC estimation.

4.1 Continuous-time Equity Price Models

Following Merton (1969, 1971) and Black and Scholes (1973), equity prices are typically

modeled in continuous-time as this specification often leads to analytically tractable solutions

in portfolio allocation and option pricing applications. The first generation of models specified

that equity prices were geometric Brownian motions

dSt = µStdt+ σStdW
s
t (5)

where, for simplicity, W S
t is a scalar Brownian motion.

Empirical tests typically reject the geometric Brownian motion model and lead researchers

to consider models with jumps, stochastic expected returns and volatility:

dSt = µtSt−dt+ St−
p
Vt−dW s

t + d

Ã
Ns
tX

j=1

Sτj−
¡
eξ

s
j − 1¢! (6)

where the expected returns are typically assumed to follow a Gaussian diffusion process and

the volatility is a jump-diffusion:

dµt = κµ (θµ − µt) dt+ σµdW
µ
t

dVt = κv (θv − Vt−) dt+ σ
p
Vt−dW v

t + d

Ã
Nv
tX

j=1

ξvj

!

In this model, the observed data is typically the log-returns, Yt = log (St/St−1), and the
state variables are the time-varying mean and volatility, Xt = [µt, Vt]. An alternative, the
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log-volatility model, d log (Vt) = κv (θv − log (Vt)) dt + σvdW
v
t is also popular for empirical

applications.

The mean-reverting specification for expected returns is popular in the portfolio choice lit-

erature and was introduced by Merton (1971) (see also Kim and Omberg (1996), Liu (1999),

Wachter (2000)). Heston (1993) introduced the square-root stochastic volatility specification

and Bates (1996, 2001), Pan (2001) and Duffie, Pan and Singleton (2000) introduced gener-

alizations with jumps in returns and volatility. Eraker, Johannes and Polson (2002) estimate

stochastic volatility models with jumps in returns and volatility using MCMC methods. Er-

aker (2002) extends Eraker, Johannes and Polson (2002) to incorporate option prices. Liu,

Longstaff and Pan (2001) analyze the portfolio implications of models with jumps in stock

prices and in volatility. Duffie and Pan (2001) consider multivariate version of Merton’s jump-

diffusion model for equity prices evaluating market and credit risk and Glasserman and Kou

(2000) use it as a model of forward rates.

4.2 Affine Diffusion Term structure models

Affine term structure models specify that the instantaneous spot rate, rt, and the drift and

diffusion coefficients of the state variables are affine functions of the states:

r(Xt) = γ0 + γ01Xt

dXt = (a+ bXt) dt+ σ (Xt) dWt

where

σ (Xt) σ (Xt)
0 = Σ (Xt) = Σ0 +

NX
k=1

ΣkXk
t

and where Xt and a are K × 1 vectors and Σ0, Σk and b are K ×K matrices.

The advantage of these models are that the continuously compounded yields on a zero

coupon bond maturing at time τ1 is linear in the states:

Yt,τ1 = α (τ 1,Θ) + αx (τ 1,Θ)
0Xt

where, as shown by Cox, Ingersoll and Ross (1981), Brown and Schaefer (1994) or Duffie and

Kan (1994, 1996), α and αx solve ordinary differential equations. In addition to continuously-

compounded zero-coupon bond yields, coupon bond prices, par bond yields, discretely com-
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pounded interest rates such as Libor and futures prices of discretely compounded interest

rates are also exponential affine.

The observed data are typically a vector of continuously compounded yields with maturities

τ = [τ1, ..., τn]
0 which we denote by Yt = [Yt,τ1 , ..., Yt,τn ] where Yt,τ i = τ−1i logP (t, τ ,Xt,Θ).

The term structure state space to be estimated is given by

Yt,τ = α (τ ,Θ) + αx (τ ,Θ)0Xt

dXt = (a+ bXt) dt+ σ (Xt) dWt.

Notice that the state and observation equation are linear in the state variables. Although the

parameters are linear in the evolution equation, the parameters enter the loading functions,

α (τ ,Θ) and αx (τ ,Θ), which are generally highly nonlinear and/or non-analytic. We show

later how the Metropolis algorithm handles this problem.

4.3 Continuous-time Markov Switching Models

An alternative to the continuous-state space in the previous section is to assume that the co-

efficients are driven by a continuous-time, discrete state Markov Chain. For example, consider

the following extension of the Vasicek short rate model:1

drt = κr (µ (Zt)− rt) dt+ σr (Zt) dW
r
t

where Zt ∈ [Z1, ..., ZK] is a continuous-time Markov chain. Assuming the transition probabil-
ities are state invariant, then the state space is given by

Yt = α (τ , Zt,Θ) + αr (τ , Zt,Θ) rt

drt = κr (µ (Zt)− rt) dt+ σr (Zt) dW
r
t

where the functions α and αr conditional on the given Markov state, solve standard Ric-

catti ordinary differential equations; Yt = [Yt,τ1 , ..., Yt,τn ], is a vector of observed continuously
1Lee and Naik (1994), Landen (2000) and Dai and Singleton (2002) provide theoretical results on bond

pricing when interest rates are subject to regime switches. Landon (2000) also considers the incomplete
information case where the Markov state is not observed by the agents pricing bonds and must be filtered
from observed prices. Ang and Bekaert (2000), Gray (1996) and Lee and Naik (1994) provide empirical
analyses of regime switching interest rate models.
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compounded yields. The state vector consists of the current Markov state, Zt, and the in-

stantaneous spot rate: Xt = [rt, Zt].

Regime switches also provide an alternative to diffusive stochastic volatility and expected

returns, d log (St) = µ (Zt) dt + σ (Zt) dWt. For example, Naik (1993) derives the prices of

options when volatility switches between high and low states and Kim, Mark and Lam (1998)

estimate a regime-switching model of stochastic volatility.

4.4 Equity index option pricing models

In previous sections, we discussed equity models where the only observed data were the con-

tinuously compounded equity returns. Option prices sharpens inference by providing informa-

tion about the market prices of volatility and jump risks that are embedded only in derivative

prices.

Adding an option adds one level to the state space model:

Ct = EQ
£
e−r(T−t) (ST −K)+ |Vt, St

¤
= f (St, Vt, K, T − t,Θ)

dSt = µtSt−dt+ St−
p
Vt−dW s

t + d

Ã
Ns
tX

j=1

Sτj−
¡
eξ

s
j − 1¢!

dVt = κv (θv − Vt−) dt+ σv
p
Vt−dW v

t + d

Ã
Nv
tX

j=1

ξvj

!

where Ct is the price of a call option struck at K maturing at time T . In this case, the

observed data is Yt = [Ct, log (St/St−1)]. The fact that the option price is only known up to a
numerical integration poses no problems for an MCMC based estimation approach as shown

by Eraker (2001).

4.5 Structural Models of Default

A related problem is pricing corporate debt in a structural model of default. As an example of

this, consider the structural default model of Merton (1974). In this case, the firm has assets

with a market value of Vt and has outstanding bond obligations equal to a zero coupon bond

expiring at time T with par value B. Equity holders, as residual claimants, receive any excess

value over that which is given to the bond holders, that is, at time T the equity holders receive
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(VT −B)+. In this case, standard arguments imply that the value of equity, St, is given by
St = E

Q
t

£
e−r(T−t) (VT −B)+ |Vt

¤
.

Given this, the state space representation for structural models of default implies that

St = EQt
£
e−r(T−t) (VT −B)+ |Vt

¤
dVt = µ (Vt) dt+ σ (Vt) dWt.

In the case of geometric Brownian motion for the firm value, the equity price is given by

the Black-Scholes formula. It is also important to remember that, from the econometrician’s

perspective, the firm value, Vt, is an unobserved state variable and estimating it is one of the

primary objectives.

5 MCMC methods: Theory

MCMC methods have a number of important theoretical underpinnings. The Hammersley-

Clifford Theorem provides a characterization of p (Θ, X|Y ) into its complete conditional dis-
tributions. An MCMC algorithm iteratively samples from these conditional distributions.

When these complete conditionals can be directly sampled, the MCMC algorithm is known

as a Gibbs sampler. When some or all cannot be directly sampled, we discuss a number of

different approaches based on the widely applicable Metropolis-Hastings algorithm. MCMC

algorithms, in general, possess attractive limiting properties. The general theory of Markov

chains can be used to prove convergence and find convergence rates. For example, MCMC al-

gorithms deliver an ergodic and central limit theorem. These can be used to judge convergence

and provide Monte Carlo standard errors. We now discuss these issues in turn.

5.1 Hammersley-Clifford Theorem

Since p (Θ,X|Y ) is rarely known in closed form, we resort to numerical methods to obtain sam-
ples from p (Θ, X|Y ). The key to generating samples from p (Θ, X|Y ) is to break p (Θ, X|Y )
into a number of lower dimensional distributions which are easier to characterize.

The theoretical guide for simplifying the problem into a number of problems of lower

dimension is a remarkable theorem by Hammersley and Clifford.2 The general version of the
2Somewhat suprising, Clifford and Hammersley never published there results as they could not relax the
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Hammersley-Clifford theorem (Besag, 1974) provides conditions for when a set of conditional

distributions characterizes a unique joint distribution. In our setting, as mentioned earlier, its

first application states that knowledge of p (Θ|X, Y ) and p (X|Θ, Y ) uniquely determines the
joint distribution p (Θ, X|Y ). Moreover, each of these distributions can be further simplified.
For example, if we partition Θ = (Θ1,Θ2), knowledge of p (Θ1|X,Θ2, Y ) , p (Θ2|X,Θ1, Y ) and

p (X|Θ, Y ) is equivalent to knowledge of p (Θ, X|Y ). Repeated application of the Hammersley-
Clifford theorem implies that, for example, drawing a T +K state and parameter vector can

be simplified by iteratively drawing from the T +K one dimensional distributions.

This result is based on the following identity for p (Θ, X|Y ). In this case, the Hammersley-
Clifford theorem is based on the Besag formula (Besag (1974)) and states that for any pair

(Θ0, X0) of points, the joint density p (Θ, X|Y ) is determined as
p (Θ, X|Y )
p (Θ0, X0|Y ) =

p (Θ|X0, Y ) p(X|Θ, Y )
p (Θ0|X0, Y ) p (X0|Θ, Y )

as long as a positivity condition is satisfied. Thus knowledge of p (Θ|X,Y ) and p(X|Θ, Y ) is,
up to a constant of proportionality, is equivalent to knowledge of the joint distribution. The

positivity condition in our case requires that for each point in the sample space, p(Θ, X|Y )
and the marginal distributions have positive mass. Under very mild regularity conditions the

positivity condition is always satisfied.

5.2 Gibbs Sampling

We now have all of the necessary tools to build MCMC algorithms. Given the decomposition

of the posterior into the complete set of conditionals, we need only sample from these distri-

butions. When each of these distributions can be directly sampled using standard methods

(see Devroye (1986) or Ripley (1992)), the algorithm is known as the Gibbs sampler. Often

the posterior conditionals require draws from standard distributions such as the normal, beta,

gamma or binomial.

positivity condition. For a discussion of the circumstances surrounding this, see the interesting discussion by
Clifford (1974) and Hammersley (1974) after the paper by Besag (1974).
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The Gibbs sampler is defined by the following algorithm:

1. Given a set of initial states
¡
Θ(0),X(0)

¢
2. Draw Θ(1) ∼ p ¡Θ|X(0), Y

¢
3. Draw X(1) ∼ p ¡X|Θ(0), Y

¢
.

This algorithm generates a sequence of random variables,
©
Θ(g), X(g)

ªG
g=1
, that has p (Θ, X|Y )

as its equilibrium distribution. If it is not possible to conveniently draw from these conditional

distributions, another application of Hammersley-Clifford can be used to further simplify the

algorithm.

For example, consider a blocking or partition of Θ ∈ RK in r ≤ K components Θ =

(Θ1, ...,Θr) where each component Θj could be multidimensional. Given a partition, the

Hammersley-Clifford theorem implies that the following set of conditional distributions

Θ1|Θ2,Θ3, . . . ,Θr,X, Y

Θ2|Θ1,Θ3, . . . ,Θr,X, Y
...

Θr|Θ2,Θ3, . . . ,Θr−1, X, Y

uniquely determines p (Θ|X, Y ). The Gibbs sampler is now

1. Given a set of initial states
¡
Θ(0),X(0)

¢
2. Draw Θ

(1)
i ∼ p

³
Θi|Θ(1)

1 , ...,Θ
(1)
i−1,Θ

(0)
i+1, . . . ,Θ

(0)
r , X

(0), Y
´
for i = 1, ..., r

3. Draw X(1) ∼ p ¡X|Θ(0), Y
¢
.

If p (X|Θ, Y ) cannot be conveniently sampled from, one can again decompose this distri-
bution down into another block of conditionals. The standard way to do this is sample one

state variable at a time.

Notice how the Gibbs sampler takes advantage of conditional probabilistic structure of the

problem. The key is that the conditional distribution of a given state variable or parameter

given all other variables can be directly sampled from. In many cases, the Gibbs sampler will

end up drawing from standard distributions such normal, gamma or beta. This implies that

complete characterization of the posterior distribution involves only repeatedly sampling from

distributions that are easy to sample from.
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5.3 Metropolis-Hastings

The Gibbs sampler requires that each of the conditional distributions can be easily sam-

pled from. What happens in the case where one of the conditional distributions, generically,

π(Θ
(g+1)
i ) , p(Θi|Θ(g+1)

1 , . . . ,Θ
(g+1)
i−1 ,Θ

(g)
i+1, . . . ,Θ

(g)
r X, Y ), for example, is not easy to sample

from? In this case, we use what is known as the Metropolis or Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm requires the researcher to specify a recognizable pro-

posal density q
¡
Θ(g+1)|Θ(g)

¢
where for simplicity we suppress the dependence of the proposal

on the other parameters and the state variables. We also require that we can compute the

posterior density ratio π(Θ(g+1))/π(Θ(g)) which is nearly always available in models of interest.

The Metropolis-Hastings algorithm then samples iteratively similar to the Gibbs sampler

method, but it first draws a candidate point that will be accepted or rejected based on the

acceptance probability. The Metropolis-Hastings algorithm replaces a Gibbs sampler step

with the following two stage procedure:

Step 1 : Draw Θ
(g+1)
i from the proposal density q(Θ(g+1)

i |Θ(g)i ) (7)

Step 2 : Accept Θ(g+1)
i with probability α

³
Θ(g+1)
i ,Θ(g)i

´
(8)

where

α
³
Θ
(g+1)
i ,Θ(g)

i

´
= min

Ã
π(Θ

(g+1)
i )q(Θ

(g)
i |Θ(g+1)

i )

π(Θ
(g)
i )q(Θ

(g+1)
i |Θ(g)

i )
, 1

!
Intuitively, this algorithm “decomposes” the unrecognizable conditional distribution into two

parts: a recognizable distribution to generate candidate points and an unrecognizable part

from which the acceptance criteria arises. The acceptance criterion insures that the algorithm

has the correct equilibrium distribution. Continuing in this manner, the algorithm will again

generate samples
©
Θ(g), X(g)

ªG
g=1
.

The Metropolis-Hastings algorithm significantly extends the number of applications that

can be analyzed as the conditional density need not be known in closed form. A number

of points immediately emerge: (1) the Metropolis-Hastings algorithm allows the functional

form of the density to be non-analytic, for example, which occurs when pricing functions

require the solution or partial or ordinary differential equations. One only has to evaluate the

true density at two given points; (2) Gibbs sampling is a special case of Metropolis-Hastings,

where q(Θ(g+1)
i |Θ(g)

i ) ∝ π(Θ
(g+1)
i ) and from (7) this implies that the acceptance probability is

always one and the algorithm always moves; (3) Because Gibbs sampling is a special case of
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Metropolis, one can design algorithms consisting of Metropolis-Hastings or Gibbs steps as it

is really only Metropolis; (4) there is an added advantage when there are constraints in the

parameter space – one can just reject these draws. Alternatively, one can sample conditional

on that region (see Gelfand, Smith and Lee, 1993). This provides a convenient approach for

analyzing nonlinear parameter restrictions imposed by economic models.

Although the theory places no restrictions on the proposal density q, it is important to note

that the choice of proposal density will generally effect the performance of the algorithm. For

example, if the proposal density has tails that are too thin relative to the target, the algorithm

may converge slowly. In extreme case, the algorithm can get stuck in a region of the parameter

space an may never converge. Later, we provide some practical recommendations based on

the convergence rates of the algorithm.

There are two important special cases of the general Metropolis-Hastings algorithm which

deserve separate attention.

5.3.1 Independence Metropolis-Hastings

In the general Metropolis-Hastings algorithm above, the candidate draw, Θ(g+1) was drawn

from proposal density, q(Θ(g+1)|Θ(g)), which depended on the previous Markov state Θ(g). An

alternative is to draw the candidate Θ(g+1) from a distribution independent of the previous

state, q(Θ(g+1)|Θ(g)) = q(Θ(g+1)). This is known as an independence Metropolis-Hastings

algorithm:

Step 1 : Draw Θ
(g+1)
i from the proposal density q(Θ(g+1)

i ) (9)

Step 2 : Accept Θ(g+1)
i with probability α

³
Θ
(g+1)
i ,Θ

(g)
i

´
(10)

where

α
³
Θ
(g+1)
i ,Θ

(g)
i

´
= min

Ã
π(Θ

(g+1)
i )q(Θ

(g)
i )

π(Θ
(g)
i )q(Θ

(g+1)
i )

, 1

!
Even though the candidate draws, Θ(g+1)

i , are drawn independently of the previous state, the

sequence
©
Θ(g)

ªG
g=1

will be not be independent since the acceptance probability depends on

previous draws.
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5.3.2 Random-Walk Metropolis

Random walk Metropolis, the original algorithm considered by Metropolis, et al (1953), is

the mirror image of the independence Metropolis-Hastings algorithms. It draws a candidate

from the following random walk model, Θ(g+1) = Θ(g) + εt, where εt is an independent mean

zero error term, typically taken to be a symmetric density function with fat tails, like the

t-distribution. Due to the symmetry in the proposal density, the algorithm simplifies to

Step 1 : Draw Θ
(g+1)
i from the proposal density q(Θ(g+1)

i |Θ(g)i ) (11)

Step 2 : Accept Θ(g+1)
i with probability α

³
Θ
(g+1)
i ,Θ

(g)
i

´
(12)

where

α
³
Θ
(g+1)
i ,Θ

(g)
i

´
= min

Ã
π(Θ

(g+1)
i )

π(Θ
(g)
i )

, 1

!
In random walk Metropolis-Hastings algorithms, the researcher controls the variance of

the error term and the algorithm must tuned, by adjusting the variance of the error term, to

obtain an acceptable level of accepted draws, generally in the range of 20-40%.

5.4 Convergence Theory

Our MCMC algorithm generates sequence of draws for parameters, Θ(g), and state variables,

X(g). By construction, this sequence is Markov and the chain is characterized by its starting

value, Θ(0) and its conditional distribution or transition kernel P
¡
Θ(g+1),Θ(g)

¢
, where, without

any loss of generality, we abstract from the latent variables. One of the main advantages of

MCMC is the attractive convergence properties that this sequence of random variables inherits

from the general theory of Markov Chains.

5.4.1 Convergence of Markov Chains

Convergence properties of this sequence are based on the ergodic theory for Markov Chains.

A useful reference text for Markov Chain theory is Meyn and Tweedie (1995) or Nummelin

(1984). Tierney (1994) provides the general theory as applied to MCMC methods and Robert

and Casella (1999) provide many additional references. We are interested in verifying that the

chain produced by theMCMC algorithm converges and then identifying the unique equilibrium
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distribution of the chain as the correct joint distribution, the posterior. We now briefly review

the basic theory of the convergence of Markov Chains.

A Markov chain is generally characterized by its g-step transition probability, P (g) (x,A) =

Prob
£
Θ(g) ∈ A|Θ(0) = x

¤
. For a chain to have a unique equilibrium or stationary distribution,

π, it must be irreducible and aperiodic. A Markov chain with invariant distribution π is irre-

ducible if, for any initial state, it has positive probability of eventually entering any set which

has π−positive probability. A chain is aperiodic if there are no portions of the state space
that the chain visits at regularly spaced time intervals. If an irreducible and aperiodic chain

has a proper invariant distribution, then π is unique and is also the equilibrium distribution

of the chain. That is

lim
g→∞

Prob
£
Θ(g) ∈ A|Θ(0)

¤
= π (A)

Given convergence, the obvious question is how fast does the chain converge? Here, the

general theory of Markov chains also provides explicit convergence rates, see, e.g., Nummelin

(1984) or chapters 15 and 16 of Meyn and Tweedie (1995). The key condition to verify is a

minorization condition for the transition kernel which leads in many cases to a convergence

rate that is geometric.

While verifying geometric convergence is reassuring, there are well-known examples of

geometrically ergodic Markov chains that do not converge in finite time (see the witches hat

example in Polson (1991)). A stronger notion of convergence, polynomial time convergence,

provides explicitly bounds on the actual convergence rate of the chain. Diaconis and Stroock

(1991) show how the time-reversibility property can be used to characterize a bound known

as the Poincare inequality for the convergence rate.

We now discuss the application of these general results to MCMC algorithms.

5.4.2 Convergence of MCMC algorithms

As the Gibbs sampler is a special case of the Metropolis-Hastings algorithm when the accep-

tance probability is unity, we can focus exclusively on the convergence of Metropolis-Hastings

algorithms. In general, verifying the convergence of Markov chains is a difficult problem.

Chains generated by Metropolis-Hastings algorithms, on the other hand, have special prop-

erties which allow convergence conditions to be verified in general, without reference to the

specifics of a particular algorithm. We now review these conditions.
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The easiest way to verify and find an invariant distribution is to check time-reversibility.

Recall that for a Metropolis-Hastings algorithm, that the target distribution, π, is given and

is proper being the posterior distribution. The easiest way of checking that π is an invariant

distribution of the chain is to verify the detailed balance (time-reversibility) condition: a

transition function P satisfies the detailed balance condition if there exists a function π such

that

P (x, y)π (x) = P (y, x)π (y) .

Intuitively, this means that if the chain is stationary, it has the same probability of reaching

x from y if started at y as it does of reaching y from x if started at x. This also implies that

π is the invariant distribution since π (y) =
R
P (x, y)π (dx).

Checking time reversibility for the Metropolis-Hastings algorithm, is straightforward. The

transition function (or conditional probability of moving from x to y in theMetropolis-Hastings

algorithm is

P (x, y) = α (x, y)Q(x, y) + (1− r (x)) δx (y) (13)

where r (x) =
R
α (x, y)Q(x, y)dy and Q(x, y) = q (y|x). For the first term, the detailed

balance condition holds because

α (x, y)Q(x, y)π (x) = min

½
π (y)Q (y, x)

π (x)Q (x, y)
, 1

¾
Q(x, y)π (x)

= min {π (y)Q (y, x) , Q(x, y)π (x)}
= min

½
1,
Q(x, y)π (x)

π (y)Q (y, x)

¾
π (y)Q (y, x)

= α (y, x)Q(y, x)π (y)

and the derivation for the second term in (13) is similar. Thus Metropolis-Hastings algo-

rithms generate Markov Chains that are time-reversible and have the target distribution as

an invariant distribution.

Verifying π−irreducibility is always straightforward (see Roberts and Polson (1994) for the
Gibbs samplers and Roberts and Smith (1994) and Robert and Casella (1999) for Metropolis-

Hastings). One sufficient condition (see Mengerson and Tweedie (1996)) is that π (y) > 0

implies thatQ (x, y) > 0. In the case of the Gibbs sampler, these conditions can be significantly

relaxed to the assumption that x and y communicate, which effectively means that starting

from x on can eventually reach state y (see Roberts and Polson (1996)). To verify aperiodicity,
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we appeal to a theorem in Tierney (1994) which states that all π − irreducible Metropolis
algorithms are Harris recurrent. Hence, there exists a unique stationary distribution to which

the Markov chain generated the Metropolis-Hastings algorithm converges, thus the chain is

ergodic.

Having discusses this result, it is important to note that we are rarely solely interested

in convergence of the Markov chain. In practice (see the first section in this section) we are

typically interested in sample averages of functionals along the chain. For example, to estimate

the posterior mean for a given parameter, we are interested in the convergence of 1
G

PG
g=1 θ

(g).

Note that there are in fact two subtle forms of convergence in the sample average: first the

convergence of the chain, and second the convergence of the sample average. Fortunately, the

following result guarantees convergence:

Proposition: (Ergodic Averaging) Suppose Θ(g) is an ergodic chain with stationary dis-

tribution π and suppose f is a real-valued function with
R |f | dπ < ∞. Then for all Θ(g) for

any initial starting value Θ(g)

1

G

GX
g=1

f
¡
Θ(g)

¢→ Z
f (Θ) dπ

almost surely.

We can in fact go a bit further with an ergodic CLT:

Proposition: (Central Limit Theorem) Suppose Θ(g) is an ergodic chain with stationary

distribution π and suppose that f is real-valued and
R |f | dπ < ∞. Then there exists a real

number σ (f) such that
√
G

Ã
1

G

GX
g=1

f
¡
Θ(g)

¢− Z f (Θ) dπ

!
converges in distribution to a mean zero normal distribution with variance σ2 (f) for any

starting value.

In spite of these limiting results, we are typically interested in the speed of convergence

of the chain. Geometric convergence implies that there exists a λ < 1 and a constant K such

that °°P g ¡·,Θ(0)¢− π (·)°° ≤ Kλ−G
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where kk could denote any number of norms. Roberts and Polson (1996) prove that all Gibbs
samplers are geometrically convergent under a minorization condition. For the Metropolis-

Hastings algorithm, there are a number of results on the geometric convergence and the results

rely on the tail behavior of the target and proposal density. Mengerson and Tweedie (1996)

show that a sufficient condition for the geometric ergodicity of independence Metropolis-

Hastings algorithms is that the tails of the proposal density dominate the tails of the target,

which requires that the proposal density q is such that q/π is bounded over the entire support

(see also Roberts and Tweedie (1992) and Tierney (1994)). As shown by Polson (1996),

careful use of data augmentation can also aid in improving convergence. For example, the

data augmentation in Swendsen and Wang (1987) is a useful alternative to direct Metropolis.

Mengerson and Tweedie (1996) show that random walk algorithms converge at a geometric

rate if the target density has geometric tails. Jarner and Roberts (2001) discuss Metropolis

convergence rates in the case the target has polynomial tails.

There are a number of caveats in order. First, these results are limiting theorems and

therefore do not guarantee provable convergence. Provable convergence, on the other, guar-

antees a pre-specified accuracy with arbitrarily high probability. For further discussion of this

line of research, see Diaconis and Stroock (1991), Frieze, Kannan and Polson (1994), Polson

(1996) and Rosenthal (1995, 1996). For example, Frieze, Kannan and Polson (1994) show

that MCMC algorithms for log-concave densities are converge in polynomial time.

Second, in addition to the formal convergence theory, there is a large literature that stud-

ies the information content of sequence
©
Θ(g)

ªG
g=1
. While theory is clear that the chains

converge, it is impossible to formally diagnose convergence from the realized output of the

chain. Unlike importance sampling, MCMC algorithms generate dependent Monte Carlo sim-

ulation methodology and because of this, it is important to understand the nature of this

dependency. Popular observed-chain based diagnostics include calculating parameter trace

plots (plots of Θ(g)
i as a function of g), analyzing the correlation structure of draws and Monte

Carlo estimates for the standard errors of 1
G

PG
g=1 f(Θ

(g)) (see Mengerson, et al (1996) and

Robert and Casella (1999)). The informational content of the chain regarding estimation of

Eπ (f (Θ)) is clearly summarized σ2 (f) . Geyer (1991), among others, show how to estimate

the information using realizations of a provable convergent chain. This, in turn, allows the

researcher to apply the Central Limit Theorem to assess the Monte Carlo errors inherent in

MCMC estimation. Also notice that Gelfand and Smith (1990) to also estimate conditional
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and marginal posterior distributions using Rao-Blackwellized averages across the chain.

The following implementation procedure is typically used. Starting from a point Θ(0), pos-

sibly at random, the general methodology is to discard a burn-in period of h initial iterations

in order to reduce the influence of the choice of starting point. After the burn-in period the

researcher makes an additional estimation period of G simulations, which results in one long

chain of length G. When forming Monte Carlo averages every simulated point in the chain

after the burn-in period should be used. The estimation period G is chosen so as to make the

Monte Carlo sampling error as small as desired. Standard errors are also easily computed.

See Aldous (1987), Tierney (1994) and Polson (1996) for a theoretical discussion of the choice

of (h,G) and the relationship between the estimation period G and Monte Carlo standard

errors.

6 MCMC Methods: Practical Recommendations

While the theory behind MCMC algorithms is very clear, there are number of issues that arise

in practice that must be addressed. In this section we provide a list of practical recommen-

dations for researchers in order to avoid common errors.

First, one must be careful when using non-informative priors. Without care, conditional

or joint posteriors can be improper violating the Hammersley-Clifford Theorem. Hobert and

Casella (1996) provide a number of general examples. For example, in a log-stochastic volatil-

ity, a “non-informative” prior on σv of p (σv) ∝ σ−1v results in a proper conditional posterior

for σv but an improper joint posterior which leads to a degenerate MCMC algorithm. In some

cases, the propriety of the joint posterior cannot be checked analytically, and in this case,

we recommend, as discussed earlier, careful simulation studies. We recommend that proper

priors, typically diffuse, always be used unless there is a very strong justification for doing

otherwise.

Second, provable convergence rates are always important. This implies that algorithms

that are provably geometric convergent are preferred to those that are not. This implies that

one should be careful in using normal proposal densities when the target has known fat tails. If

possible, using independence-Metropolis, one should find a proposal which bounds the tails of

the target density. Similarly, one should be careful using random-walk Metropolis with normal

proposals and should, alternatively, use fat tailed distributions such as a t-distribution (see,
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e.g., Tierney (1994) and Mengerson and Tweedie (1996)).

Third, due to modular nature of MCMC algorithms, we recommend building the algo-

rithms bottom-up. That is, first program a simple version of the model and, after verifying

that it works, add additional factors. For example, when estimating a stochastic volatility

model with jumps, first implement a pure stochastic volatility model and a pure jump model,

and then after both are working, combine them.

Fourth, careful blocking of parameters and use of latent variables can improve the conver-

gence properties. As shown by Kong, Liu and Wong (1993), drawing correlated parameters in

blocks can improve the speed of convergence. Also, as shown by Polson (1996), the introduc-

tion of additional latent state variables (data augmentation) can also dramatically increase

the rate of convergence. One must be careful, however, as the introduction of state variables

can also degrade the provable convergence rate of algorithms.

Fifth, simulation studies, whereby artificial data sets are simulated and the efficiency

and convergence of the algorithm can be checked, are always recommended. These studies

provide two useful diagnostics. First, among other things, they provide insurance against pro-

gramming errors, incorrect conditionals, poorly mixing Markov chains and improper priors.

Second, they can also be used to compare MCMC against alternative estimation methodolo-

gies. For example, Andersen, Chung and Sorenson (1998) show that in a simple stochastic

volatility, MCMC outperforms GMM, EMM, QMLE and simulated maximum likelihood in

terms of root mean squared error. For example, see Johannes, Kumar and Polson (1998) and

Eraker, Johannes and Polson (2000) who perform simulation studies on models with jumps

and stochastic volatility.

Finally, careful examination of parameter and state variable trace plots (as a function of G)

provides the information content of the Markov Chain and, specifically, Monte Carlo standard

errors. Whenever the convergence of the MCMC algorithm is in question, careful simulation

studies can provide reassurance that the MCMC algorithm is providing reliable inference.

7 MCMC Inference in Equity Price Models

This section explicitly derives MCMC algorithms for a number of different equity price models

that are often used in applied financial modeling. Each model contains a novel factor, and, for

simplicity, we focus solely on that factor. For example, we analyze jumps, stochastic volatility

33



and time-varying expected returns in the absence of the other factors. This allows us to isolate

the impact of each of the factors.

The advantage of MCMC is that one can piece algorithms together: to estimate a model

with jumps and stochastic volatility, the researcher needs to just cut and paste different

portions of the algorithms together, typically with minimal adjustments required.

7.1 Geometric Brownian Motion

To understand MCMC methods, we first review the simplest possible case, estimation of a

geometric Brownian motion model of an asset price, St. The price solves the familiar SDE

dSt = µStdt+ σStdWt

which has a closed form solution for log-returns (Yt = log (St/St−1)):

Yt = µ+ σ (Wt −Wt−1)

where, for notational ease, we have redefined the drift to avoid explicitly accounting for the

variance correction. This model can be easily estimated by maximum likelihood, but we

consider MCMC estimation to develop the intuition of MCMC algorithms.

MCMC estimation provides samples from the distribution of the parameters given the

observed return data

p (Θ|Y ) = p ¡µ, σ2|Y ¢
where Y = [Y1, ..., YT ] is a vector containing the time series of continuously compounded re-

turns. The Hammersley-Clifford theorem implies that knowledge of p (µ|σ2, Y ) and p (σ2|µ, Y )
fully characterizes the joint distribution p (µ,σ2|Y ). The MCMC algorithm therefore just

iteratively draws from these distributions. Given µ(g) and (σ2)(g), the algorithm updates

sequentially by drawing

µ(g+1) ∼ p
³
µ| ¡σ2¢(g) , Y ´ and ¡σ2¢(g+1) ∼ p ¡σ2|µ(g+1), Y ¢ .

What are the densities p (µ|σ2, Y ) and p (σ2|µ, Y )? Assuming the priors on the parameters
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are independent,3 Bayes rule implies that

p
¡
µ|σ2, Y ¢ ∝ p

¡
Y |µ, σ2¢ p (µ)

p
¡
σ2|µ, Y ¢ ∝ p

¡
Y |µ, σ2¢ p ¡σ2¢

where the likelihood function is given by

p
¡
Y |µ,σ2¢ = µ 1√

2πσ2

¶T
exp

Ã
−1
2

TX
t=1

µ
Yt − µ

σ

¶2!

and p (µ) and p (σ2) are prior distributions. If prior on µ is normal and the prior on the σ2 is

inverse Gamma, the posteriors are conjugate, that is p (µ|σ2, Y ) is normal and p (σ2|µ, Y ) is
inverse Gamma.

This previews the general approach to MCMC estimation: (1) write out the state space

model and the posterior; (2) using the Hammersley-Clifford theorem, characterize a joint

distribution by its complete set of conditionals; (3) using Bayes rule, write out the conditional

distributions of the parameters and state variables and (4) using standard methods for drawing

random variables, sequentially update the parameters and the state variables.

7.2 Option Pricing

Consider an extension of the previous section to include equity option prices. This is a special

case of Eraker (2002). The price of a call option struck at K is given by the familiar Black-

Scholes formula

Ct = BS (σ, St) = StN (d1)− er(T−t)KN (d1 − σ (T − t))

where

d1 =
log (St/K) + (r + 0.5σ

2) (T − t)
σ
√
T − t .

For notational simplicity, we have suppressed the dependency of K, r and T − t in BS (σ, St).
3Alternatively, one could use dependent conditional conjugate priors such as p

¡
µ,σ2

¢
= p

¡
µ|σ2¢ p ¡σ2¢

where p
¡
µ|σ2¢ ∼ N

¡
a,σ2A

¢
and p

¡
σ2
¢ ∼ IG (b,B). This leads to closed form conditional posteriors for

p
¡
σ2|Y ¢ and p ¡µ|σ2, Y ¢ and also allows for a direct block update from p

¡
µ,σ2|Y ¢.
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Assuming the option prices are observed with a normally distributed error, the state space

is

Yt = µ+ σ (Wt −Wt−1)

Ct = BS (σ, St) + εct .

As mentioned earlier, there is a strong justification for using a pricing error in the option

equation as at-the-money index equity options have a bid-ask spread of around 10% of the

contract value. The econometrician observes the time series of equity prices, S = S1, ..., ST ,

option prices, C = [C1, .., CT ], and continuously compounded returns, Y , as defined earlier.

The joint posterior is p (µ,σ2|S,C, Y ) and Hammersley-Clifford implies that p (µ|σ2, S,C, Y )
and p (σ2|µ, S,C, Y ) fully characterize the joint posterior. Since the option price does not
depend on µ, p (µ|σ2, S,C, Y ) = p (µ|σ2, Y ) and is normal provided the prior distribution of
µ is normal as in the previous section.

Updating volatility is slightly more difficult as both the option price and the equity returns

contain information about this parameter. More specifically, we have that

π
¡
σ2
¢
= p

¡
σ2|µ, S, C, Y ¢ ∝ p ¡C|σ2, S¢ p ¡Y |µ, σ2¢ p ¡σ2¢

which clearly shows how both the returns and the option prices contain information about

the σ2. Since BS (σ, St) is given as an integral, it is not possible to sample directly from

p (σ2|µ, S, Y ) as the posterior is not of a recognizable form. To see this, note that

p
¡
C|σ2, S¢ ∝ TY

t−1
p
¡
Ct|σ2, St

¢ ∝ TY
t−1
exp

Ã
−1
2

µ
Ct −BS (σ, St)

σc

¶2!

We consider a independence Metropolis algorithm to update this parameter. The algo-

rithm proposes using data from the returns and then accepts/rejects based on the information

contained in the option prices. Specifically, proposing from:

q
¡
σ2
¢
= p

¡
σ2|µ, Y ¢ ∝ p ¡Y |µ, σ2¢ p ¡σ2¢ .

If we assume the prior on σ2 is inverted gamma, the proposal is inverted Gamma. This implies

the following Metropolis step:
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Step 1 : Draw
¡
σ2
¢(g+1)

from q
¡
σ2
¢ ∼ IG (14)

Step 2 : Accept
¡
σ2
¢(g+1)

with probability α
³¡

σ2
¢(g+1)

,
¡
σ2
¢(g)´

(15)

where

α
³
Θ
(g+1)
i ,Θ

(g)
i

´
= min

 p
³
C| (σ2)(g) , S

´
p
³
C| (σ2)(g+1) , S

´ , 1
 .

Proceeding, this algorithm will provide samples from the joint posterior. This example clearly

shows the power of the Metropolis algorithm: the conditional density of p (σ2|µ, Y, S, C) can be
evaluated but cannot be directly sampled from due to the nonlinear nature in which σ2 enters

the Black-Scholes option price. Moreover, since the Black-Scholes price is always bounded

by the underlying price, BS (σ, St) ≤ St, the tail behavior of π (σ2) is determined by the

likelihood piece and the algorithm is geometrically convergent.

7.3 Multivariate Jump-Diffusion Models

A multivariate jump-diffusion model provides an excellent example of data augmentation and

the Gibbs sampler. Consider a multivariate version of Merton’s jump diffusion

dSt = µStdt+ σStdWt + d

Ã
NtX
j=1

Sτj−(e
ξj − 1)

!
where σσ0 = Σ ∈ RK × RK is the diffusion matrix, Nt is a Poisson process with constant

intensity λ and the jump sizes, ξj ∈ RK are multivariate normal with mean µJ and variance-
covariance matrix ΣJ . Solving this stochastic differential equation, continuously compounded

equity returns (Yt) over a daily interval (∆ = 1) are

Yt+1 = µ+ σ (Wt+1 −Wt) +

Nt+1X
j=Nt

ξj

where, again, we have redefined the drift vector to account for the variance correction.

We consider a time-discretization of this model which implies that at most a single jump

can occur over each time interval:

Yt+1 = µ+ σ (Wt+1 −Wt) + Jt+1ξt+1
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where P [Jt = 1] = λ ∈ (0, 1) and the jumps retain their structure. Johannes, Kumar and
Polson (1999) document that, in the univariate case, the effect of time-discretization in the

Poisson arrivals is minimal, as jumps are rare events. The parameters and state variable

vectors are given by

Θ = {µ,Σ,λ, µJ ,ΣJ}
X = {Jt, ξt}Tt=1 .

Our MCMC algorithm samples from p (Θ, X|Y ) = p (Θ, J, ξ|Y ) where J and ξ are vectors

containing the time series of jump times and sizes.

Our MCMC algorithm draws Θ, ξ and J sequentially. Each of posterior conditionals are

standard distributions that can easily be sampled from, and thus the algorithm is a Gibbs

sampler. This occurs because the augmented likelihood function

p (Y |Θ, J, ξ) =
YT

t=1
p (Yt|Θ, Jt, ξt)

where

p (Yt|Θ, Jt, ξt) = N (µ+ ξtJt,Σ)

which is conditionally Gaussian. On the other hand, the observed likelihood, p (Yt|Θ), is
difficult to deal with because it is a mixture of multivariate normal distributions. In the

univariate case, the observed likelihood has degeneracies (for certain parameter values, the

likelihood is infinite). There are also well-known multimodalities. Multivariate mixtures are

even more complicated and direct maximum likelihood is rarely attempted.

Assuming standard conjugate prior distributions for the parameters,

µ ∼ N (a,A) , Σ ∼W−1 (b, B)

µJ ∼ N (c, C) ,ΣJ ∼W−1 (d,D)

λ ∼ B (e, E) .

whereW−1 is an inverted Wishart (multivariate inverted gamma) and B is the beta distribu-
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tion, our MCMC algorithm iteratively draws the parameters and the state variables:

Diffusive Parameters : p (µ|Σ, J, ξ, Y ) ∝ N (a∗, A∗)
: p (Σ|µ, J, ξ, Y ) ∝W−1 (b∗, B∗)

Jump Size Parameters : p (µJ |ΣJ , J, ξ) ∝ N (c∗, C∗)
: p

¡
ΣJ |µξ, J, ξ

¢ ∝W−1 (d∗,D∗)

Jump Time Parameters : p (λ|J) ∝ B (e∗, E∗)
Jump Sizes : p (ξt|Θ, Jt, Yt) ∝ N (m∗t , V ∗t )
Jump Times : p (Jt|Θ, ξt, Yt) ∝ Binomial (λ∗t )

All of these conditional posteriors are easy to derive. In this model the augmented likeli-

hood function is

p (Y |J, ξ,Θ) ∝ |Σ|−T
2 exp

(
−1
2

TX
t=1

(yt − µ− ξtJt)
0Σ−1 (yt − µ− ξtJt)

)
.

By Bayes rule, the posterior for the µ is given by

p (µ|Σ, J, ξ, Y ) ∝ p (µ|Σ, J, ξ, Y ) ∝ p (Y |µ,Σ, J, ξ) p (µ) .
Since the likelihood, p (Y |µ,Σ, J, ξ), and the prior, p (µ) , are both normal, a standard calcu-
lation (completing the square) implies that p (µ|Σ, J, ξ, Y ) ∝ N (a∗, A∗), where a∗ and A∗ are
defined in Appendix A. Similarly, the conditional posterior for the variance is given by:

p (Σ|µ, J, ξ, Y ) ∝ p (Y |µ,Σ, J, ξ) p (Σ)
which standard calculations indicate is given by p (Σ|µ, J, ξ, Y ) ∝ W−1 (b∗, B∗) where again
b∗ and B∗ are defined Appendix A. Similar arguments show that the conditional distribution
of the jump mean, µξ, and the jump variance, ΣJ , are also normal and inverse Wishart.

Since the jump intensity λ is between zero and one, we use a beta prior, p (λ) = B (e,E) ∝
λe−1 (1− λ)E−1 . Conditional on the jump times, the posterior for the arrival intensity is
independent of all other parameters and jump sizes which implies that the conditional posterior

is

p (λ|J) ∝ p (J |λ) p (λ) ∝
h
(λ)

PT
t=1 Jt (1− λ)T−

PT
t=1 Jt

i
λe−1 (1− λ)E−1

∝ B (e∗, E∗)
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where e∗ =
PT

t=1 Jt + e and E
∗ = T −PT

t=1 Jt + E.

The last step in the Gibbs sampler is to update the latent variables: p (ξ|Θ, J, Y ) and
p (J |Θ, ξ, Y ). The conditional posterior for ξt is given by:

p (ξt|rt, Jt,Θ) ∝ exp

µ
−1
2

h
(yt − µ− ξtJt)

0Σ−1 (yt − µ− ξtJt) +
¡
ξt − µξ

¢0
Σ−1J

¡
ξt − µξ

¢i¶
∝ exp

µ
−1
2

£
(ξt −m∗t )0 V −1t (ξt −m∗t )

¤¶
where

Vt =
¡
JtΣ

−1 + Σ−1J
¢−1

mt = Σ−1J
¡
JtΣ

−1 (yt − µ) + Σ−1J µξ
¢
.

The jump size update is simply a normal draw. For the jump times, since Jt can only take

two values, the posterior is Bernoulli. The conditional posterior probability that Jt = 1 is

p (Jt = 1|Θ, ξt, Yt) ∝ p (Yt|Jt = 1,Θ, ξt) p (Jt = 1|Θ)
∝ λ exp

µ
−1
2

£
(Yt − µ− ξt)

0Σ−1 (Yt − µ− ξt)
¤¶
.

Computing p (Jt = 0|Θ, ξt, Yt) then provides the Bernoulli probability. This completes the
specification of our MCMC algorithm.

Iteratively drawing from these distributions generates a the following Markov Chainn
µ(g), µ

(g)
J ,Σ

(g),Σ
(g)
J ,λ

(g), J (g), ξ(g)
oG
g=1

The arguments in Rosenthal (1995a,b) show that the algorithm is in fact polynomial time

convergent, and thus, converges quickly.

To illustrate our methodology, we consider a simple bivariate jump-diffusion model for S&P

500 and Nasdaq 100 equity index returns from 1986-2000. The model is a lower-dimensional

version of the those considered in Duffie and Pan (1999) and is given byÃ
Y 1t
Y 2t

!
=

Ã
µ1
µ2

!
+

Ã
σ1 σ12

σ12 σ22

!1/2Ã
ε1t
ε2t

!
+ Jt

Ã
ξ1t
ξ2t

!

where σσ0 = Σ, ξt =
£
ξ1t , ξ

2
t

¤0 ∼ N (µJ ,ΣJ) and the jump arrivals, common to both returns,
have constant intensity λ.
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Table 1: Parameter estimates for the bi-variate jump-diffusion model for daily S&P 500 and

Nasdaq 100 returns from 1986-2000.

Prior Posterior

Mean Std Mean Std (5,95)% Credible Set

µ1 0
√
1000 0.1417 0.0229 0.1065, 0.1797

µ2 0
√
1000 0.0839 0.0148 0.0589, 0.1082

σ1 1.7770 0.9155 1.2073 0.0191 1.1778, 1.2396

σ2 1.7770 0.9155 0.7236 0.0369 0.6903, 0.7599

ρ 0 0.1713 0.6509 0.0115 0.6317, 0.6690

λ 0.0476 0.0147 0.0799 0.0081 0.0663, 0.0933

µ1,J 0
√
1000 -0.5747 0.2131 -0.9320, -0.2351

µ2,J 0
√
1000 -0.3460 0.1765 -0.6537, -0.0648

σ1,J 2.1113 1.1715 2.9666 0.1647 2.7073, 3.2435

σ2,J 2.1113 1.1715 2.5873 0.1458 2.3540, 2.8233

ρJ 0 0.1519 0.5190 0.0490 0.4360, 0.5986

We run the Gibbs sampler for 1250 iterations and discard the first 250 as a burn-in period,

using the last 1000 draws to summarize the posterior distribution. Table 1 provides the

prior mean and standard deviation and the posterior mean, standard deviation and a (5, 95)%

credible set. In choosing the prior parameters, we were informative only for the jump intensity

by specifying that jumps are rare. Our prior represents our belief that the variance of jump

sizes is larger than the daily diffusive variance. For all parameters, the data is very informative

as the posterior standard deviation is much smaller than the prior indicating that that the

parameters are easily learned from the data. This should not be a surprise as returns in the

model are time-independent. Figure 1 provides parameter trace plots and shows how, after

burn-in, Gibbs sampler moves around the posterior distribution.

Figure 2 provides Monte Carlo estimates of the jump sizes in returns (ξtJt). Since the

model has constant volatility, there are periods when jumps are clustered which is clearly

capturing time-variation in volatility that the model does not have built in. We address this

issue in the next section by introducing time-varying and stochastic volatility.
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Figure 1: Parameter trace plots for the jump parameters. Each panel shows
©
Θ(g)

ªG
g=1

for the

individual parameters.
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Figure 2: Estimated jump sizes in returns for the Nasdaq and S&P 500 and actual returns

over the same period.

43



7.4 Stochastic Volatility Models

Consider a continuous-time log-stochastic volatility model for equity returns:

Yt+1 =

Z t+1

t

µsds+

Z t+1

t

p
VsdW

s
s

log (Vt+1) =

Z t+1

t

κv (θv − log (Vs)) ds+
Z t+1

t

σvdW
v
s .

where, for simplicity, we assume that the Brownian motions are independent, although this

assumption is easy to relax (Jacquier, Polson and Rossi (2000)). For simplicity, we assume

that the drift of the returns equation is zero. The distribution of the continuously-compounded

returns is not known in closed form, due to the randomization of the Brownian increment by

the volatility process,
R t+1
t

√
VsdW

s
s .

Consider an Euler-time discretization of the model:

Yt+1 =
p
Vtε

s
t+1

log(Vt+1) = αv + βv log(Vt) + σvε
v
t+1

where we have reparameterized the model by setting αv = κvθv and βv = 1−κv. This allows us
to use standard conjugate updating theory for the parameters. Given the reparameterization,

the parameters and state variables are

Θ =
©
αv, βv, σ

2
v

ª
X = V = {Vt}Tt=1

and the posterior distribution is given by p (Θ, X|Y ) = p
³
Θ, {Vt}Tt=1 |Y

´
.

The Hammersley-Clifford theorem implies that p
³
Θ, {Vt}Tt=1 |Y

´
is completely character-

ized by the following distributions

Regression Parameters : p (αv, βv|σv, V, Y )
Volatility of volatility : p

¡
σ2v|αv,βv, V, Y

¢
Volatility States : p (V |Θ, Y ) .

Assuming standard conjugate priors for the regression parameters, p (αv,βv) ∼ N (a,A) , and
the volatility of volatility parameter, p (σ2v) ∼ IG (b,B), the parameter draws are all conjugate
and thus are Gibbs steps in the algorithm.
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To see this, note that, conditional on volatility, the volatility parameters are just regression

parameters

log(Vt+1) = αv + βv log(Vt) + σvε
v
t+1.

Specifically, the conditional posterior for the volatility regression parameters is

p (αv,βv|σv, V, Y ) ∝
TY
t=1

p (Vt|Vt−1,Θ) p (αv, βv)

∝ N (a∗, A∗)

which follows from standard regression theory where

(A∗)−1 = (A)−1 + σ−2v (W 0W )−1 ,

a∗ = σ−2v W
0V ∗,

W = [1, log (V1) , ..., log (VT−1)]

and V ∗ is the vector [log (V2) , ..., log (VT )]. For σv, a straightforward calculation shows that

p
¡
σ2v|αv,βv, V, Y

¢ ∝ TY
t=1

p (Vt|Vt−1,αv, βv,σv) p
¡
σ2v
¢

∼ IG
¡
T + b, B + ΣTt=1et (Vt)

2¢ .
where et (Vt) = log (Vt)− αv − βv log (Vt−1).
The only difficult step arises in updating the volatility states. We first consider “single

state” updating as the joint volatility posterior, p (V |Θ, Y ), cannot directly drawn from with-
out approximations. Jacquier, Polson and Rossi (JPR) (1994) first considered this model and

there are now numerous other ways of updating volatility, some of which we will describe

below. The full joint posterior for volatility is

p (V |Θ, Y ) ∝ p (Y |Θ, V ) p (V |Θ) ∝
TY
t=1

p (Vt|Vt−1, Vt+1,Θ, Y )

∝
TY
t=1

p (yt|Vt,Θ) p (Vt+1|Vt,Θ) p (Vt|Vt−1,Θ) .
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For a single state update, we use the fact that

p (yt|Vt,Θ) p (Vt|Vt−1,Θ) p (Vt+1|Vt,Θ)

∝ V
− 1
2

t exp

µ
− Y

2
t

2Vt

¶
exp

Ã
−et (Vt)

2

2σ2v

!
V −1t exp

Ã
−et+1 (Vt+1)

2

2σ2v

!
As this distribution is not recognizable, we use a Metropolis-Hastings algorithm to sample

from it.

Following JPR (1994), we use an independence Metropolis-Hastings algorithm with an

inverse Gamma proposal density motivated by the observation that the first term in the

posterior is an inverse Gamma and the second log-normal term can be approximated (partic-

ularly in the tails) by a suitable chosen inverse Gamma. If we refer to the proposal density

as q (Vt) and the true conditional density as π(Vt) , p (Vt|Vt−1, Vt+1,Θ, Y ), this implies the
Metropolis-Hastings step is given by:

1. Draw V (g+1)t from q (Vt)

2. Accept V (g+1)t with probability α
³
V
(g+1)
t , V

(g)
t

´
where

α
³
V
(g+1)
t , V

(g)
t

´
= min

π
³
V
(g+1)
t

´
q
³
V
(g)
t

´
π
³
V
(g)
t

´
q
³
V
(g+1)
t

´
 .

Iterating between the parameter and volatility updates, the algorithm generates©
Θ(g), V (g)

ªG
g=1

=
n
α(g)v , β

(g)
v ,
¡
σ2v
¢(g)

, V (g)
oG
g=1
.

Given that the gamma distribution bounds the tails of the true conditional density, the algo-

rithm is geometrically convergent.

Figure 2 provides posterior means (E (Vt|Y ))of the latent volatility states with (5,95)%
credible sets for the S&P 500 and Nasdaq 100. These estimates are smoothed (as opposed to

filtered) and account for estimation risk as they integrate out parameter uncertainty.

Since the volatility states are correlated, one would ideally like to update them in a block.

Unfortunately, direct block updating is difficult and therefore a number of authors have con-

sidered an approximation to the model which can then be used to update volatility in a block.

The approximation uses the fact that the distribution of log
³¡

εst+1
¢2´

can be approximated
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by a mixture of normals (see Carter and Kohn (1994) and Kim and Shephard (1995)). The

advantage of this is that volatility can be drawn in a block and the disadvantage is that it

approximates the true model and drastically increases the state space by indicator variables

(see Rosenthal (1995) for a discussion of convergence problems with discrete state spaces).

Other volatility specifications are easy to deal with. Eraker, Johannes and Polson (2000)

consider a square-root stochastic volatility model and also add Poisson driven, exponentially

distributed jumps in volatility

dVt = (α+ βVt) dt+ σv
p
VtdW

v
t + d

Ã
Nv
tX

j=0

ξvj

!

The only difficulty in estimating this model, like the log-volatility case, is updating volatility.

Eraker, et al (2000) use a randomwalk Metropolis-Hastings algorithm and provide a simulation

study to evaluate the ability of the MCMC algorithm to estimate the parameters of the

underlying continuous-time process. By simulating off of the continuous-time model and

estimating with discretely sampled data, they find that the MCMC algorithm provides reliable

inference on the volatility parameters, even in the presence of jumps in returns or jumps in

volatility. Incorporating jumps is also straightforward by applying the results of the previous

section. Jones (2000) uses MCMC methods to estimate a call of volatility specifications with

constant-elasticity:

dVt = (α+ βVt) dt+ σvV
γ
t dW

v
t

and finds evidence that γ > 1/2.

7.5 Time-Varying Expected Returns

For portfolio applications, a number of authors, beginning with Merton (1971) consider a

continuous-time model of time-varying expected returns:Ã
d log (St)

dµt

!
=

Ã
µt

κµ (θµ − µt)

!
dt+

Ã
σdW s

t

σµdW
µ
t

!
.

where, again, for simplicity we assume the Brownian motions are uncorrelated and we abstract

from stochastic volatility. Time-discretized versions of this model (with various extensions)
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Figure 3: Smoothed volatility paths (with confidence bands) for the S&P 500 and Nasdaq 100

from 1987-2001.
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have recently been examined by Brandt and Kang (2000) and Johannes, Polson and Stroud

(2001) and are given by:

Yt+1 = µt + σεt+1

µt+1 = αµ + βµµt + σµε
µ
t .

where we again have redefined the parameters. The general form of the model is therefore

Θ =
©
αµ, βµ, σ

2
µ, σ

2
ª

X = µ = {µt}Tt=1
and the posterior distribution is p (Θ, µ|Y ) where µ = {µt}Tt=1.
Our MCMC algorithm will alternate by updating the parameters and the states:

Regression Parameters : αµ, βµ|µ, σ2µ,σ2, Y
Variance parameters : σ2µ|µ,αµ,βµ,σ2, Y

: σ2|µ,αµ,βµ, σ2µ, Y
State Variables : µ|αµ, βµ, σ2µ,σ2, Y .

The parameter posteriors follow immediately from normal regression theory and are thus

omitted. The regression parameters
£
αµ,βµ

¤
have a normal conditional posterior and the

volatility parameters, σµ and σ, both have inverted Gamma distributions.

Drawing from µ|Y,α, β, σ2v might at first glance seem to be difficult because it is a high-

dimensional problem, however, we can use the Kalman filter to obtain this density via the

forward-filtering backward sampling (FFBS) algorithm described in Carter and Kohn (1993).

The mechanics of this are quite simple.

Consider the following decomposition of the joint expected returns posterior:

p (µ|Y,Θ) ∝ p (µT |Y,Θ)
TY
t=1

p
¡
µt|µt+1, Y t,Θ

¢
where Y t = [Y1, ..., Yt]. To simulate from this, consider the following procedure:

1. Run the Kalman filter to get the moments of p (µt|Y,Θ)
2. Sample the last state from bµT ∼ p ¡µT |Y t,Θ¢
3. Sample backward through time: bµt ∼ p ¡µt|bµt+1, Y t,Θ¢
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Then the samples (bµ1, ..., bµT ) are direct block draw from p (µ|Y,Θ). It is important to recognize
that the Kalman filter is just one step in the algorithm, and the other steps (parameter

updating) indicates that we are taking into account parameter uncertainty.

We now provide some empirical results. Using S&P 500 returns and Nasdaq 100 returns

from 1973-2000 and 1987-2000, we report estimates of the time series of the latent expected

returns over the period from 1987-2000. The results take into account parameter uncertainty,

although we do not report parameter estimates. Due to identification concerns, we for sim-

plicity set βµ = 0.98. Figure 3 provides posterior estimates of µt, E [µt|Y ] and we also include
a symmetric one standard deviation confidence interval.

It is also possible to perform filtering, that is, compute p (Θ, µt|Y t) for t = 1, ..., T (see

Johannes, Polson and Stroud (2001) for further details that are beyond this paper.

8 MCMC Inference in Term Structure Models

Term structure models pose a number of difficult problems for estimation. The first prob-

lem is that the parameters enter the state space in a highly nonlinear fashion, often non-

analytically. Second, there are often issues of stochastic singularities as researchers typically

use low-dimensional factor models to model the yield curve and there are a large number of

observable interest rates. To address these issues, we begin with the simplest model, Vasicek’s

(1977) model, and then proceed to analyze the square-root model of CIR (1985) and then

multi-factor models.

8.1 Vasicek’s Model

Vasicek’s (1997) model assumes that the instantaneous spot rate is a Gaussian diffusion:

drt = κr (θr − rt) dt+ σrdW
r
t

drt = (ar − brrt) dt+ σrdW
r
t

where we will work with the (ar, br) parameterization of the drift. If we assume the risk

premium is constant, the evolution of the spot rate under Q is

drt = (ar + λrσr − brrt) dt+ σrdW
r
t (Q)
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Figure 4: Smoothed expected return paths (with confidence bands) for the S&P 500 and

Nasdaq 100 from 1987-2001.
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whereW r
t (Q) is a standard Brownian motion under the equivalent martingale measure Q. In

this model, zero coupon bond prices have a closed form solution:

P (rt, τ) = E
Q
t

h
e−

R t+τ
t

rsds|rt
i
= exp (β (Θ, τ) + βr (Θ, τ ) rt)

where the loading functions are given by:

βr (Θ, τ ) =
1

br

¡
e−brτ − 1¢

β (Θ, τ ) =
1

2

·
σ2r
b2r
+

σrλr
br
− ar
br

¸
(τ − βr (Θ, τ))− σ2r

4br
(βr (Θ, τ))2.

The observed data is a panel of yields at maturities τ 1, ..., τn, Yt = [Yt,τ1, ..., Yt,τk ] , where

yt,τ = − log (P (Θ, rt, µt, τ )) /τ .
The state space in this case is given by:

Yt,τ = −1
τ
β (Θ, τ )− 1

τ
βr (Θ, τ ) rt + εt

rt+1 = ar + (1− br) rt + σrε
r
t+1

where εrt+1is a mean zero normal random variable with variance matrix Σε. Since the spot

rate evolution is Gaussian, an alternative approach would use the exact transitions for the

spot rate: for any ∆

rt+∆ = rte
−β∆ +

¡
1− e−β∆¢ ar

br
+

Z t+1

t

e−br(t−s)σrdW r
s .

This is approach is recommended when ∆ is large. For parameters typically estimated from

data and for common ∆0s (daily or weekly), the discretization bias is negligible and thus we
proceed using a time-discretization.

In this model, the posterior distribution is given by p (ar, br, σr,λr, r|Y ) where r = {rt}Tt=1
and Y is a matrix of observed yields. The main difficulty in sampling the posterior is the

nonlinearity of the parameters in the observation equation as the loading functions β (Θ, τ )

and βr (Θ, τ ) are highly nonlinear functions of the parameters. To see how to handle this
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problem, consider the following MCMC algorithm:

Drift parameters : ar, br|σr,λr,Σε, r, Y

Volatility parameters : σ2r|ar, br,λr,Σε, r, Y

Pricing error variance : Σε|ar, br,λr, σr, r, Y
Market Price of Risk parameters : λr|ar, br, σr,Σε, r, Y

State variables : r|ar, br,σr,λr,Σε, Y .

With the exception of Σε, updating the parameters requires Metropolis algorithms as the

conditional posteriors are not recognizable distributions. First, consider the parameters that

determine the interest rate drift under the P-measure. The posterior is given by

p (ar, br|σr,λr,Σε, r, Y ) ∝ p (r, Y |ar, br,σr,λr,Σε) p (ar, br)

∝ p (r|ar, br, σr) p (Y |ar, br, σr,λr,Σε, r) p (ar, br) .

This suggests the following independence Metropolis algorithm:

1. Draw
¡
a(g+1)r , b(g+1)r

¢
from π (ar, br) = p (r|ar, br, σr) p (ar, br)

2. Accept
¡
a(g+1)r , b(g+1)r

¢
with probability α

¡¡
ag+1r , bg+1r

¢
,
¡
a(g)r , b

(g)
r

¢¢
where

α
¡¡
ag+1r , bg+1r

¢
,
¡
a(g)r , b

(g)
r

¢¢
= min

 p
³
Y |
³
a
(g)
r , b

(g)
r

´
, σ

(g)
r ,λ

(g)
r ,Σ

(g)
ε , r

´
p
³
Y |
³
a
(g+1)
r , b

(g+1)
r

´
, σ

(g)
r ,λ

(g)
r ,Σ

(g)
ε , r

´ , 1
 .

This algorithm, intuitively, consists of a proposal that uses the information contained in the

state evolution and then accepting/rejecting based on the information in the yields, or full-

information likelihood. The parameter σr can be handled in a similar manner. Updating Σε

is straightforward as it is a conjugate draw.

The market price of risk parameter is, in general, difficult to estimate.4 As the state space

formulation shows, it only enters the state space through β (Θ, τ) as it does not affect the

evolution of the spot rates under the P-measure. Conditional on the other parameters, λr
4See, for example, the discussion of identification in the appendix of Dai and Singleton (2001).
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enters linearly in β (Θ, τ ). This is not the general case, but it allows for standard conjugate

updating.5

The last step is drawing the spot rates. Since the Vasicek model is a linear, Gaussian state

space model, the spot rates can be updated using the forward-filtering backward sampling

(FFBS) algorithm as described in the previous section. Again, this provides a sample that is

a direct block draw from p (r|Y,Θ).

8.2 Cox, Ingersoll and Ross’s (1985) square root model

The Vasicek model assumes that the volatility of interest rate increments is constant, which

implies that interest rate increments are normally distribution and that the spot rate can be

negative. As rt is typically assumed to be a nominal rate, this is an unattractive feature.

The classic square-root model of Cox, Ingersoll and Ross (1985) corrects these shortcomings.

CIR’s (1985) assume the spot rate follows a Feller (1951) square root process

drt = κr (µr − rt) dt+ σr
√
rtdW

r
t

drt = (ar + brrt) dt+ σr
√
rtdW

r
t

where W r
t is a Brownian motion under the objective measure, P. Note that as interest rates

fall to zero, the Brownian increment becomes smaller which allows the mean-reverting drift

increase spot rates. Under regularity conditions on the parameters and the initial condition,

the CIR models insures interest rates are positive.

To value bonds, we assume the market price of interest rate risk is λt = λr
√
rt which

implies that the dynamics of the spot rate under Q-measure are

drt = (ar + (br + λr) rt) dt+ σr
√
rtdW

r
t (Q) .

Again, the price of a zero coupon, default-free bond maturing at time t+ τ is given by

P (rt, τ ) = E
Q
t

h
e−

R t+τ
t

rsds
i
= exp (β (τ ,Θ) + βr (τ ,Θ) r)

5For example, if we assume a market price of risk was linear in the spot rate, λt = λ0 + λ1rt, then the
proportional term, λ1, enters nonlinearly in the loading functions. In this case, as discussed below, standard
updating is not possible and a Metropolis step is required.
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where β and βr are

βr (Θ, τ ) =
2 (1− eγτ )

(γ + br + λrσr) (eγτ − 1) + 2γ
β (Θ, τ ) =

ar
σ2r

·
2 ln

µ
2γ

(br + λrσ2r + γ) (eγτ − 1) + 2γ
¶
+
¡
br + λrσ

2
r + γ

¢
τ

¸
where γ =

£
(br + λrσr)

2 + 2σ2r
¤1/2

.

Given an observed panel of yields at maturities τ1, ..., τn, Yt = [Yt,τ1 , ..., Yt,τk ] and assuming

a time-discretization6 of the interest rate increments, the state space is given by:

Yt,τ = −1
τ
β (Θ, τ )− 1

τ
βr (Θ, τ ) rt + εt

rt+1 = ar + (1− br) rt + σr
√
rtε

r
t+1.

The state space is still linear and Gaussian in the states, but there is now conditional het-

eroskedasticity in the evolution equation for the spot rates.

The posterior distribution is given by p (ar, br, σr,λr, r|Y ) where r and Y are the spot rates
and observed yields. The MCMC algorithm we consider is similar to the one in the previous

section

Structural Parameters : ar, br,σ
2
r|λr,Σε, r, Y

Market Prices of Risk : λr|ar, br, σr,Σε, r, Y

Pricing error variance : Σε|ar, br,λr, σr, r, Y
State variables : r|ar, br, σr,λr,Σε, Y .

The only change from the Vasicek model is that the functional forms of the conditional pos-

teriors will be different due to the different functional forms in the market price of risk and

the evolution equation of the spot rate.
6As in the Vasicek model, the exact transitions of the of the interest rate are known and are given by

p (rt+1|rt) ∝ e−u−v
³u
v

´ q
2

Iq
³
2 (uv)1/2

´
where u = crte

−br , v = crt+1 and c = 2br
σ2r(1−e−br ) . Lamoureux and Witte (2001) discretize the state space

and implement a “Griddy” Gibbs sampler. An attractive alternative to this would be to use a Metropolis
algorithm to update the states.
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Updating the structural parameters of the spot rate evolution, ar, br and σ2r, and the pricing

error variance, Σε, proceed in the same manner as in the Vasicek model. For the structural

parameters, an independence Metropolis algorithm can be used where one proposes from the

structural evolution and accepts/rejects based on the yields. Drawing the market price of

risk parameters from p (λr|ar, br, σr,Σε, r, Y ) is more difficult because the spot rate evolutions

do not provide any information about this parameter. To update λr, we use a random walk

Metropolis algorithm.

Step 1 : Draw λ(g+1)r from the proposal density q(λ(g+1)r |λ(g)r ) (16)

Step 2 : Accept λ(g+1)r with probability α
³
λ(g+1)r ,λ(g)r

´
(17)

where

α
³
Θ
(g+1)
i ,Θ

(g)
i

´
= min

p
³
λ(g+1)r |ar, br, σr,Σε, r, Y

´
p
³
λ(g)r |ar, br, σr,Σε, r, Y

´ , 1

 .
We we recommend the proposal density to fat-tailed, such as a t−distribution.
The last step is updating the spot rates, {rt}Tt=1. To do this, note that the observation

equation is linear in the state variables, but that the state evolution has conditional het-

eroskedasticity. This poses no problem, as the forward-filtering, backward sampling algorithm

can be modified in a straightforward manner to use a heteroskedastic version of the Kalman

filter (see Kalman (1960)). This provides a block update for the short rates and completes

the MCMC algorithm.

8.3 Vasicek with Jumps

Baz and Das (1996) consider an extension of Vasicek’s (1977) model to incorporate jumps in

the short rate:

drt = (ar − brrt−) dt+ σrdW
r
t + d

Ã
NtX
j=1

ξτj

!
where we assume that Nt is a Poisson process with constant intensity h and the jumps sizes

are i.i.d. normal, ξτj ∼ N (µJ , σ
2
J). If we assume the diffusive risk premium is constant,

that NQ
t is a Poisson process under Q with constant intensity h

Q and that the jump sizes are
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normally distributed under Q, ξQτj ∼ N
³
µQJ , (σ

2
J)
Q
´
, the evolution of the spot rate under Q is

drt = (ar + λrσr − brrt) dt+ σrdW
r
t (Q) + d

NQ
tX

j=1

ξQτj


where W r

t (Q) is a standard Brownian motion under the equivalent martingale measure Q.
7

In this model, zero coupon bond prices have a closed form solution:

P (rt, τ ) = E
Q
t

h
e−

t+τ
t rsds|rt

i
= exp (β (Θ, τ) + βr (Θ, τ) rt)

where the loading functions now solve the system of ordinary differential equations:

dβr (Θ, τ )

dτ
= βr [a+ λrbr] +

1

2
(σrβ

r)2 + hQ
h
eβ

rµQJ +
1
2(β

rσQr )
2

− 1
i

dβ (Θ, τ )

dτ
= 1 + βrb

subject to the terminal condition βr (Θ, 0) = β (Θ, 0) = 0.

The observed data is a panel of continuously compounded yields Yt and the state space in

this case is given by:

Yt,τ = −1
τ
β (Θ, τ ) +−1

τ
βr (Θ, τ ) rt + εt

rt+1 = ar + (1− br) rt + σrε
r
t+1 + ξtJt

where εrt+1is a mean zero normal random variable with variance matrix Σε, ξt ∼ N (µJ , σ2J),
and Jt = 1 with probability h. Our MCMC algorithm consists of drawing from the following

7These are, of course, very restrictive assumptions on the market prices of risk, especially for the jump
components.
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conditional distributions:

Structural Parameters : ar, br, σ
2
r|λr, h, µJ , σJ , hQ, µQJ , σQJ ,Σε, r, ξ, J, Y

: µJ |ar, br,σ2r, h,σJ ,λr, hQ, µQJ , σQJ ,Σε, r, ξ, J, Y

: σ2J |ar, br, σ2r, h, µJ ,λr, hQ, µQJ , σQJ ,Σε, r, ξ, J, Y

: h|ar, br, σ2r, µJ ,σJ ,λr, hQ, µQJ , σQJ ,Σε, r, ξ, J, Y

Market Prices of Risk : λr, h
Q, µQJ , σ

Q
J |ar, br,σr,Σε, r, ξ, J, Y

Pricing error variance : Σε|ar, br,λr,σr, r, ξ, J, Y
State variables : r|ar, br,σr,λr, h, µJ , σJ , hQ, µQJ , σQJ ,Σε, ξ, J, Y

: ξ|ar, br, σr, h, µJ , σJ , J, Y
: J |ar, br, σr, h, µJ , σJ , ξ, Y

Sampling from these distributions is straightforward using the results from the previous sec-

tions. The structural parameters (ar, br,σ2r, h, µJ , σJ) can be sampled using the independence

Metropolis strategy given in the previous section: proposing from the structural evolution and

then accepting/rejecting based on the information in the yields. The market price of risk

parameters also require a Metropolis step, typically a random-walk algorithm.

Updating the state variables is also straightforward. Conditional on the jump times and

the jumps sizes, we can rewrite the interest rate increments as

rt+1 = ξtJt + ar + (1− br) rt + σrε
r
t+1

and view the jump times and sizes as regressors. Since they are known, we return to a linear,

Gaussian state space model and we can use the forward-filtering backward sampling algorithm

of Carter and Kohn (1993) to update the spot rates. The conditional posteriors for the jump

times and sizes are straightforward to derive and sample from given the results in Section 7.3.

8.4 Time-Varying Central Tendency

The time-varying central tendency model specifies that the level to which the short rate mean

reverts is random: Ã
drt

dµt

!
=

Ã
κr (µt − rt)
κµ (θµ − µt)

!
dt+

Ã
σr
√
rtdW

r
t

σµdW
µ
t

!
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where the Brownian motions are uncorrelated. In this case, the affine structure implies that

continuously compounded yields are given by:

Yt,τ = α (τ ,Θ) + βr (τ ,Θ) rt + βµ (τ ,Θ)µt.

To implement the model, we consider adding a normally distributed pricing error (εt) on

the bond yields and a time-discretization for the state variable evolution. In this case, again,

the observed data is typically a vector of continuously-compounded yields,Yt,τ , the state space

is

Yt,τ = α (τ ,Θ) + (βr (τ ,Θ) , βµ (τ ,Θ))

Ã
rt

µt

!
+ εtÃ

rt+1

µt+1

!
=

Ã
κr (µt − rt)
αµ + βµµt

!
+

Ã
σr
√
rtε

r
t+1

σµε
µ
t+1

!
.

where βj (τ ,Θ) = [βr (τ1,Θ) , ...,β
r (τn,Θ)]

0 for j = r, µ.
This model has a linear state evolution and one of the state variables, rt, is heteroskedastic.

A further complication comes from the fact that although the parameters are linear in the

state evolution, they appear nonlinearly in the observation equation. In fact, they are not

even analytical as the loading functions α, βr and βµ solve ordinary differential equations.

If the observations are discretely-compounded rates such as Libor or Eurodollar futures, a

simple log transformation results in a linear-in-the-state variables model.

We specify conjugate normal priors for κr and αµ, βµ and inverse Gamma priors for the

variance parameters, σ2r,σ
2
µ and σ2ε and consider the following updating scheme:

Regression parameters : αµ,βµ,κr|r, µ,Θ−, Y
Volatility parameters : σ2µ, σ

2
r,Σε|r, µ,Θ−, Y

State Variables : r, µ|,Θ, Y

where Y = (Y1, Y2, ..., YT )
0 is the T × k matrix of observations.

Updating the parameters in this case is not as easy as in the previous cases because the

parameters are not only in the state evolution equation, but are also in the loading functions,

α, βr and βµ. Consider for example, the parameters αµ, βµ. The conditional posterior is given
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by:

p
¡
αµ, βµ|r, µ,Θ−, Y

¢ ∝ p (Y, r|µ,Θ) p ¡αµ, βµ|µ¢
∝ p (Y |r, µ,Θ) p (r|µ,Θ) p ¡αµ, βµ|µ¢

p
¡
αµ, βµ|r, µ,Θ−, Y

¢ ∝ p (Y |r, µ,Θ) p ¡αµ,βµ|µ¢
since as a function of αµ, βµ, p (r|µ,Θ) is constant. The augmented likelihood function is
given by

p (Y |r, µ,Θ) ∝
TY
t=1

p (yt|rt, µt,Θ)

where, for τ = (τ 1, τ2, ..., τn)

p (yt|rt, µt,Θ) = N (α (τ ,Θ) + βr (τ ,Θ) rt + βµ (τ ,Θ)µt,Σε) .

Since the loading functions are not analytical, direct updating from the posterior is not feasible.

Instead, we consider a Metropolis-Hastings algorithm where we propose from p
¡
αµ,βµ|µ

¢
which is normal. Note that the target

π
¡
αµ,βµ|r, µ,Θ−, Y

¢ ∝ p
¡
αµ, βµ|r, µ,Θ−, Y

¢
∝ p (Y |r, µ,Θ) p ¡αµ, βµ|µ¢

and we let the conditional likelihood, as a function of αµ, βµ be denoted as g
¡
αµ, βµ

¢
. This

leads to the following Metropolis-Hastings algorithm:

1. Draw α(g+1)µ , β(g+1)µ from p
¡
αµ, βµ|µ(g+1)

¢
2. Accept α(g+1)µ ,β(g+1)µ with probability α

³
α(g+1)µ , β(g+1)µ ,α(g)µ , β

(g)
µ

´
where

α
³
α(g+1)µ , β(g+1)µ ,α(g)µ , β

(g)
µ

´
= min

g
³
α
(g+1)
µ , β(g+1)µ

´
g
³
α
(g)
µ , β

(g)
µ

´ , 1


In order to implement this requires an evaluation of the likelihood at the new parameters

which requires us to solve the ODE’s given the new parameter draws. Updating the other

parameter proceeds in the same way.
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We update the latent states together in one block. To see how, we write

p (r, µ|Θ, Y ) ∝ p (rT , µT |Θ, Y )
TY
t=1

p
¡
rt, µt|rt+1, µt+1,Θ, Y t

¢
.

Since the joint distribution, p
¡
rt, µt|rt+1, µt+1,Θ, Y t

¢
, is Gaussian, we can apply the FFBS

algorithm which relies, in this case, on a bivariate Kalman filter. In the case of the rt0s we
rely on the heteroskedastic Kalman filter (as the variance of the evolution of the r0ts depends
on rt). The algorithm is:

1. Run the Kalman filter to get the moments of p (rt, µt|Y,Θ)
2. Sample the last state from brT , bµT ∼ p ¡rT , µT |yT ,Θ¢
3. Sample backward through time: brt, bµt ∼ p ¡rt, µt|brt+1, bµt+1, Y t,Θ¢ .

This provides a direct block update from p (r, µ|Θ, Y ).

8.5 Regime Switching

Consider the following regime switching model term structure model:

drt = κ (µ (Zt)− rt) dt+ σ (Zt) dWt

where there is a continuous-time discrete state Markov Chain Zt taking values in the Z =

{1, ..., K} with a state independent P = {Pij}. This model incorporates a time-varying central
tendency taking values µ1, ..., µK and a stochastic volatility factor taking values σ1, ..., σK.

Assuming the Markov chain is observed by the agents in the economy, Lee and Naik (1994)

and Landen (2000) show that zero coupon bond prices in this model are given by

Yt,τ = α (τ , Zt,Θ) + β (τ , Zt,Θ) rt

where to coefficient functions α and β solve Riccatti ordinary differential equations conditional

on the Markov state. That is, for each state Zt = j, one needs to solve an ordinary differential

equation to get α (τ ,Θ, j) and β (τ ,Θ, j).

Again, consider a discretized version of the continuous-time model, where we abuse nota-

tion by redefining the parameters in the drift where necessary:

Yt,τ = α (τ ,Θ, Zt) + β (τ ,Θ, Zt) rt + εt

rt+1 = µ (Zt) + κrt + σ (Zt) ε
r
t .
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where it is convenient to think of the model conditional on the Markov state: conditional on

state j,

yt = α (τ ,Θ, j) + β (τ ,Θ, j) rt + εt

rt+1 = µj + κrt + σjε
r
t .

Finally, we need to specify prior distributions. As mentioned earlier, informative priors are

required to avoid degeneracies (as in all regime switching models, there is a labeling problem:

there is no unique way to identify the states). One approach to overcome this problem is

to order the means or variances. A common noninformative reference prior that orders the

means is

p (µ,σ) ∝ 1[µ1<...<µk ]
KY
i=1

1

σi
.

However, this price leads to a conditional distribution which violates Hammersley-Clifford

since p
¡
µi,σ

2
i |Zt 6= i ∀i,µ−i, σ−i

¢
= p

¡
µi,σ

2
i |µ−i

¢
, which is not a proper density. To remedy

the problem of improper posterior conditionals, we propose the following prior:

p
¡
µi|µ−i

¢
= N (ai, Ai) 1[µi−1<µi<µi+1] and

p
¡
σ2i
¢
= IG (bi, Bi) .

We also place a normal prior on κ.

The analysis of regime switching models with MCMC methods have received an extraor-

dinary amount of attention in the statistics and econometrics literature, in part due to the

need for a formal avenue for imposing prior information due to degeneracies in the likelihood

function. For additional references and discussions, see ....

Our MCMC algorithm is be defined over [r, Z, P,Θ] where Θ = (µ, σ,κ). We consider the

following updating scheme:

Parameters : p (µ,σ|κ, r, P, Z, Y )
: p (P |µ, σ,κ, r, Z, Y )
: p (κ|µ, σ, P, r, Z, Y )

State Variables : p (Z|κ, σ, µ,κ, P, r, Y )
: p (r|κ, σ, µ,κ, P, Z, Y )
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As in other term structure models, updating the parameters is difficult to the non-analytical

functional form of the loading functions, α (τ ,Θ, j) and β (τ ,Θ, j). Because of this, we will

use a Metropolis-Hastings algorithm.

To update the parameters, µ,σ and κ, we proceed as follows. For updating, µ, we update

µi separately. To do this, we first find all times such that Zt = i as the conditional posterior

for µi will only depend on these observations. Given this, we have that

π (µi) , p
¡
µi|κ, µ−i,σ, Z,κ, r, Y

¢ ∝ Y
t:Zt=i

p (yt|rt, µi,σi) p
¡
µi|µ−i,σi,κ, r

¢
.

where

p
¡
µi|µ−i, σi,κ, r

¢ ∝ Y
t:Zt=i

p (rt|rt−1, µi,κ) p
¡
µi|µ−i

¢
If we let p

¡
µi|µ−i

¢
be a truncated normal (to impose the ordering) then p

¡
µi|µ−i, σi,κ, r

¢
is

also a truncated normal (Geweke (1994)). Defining

g (µi) =
Y
t:Zt=i

p (yt|rt, Zt = i, µi, σi)

then an independence Metropolis-Hastings algorithm (equation 4) is given by:

1. draw µ(g+1)i ∼ q (µi) ∝ p
¡
µi|µ−i, σi,κ, r

¢
2. Accept with probability α

³
µ
(g+1)
i , µ

(g)
i

´
where

α
³
µ
(g+1)
i , µ

(g)
i

´
= min

g
³
µ
(g+1)
i

´
g
³
µ
(g)
i

´ , 1

 .
For the σ0is, updating proceeds with a similar Metropolis-Hastings where we specify standard
inverse gamma distributions for each σi. Updating κ follows in a similar fashion.

Updating the transition probabilities, p (Z|κ, σ, µ,κ, P, r, Y ), also requires a Metropolis-
Hastings step. We use a standard Dirichlet prior on the elements of P. That is, {pij}Ki,j=1 ∝
D ¡γij¢. The conditional posterior for the transition probabilities is given by:

p (Z|Θ, P, r, Y ) ∝ p (Y |σ, µ,κ, P, r, Z) p (P |Z)
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The distribution p (P |Z) is D ¡γij + nij¢ where nij is the number of transitions from i to j,

that is nij =
PT

t=1 1[Zt−1=i,Zt=j]. Proceeding as above, if we set g (P ) = p (Y |Θ, P, r, Z), we
use a independence Metropolis-Hastings step with proposal density q (P ) ∼ p (P |Z).
Now we turn to the states. First, updating r is straightforward using the FFBS algorithm

(heteroskedastic Kalman filter) as rt enters linearly in the observation equation. Therefore we

can directly draw from p (r|κ, σ, µ,κ, Z, Y ).
To draw the Markov states, we consider both a single-state update and a block-update,

both Gibbs steps. The single state update draws from

π (µi) , p (Zt = i|Zt+1 = j, Zt−1 = k,Θ, P, r, Y )
∝ p (Yt|Zt = i,Θ, rt, P ) p (Zt+1 = j|Zt = i) p (Zt = i|Zt−1 = k)
∝ p (Yt|Zt,Θ, rt, P ) pkipij

The block update is computationally more expensive and is based on a recursive formula for

the conditional state transitions, p (Zt|Zt−1,Θ, r, Y ) which based on a formula of see Lindgren
(1978). Since

p (Zt = j|Zt−1 = i,Θ, r, Y ) ∝ cj (t) p (Yt|Zt = j, rt,Θ) pij
where

cj (t) = p (Yt+1, .., YT |rt+1, ..., rT , Zt = j,Θ)

=
KX
i=1

p (Yt+1|rt+1, Zt+1 = i,Θ) ci (t+ 1) pij.

This can be recursively found by starting at cj (T ) = prob (YT |rT , ZT = j,Θ). To draw the
vector of Markov states in one block, sample forward using the conditional distribution

p (Zt = j|Zt−1 = i,Θ, r, Y ) .

9 Estimation and Model Risk

Estimation corresponds to the uncertainty present regarding the parameter or state variables

values and model corresponds to the uncertainty over which model is the most accurate
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description of the data. We now discuss each of these issues and how the output of MCMC

algorithms can be used to quantify the issues.

As mentioned, inference on the parameters and the state variables is summarized by

p (Θ|Y ) and p (X|Y ). There are two ways in which these distributions quantify and ac-

count for estimation risk. First, p (Θ|Y ) and p (X|Y ) are distributions and, in contrast to
point estimates of parameters or state variables, provide all of the sample based information

regarding their values. Thus it is easy to quantify the uncertainty in estimating Θ and X.

Second, these distributions that into account the uncertainty present in estimating the other

quantity. We can represent, for example, the marginal parameter posterior as

p (Θ|Y ) =
Z
p (Θ|X, Y ) p (X|Y ) dX

and it is clear that the parameter estimates take into account the fact that the state variables

are also imperfectly estimated.

Model risk relates to the problem of understanding how inference and pricing change under

different model specifications. It provides a framework for performing sensitivity analysis and

providing specification diagnostics for a given model. For example, EJP(2001) consider the

effect of adding jumps to returns and volatility on inference and option pricing. To fully

account for model risk, Bayes rule provides the natural solution of the following form. For the

purpose of illustration, suppose that there are two models, or hypotheses, under consideration

denoted by M0 andM1, respectively.

First, the conditional posterior probability distributions for the parameters Θ under the

two model specifications are given by p (Θ|X,Y,M0) and p (Θ|X, Y,M1). There is an equiv-

alent set of conditionals for the state vector X. If the researcher wishes to fully account for

model risk or uncertainty they must calculate the posterior probabilities of each model or

hypothesis being true given the data, namely p(Mi|Y ). By Bayes rule

p(Mi|Y ) = p(Y |Mi)p(Mi)

p(Y )

where

p(Y |Mi) =

Z
X,Θ

p(Y |X,Θ,Mi)p(X,Θ|Mi)dXdΘ

is the marginal likelihood of the observed data.
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The marginal posterior p(Θ|Y ) is then given by the weighted average of the conditional
posteriors

p(Θ|Y ) = p(Θ|Y,M0)p(M0|Y ) + p(Θ|X, Y,M1)p(M1|Y )
where

p (Θ|Y,Mi) =

Z
p (Θ|X, Y,Mi) p (X|Mi) dX

It is more common to compute the ratio of posterior model probabilities via an Odds ratio

identity. For model comparison, notice that we do not have to assume models fully exhaus-

tive. For parameter inference via the marginal posterior, p(Θ|Y ), Bayes rule requires that all
candidate models to be accounted for.

Our approach to model comparison uses an Odds ratio identity to quantify the probability

that one model generated the data relative to another model. Formally, the posterior odds of

M0 being correct versusM1 is given by

p (M0|Y )
p (M1|Y ) =

p (Y |M0)

p (Y |M1)

p (M0)

p (M1)

where the equality follows from Bayes rule and p (M0) is the prior probability that M0 is

correct.

The Odd’s ratio consists of two components, the likelihood ratio, p (Y |M0) /p (Y |M1),

which is known as the Bayes Factor and the prior odds p (M0) /p (M1) = 1. The marginal

likelihood ratio is given by

p (Y |Mi) =

Z
p (Y |Θ,Mi) p (Θ|Mi) dΘ.

Note that this is an averaged and not a maximized likelihood. This implies that Bayes Factor’s

are an automatic “Occam’s Razor” in that they account for the complication of the model by

integrating out parameter uncertainty.

As in all likelihood based approaches, model comparison is typically straightforward when

models are nested. For example, suppose thatM0 corresponds to the case where Θ = Θ0 in

model M1. The Bayes Factors then takes a particularly simple form known as the Savage

density ratio:
p (Y |M0)

p (Y |M1)
=
p (Θ = Θ0|Y,M1)

p (Θ0|M1)
.
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That is the ratio of the posterior ordinate, p (Θ = Θ0|Y,M1) , to the prior ordinate, p (Θ0|M1)

both calculated under the modelM1. A simple MCMC estimator of this quantity

p (Y |M0)

p (Y |M1)
≈ 1

G

GX
g=1

p
¡
Θ = Θ0|X(g), Y,M1

¢
p (Θ0|M1)

.

We now turn to commonly used asset pricing models.

10 Conclusions

MCMC methods provide an attractive simulation-based approach for inference in empirical

asset pricing models. They provide a solution to the inverse problem of drawing inference

about state variables and parameter values given observed price data. They provide a natural

framework for assessing issues such as estimation and model risk in financial decision making.

This chapter provides a tutorial on building MCMC algorithms for applications in continuous-

time finance. In the case of equity prices, we show how to use MCMC to estimate models

with jumps, stochastic volatility and time-varying expected returns. These algorithms can be

extended in a straightforward manner to include additional observations such as option prices.

We show how to build MCMC algorithms to estimate multi-factor term structure models with

time-varying central tendancies, stochastic volatility or jumps.

These algorithms have a number of attractive convergence and estimation properties that

they inherit from the general theory of Markov chain convergence. For example, they are

typically at least geometrically convergent and have an ergodic averaging and central limit

theorem available in wide generality.
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A Regression Analysis

In this appendix, we review standard conjugate analysis for univariate, multivariate and vector

autoregression. The conditional posteriors we derive here can be found in any standard text

on Bayesian methods, see, e.g., O’Hagan (1997) or Bernardo and Smith (1996).

First consider a univariate regression model for observations, Y , and regressor matrix X:

Y = Xβ + ε

where Y is a T × 1 vector, β is a K × 1 vector and X is a T × K matrix of observations

and we assume that ε ∼ N (0, σ2I). Assuming standard conjugate independent priors for the

regression parameters and the variance

p (β) = N (a,A)

p
¡
σ2
¢
= IG (b, B) .

The inverse Gamma distribution is often used as a prior specification for univariate variance

parameters. It has support over the positive real line and if σ2 ∼ IG (b,B), its density (with
respect to Lesbesgue measure on [0,∞], is given by:

IG (b,B) ∼ βbe−B/x

Γ(b)xb+1
.

The likelihood function is given by:

p
¡
Y |X, β,σ2¢ ∝ ¡

σ2
¢−T

2 exp

µ
− 1

2σ2
(Y −Xβ)0 (Y −Xβ)

¶
=

¡
σ2
¢−T

2 exp

µ
− 1

2σ2

h³
β − bβ´X 0X

³
β − bβ´+ Si¶

where bβ = (X 0X)−1XY and S =
³
Y −Xbβ´0 ³Y −Xbβ´. The conditional posteriors are

standard from a number of textbooks on Bayesian methods (see. e.g., O’Hagan (1997)). The

conditional posterior for the regression coefficients is given by:

p
¡
β|X,Y, σ2¢ ∝ p

¡
Y |X, β,σ2¢ p (β)

∝ N (a∗, A∗)
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where

a∗ =

µ
A−1 +

1

2
X 0X

¶−1 ¡
A−1a+ σ−2X 0Y

¢
A∗ =

¡
A−1 + σ−2X 0X

¢−1
and the conditional posterior for the variance is similarly

p
¡
σ2|X, Y,β¢ ∝ p

¡
Y |X,β, σ2¢ p ¡σ2¢

∝ IG (b∗, B∗)

where

b∗ = T + b

B∗ = (Y −Xβ)0 (Y −Xβ) +B

Second, consider a multivariate normal model for a vector Yt :

Yt = N (µ,Σ) ,

where Yt and µ are a k× 1 vectors and Σ is a k× k symmetric covariance matrix. We assume
the following prior distributions for the parameters:

Σ ∼ W−1 (b,B; k)

µ ∼ N (a,A)

The likelihood function is given by:

p (Y |µ,Σ) =
TY
t=1

p (Yt|µ,Σ)

∝ |Σ|−T
2 exp

(
−1
2

TX
t=1

(Yt − µ)0Σ−1 (Yt − µ)
)

To simplify this, note that

TX
t=1

(Yt − µ)0Σ−1 (Yt − µ) = T (µ− Y )0Σ−1(µ− Y ) + Ttr
¡
Σ−1S

¢
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where Y = 1
T

PT
t=1 Yt and S =

1
T

PT
t=1(Yt− Y )(Yt− Y )0 is the sample covariance matrix. In

order to model variance-covariance matrices, we use a generalization of the inverse gamma

known as an inverse Wishart distribution. An n× n matrix Σ has an inverse Wishart distri-

bution with parameter b and matrix parameter B, its density is given by:

W−1 (b, B) ∝ |B| (b−n−1)2 |Σ|− b
2 exp

µ
−1
2
tr
¡
Σ−1B

¢¶
.

This implies that the likelihood function is given by:

p (Y |ξ, J,Θ) = |Σ|T2 exp
½
−1
2
T (µ− Y )0Σ−1(µ− Y )− 1

2
T ∗ tr ¡Σ−1S¢¾

The conditional posterior for the means is given by:

p (µ|Y,Σ) ∝ p (Y |ξ, J,Θ) p (µ)
∝ exp

½
−1
2
T (µ− Y )0Σ−1(µ− Y )− 1

2
(µ− a)0A−1(µ− a)

¾
∝ exp

½
−1
2
(µ− a∗)0 (A∗)−1 (µ− a∗)

¾
which is N (a∗, A∗) where

a∗ = A∗
¡
A−1a+ TΣ−1Y

¢
A∗ =

¡
A−1 + TΣ−1

¢−1
.

The condtional posteriors for the variance is similarly straightforward:

p (Σ|Y, µ) ∝ p (Y |µ,Σ) p (Σ)
∝ |Σ|− 1

2
(b+T ) exp

½
−1
2
tr
¡
Σ−1B

¢− 1
2
T (µ− Y )0Σ−1(µ− Y )− 1

2
T ∗ tr ¡Σ−1S¢¾

∝ |Σ|− 1
2
(b+T ) exp

½
−1
2

£
tr
¡
Σ−1 [B + T ∗ S]¢+ T (µ− Y )0Σ−1(µ− Y )¤¾

since T (µ− Y )0Σ−1(µ− Y ) = tr ¡Σ−1T (µ− Y )(µ− Y )0¢ , we have that
p (Σ|Y, µ) ∝ |Σ|− 1

2
(b+T ) exp

½
−1
2
tr
©¡

Σ−1
£
B + T ∗ S + T (µ− Y )(µ− Y )0¤¢ª¾
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which implies that

p (Σ|Y, µ) ∼ W−1 (b∗, B∗)

b∗ = b+ T

B∗ =
£
B + TS + T (µ− Y )(µ− Y )0¤

To draw from an inverse Wishart, Σ ∼ W−1(b, B), the first step is to form the Cholesky

factorization of B. That is, find C such C0C = B. Now draw a matrix R of i.i.d. N (0, 1)

random variables, then let V = RC which has independent rows vi ∼ N (0, B). Then
bX
i=1

viv
0
i ∼W−1(b, B).

Finally consider a vector autoregression where Yt is a n× 1 vector of dependent variables
and the regressor variable

Yt = Xtβ + εt

= [1, Yt−1]
0 β + εt

which implies that Yt|Yt−1 ∼ N
¡
[1, Yt−1]

0 β,Σ
¢
. With a noninformative prior on β and Σ,

β|Σ, Y ∼ N
³bβ,Σ−1 ⊗ (X 0X)−1

´
and

Σ|Y ∼W−1(T − n− 1, S−1)
where S is the sample covariance matrix.
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