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Abstract

In this paper, we develop an approach for filtering state variables in the setting

of continuous-time jump-diffusion models. Our method computes the filtering distri-

bution of latent state variables conditional only on discretely observed observations

in a manner consistent with the underlying continuous-time process. The algorithm

is a combination of particle filtering methods and the “filling-in-the-missing-data”

estimators which have recently become popular. We provide simulation evidence to

verify that our method provides accurate inference. As an application, we apply the

methodolgy to the multivariate jump models in Duffie, Pan and Singleton (2000) using

daily S&P 500 returns from 1980-2000 and we investigate option pricing implications.
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1 Introduction

Since the work of Merton (1969, 1971) and Black and Scholes (1973), researchers in eco-

nomics and finance commonly specify their models in continuous-time and assume that

state variables solve stochastic differential equations (SDEs). The first generation of these

models were diffusions, but research is increasingly focussed on more general jump-diffusion

models (see, e.g., Duffie, Pan and Singleton (2000)). These models often lead to closed

form solutions or easy to solve differential equations for objects of interest such as prices

or Bellman equations. Moreover, through judicious choice of the characteristics (the drift,

diffusion, jump intensity and jump distribution) of the SDEs, the models provide enough

flexibility to accommodate a wide range of dynamics for the state variables.

Due to their popularity, a number of methods have been developed for estimating char-

acteristics of diffusion1 and jump-diffusion models.2 In this paper, we focus on a related

problem which has received less attention: latent state variable filtering in continuous-time

jump-diffusion models. The motivation for this problem comes from practical finance ap-

plications such as option pricing and portfolio allocation where popular models incorporate

both diffusive and jump components.3 In these contexts, parameter estimation is only the

first step and in the next stage reliable estimates of unobserved state variables such as

volatility are required to price options or to compute portfolio allocations.

In certain special cases, the filtering problem can be solved. For example, in linear

and Gaussian models, we can solve the SDE’s and convert the system into a discrete-time

Gaussian model and apply the Kalman filter. In stochastic volatility models, it is possible to
1See, for example, the review article by Ait-Sahalia, Hansen and Scheinkman (2002) and also Gouriéroux,

Monfort and Renault (1993), Pedersen (1995), Ait-Sahalia (1996a, 1996b), Gallant and Long (1997), Con-

ley, Hansen, Luttmer and Scheinkman (1998), Brandt and Santa-Clara (2001), Elerian, Shephard and Chib

(2001) and Eraker (2001).
2See, Piazzesi (2001), Johannes (2001), Andersen, Benzoni and Lund (2002), Chib, Nardari and Shep-

hard (2002), Eraker, Johannes and Polson (2002) and Pan (2002).
3See, for example, Duffie, Pan and Singleton (2000) or Liu, Longstaff and Pan (2002).
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estimate volatility if there are no jumps in the observed state variable (Foster and Nelson

(1996), and Andersen, Bollerslev and Diebold (2002)). Del Moral , Jacod and Protter

(2001) provide a Monte Carlo solution for estimating states in the setting of more general

diffusion models. However, none of these methods have been applied in models with jumps

and there are no existing methods available for separating out jump and stochastic volatility

components based on contemporaneously available data.4 The difficulty in separating out

these components can be seen from the following example. Suppose there is a large, negative

equity return: how do we determine if it is a jump in returns, a shock due to high volatility

or a combination of the two?

This paper provides an efficient simulation based solution to the filtering problem in the

general setting where the state variables solve parameterized stochastic differential equa-

tions with jumps. Our approach consists of two steps. First, we augment the state space

by high frequency augmentation or “filling-in-missing data” by simulating M additional

data points between the discrete observation times. This insures that the conditional den-

sities we use are consistent with the continuous-time specification and is a common method

used for parameter estimation.5 Second, we use the particle filter and its extension with

auxiliary variables on the augmented system to estimate the filtering densities.

Our approach offers a number of practical advantages. First, the class of models in which

our approach applies is quite general. We only require that the model can be discretized and

simulated using standard techniques such as the Euler scheme. Thus our method applies

in models with nonlinear characteristics, multivariate diffusion models with Poisson driven

jumps, models with embedded continuous-time, discrete state Markov chains. Second,

unlike estimators that rely on increasingly fine observations, our filters do not require

high frequency data, although, of course, our methodology does not preclude it. Third,
4It is possible to estimate the smoothed distribution of volatility and jumps: see Eraker, Johannes and

Polson (2002).
5See, e.g, Pedersen (1995), Elerian, Shephard and Chib (2001), Eraker (2001), Brandt and Santa-Clara

(2002) and Durham and Gallant (2002).
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our method uses the structure imposed by the model under consideration, in contrast to

recent nonparametric methods. Since most practical applications use specific models, our

approach is efficient in the sense that we use the information contained in the model.

Fourth, our approach delivers the entire filtering distribution. Fifth, the particle filter

adapts in a straightforward manner to address the issue of sequential parameter learning.

Finally, the algorithm is computationally very fast and easy to implement when compared

to alternative methods such as MCMC or naive Monte Carlo.

To demonstrate the algorithm, we consider three special cases of the double-jump model

of Duffie, Pan and Singleton (2000): the square-root stochastic volatility (SV, Heston

(1993)) model, the square-root stochastic volatility model with jumps in returns (SVJ,

Bates (1996)) and a square-root stochastic volatility model with correlated jumps in returns

and volatility (SVCJ, Duffie, Pan and Singleton (2000)). This model is an excellent example

because these factors are important features of the data6 and the model contains all of the

cases of practical interest: a time-varying state variable (volatility), jumps in the observed

state variable and jumps in the unobserved state.

We provide simulation results to document the performance of the filtering algorithm as

a function of the number of additional augmented data points. In most cases, filling a small

number of data points results in a very accurate filter. Using daily S&P 500 index data from

1980-2000, we apply the filtering methodology to the SV, SVJ and SVCJ models to obtain

filtered estimates of jump times, jump sizes and volatility. We also extend our methodology

to cover the case of sequential parameter learning. Building on the algorithm of Storvik

(2002), we provide sequential parameter estimates consistent with the continuous-time

model for the SV model. While the algorithm performs well on simulations, it does not

perform well on S&P 500 data as the algorithm degenerates after the Crash of 1987. The

poor performance is likely due to model misspecification.

Using the filtered estimates, we address an important issue related to Merton (1976b).
6See, e.g., Bakshi, Cao and Chen (1997), Pan (2002), Chernov, et al. (2002) and Eraker, Johannes and

Polson (2002).
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Merton (1976b) quantifies the error that an investor incurs if they incorrectly apply the

Black-Scholes model when the true model is Merton’s (1976a) mixed jump-diffusion. In

the setting of models with time-varying volatility and jumps a similar issue occurs and

was mentioned above. How does one know when a jump occurs? Our filter provides a

statistical mechanism for identifying jump and volatility components. We show how the

different models generate drastically different implied volatility curves in periods of market

stress. Moreover, the volatility estimates remain different for long periods of time. This

quantifies a new dimension along which jumps have an important economic impact on

option prices.

There are related papers using particle filters which focus on parameter estimation or

specification testing. Durham and Gallant (2002) and Pitt (2002) use particle filtering

and data augmentation to construct likelihood functions for maximum likelihood parame-

ter estimation in diffusion based stochastic volatility models. Pitt and Shephard (1999),

Durham (2002) and Chib, Nardari and Shephard (2002) use particle filtering in discrete

time stochastic volatility models to construct likelihood functions for estimation or testing.

Chib, Nardari and Shephard (2002) also consider a discrete-time model with t-distributed

errors and jumps in returns. Barndorff-Nielson and Shephard (2002) use particles to filter

volatility in a stochastic volatility model driven by Lévy processes. Our approach extends

these papers into continuous-time and/or jump-diffusion models.

The rest of the paper is outlined as follows. The next section introduces the models

under consideration, reviews general filtering theory and introduces our algorithms. Section

3 provides empirical results. Section 4 concludes.

2 General Filtering Theory

This section discusses the class of models that we consider and reviews standard discrete

and continuous-time approaches for filtering.
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2.1 Model Specification

We assume that the vector of observed state variables, St, and the vector of unobserved

state variables, Xt, jointly solve

St = S0 +

Z t

0

µs (Θ, Ss, Xs) ds +

Z t

0

σs (Θ, Ss−, Xs−) dW s
s +

Ns
tX

j=1

fs
³
ξsj , Sτsj−, Xτsj−

´
(1)

Xt = X0 +

Z t

0

µx (Θ, Ss, Xs) ds+

Z t

0

σx (Θ, Ss−, Xs−) dW x
s +

Nx
tX

j=1

fx
³
ξxj , Sτxj −,Xτxj −

´
(2)

where s− denotes the limit taken from the left, W s
t and W

s
t are vectors of potentially

correlated Brownian motions; {Ns
t , N

x
t }t>0 are a pair of point processes with stochastic

intensities {λj (Θ, St,Xt)}j=s,x and associated jump times
©
τ sj , τ

x
j

ª∞
j=1
; and

©
ξsj , ξ

x
j

ª∞
j=1

are

the marks of the point process with an Fτj− conditional distribution Π (Θ). We refer to (1)

as the observation equation and (2) as the state evolution. The jump impact function f

translates the marks of the point process
©
ξsj , ξ

x
j

ª
into jumps in the state variables. In most

cases the jump impact function is either independent of St and Xt or is a simple function

of one or the other. The interpretation of the process is as follows. At a jump time τ sj or

τxj , there is a discontinuity in the sample path,

Sτsj − Sτsj− = f s
³
ξsj , Sτsj−,Xτsj−

´
and Xτxj

−Xτxj − = f
x
³
ξxj , Sτxj −, Xτxj −

´
,

and between jump times, τj ≤ t < τj+1, the state variables diffuse:

dSt = µ
s (Θ, St, Xt) dt+ σs (Θ, St,Xt) dW

s
t

dXt = µ
x (Θ, St, Xt) dt+ σx (Θ, St, Xt) dW

x
t .

Throughout, we assume that the characteristics in (1) and (2) have sufficient regularity

for a well defined strong solution. Sufficient conditions for a strong solution include linear

growth and Lipschitz on the drift, diffusion and jump impact function and integrability

conditions on the initial values. If we define y = (s, x) and z = (s0, x0), these conditions
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state that for j = s, v

Growth :
°°µj (Θ, y)°°+ °°σj (Θ, y)°°+ Z °°f j ¡ξj, y¢°°Πj ¡Θ, dξj¢ ≤ kj (1 + kyk)

Lipschitz :
°°µj (Θ, s, x)− µj (Θ, s0, x0)°°+ °°σj (Θ, s, x)− σj (Θ, s0, x0)

°°+Z °°f j ¡ξj , s, x¢− f j ¡ξj, s0, x0¢°°Πj ¡Θ, dξj¢ ≤ kj (1 + ks− s0k+ kx− x0k) .
For integrability, we assume that the initial values, S0 and X0 are square-integrable. Jacod

and Shiryaev (1987) and Gihkman and Skorohod (1972) provide details on the regularity

conditions. In some cases, such as models with square-root volatility, the growth condition

is violated at the boundary of the state space. In this case, there are often alternative condi-

tions to guarantee existence and uniqueness (see, e.g., Duffie, Filipovic and Schachermayer

(2002)).

Our specification is general enough to cover nearly all of the special cases of interest in

economics and finance: multivariate diffusion models, multivariate jump-diffusion models

(Duffie, Pan and Singleton (2000)) and regime-switching models (see Dai and Singleton

(2002) and Landen (2000)). The only class of models that falls outside this class are

those driven by a Lévy processes. While these models are not typically used in finance

applications, these models are promising for modeling stochastic volatility. The methods

developed below extend straightforwardly to this case.

2.2 Classical Filtering Methods

We now turn to the issue of filtering the unobserved states, jump times and jump sizes

from observations on St. We assume that St is observed at discretely spaced intervals that,

without any loss of generality, are equally spaces apart. The vector of observed data is

S0:t = [S1, ..., St]. We first consider the filtering problem with known parameters and later

relax this assumption.

The filtering distribution is the conditional distribution of the latent state variables given

contemporaneous information on the observed state: if Xt is the latent state, the filtering
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density is p (Xt|S0:t) and our goal is to compute this density sequentially for large t. We
make note of the difference between the filtering density, p (Xt|S0:t), and the smoothing
density, p (Xt|S0:T ) where S0:T is the entire sample. The smoothing density also provides
state estimates, but it uses future data to estimate the states. For practical problems such

as option pricing or portfolio allocation, this is not relevant. We will first discuss existing

approaches to filtering with discrete and continuous observations.

2.2.1 Discrete time filtering

With discrete observations, the filtering problem can be solved analytically in the class

of linear, Gaussian state space models (the Kalman filter) and in certain other cases in

which the state variables have a discrete distribution. For the models we consider, the dis-

cretely sampled distributions are generally neither linear nor Gaussian. If the conditional

distribution of the observed state given the unobserved state and the state evolution equa-

tion were known in closed form, generalizations of the Kalman filter such as the extended

Kalman filter could apply. Unfortunately, the conditionals are not known, but even if they

were known analytically, this approach is not likely to work well as the transitions can be

extremely non-normal.

Since the problem cannot be solved analytically, there are a number of related numerical

approaches which rely on approximating the filtering density with a discrete distribution.

This approach, initially developed by Gordon, Salmond and Smith (1993) has wide applica-

bility to many nonlinear and non-normal discrete time models. In general, the method can

be directly applied if one can sample from the state evolution and evaluate the conditional

distribution of the observable given the latent states. In the case of continuous-time jump-

diffusions, this is not analytically possible, but below, we adapt the method to handle this

case.
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2.2.2 Continuous time filtering

The classical approach to filtering in continuous-time models is to assume that St is observed

continuously in time, the continuous-record case (see Pugachev (1987) and Liptser and

Shiryaev (2001)). In this case, the sample path is observed at every time point and this

information is summarized by the filtration Fs0,t = σ (Su, 0 ≤ u ≤ t). As before, the solution
to the filtering problem is the posterior distribution of the unobserved variables {Xt}t≥0
and jump times and sizes, µn

ξs
j
, τ s

j

oNs
t

j=1
,
n
ξx
j
, τx

j

oNx
t

j=1

¶
,

given F s
0,t.

The assumption of continuous-record observations implies that much of the filtering

problem disappears. To see this, note first that with continuous-record observations, both

St and St− are known implying that the jump times and sizes,
n
τ sj , f

s
³
ξsτsj , Sτ

s
j−,Xτsj−

´oNs
t

j=1
,

are observed as discontinuities in the sample path. Moreover, in most cases of interest, the

jump impact function is independent of Xt and fs can be inverted to solve for the mark,

ξsτj .

Given that jump times and sizes in St are known, we now consider the information

contained in continuous component of the observed state variables, Sct , which is given by

Sct = St−
Ns
tX

j=1

f s
³
ξsj , Xτs

j
−, Sτs

j
−
´
= St−1+

Z t

t−1
µ (Θ, Ss,Xs) ds+

Z t

t−1
σ (Θ, Ss−,Xs−) dW s

s .

With observations on Sct , consider a partition of the interval [0, t] into n intervals, 0 =

t1 < ... < tn = t, and set ∆n = sup
1≤j≤n

|tj − tj−1| . The quadratic variation of the continuous
component is defined as

QV (t) =

Z t

0

σ2 (Θ, Ss, Xs) ds = lim
∆n→0

nX
j=1

¯̄̄
Sctj − Sctj−1

¯̄̄2
where the limit is taken in probability. The derivative of this expression with respect to t

and taken from the left is

dQV (t)

dt
=
d

dt

Z t

0

σ2 (Θ, Ss, Xs) ds = σ (Θ, St, Xt) a.s. (3)
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and implies that the diffusion coefficient, σ (Θ, St, Xt), is also observed. In most cases of

practical interest, this implies that Xt is also observed. For example, this occurs if σ is an

invertible function of Xt.

For a concrete example, consider the SVCJ model of Duffie, Pan and Singleton (2000):

St+1 = St +

Z t+1

t

Ss (rs + ηvVs) ds+

Z t+1

t

Ss−
p
Vs−dW s

t +

Nt+1X
j=Nt+1

Sτj−
¡
eξ

s
j − 1¢

Vt+1 = Vt +

Z t+1

t

κv (θv − Vs) ds+
Z t+1

t

σv
p
Vs−dW v

t +

Nt+1X
j=Nt+1

ξvj

where ξs|ξv ∼ N (µs + ρJξ
v, σ2s), ξ

v ∼ exp (µv) and Nt ∼ Poi(λt). Continuous-record

observations on the equity price imply that N s
t and ξsτj are known. Additionally, the

quadratic variation theorem implies that Vt is observed. This in turn implies that Nv
t and

ξvτj are also observed. Thus, there is nothing to filter.

In continuous-time models, the only state variables that are not observed are those

that appear in the drift of the observation equation. In this case, the problem can be

solved analytically or numerically in only the simplest possible cases: models with constant

diffusion functions σs (St, Xt) = σs and linear drifts, µs = αs + αssSt + αsxXt and µ
x =

β+βsXt+βxX. In this case, the continuous-time Kalman filter applies. In other cases, such

as those with state dependent diffusion coefficients or nonlinearities, the filtering problem

is solved by set of partial differential equations. These multi-variate partial differential

equations are intractable to solve in practice. 7

2.2.3 Filtering with increasingly fine observations

Beginning with Merton (1980) and continuing with a number of recent papers (see, e.g.,

Foster and Nelson (1995). Barndorff-Nielson and Shephard (2001) and Andersen, et al.
7For example, Pugachev (1987) argues that “there exists no method for the exact solution of the non-

linear filtering problem,” and moreover that “the numerical solution of the (partial differential) equations

is also impossible in practice.”
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(2002)), a class of filters have been constructed using high frequency data to estimate either

the quadratic variation (integrated volatility) or the derivative of the quadratic volatility

(spot volatility). These estimators have a number of practical and theoretical advantages.

First, if high frequency data is available, the estimators are easy to compute as they just

rely on squaring and adding increments. Second, the methods apply equally well in uni-

variate and multivariate models. Third, the methods are nonparametric in the sense that

the estimators are independent of the specification for the drift and diffusion. Last, the

estimators have attractive asymptotic properties (consistency and asymptotic normality).

These estimators also have some disadvantages from our perspective. First and fore-

most, if the observed state contains jumps, these methods cannot separate volatility and

jump components. The reason is that these methods approximate the quadratic variation

which, in the presence of jumps, is a combination of volatility and jumps. By definition,

with increasingly fine observations on St we have that the quadratic variation estimates

lim
∆n→0

nX
j=1

¯̄
Stj − Stj−1

¯̄2
=

Z t

0

σ (Θ, Ss, Xs) ds+

Ns
tX

j=1

f s
³
ξsj , Sτsj−, Xτsj−

´2
.

While computing this is straightforward, there is no way to separate out the diffusive and

jump contributions to the quadratic variation. Since there is strong evidence that many

time series (exchange rates, equity returns and interest rates) contain jump components,

this severely limits the applicability of these estimators. Second, for financial applications,

researchers typically work with parametric models and these estimators typically do not use

the information contained in the parametric model (due to their nonparametric nature).

Third, it is difficult if not impossible to obtain high frequency data for many financial time

series. At one extreme, for example, are LIBOR rates which are recorded only at 11:00

a.m. London time. For these reasons, we must develop alternative estimators when the

state variables solve jump-diffusions.
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2.2.4 Time-Discretization and MCMC

One promising alternative to the previously mentioned methods is Markov Chain Monte

Carlo which has been used extensively to estimate latent states in time-discretizations (see,

e.g., Eraker, Johannes and Polson (2002)) or latent diffusive variables in a manner consistent

with the continuous-time model (Elerian , Shephard and Chib (2001) and Eraker (2001)).

Elerian, Shephard and Chib (2001) study the case where there are no latent state variables.

In the context of single-factor diffusions, they use standard MCMC techniques and augment

the state space by simulating additional data points between observation times. Eraker’s

(2001) MCMC methodology also augments the state space, but he considers more general

models with latent variables such as stochastic volatility.

The key to this approach, which builds on Pedersen (1995), is a high-frequency augmen-

tation of the state space. Our discussion generalizes Elerian, Shephard and Chib (2001)

and Eraker (2001) to the case of jump-diffusions. Given the model in (1) − (2) and with
observations at points t and t + ∆, the method simulates additional missing data points

via an Euler discretization at length 1/M :

Stj+1 = Stj + µ
s
¡
Θ, Stj ,Xtj

¢
/M + σs

¡
Θ, Stj ,Xtj

¢
εstj+1 + f

³
ξstj+1, Stj , Xtj

´
Jstj+1 (4)

Xtj+1 = Xtj + µ
x
¡
Θ, Stj ,Xtj

¢
/M + σx

¡
Θ, Stj , Xtj

¢
εxtj+1 + f

³
ξxtj+1 , Stj , Xtj

´
Jxtj+1 (5)

where tj = t+
j
M
, εxtj+1 =W

x

t+
j
M

−W x

t+
j−1
M

and εstj+1 = W
s

t+
j
M

−W s

t+
j−1
M

. The jump sizes retain

their distributional structure and the jumps times are distributed Bernoulli with probability
λj(St,Xt)

M
. Mikulevicius and Platen (1988) and Liu and Li (2000) prove convergence of this

discretization scheme for calculating expectations of sufficiently smooth functions of the

state. An alternative scheme that requires simulation of the jump times via an exact

solution of the doubly stochastic point process also converges, see Platen and Rebollado

(1985). In our setting, the jump probabilities are small and these two schemes are very

similar. For future reference, define

SMt+1 =
h
St+ ∆

M
, ..., St+ j

M
∆, ..., St+M−1

M
∆

i
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as the vector containing the augmented values of St,

XM
t+1 =

h
Xt, Xt+ ∆

M
, ..., Xt+ j

M
∆, ..., Xt+M−1

M
∆

i
as the vector containing the augmented values of Xt, and define JMt and ξMt similarly. We

let a capital letter without subscript denote the vector of stacked latent variables (e.g.,

X =
£
XM
0 , ..., X

M
t−1
¤
).

Given the discretization, it is straightforward build an MCMC algorithm which gen-

erates samples from the joint posterior distribution of the latent states and parameters,

p (Θ, X, J, ξ, S|S0:t). This algorithm provides inference consistent with the continuous-time
model as M gets large. Using samples from the joint posterior, it is straightforward to

form smoothed estimates of the latent states, for example, p [Xt|S0:T ] for t ≤ T . Moreover,
this algorithm, when repeatedly applied, provides filtered estimates of the states and para-

meters, E [Xt|S0:t] and E [Θ|S0:t]. However, sequential implementation of this procedure is
computationally intractable. For example, it would not be uncommon for a single MCMC

algorithm to take a couple of hours to run.8 Repeatedly performing this estimation for

realistic data sets that are used in practical problems is typically not computationally fea-

sible as the smoothing algorithm must be re-estimated thousands of times. Due to this, we

turn to an alternative particle filtering approach.

3 Particle Filtering States and Parameters

In this section, we adapt the particle filtering methodology of Gordon, Salmond and Smith

(1993) and its extensions in Carpenter, Clifford, and Fearnhead (1999) and Pitt and Shep-

hard (1999) to state filtering and parameter learning in continuous-time jump-diffusion

models. We first describe particle filtering in discrete time, develop extensions that apply
8Efficiently programmed in C, the algorithm in Eraker, Johannes and Polson (2002) to estimate jump

times, jump sizes, volatility and parameters in the double-jump model of Duffie, et al. (2000) takes over

an hour to perform 100,000 iterations.
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with the augmented state space and then describe sequential parameter estimation.

3.1 Particle Filtering States and Parameters

We first focus on the problem of state filtering, conditional on a fixed set of parameters

Θ. For our application, we use the sampling/importance resampling (SIR) version of the

auxiliary particle filter. Our brief discussion of the particle and auxiliary particle filter

follows Pitt and Shephard (2001).

To understand the mechanics of the particle filter, consider a discrete time setting where

we refer toXt as the latent variables, St the observed data, and S0:t as the vector of observed

states up to time t. There are a number of densities associated with the filtering problem

which we now define:

p (Xt|S0:t) : filtering density
p (Xt+1|S0:t) : predictive density
p (St|Xt) : likelihood

p (Xt+1|Xt) : state transition

Bayes rule links the predictive and filtering densities through the identity

p (Xt+1|S0:t+1) = p (St+1|Xt+1) p (Xt+1|S0:t)
p (St+1|S0:t)

where

p (Xt+1|S0:t) =
Z
p (Xt+1|Xt) dP (Xt|S0:t) .

The key to particle filtering is an approximation of the (continuous) distribution of

the random variable Xt conditional on S0:t by a discrete probability distribution, that is,

the distribution Xt|S0:t is approximated by a set of particles,
n
X
(i)
t

oN
i=1
with probability

π1t , ..., π
N
t . By assuming the distribution is approximated with particles, we can estimate
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the filtering and predictive densities via: (bp refers to an estimated density)
pN (Xt|S0:t) =

NX
i=1

δ
X
(i)
t
πit

pN (Xt+1|S0:t) =
NX
i=1

p
³
Xt+1|X(i)

t

´
πit,

where δ is the Dirac function. As the number of particles increases, the accuracy of the

discrete approximation to the continuous random variable improves. When combined with

the conditional likelihood, the filtering density at time t+ 1 is defined via the recursion:

pN (Xt+1|S0:t+1) ∝ p (St+1|Xt+1)
NX
i=1

p
³
Xt+1|X(i)

t

´
πit.

The key to particle filtering is developing an efficient algorithm to propagated the particles

forward from time t to time t+ 1.

There are a number of different methods to that can be used to update or propagate

the particles. For example, importance sampling, rejection sampling and MCMC are all

possible methods. In this paper, we use importance sampling (Smith and Gelfand (1992),

Gordon, Salmond and Smith (1993)) to propagate the particles. To understand how the

importance sampler works, we can view pN (Xt+1|S0:t) as the prior and p (St+1|Xt+1) as the
likelihood:

pN (Xt+1|S0:t+1) ∝ p (St+1|Xt+1)| {z }
Likelihood

XN

i=1
p
³
Xt+1|X(i)

t

´
πit| {z }

Prior

.

The algorithm draws,
n
X
(i)
t+1

oN
i=1

from prior distribution and then re-samples
n
X
(i)
t+1

oN
i=1

with weights ωi ∝ p
³
St+1|X(i)

t+1

´
. Alternatively, we could use a pure rejection sampling

algorithm which, if the acceptance probabilities are high, will be faster and provides a

direct draw from the the target. The auxiliary particle filter, which we implement, is

a straightforward extension of the particle filter and is described in Pitt and Shephard

(1999). The auxiliary particle filter “peaks” forward via an initial resampling step and

then propagates these higher likelihood samples forward with the particle filter.
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As an example, consider a time-discretization (M = 1) of the SV model:

St+1 = log

µ
Pt+1
Pt

¶
= µ+

p
Vt
¡
W s

t+1
−W s

t

¢
where

Vt+1 = Vt + κv (θv − Vt) + σv
p
Vt
¡
W v
t+1 −W v

t

¢
(6)

In this case, the state variable is Xt = Vt−1 (the timing convention will be clear below

when we augment the state space). To begin, assume that we have a sample
n
(Vt−1)

i
oN
i=1

from p (Vt−1|S0:t). We propagate these samples forward by drawing a Brownian increment
in equation (6) which results in a sample

n
(Vt)

i
oN
i=1
. Given a new observation, St+1 we

resample
n
(Vt)

i
oN
i=1
with weights proportional to p (St+1|V it ) = φ

³
µ, (Vt)

i
´
where φ is the

normal density. This provides the particles for the next iteration. Provided the number

of particles N is large enough, this will deliver an accurate approximation to the filtering

distribution.

Next, we show how to adapt the particle filter to handle jump components. Consider

a time-discretization of the SVCJ model mentioned above at frequency M = 1. In this

model, the likelihood and evolution are given by:

St+1 = log

µ
Pt+1
Pt

¶
= µ+

p
Vt
¡
W s

t+1
−W s

t

¢
+ ξst+1Jt+1

Vt+1 = Vt + κv (θv − Vt) + σv
p
Vt
¡
W v
t+1 −W v

t

¢
+ ξvt+1Jt+1

where ξst is normally distributed, ξ
v
t is exponentially distributed and Jt is Bernoulli with

probability λ. In this model, since the arrivals and sizes are i.i.d., their transitions are

state independent which makes simulating jump time and size particle easy. Moreover, the

likelihood function is just a mixture of two normals depending on whether Jt+1 = 1 or 0.

The state vector at time t is Xt = (Vt−1, ξst , ξ
v
t , Jt) and assume that we have a samples from

(Vt−1, ξst , ξ
v
t , Jt) |S0:t, n

(Vt−1)
i , (ξst )

i , (ξvt )
i , (Jt)

i
oN
i=1
.

Again, to propagate the particles forward, we first draw Brownian increments, jump times

and jump sizes. Since the jump times and sizes i.i.d., these draws are simple: (Jt+1)
i ∼

16



Ber (λ),
¡
ξst+1

¢i ∼ N ¡µξ,σ2ξ¢ and ¡ξvt+1¢i ∼ exp (µv). Given the sample,n
(Vt)

i , (ξst )
i , (ξvt )

i , (Jt+1)
i
oN
i=1
,

again evaluate the density weights:

p
³
St+1| (Vt)i ,

¡
ξvt+1

¢i
,
¡
ξvt+1

¢i
, (Jt+1)

i
´
= φ

³
µ+ Jt+1ξt+1, (Vt)

i
´

and resample as before. At this stage, it is also clear how to deal with state dependent

jump intensities. Pan (2002) and Andersen, Benzoni and Lund (2002) consider models

where the jump intensity depends on the Vt: λt = λ0 + λ1Vt. In this case, the jump time

update depends on the current (Vt−1)
i. Kim and Shephard (1998) and Chib, Nardari and

Shephard (2002) have used particle filtering to compute likelihood functions in discrete-time

settings.

While we use importance sampling, it is always important to consider alternatives such

as rejection sampling or MCMC. In general, no one of these three algorithms is generically

preferred to the others, although in certain cases one may provide advantages in terms of

computational time or efficiency. For example, if one can bound the likelihood as a function

of Xt, rejection sampling can lead to substantial improvements in certain cases. However,

this is not generically the case for the models that we consider. In the discretization of the

SVJ model above, we have that

f (St+1|Vt, ξt+1, Jt+1) = 1√
2πVt

exp

Ã
−1
2

µ
St+1 − µ− ξt+1Jt+1√

Vt

¶2!
whose maximum does not exist (set Jt+1 = 1, ξt+1 = St+1 − µ and drive Vt to zero). This
is a general problem in many mixture models (see Kiefer (1978)). In order to check that

our importance sampler works well, we have been careful to run extensive simulations.

3.2 Particle Filtering with missing data

This section extends particle filtering to the case M > 1, where additional observations

are simulated at equally spaced intervals. For notational convenience, we focus on the case
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where the observable states do not appear on the right hand side (this will be the case

with our equity price applications below). To develop intuition, we first consider the pure

diffusion case,

dSt = µ
s (Xt) dt+ σs (Xt) dW

s
t (7)

dXt = µ
x (Xt) dt+ σx (Xt) dW

x
t . (8)

We have suppressed any parametric dependence in the drifts and diffusions.

A discretization with M points between observations implies that

St+1 = St +M
−1

MX
j=1

µs
³
Xt+ j−1

M

´
+

MX
j=1

σs
³
Xt+ j−1

M

´µ
W s

t+
j
M

−W s

t+
j−1
M

¶
where

Xt+ j
M
= Xt+ j−1

M
+ µx

³
Xt+ j−1

M

´
M−1 + σx

³
Xt+ j−1

M

´³
W v
t+ j

M

−W v
t+ j−1

M

´
,

W s

t+
j
M

−W s

t+
j−1
M

∼ N (0,M−1) and W v
t+ j

M

−W v
t+ j−1

M

∼ N (0,M−1). Again, recall the def-

inition of XM
t+1 =

h
Xt, Xt+ ∆

M
, ...,Xt+ j

M
∆, ..., Xt+M−1

M
∆

i
. The distribution of the observable

states conditional on XM
t+1 is

St+1|XM
t+1, St ∼ N

Ã
St +

1

M

MX
j=1

µs
³
Xt+ j−1

M

´
,
1

M

MX
j=1

σs
³
Xt+ j−1

M

´2!
. (9)

To start the algorithm, suppose that we have samples
n¡
XM
t

¢ioN
i=1

from p
¡
XM
t |S0:t

¢
.

Next, we take
n¡
XM
t

¢ioN
i=1
and simulate each of these particles forward using the stochas-

tic differential equation discretized at frequency 1
M
to obtain

n¡
XM
t+1

¢ioN
i=1
. Given these

samples, we generate the likelihood weights from (9) and reweight as before. This gener-

ates a sample,
n¡
XM
t+1

¢ioN
i=1

from p
¡
XM
t+1|S0:t

¢
. As was the case in the previous section,

incorporating jumps in either Xt or St is straightforward if the jump size distribution and

arrival intensities do not depend on St. If the jump size distribution or intensity depends

on St we have to simulate values of St in between observations. This algorithm is closely
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related to the approach of Durham and Gallant (2001) and Pitt (2002) who use particle

filters for maximum likelihood estimation in diffusion based models.

In our equity price applications, the observed state variable is the continuously com-

pounded returns and in this case the price or return does not appear on the right hand side

of the SDE. In other cases we may need to simulate data points for the observed variables

between time t and t+ 1 : SMt =
n
St+ j

M

oM−1
j=1

. When this occurs, an Euler discretization

at frequency M implies that

St+1 = St +
MX
j=1

µs
³
St+ j−1

M
, Xt+ j−1

M

´
M−1 +

MX
j=1

σs
³
St+ j−1

M
, Xt+ j−1

M

´µ
W s

t+ j
M

−W s

t+ j−1
M

¶
where

Xt+ j
M
= Xt+ j−1

M
+ µx

³
Xt+ j−1

M

´
M−1 + σx

³
Xt+ j−1

M

´³
W v
t+ j

M

−W v
t+ j−1

M

´
.

The particle filter still applies in this case by propagating the SMt and XM
t forward. Note

now, however, that the likelihood is more complicated since

p
¡
St+1|St, SMt , XM

t

¢
=

p
³
St+1|Xt+M−1

M
, St+M−1

M

´ MY
i=2

p
³
St+ i

M
|Xt+ i−1

M
, St+ i−1

M

´
p
³
St+ 1

M
|Xt, St

´
.

In this case, we have found that the gains to auxiliary particle filtering can be quite sub-

stantial.

3.3 Convergence of Particle Filters

The previous sections discussed particle filters for a given N and M . In this section we

discuss convergence issues that arise when N and M are large.

First, assume that the M = 1 Euler discretization of the continuous-time model is the

true model. In this case, we can appeal to a number of limiting results that are summarized

in Crisan and Doucet (2002). If we denote the particle approximation to the filtering density
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for a fixed N as pN (Xt|S0:t), then we are interested in the behavior of this density for large
N . Under sufficient regularity on the state transition and the likelihood, the particle filter is

consistent in the sense that lim
N→∞

pN (Xt|S0:t) = p (Xt|S0:t), where p (Xt|S0:t) is the optimal
filter. The regularity conditions require that the state variable transition density is Feller

continuous and the likelihood is positive, bounded and continuous.

Second, consider the more general case with M > 1. If we let pM,N (Xt|S0:t) denote the
particle filter approximation for a givenM and N and pM (Xt|Xt−1) the state transition for
a givenM , then we are interested in the convergence of the filter for largeM and N . From

the previous results, we know that for a fixed M , the particle filter is consistent and thus

we need to focus on the convergence of the approximate transition density pM (Xt|Xt−1)
to the true transition density, p (Xt|Xt−1). While it is straightforward to provide conver-
gence of Euler discretizations for computing expectations of smooth functions of the state,

E [f (XT ) |Xt = x] (Kloeden and Platen (2001)), pointwise convergence of the density func-
tion is a more difficult as it applies in the case where the function f is an indicator function

(and is not smooth nor continuous).

In the case of diffusions, Bally and Talay (1996) prove pointwise convergence of pM (Xt|Xt−1)
using the Malliavin calculus. Brandt and Santa-Clara (2002) use this result to prove con-

vergence of simulated maximum likelihood estimators (see also the appendix in Pedersen

(1995)). Jacod and Del Moral (2001) and Jacod, Del Moral and Protter (2002) prove that

the pointwise convergence of pM (Xt|Xt−1) to p (Xt|Xt−1) implies that the particle filter is
consistent provided that M increases slower than N (for example, M =

√
N). This result

is similar to the limiting behavior of parametric and nonparametric estimators where the

index that approximates the true function increases at a slower rate than new data arrives

(see, e.g., Aït-Sahalia (2002), Gallant and Long (1995)).

In the context of jump-diffusions, Rebollado and Platen (1985), Mikulevicius and Platen

(1988) and Liu and Li (2002) prove convergence of the Euler scheme for smooth functions,

f . To our knowledge, we know of no analog to Bally and Talay (1996) for jump-diffusions

or for Lévy processes. Although we conjecture that transitions generated by the Euler
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scheme in jump-diffusion models converge, it is an open question for future research.

3.4 Parameter Learning

The particle filter can also be adapted to perform on-line parameter estimation. There are

two ways to do this, both of which can be used in conjunction with our state space expansion

via high frequency augmentation. The first approach, discussed in Gordon, Salmond and

Smith (1993), is a direct particle filtering approach. The advantage of this approach is that

it applies in virtually all models, the disadvantage is that the algorithm often degenerates

in that the particles can cluster. One way to avoid this issue is to use an extremely large

number of particles. The second approach, which we discuss, was developed by Storvik

(2002). While it applies only in certain cases, it provides a drastic improvement over naive

particle filtering when it can be applied.

In the presence of parameter uncertainty, we need to update the parameter and state

particles,
n
Θi,
¡
XM
t

¢ioN
i=1
, which are samples from p

¡
Θ, XM

t |S0:t
¢
. If we there exists a

sufficient statistic TMt = T
¡
S0:t,X

M
t

¢
for updating Θ, we can draw new particles by

simulating forward p
¡
Θ|TMt

¢
and p

¡
XM
t |Θ, S0:t

¢
. Given the new particles, we resamplen

Θi,
¡
XM
t+1

¢ioN
i=1

with weights p
¡
St+1|Θ,XM

t+1

¢
. The key requirement to this algorithm is

that we can represent the parameter posterior conditional on observations up to time t and

any latent variables as a function of a low dimensional sufficient statistic. If this is not the

case, much of the computational gain will be lost. We provide an example of the Storvik

algorithm, with an augmented state space below.

3.5 Additional extensions and applications

There are additional applications and extensions of our methodology. Essentially anything

the particle filter can do with discrete-time models, our state-augmented methodology

can do for continuous-time models. Pitt and Shephard (1999) review a number of other
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extensions, all of which apply in our setting. We briefly review two of these applications.

First, we can use the particle filtering methodology to perform model specification. For

example, in a discrete-time SV

St+1 = log

µ
Pt+1
Pt

¶
= µ+

p
Vt
¡
W s

t+1
−W s

t

¢
Vt+1 = Vt + κv (θv − Vt) + σv

p
Vt
¡
W v
t+1 −W v

t

¢
the discrete-time particle filter provide a specification test via the empirical distributions of

the assumed normal Brownian increments. In principle, a test at the M = 1 discretization

interval could erroneously reject a model because the discrete-time model does not properly

account for the fact that the true continuous-time model has fatter tails. Our high frequency

augmentation in conjunction with particle filtering allows us to address this issue (see also

Elerian, Shephard and Chib (2001)) as we have Monte Carlo samples of the errors.

Second, particle filtering can be used to compute the likelihood function. For example,

in the SV model, the likelihood function for the continuous-time model is given by:

f (S1, ..., ST |Θ) =
TY
t=1

Z
p (St|St−1, Vt−1,Θ) p (Vt−1|S1:t−1,Θ) dVt−1.

Direct maximum likelihood estimation is not feasible because neither p (St|St−1, Vt−1,Θ)
nor p (Vt−1|S1:t−1,Θ) are known in closed form. As noted by Durham and Gallant (2001),

particle filtering provides a computationally tractable way of computing p (Vt−1|S1:t−1,Θ)
while p (St|St−1, Vt−1,Θ) can be computed using the simulation method of Pedersen (1995).
If parameter estimation is the sole goal, the MCMC approach of Elerian, Shephard and

Chib (2001) and Eraker (2001) may be more efficient (see, e.g., Eraker (2002b)). This

extends the existing class of models to jump-diffusions on which simulated MLE can be

efficiently performed (see, Pitt and Shephard (1999), Durham and Gallant (2002), Pitt

(2002), Durham (2002) and Chib, Nardari and Shephard (2002)).

Third, it appears possible to extend many of these results to more general Lévy processes.

Shephard and Barndorff-Nielson (2001) use a particle filter on integrated volatility in OU
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model driven by Lévy shocks and it appears that particle filtering will apply in models

driven by different types of Lévy process. The case of general Lévy processes is more dif-

ficult to address because it is often impossible to directly simulated the increments of a

general Lévy driving process. In this case, it is common to truncate the Lévy process by

neglecting small jumps during the simulation. While this method is attractive from a sim-

ulation viewpoint (see Rubenthaler (2001)), it is less attractive from a modeling viewpoint.

If the small jumps are truncated, the resulting process contains only “large” jumps, and

thus the Lévy process looks more and more like a combination of Brownian motion and a

compound Poisson process which is a special case of the models that we consider.

4 Models and Applications

As an example of our methodology, we consider special cases of the double jump model of

Duffie, Pan and Singleton (2000):

d log (St) = µdt+
p
Vt−dW s

t + d

Ã
NtX
j=1

ξsτj

!

dVt = κv (θv − Vt) dt+ σv
p
Vt−dW v

t + d

Ã
NtX
j=1

ξvτj

!
where W s

t and W
v
t are Brownian motions, ξ

s = µs+ ρJξ
v +σsε, ε ∼ N (0, 1), ξv ∼ exp (µv)

and Nt ∼ Poi(λt). We let SV denote the special case with λ = 0 and SVJ the case with

µv = 0 and SVCJ denotes the general model. This model is an excellent example for

two reasons. First, Eraker, Johannes and Polson (2002), Chernov, Gallant, Ghysels and

Tauchen (2002) and Eraker (2002a) find support for this specification for modeling equity

returns. This model is useful for practical applications because option prices and portfolio

rule are known in closed form up to the numerical solution of an ordinary differential

equation. Second, this model contains a very general factor structure. It includes an

unobserved diffusive state (Vt), unobserved jumps in the observed state (ξst ) and unobserved

jumps in the unobserved state (ξvt ).

23



With observations at time t and t+1, the time-discretization of this model at frequency

M−1 takes the form:

log

µ
St+1
St

¶
= µ+

MX
j=1

q
Vt+ j−1

M

µ
W s

t+ j
M

−W s

t+ j−1
M

¶
+

MX
j=1

ξs
t+ j

M

Js
t+ j

M

where

Vt+ j
M
= Vt+ j−1

M
+ κv

³
θv − Vt+ j−1

M

´ 1

M
+
q
Vt+ j−1

M

³
W v
t+ j

M

−W v
t+ j−1

M

´
+ ξv

t+ j
M

J s
t+ j

M

where P
·
Js
t+ j

M

= 1

¸
= λM−1, W s

t+ j
M

−W s

t+ j−1
M

∼ N (0,M−1),W v
t+ j

M

−W v
t+ j−1

M

∼ N (0,M−1)

and the jumps retain their distributional structure. As mentioned earlier, since we use log-

returns, the equity price does not appear on the right hand side of the time-discretization

which simplifies our algorithm as we do not need to augment the state space with additional

St states.

4.1 Filtering Results

This section presents particle filtering results using both simulated and real data.

4.1.1 SV Model

For the SV model, we use the parameter estimates from Eraker, Johannes and Polson

(2002): µ = 0.05, θv = 0.9, κv = 0.02 and σv = 0.15. To understand the nature of the

discretization bias, we first perform a simulation study to determine the impact of M on

the performance of the filter. To do this, we compare the performance of the filter for a

given M to the true filter. Since it is not possible to compute the true filter analytically,

we regard M = 100 as the true filter, in the sense that it is devoid of discretization error.

We simulate 100 data sets on the daily, weekly and monthly basis by simulating 500 data

points per day and then sampling the process daily, weekly or monthly. We then run the

filter with M = 1, 2, 5,10, and 100 for N = 100, 000.
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Figures 1, 2 and 3 provide graphical summaries of the simulation. Figure 1 (daily),

Figure 2 (weekly) and Figure 3 (monthly) show how sampling frequency affects the accuracy

of the approximate filters. In each figure, the top panel plots absolute returns over the

interval (to get a sense of observed variability); the middle panels plot the true simulated

variance (dots) and the posterior filtered means for M = 1, 2, 5 and 10; the bottom plots

the difference between the posterior mean for a givenM and the true posterior mean. Table

1 summarizes the simulation via RMSE (square root of the mean-squared-error) and MAE

(mean absolute error).

Table 1: Simulation results for the SV model.

Monthly Weekly Daily

RMSE MAE RMSE MAE RMSE MAE

M=1 0.271 0.242 0.088 0.069 0.033 0.025

M=2 0.102 0.089 0.028 0.022 0.026 0.018

M=5 0.037 0.030 0.023 0.017 0.025 0.017

M=10 0.021 0.017 0.025 0.017 0.025 0.017

M=25 0.017 0.013 0.022 0.015 0.024 0.016

For daily data, it is clear that the M = 1 filter is not as accurate as the M = 2, 5 and

10 filters, but the differences are quite small. For the parameters given above, the daily

variance is on average slightly less than 1 and the error in the filters is typically about 1 to 3

percent of the variance forM = 1 and less than 1 percent forM = 2, 5 and 10. This should

not be a surprise as conditional equity returns and variance increments are approximately

conditionally normal in the SV model over short time intervals (Das and Sundaram (1998)).

On the other hand, at longer intervals such as weekly or monthly, the differences can be

quite large for M = 1 but they decrease rapidly for M = 2, 5 and 10. Since conditional
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nonnormalities for typical parameters are maximized in the SV model horizons close to

one month (Das and Sundaram (1998)), the greatest impact of filling in the missing data

will occur at these frequencies. In general, M = 1 estimator underestimates volatility in

periods of high volatility and overestimates volatility in periods of low volatility. This is

due to the Gaussian approximation of the fat-tailed non-central χ2 density.

As an example of the filters performance on real data, Figure 4 shows the (10, 50, 90)

percent quantiles of the filtering distribution for spot volatility using S&P 500 data from

1980-2000 for M = 25 and N = 50, 000. The thick solid line is the filtered posterior

median and the bands (thinner lines) are the 10 and 90 percent quantiles of the filtering

distribution. The difference between the upper and lower quantiles of the distribution is

typically about 5 percent. It is important to note that even with a large data set (over

5000 observations), the algorithm does not degenerate in the sense that the particles get

stuck in a certain region of the state space.

4.1.2 SVJ Model

For the SVJ model, we use parameters estimated from Eraker, Johannes and Polson (2002):

µ = 0.0496, θv = 0.8152, κv = 0.0198, σv = 0.0954, µy = −2.5862, σy = 4.0720 and

λy = 0.0060. As in the SV model, we performed detailed simulations on the performance

of the algorithm for various time intervals. While the auxiliary particle filter performed

well in identifying jumps at a daily frequency, it was not able to identify many of the jumps

at the weekly or monthly frequency. This is not a surprise. Over longer time intervals,

the variance contribution of the diffusion component increases while the jump component

is constant. Effectively, the signal regarding the jumps is dwarfed by the noise from the

diffusion coefficient. Since the simulation results with daily data were similar to the SV

model, they did not warrant separate reporting.

To get a sense of the simulation results, Figure 5 displays a randomly selected simulation

of 2000 days. The daily jump intensity of 0.006 implies that about 1.5 jumps arrive per
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Figure 1: Simulation examples for the SV model with daily data. The top panel plots

the absolute daily returns, the middle panel plots the true variances (dots) and filtered

means for (M=1, 2, 5, 10) and the bottom panel plots the difference between the true filter

(M=100) an the filtered means for M=1, 2, 5, 10.

27



10 30 50 70 90

0

2

4

6

8

A
bs

ol
ut

e 
R

et
ur

ns

•
•

•••

•
••
••
•

••

•
•

••
•

•

•••
•
••
•••
•
•••
•••••

•
••••

••
•
•
••••••

•
•

•
••
•••

••
•••••

•
•••••

•

•
•

•

•
•
•••
••

••
•

••
•

•

•
••
••••

•
•

10 30 50 70 90
0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
ar

ia
nc

es

10 30 50 70 90

-0.2

-0.1

0.0

0.1

D
is

cr
et

iz
at

io
n 

E
rr

or

10 30 50 70 90

0

1

2

3

4

5

•

•
••••

•
•

•••
•
•
•

•
••
•••
•••

•

•
•

•
•••
•

•
•••

•
•

•
•
•

••
••

•
•
•
•

•
•

•••
•
••••••

••••

•

•

•

••

•
•

•

••

•

•
•

•••
••••

••

•
••
••

•
•

•

•

•

••
•

•

10 30 50 70 90
0.0

0.5

1.0

1.5

2.0

10 30 50 70 90
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

10 30 50 70 90

0

2

4

6

••

•

•
•

•

•
•
•
•

•
••

•
•
•

•

•
•

•
••

•
•

•

•••
•
•
•
•

•
•

•••
•
•

•

••
•

••

•••

•

••
•••
•

•••

•

•

•

•

••••
•••
•
•
•••

•••

••
•
•••••

•
•
•••
••

••

•
•
•

•••

10 30 50 70 90
0.0

0.5

1.0

1.5

2.0

2.5

10 30 50 70 90
-0.2

-0.1

0.0

0.1

Figure 2: Simulation results for the SV model with weekly data. The top panel plots

the absolute weekly returns, the middle panel plots the true variances (dots) and filtered

means for (M=1, 2, 5, 10) and the bottom panel plots the difference between the true filter

(M=100) an the filtered means for M=1, 2, 5, 10.
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Figure 3: Simulation examples for the SV model with monthly data. The top panel plots

the absolute monthly returns, the middle panel plots the true variances (dots) and filtered

means for (M=1, 2, 5, 10) and the bottom panel plots the difference between the true filter

(M=100) an the filtered means for M=1, 2, 5, 10.
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Figure 4: Filtered volatilities for the SV model, from 1985-2000 for M=10 and N=50,000.
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year. The top panel displays the simulation returns; the second panel displays the true

volatility path (dots), the (10, 50, 90) percent quantiles; the third panel displays the true

jump times (dots) and estimated jump probabilities; and the bottom panel displays the

true jump sizes (dots) and the filtered jump size estimates. Note that the particle filter

does an excellent job identifying the large jumps, but it does miss many of the smaller

jumps. Again, this is expected. In the simulations, daily volatility is slightly less than

1 percent which implies that it is common to see diffusive moves of ±3 percent. Since
the distribution of the jump sizes is N (−2.5, 42), more than half of the jumps will be be
within the normal diffusive volatility range. Because of this, it is impossible for the filter

to identify these small jumps. As a matter of modeling, this implies that truncated jump

distributions such as a right truncated normal distribution might be more appropriate.

Figure 6 displays filtered volatility, jump times and sizes using daily S&P 500 returns

from 1980-2000 for M = 10 and N = 50, 000. For simplicity, we do not report quantiles of

the filtering distribution. Note that, unlike the SV model where volatility increased from 20

to 40 percent during the crash, the SVJ model attributes the Crash to a jump and therefore

volatility only modestly increases. There are a large number of jumps estimated after the

Crash in 1987 which, given the i.i.d. arrival process indicates potential misspecification.

4.1.3 SVCJ Model

Figure 7 displays the filtered results for the SVCJ model for the S&P 500 for M = 10

and N = 50, 000 using the parameter estimates from Eraker, Johannes and Polson (2002).

Again, the algorithm is able to identify major movements as jumps. The addition of jumps

in the variance removes much of the misspecification of the SVJ model as the jump times

in periods of market stress (1987, 1997 and 1998) are not clustered. This result is similar

to the smoothed estimates obtained by Eraker, Johannes and Polson (2002) which is not

surprising given the parameters used. Also, in the SVCJ, model nearly all of the jumps in

the return process are negative.
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Figure 5: Particle filtering results for the SVJ model. The top panel displays 2000 daily

returns simulating using the parameter estimates in Eraker, Johannes and Polson (2002);

the second panel displays true volatility (dots) and quantiles (10,50,90) of the filtering

distributions; the third panel displays the true jump times (dots) and the filtered jump

times; and the bottom panel displays true jump sizes (dots) and filtered jump sizes.
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Figure 6: Particle filtering results for the SVJ model using S&P 500 returns from 1980-2000

with M = 10 and N = 50, 000. The top panel displays daily returns; the second panel

displays the median of the filtering distribution; the third panel displays the filtered jump

times and the bottom panel displays filtered jump sizes.
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Figure 7: Particle filtering results for the SVCJ model using S&P 500 returns from 1980-

2000 with M = 10 and N = 50, 000. The top panel displays daily returns; the second

panel displays the (10,50,90) percent quantiles of the filtering distribution; the third panel

displays the filtered jump times and the bottom panel displays filtered jump sizes.
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4.2 Parameter Learning

In the section, we apply the particle filtering to the joint problem of state and parameter

estimation. We do this in the context of the SV model and use the algorithm of Storvik

(2002) using simulated data. Figure 8 provide the estimates for the simulated data for

M = 10 and N = 100, 000. The upper left panel provides the simulated returns and the

middle left panel provides quantiles of the filtered volatility distribution. The remaining

panels provide the true parameters (solid) line and the (10, 50, 90) percent quantiles of the

sequential parameter distributions.

The first thing to note is that the in all cases, the sequential parameter posterior dis-

tributions contain the true parameter values and are gradually shrinking over time. Thus

it appears as if the sequential parameter estimates are converging to the true values as

expected. Also note that the speed at which the estimates converge to their true values

varies: the stock return mean (µ) converges quickly while the volatility parameters (espe-

cially those in the drift) converge slower. This is not surprising as it is difficult to estimate

the parameters of persistent processes such as volatility.

We also applied the Storvik’s algorithm to the S&P 500 data set. Unfortunately, the

algorithm degenerated in the sense that particles got clustered after the Crash of 1987 and

never were able to uncluster. This is likely due to model misspecification as the SV model

is incapable of handling events such as the -23% return that occurred during on October

19, 1987. We did not apply the parameter learning algorithm to the models with jumps.

Sequential estimation in models with jumps is more difficult. Since jumps are rare, if there

are no jumps in the first portion of the time series (as in our S&P 500 data set), the

sequential parameters estimates for the jump parameters move toward one of two states:

the first is with extremely high jump intensity and very small jumps and the second is with

a jump intensity close to zero. One the particles are in these states, they do not appear

to update well after jumps arrive (like the Crash of 1987). To remedy the problem, one

needs to place an informative prior distribution on the jump parameters to avoid these
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Figure 8: Sequential parameter and state variable estimation results for simulated data

using the SV model.
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degeneracies.

4.3 Option Pricing Implications

Last, we investigate an option pricing implication of our filtered volatility estimates. In

models with jumps, a central issue is how to identify when a jump occurs and our algorithm

provides a method to estimate the jump sizes. However, it is natural to ask what is the

economic implication of the estimates: does it matter? In this section we show that it

can have dramatic implications for option pricing. To demonstrate this, using the filtered

volatilities we compute Black-Scholes implied volatility curves for the SV, SVJ and SVCJ

models for two dates of market stress (October 20, 1987 and October 27, 1997), for an

average volatility day and for a date, January 20, 1988, which is three months after the

stock market crash.

The upper left panel indicates that model differences generate drastically different im-

plied volatility curves. The SV model attributes the move to high volatility (see Figure 4),

but since the increments of the model are normal, volatility can only increase gradually,

and thus volatility is lower than the SVCJ model. The SVJ model attributes the Crash of

1987 to a jump in returns and thus spot and implied volatility curve remain low. Clearly,

the difference between the SV and SVJ model is large. This issue has additional implica-

tions for individual equity options especially around dates such as earnings announcements,

when a large move may be anticipated. If the move is in fact a jump, implied volatility

should not change, although it typically does. The SVCJ model attributes the Crash to

a jump in return with a very large contemporaneous jump in volatility. This results in a

very high spot volatility. Interestingly, at this high level of volatility, the implied volatility

curve is extremely flat. This occurs because the diffusive volatility dwarfs the contribution

of jump components to volatility at these levels.

The implied volatility curves three months after the Crash of 1987 and show that the

jump attribution issue persists long after the jumps arrive. This is due to the fact that
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Figure 9: Black-Scholes implied volatility curves for various days using filtered volatility

and the parameters from Eraker, Johannes and Polson (2002).

the models have very different speeds of mean reversion in volatility. Even though the

SVCJ model has the highest mean reversion, volatility did not have enough time to revert

down to the levels implied by the SVJ model. The lower left panel shows implied volatility

curves on the day of the mini crash in 1997 and is similar to the results for 1987 which

shows that it is not an anomaly, but is more indicative of filtered estimates during periods

of market stress. For completeness, the lower right panel shows implied volatility on an

average volatility day for the three models.
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5 Conclusions

In this paper, we develop particle filtering algorithms for filtering and sequential parameter

learning. The methods developed apply generically in multivariate jump-diffusion models.

The algorithm performs well in simulations and we also apply the methodology to filter

volatility, jumps in returns, and jumps in volatility from S&P 500 index returns.

In future work, we plan a number of methodological and empirical extensions. Empir-

ically, we plan to further address the issue of jump attribution. If jumps in returns occur

without corresponding jumps in volatility, we should not see an increase in implied volatil-

ity if the market is able to discern that the movement is a jump. Given the observation that

implied volatility tends to increase, we can conclude either that the SVJ model is incorrect

or that the market improperly estimates volatility in the presence of jumps. Second, we

plan to augment the observed state vector with option prices to study the contemporaneous

informational content of option prices regarding spot volatility.

Methodologically, we plan to investigate the advantages and disadvantages of particle

filtering methods when compared to MCMC based fixed-lag filtering method (Johannes,

Polson and Stroud (2002)). The motivation for this is the degeneracies that occur in the

particle filtering algorithm in the presence of parameter learning. While MCMC based

filtering is in general more computationally burdensome than particle filtering, there may

be advantages in cases where the parameters are unknown due to its more efficient use of

past information. In this regard, we also plan to implement and compare the methods to

fixed-lag particle filtering.

It also appears possible to extend the methodology developed here to stochastic dif-

ferential equations driven by Lévy processes. Barndorff-Nielson and Shephard (2001) use

the particle filter to estimate integrated (as opposed to spot) volatility in a model where

returns are driven by a Brownian motion and stochastic volatility is a Lévy Process.
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