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SUMMARY

This paper introduces a class of state dependent jump (SDJ) models in which
the arrival intensity and jump sizes depend on a given set of state variables,
including lagged jumps. With this model, we investigate the structure of jumps
to U.S. equity indices, concentrating on the predictability of jump times and
sizes. Evidence for strong predictability of jumps times is found for all of the
indices considered: Standard and Poor’s 500 and Mid-Cap, the Russell 1000,
2000 and 3000 indices, the Wilshire 5000 and the Nasdaq 100 (NDX). Given
the evidence for predictability, we show how risk management decisions are
affected by state dependent jump structures. Using inferred jump times and
sizes, we also detail the shortcomings of popular jump models and demonstrate
how jump models fit various events such as the Crash of 1987. Using implied
volatility data, we investigate the ability of implied volatility to predict both
jump times and sizes and find strong evidence that implied volatility can predict
both jump times and sizes.
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1 Introduction

Large, sudden movements occur periodically in nearly all financial markets. Whether
referred to as crashes, devaluations, corrections, defaults or jumps, they have substantial
implications, especially for risk managers and participants in derivative markets since these
movements induce margin calls, option exercise and sometimes default by counter-parties.
Recent examples of these movements over the last few years in equity, currency and fixed
income markets include U.S. equity markets (October 1987 and 1997), the Mexican Peso
(1994), the Thai Bhat (1997), the Malaysian Ringgit (1997), Russian GKO’s (1998) and
the Brazilian Real (1999).

Anecdotal evidence suggests that these jumps tend to persist, at least in equity markets.
Two examples document this. During the crash of October 1987 the S&P 500 cash index fell
5% on Friday (Oct 16th), fell 20% on Monday (Oct 19) and rose 5% on Tuesday (Oct.20).
In the mini-crash of October 1997, the NDX (Nasdaq 100) fell more than 7% on Oct 27th,
only to rise almost 7% the following day, with little discernible increase in volatility before
or after. As noted in Schwert (1990) in his study of daily equity index returns over the last
200 years, “there are many reversals, when large drops in stock prices have been followed
by large increases in stock prices” (p. 79). This persistence in the sign and magnitude is
in the opposite direction of the “usual” positive autocorrelation in daily returns reported
in, for example, Campbell, Lo and MacKinlay (1997) and Schwert (1990). Furthermore,
this type of movement cannot be accommodated in standard models with time varying
volatility as the shocks in these models are i.i.d. and mean zero.

Although jumps have been incorporated into most theoretical fields of finance?, surpris-
ingly little research has been directed toward the empirical content of models with jumps.
This leaves unanswered a number of important financial questions: Are jump times and
sizes predictable? If so, what variables help to predict them? Do jumps follow jumps?
Do positive jumps follow negative jumps? How do jumps affect the distribution of daily
returns? What proportion of volatility comes from jumps?

The structure of jumps is important for a number of financial applications including
risk and portfolio managment and derivatives pricing and hedging. Jumps, if present, will
determine the tail behavior of returns, and thus careful modeling of jumps is required to

2Examples abound in various fields of finance. For example, in option pricing, see Merton (1976a,b),
Bates (1996), Bakshi, Cao and Chen (1997) and Duffie, Pan and Singleton (1998), in fixed income see
Duffie and Kan (1995), Bjork, Kabanov and Rungaldier (1997)), Das (1998), in portfolio selection see
Merton (1972), Bardhan and Chao (1996), Aase (1984, 1986) and Jeanblanc-Pique and Pontier (1990),
in risk management see Duffie and Pan (1996, 1998), Zangari (1996,1998) and Venkataraman (1997) and
in general equilibrium asset pricing see Aase (1993), Naik and Lee (1990) and Bardhan and Chao (1996).
Aase (1993) offers a simple model with jumps as an explanation of the equity premium puzzle.



accurate model the conditional distribution of returns. Jumps are especially important
for risk management procedures such as Value-at-Risk (VaR) which identify the maximum
movement in asset prices for a given coverage probability. Ironically, most model used
to compute VaR explicitly rule out jumps, and thus do not contain the very features of
the data they are meant to guard against. As noted by Federal Reserve Chairman Alan
Greenspan (“Work that characterizes the statistical distribution of extreme events would
be useful” (referenced in Embrechts et al (1998))), developing and analyzing models that
explicitly account for these movements is important.

Existing state-independent jump models preclude the dependencies mentioned above
typically assuming jump times and sizes are i.i.d.>. In order to address the issues of pre-
dictability and state-dependence, we introduce a new framework for modeling financial
state variables subject to periodic jump movements. The state dependent jump (SDJ)
model posits jumps as state dependent variables: the probability of a jump arriving and
the size of a jump depend on given state variables, which could include previous jumps.
The model produces a more flexible model capable of capturing large price movements
while nesting many of the popular empirical models.

Methodologically, we provide an computationally efficient method for performing sta-
tistical inference on the SDJ model. Existing methods for inference in models with jumps
focus exclusively on parameter estimation and do not attempt to estimate the latent jump
times or sizes, which provide valuable model diagnostics as well as information on how the
model fits various events, such as the Crash of 1987. Using Markov Chain Monte Carlo
(MCMC) methods, we provide an integrated approach to estimation and inference, that
simultaneously estimates parameters and the latent jump times and sizes from the observed
data. Furthermore, latent variable estimation is performed accounting for parameter uncer-
tainty. This allows us to analyze the historical structure of jumps and provides additional
insight into issues regarding the sizes of neighboring jumps and the probabilities that jumps
occurred.

Empirically, we analyze the structure of jumps in U.S. equity indices using the SDJ
model for the following indices: S&P 500 and Mid-Cap, Russell 1000, 2000 and 3000, the
Wilshire 5000 and the NDX. Using estimated jump times and sizes, we first document
that standard state-indepedent models of returns such as Merton’s (1976a) jump-diffusion
model cannot capture the presistence in the data. Jump times are clustered, in contrast
to the i.i.d. specification and jump sizes seem to exhibit temporal dependence with large
negative jumps often preceding large positive jumps. To explain these findings, we turn
to the SDJ model and focus on the predictability of jump times and sizes for each of the

3Bakshi and Madan (1999) specify a different class of jump models, although the models are still
independent through time, unable to account for the well-documented persistence in return data.



indices and the structure of the jump processes across different indices. We find strong
evidence for predictability and state dependence in the jump arrivals and some evidence
for predictability of jump sizes. Using standard value-at-risk calculations, we demonstrate
the effect of state-dependencies on VaR.

Finally, we use the model to take a new look at the information contained in implied
volatility. Using a general measure of implied volatility, the VIX index, we analyze its
ability to predict the arrivals and sizes of jumps. Previous research on implied volatility
focuses on predictable components of implied volatility itself, the ability of implied volatility
to predict future volatility and the ability of implied volatility to predict some measure of
volatility, such as GARCH®. Evidence for the ability of implied volatility in these settings to
explain realized volatility or GARCH volatility is at best mixed. We find extremely strong
evidence that the VIX index can predict both jump arrivals and sizes, with important
implications for option market participants and risk management procedures.

The rest of the paper is as follows. Section 2 introduces the general form of our state
dependent jump model and relates it to it to the continuous time jump diffusion model.
Section 3 describes our general hierarchical framework for inference using Merton’s (1976a)
model as an example. Section 4 introduces the specific state dependent model we implement
and derives an algorithm for estimation and inference. Section 5 gives simulation results
justifying our ability to extract jump times and sizes and gives the numerical results of
estimation and jump times and size extraction. Section 6 has conclusions and discusses
possible extensions.

2 State Dependent Jump Models

The motivation for the model we consider is very simple and is demonstrated in Figure
1 which displays the Nasdaq 100 during 1997. The main feature in Figure 1 is the large
decrease (Oct 27" -7.7%) followed by a large increase, almost 7%, the following day. There
are two notable features of this event. First, it is difficult to attribute this move to the
standard time varying volatility models, such as ARCH, GARCH or Stochastic Volatility,
because there is little evidence of increased volatility prior to larger movements. In the
preceding month, the NDX 100 traded in a relatively tight band of +2%, giving little
indication of an increase in volatility. In fact the volatility of returns over month prior
was at the historical average. Using the previous months data to estimate volatility, both
movements exceeded six standard deviations, extremely unlikely, especially on neighboring
days.

4See for example, Harvey and Whaley (1992), Day and Lewis (1992), Canina and Figlewski (1993) and
Lamoureoux and Lastrapes (1993).
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Figure 1: Nasdaq 100 continuously compounded returns during 1997.

Second, after the 7% decline on Oct 27", the loss was almost recouped the following day.
This implies that a jump on one day may increase the probability of a jump the following
day and the a large negative movement will be followed by a large positive movement the
following day. Both of these features are not well captured by standard models of market
volatility such as GARCH or Stochastic volatility, as the levels of the shocks are not related
through time.

2.1 The General Model

To capture these effects, the state dependent jump (SDJ) model specifies that the state
variable, X;, evolves according to

Xiv1 = Xo+ py + 01 + e Je (1)

where X; could be the level or logarithm of index level.or returns. This distributional
assumptions are that &, ~ N(0,1), i1 = (X, §,41,0), &1 ~ I is the jump size and
Jir1 € {0,1} indicates the arrival of a jump. © generically refers to any unknown param-
eters of the model. The general SDJ model has three factors: the normally distributed
error term, the jump times and jump sizes (impacts) and following the continuous time
literature we refer to p, o and ¢ as the drift, diffusion and jump impact functions (all
potentially time-varying). Through judicious choice of the time varying conditional mean
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and volatility, this model nests many of the popular time series models used in empirical
finance, for example, ARCH, GARCH and stochastic volatility models.
The rate of arrivals is controlled by the intensity function, which we specify as

Prob[Jiy1 = 11Xy, J;, ©] = (8, + B1J; + B2 X1)

where @ is the standard normal cumulative distribution function. We choose this specifi-
cation for two reasons. First, the cumulative normal CDF specification fits nicely into our
estimation. Second, the specification retains the attractive intuition of a Probit model in
which jumps times are explained through the “regressors” in the CDF. In this regard, the
model provides for a vehicle to identify any variables affecting the probability of a jump.

When a jump arrives, its impact on the state variable is ¢i11 = (X4, €,,1). This impact
is influenced in two major ways (ignoring parameterization of the function). First, if there
is a systematic relationship between jump impact and state variables, the impact of the
jumps can, in part, be explained by the state variables. In a degenerate case in which
the random jump size, §;, is constant, the sizes of the jumps are perfectly explained by
the state variables. Again the addition of exogenous variables is easy at this stage. The
second way to influence the impact is through the distribution of the jump sizes, II. This
distribution can be either discrete or continuous depending on the application. Although for
the most part the literature assumes normally distributed jumps to log-returns in equities,
the model and our methodology introduced later facilitates heavy-tailed distributions such
as a t(v) distribution or other scale mixtures of normal distributions.

The simplest example of this model is a time-discretization of Merton’s (1976a) model in
which continuously compounded returns have state independent drift, diffusion and jump

impacts:
Xit1
Ttr1 — 10g (
I+ X,

where the jumps arrive with constant intensity A. Assuming that the jumps to the contin-
uously compounded returns are normally distributed (£ ~ N(&,0%)), the distribution of
log-returns is an i.i.d. mixture of normal distributions. Variants of this model have been
estimated in Honore (1998), Rosenfeld and Jarrow (1983), Ball and Torous (1983,1985),
Jorion (1988) and Andersen, Benzoni and Lund (1999). Merton’s model is independent
across time and it therefore will not account for the well-documented persistence seen in
most financial time series.

) =p+ocep & i (2)

The SDJ model can be seen as a time-discretization of a jump-diffusion model, where the
discretization interval, for our applications, is one day. The model in equation (1), under
mild regularity conditions, converges to a jump-diffusion, provided the jump intensity is
independent of J;. Since the discretization error is very small when discretization interval



is small, say daily, the SDJ model and a time discretization of a jump-diffusion model can
be recognized as being approximately observationally equivalent. Appendix 1 reviews this
link between the SDJ model and the jump-diffusion model.

As a model of the conditional distribution of equity returns, the SDJ model has im-
portant implications for risk management and derivative pricing. To see the conditional
structure, suppose it was known whether or not a jump occurred (J;1; = 1) on a given day
and the size of the jump (&, ). Then the state variables are normally distributed:

P(Xep1 — Xy | Xy, T, 41, ©) ~ N (py + e Jis, 01). (3)

In this sense, the model is similar in form to a regime switching model. However, since the
jump impacts depend on both state and the random outcome of the jump, the state is not
necessarily a finite state Markov process, which is typically assumed in the literature.

Introducing uncertainty regarding the times and sizes of jumps produces an extremely
flexible class of mixture distributions as the jump times and sizes are integrated out of
equation (3). Particularly convenient assumptions at this stage that lead to closed form
densities are either discrete or normally distributed jumps and state independent jump
impacts (c¢(X¢,&,,1) = &1) which implies, in the case of Merton’s model:

P(ri1]0) ~ AN (&g + 1, 0* A+ 07) + (1 = NN (s, 0 D).

This model is quite flexible along certain dimensions since mixtures of normal distributions
generate a broad class of distributions (multi-modal, fat-tailed, asymmetric).

It is important to note that the SDJ model has quite different conditional implications
than ARCH or GARCH models. Unlike these models which are conditionally normally dis-
tributed, the SDJ model has both conditional skewness and kurtosis. This has important
implications for portfolio management and option pricing, but are perhaps most trans-
parent for risk management. Duffie and Pan (1996 and 1998), Zangari (1996 and 1997),
and Venkataraman (1997) argue that jumps improve on standard Value-at-Risk, or VaR,
calculations used in risk management. VaR identifies the maximum movement over are
given period of time with a certain probability. Given that conditional return distributions
exhibit skewness and kurtosis, careful modeling of the tails of the these distributions is
important (see Greenspan quote in the introduction). When present, jumps will dominate
the other components in the tails and any predictability in the jump components will have
important implications for VaR.

As an example, suppose there was a strong persistence in jumps (3; > 0) and that a
jump occurred at time ¢. In this case, the probability of a jump tomorrow is much higher
and tomorrow’s observation will be dominated by the jump component. Fitting a simple
state independent model would never capture this and could result in severe miscalculations
in VaR using standard models.



2.2 A Specific SDJ model for Equity Indices

For empirical application, we need to specify the functional forms of the drift, diffusion
and jump impact function. In order to concentrate on the predictability of jump times and
sizes, we retain the state independent diffusion function. When the state variable is the
return on an equity index, we consider

Ttr1 = Mo —+ H1Tt -+ O&t41 —+ Ct41 Jt+1
Prob[Jiy = 1|ry, Ji) = © (a + B4 J;, + Bolri])

Civ1 =80+ &1t + &ip1s
£t+1 ~ N (ngg) .

The main advantage is the ability of the model to provide for a mechanism to explain
jump times and sizes. Consider first the jump sizes. Conditional upon a jump arriving, the
impact of a jump is measured by c¢;1; which contains three components: a constant term,
&0, a component related to the previous periods return, §;7; and a random component, &, ;.
The coefficient £; determines whether or not the jump sizes have a predictable component.
For example, if £; < 0, jumps sizes will be larger if returns in the previous day were negative
which captures an overreaction effect and would be consistent with the episode in Figure 1.
At this stage it is easy to add additional variables that can explain the sizes of the jumps.
Later, we add implied volatility to explain jump sizes.

The jump intensity function, discussed in more above, also provides a means to explain
jump times and identify variables affecting the arrival rates of jumps. We also add lagged
returns to the drift in order to account for the autocorrelation in returns and to avoid
the possibility that &; would be spuriously capturing omitted autocorrelation from the
drift. This specification provides for time varying conditional means, volatility, skewness
and kurtosis, unlike ARCH and GARCH models. Furthermore, the nature of the persis-
tence captured in the jump components decays much quicker than standard time-varying
volatility models.

Although we retain a constant volatility in order to focus on the structure of jumps, it
is straightforward (if somewhat computationally burdensome) to add time-varying volatil-
ity to the model. It is unclear if time-varying volatility is required as the jump process
can capture persistence in not only the volatility but also in the conditional kurtosis and
skewness. In this regard, the SDJ model is more flexible than the standard time-varying
volatility models.

The main advantage of this specification is that it provides a intuitive setting to study
predictability of jump components. Although, to our knowledge, this issue has not been
addressed to date, it should not be a surprise that there may be predictable components in



the jump process. Virtually all financial financial series, to some extent, have been shown
to have predictable components in expected returns and volatility. This model provides

3 Estimation and Inference in SDJ models

3.1 Previous Methods and Studies

A number of papers have studied the structure of jumps to equity indices, although all
of them consider state-independent jump times and sizes. For example, a partial list of
these papers include Press (1967), Beckers (1981), Ball and Torous (1983, 1985), Jarrow
and Rosenfeld (1982), Jorion (1988), Honore (1998), Jiang (1998) and Andersen, Benzoni
and Lund (1998). Another related literature, considers studying the importance of jumps
in option pricing models.

The general conclusion of the papers estimating state-independent models is that jumps
play a significant role in asset returns, although the exact impact varies from study to study
due to different estimation methods and data sets. Although these papers a unaninimous
regarding the gains to adding jumps to the standard, Black-Scholes log-normal model, most
of them do not question the ability of the state-independent jump model to fit the observed
data. This may be due to a shortcoming in the estimation procedures used. None of these
papers, and the estimation methods contained within, consider estimation of the latent
jump times and sizes.

It is important to note that in models with latent variables, there are two goals: esti-
mating both parameters and jump times and sizes. Much like stochastic volatility models
where estimates of the volatility process provide important information, estimates of the
latent jump times and sizes are a crucial part of the inference problem as they provide
partial answers to many of the questions of interest. The estimation techniques previously
applied to jump models (MLE, GMM, EMM and various EM algorithms) deal exclusively
with parameter estimation and do not consider estimating the latent jump times and sizes.
Since the parameters of the system are unknown, estimation of the jump times and sizes
must be done taking into account parameter uncertainty.

Thus in considering an estimation method for the SDJ model, we require that it perform
both portions of the estimation problem. We argue that all of the existing methods fail in
one of two ways: first, they apply only in simple cases and second, they cannot infer the
jump times and sizes in the presence parameter risk. The first part of the inference problem,
parameter estimation, is straightforward in simple jumps models such as Merton’s, but is
much more difficult in models with state dependent jump arrivals. In Merton’s model,
MLE, EMM, GMM , the classical method of moments or an EM approach all apply. In



the state dependent model, these models are not feasible.

For example, MLE in the SDJ model is infeasible as the likelihood function involves
mixture distributions whose weights contain telescoping terms due to the lagged jump times
in the intensity function.” For even moderately sizes data sets, the likelihood function is
intractable and it is unclear if the required regularity conditions on the likelihood function
will hold. Other methods based on moments (GMM, classical method of moments) are
intractable even in the simplest SDJ model given the nonlinearity in the jump intensity.

Another problem is that in many simple, state independent models, the likelihood
function (or the moments) are not available in closed form if the distribution of the jumps
changes. To see this, consider a variant of Merton’s model where the jump sizes have a
t(v)-distribution. The model is still an i.i.d. mixture, but the likelihood function, the
distribution of the data given the unknown parameters is

pria|©) = / (Ab(rn + E[O)E + (1 — A) $(oer1|©)

where ¢(z) is the standard normal pdf. The integral in the first term is not available in
closed form and thus MLE is infeasible. The same shortcomings apply to GMM, classical
method of moments and various EM algorithms.

Regarding the second part of the inference problem, estimating the jump times and sizes,
all the previously mentioned methods fail in that they cannot infer the jump times and sizes
in the presence of unknown parameters. This applies not only to MLE, but also EM and
EMM. This step is paramount to the analysis of jump models and since the parameters are
unknown (they have to be estimated), their estimates cannot just be plugged into a filtering
formula. For example, in Merton’s model, if the parameters were known with certainty,
the probability of jump could easily be estimated using simple odds ratio. Furthermore,
if jump times and parameters were known, then the size of the jumps could be estimated.
However, since the goal is to estimate the latent variables and the parameters and other
latent variables are unknown, a new methodology must be developed. The next section
does this.

3.2 Hierarchical Structure

To implement the SDJ model, we re-interpret the model in a hierarchical framework that
facilitates estimation of parameters, inference on latent jump times and sizes and prediction.
The hierarchical framework is a powerful method for statistical analyses of models with

5Computing the impact of each of the mixture weights on the likelihood function for the n** data point
requires evaluating complicated products of 2"*! normal CDF’s.
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latent variables as it allows the researcher to act as if the latent variables are known for
certain steps in the inference and extraction procedure. Furthermore, as prior restrictions
on parameter values are often required for estimation in models with jumps (see Honore
(1998) and Andersen, Benzoni and Lund (1999)), the hierarchy provides a natural stage
for incorporating this information.

To create the hierarchical structure, consider treating the jump times and sizes as
observed along with the state variable. Much like factoring a joint density into the product
of conditionals, the hierarchy breaks the model into different levels, each characterized
by conditional distributions: observable variables conditional on knowing parameters and
latent variables, latent variables conditional on parameters and then parameters. The
hierarchy is:

Level 1 Xinl€pyy, Jip1, X3, © ~ N (1 + i1 Jipr, 07)

Level 2 : Prob [Jt+1 = 1|Xt, Jm@] = @(ﬁo + ﬁlt]t + ﬁQXt)
£t+1|@ ~ 11(©)

Level 3 : © ~ p(0©)

The third level specifies the prior distribution of the assumed random parameters. Note that
in Levels 1 and 2 by using the unobserved variables as conditioning arguments, we “act” as
if the complete data is {Xt+1, Jii1, & +1}Z:01- Via the hierarchy, it is easy to accommodate
time-varying volatility. For example, see Eraker, Johannes and Polson (1999) for models
with jumps to returns, stochastic volatility and jumps to volatility.

The hierarchy exploits the conditional independence of the Gaussian error term, jump
sizes and jump times to create an intuitive structure that breaks a complicated mixture
model into a number of simpler problems. For example, if the jump sizes and jump times
were known, Level 1 is a nonlinear normal regression model with heteroskedasticity. The
conditional independence is also useful as it simplifies adjustments by allowing one level to
be changed without affecting other levels. For example, changing the distribution of jump
sizes from a normal distribution to a t-distribution requires modifying only the second stage
in level 2.

Another advantage of this structure is in the third level, via the specification of the
prior distributions. Since SDJ models involve mixtures of distributions and parameters
governing latent processes, additional a priori information is often required to identify cer-
tain parameters in sample. For example, in Merton’s model standard estimation techniques
such as MLE or EMM require additional parameter restrictions to identify parameters in
sample. For the likelihood function to be well behaved, MLE requires a lower bound on
the diffusive volatility (see (Honore (1998) for a discussion). An EMM implementation by
Andersen, Benzoni and Lund (1999) of Merton’s models required constraining the mean
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jump size to be zero, which is a strong form of prior information. Furthermore, EMM
procedures also require the specification of an auxiliary model. The prior distributions in
the third level provide a systematic way to incorporate prior information.

In many cases the hierarchy can be simplified. To see this, consider Merton’s (1976a)
model from section 2. The parameters of interest are \, u, £y, 0> and O’? and define R =
[T1,...,r7|. Estimation of this model can be significantly simplified re-parameterizing the
variance terms. This induces a Metropolis step into the MCMC algorithm described below,
but significantly increases the speed of the algorithm by eliminating a step in the second
level of the hierarchy. Defining &, = &, + 0¢2;, 2 ~ N(0,1) and 7% = 0 /0?, we decouple
the normally distributed jump size into its components and define a measure of the relative
variance of the components (recall that o* is the annualized variance, while oF does not
have any time units associated with it). It is important to impose prior information on 72
as a bounded 72 prevents the likelihood function from blowing up. 72 also has important
implications for option pricing (Merton (1976b)). The importance of this measure lies in
the fact that as the relative variance of the jump sizes increases vis-a-vis the diffusion
coefficient, the deviations of the option prices of this model increase relative to those of
Black-Scholes model.

After the re-parameterization, the hierarchy collapses to

level 1 1 71|, Jop1, gty 02,72 ~ N (;L + &g Jii1, 0% (1 + T2Jt+1))

level 2 : Jii1|A ~ Ber()\)

level 3 @ &y, p, 0%, T2 X ~ p(&g, 11, 02, T2, N).
This simplification is not unique to normally distributed jump sizes®. If we were not
concerned with the efficiency of our algorithm, we could also keep the jump sizes in the
second level. As can be clearly seen from the hierarchy, if the jump times were known
with certainty, level 1 is just the normal regression model with heteroskedastic errors and
the second level is equally simple. The prior distributions are chosen, in most cases, to be
conjugate. Their specification and the choice of prior parameters is discussed in Appendix
3. For all parameters except 72 we have proper, but uninformative priors. The choice
of prior distribution and parameters for 7> must be more informative and this issue is
discussed in detail in Appendix 3. Without additional prior information, the likelihood
based approach we use degenerates. In a classical MLE setting the problem is discussed in
Kiefer (1978), Lindren (1978) and Honore (1998).

Using the modular nature of the hierarchical structure, the state dependent model can

be built directly on the foundation laid by Merton’s model in the previous section. We

6Since the t(v)-distribution is a scale mixture of normal distributions, we could incorporate t(v)-
distributed jumps easily (see Carlin and Polson (1991)).
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first focus on the jump intensity. To incorporate the probit specification into the MCMC
algorithm, we draw on the analysis given in Carlin and Polson (1992) and Albert and Chib
(1993). We define a latent factor Z; which is related to the jump times by

Zyrr > 0 implies J;1q =1
Ziyr < 0 implies J;11 =0

where we assume that
Ziy1 = Bo + B + B Xt + v (4)

and vy, is standard normal. Z;,; has the interesting interpretation as the “cause” of the
jump arrivals. In this form, state dependent jump intensities can be added directly to our
hierarchy, without affecting the first level. The constant is only identified relative to the
threshold for the latent variable. Following standard discrete choice models, we include
and estimate it.

Adding the additional latent variable and state dependencies, the hierarchy is given by:

level 1 @ 110,71y, Jypr, 0%, 7% ~ N (0,74, Ji41), 02 (1 + 72 J341))
level 2 Jip1|Zev1 = Lz, 0200,

Zilrey Jy ~ N (By + B1Jy + By |re] , 1)
level 3 : 507517N07N170277’2;O€;ﬁNP<§07£17N07N1702>7’2;047@-

where 0 = (&, 10, 1) and (o, 7, i1, phos 1) = po+ py7e+ (§o+&17¢) Jr41. Note that level
2 implies the Probit intensity. Note that except for altering the drift, the first level does

not change. This is the advantage of the hierarchical structure. The parameters that are
in common with Merton’s retain the same prior structure. For the additional parameters,
&y, iy and § we use proper, but uninformative priors discussed in Appendix 3.

3.3 Parameter inference

Returning to the general model, complete inference requires not only statements regarding
the values of the parameters, ©, but also statements regarding the unobserved jump times
and jump sizes. The solution to both of these problems is found via the full posterior
distribution of the parameters and unobserved data, which is given by Bayes Rule as

p(0,,¢X) xp(X]O,],§)p(O, ¢ (5)

where X = [Xy,...,X7],J = [J1,...,Jr] and £ = [¢;,,,.§7] are vectors containing the state

variables, jump times and jump sizes. The posterior summarizes all of the information
regarding the parameters, the jump times and sizes contained in the data.
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To see how the posterior is used to solve our problems, consider inference on the j
element of ©, 01, The information in the data regarding ©1) is given by marginal posterior
distribution of OU) given the data, p(©|X). To find this object, integrate out the other
“nuisance” parameters from the posterior conditional distribution:

T
p(09|X) = Z /p (0, Jr41,€4|1X) dJ(t+1)d£t+1d@(_Ji (6)
=1

where @(_7% contains all of the elements of © except the j* element of ©.

The joint posterior is a 2T + k dimensional density (k is the number of parameters)
and computing integrals against it are very difficult. To sample from p (@, 4,€ | X ) we use
now standard MCMC methods (see Appendix 1 for a brief discussion of MCMC methods).

MCMC simulation is a conditional simulation strategy (as opposed to an unconditional
G
simulation strategy) algorithm creates G samples from p (@, J, & X ) , {@(9), JW ¢ (g)}
s SR

which are used to evaluate the integrals given above. MCMC methods are extensively
used in statistics as a computationally efficient way to solve high dimensional integration
problems and been previously used in finance applications by, for example, Jacquier, Polson
and Rossi (1994), Stambaugh (1999) and Stambaugh and Pastor (1999).

As discussed in Appendix 2, the inputs into the MCMC algorithm are the conditional
posteriors of the parameters and latent variables. For Merton’s model they are stated
in Appendix 3 where the choice of prior distribution and the parameters of the prior
distribution are also stated.

3.4 Inferring Jump Times and Sizes

Returning to the general state dependent model, the Brownian increment, the jump times
and the jump sizes are all unobservable and separating their impact and reconstructing the
jump times and sizes is very difficult, especially given that the parameters are unknown.
The goal is to be able to answer questions such as the following:

When did the jumps occur?
What are the inferred sizes of the jumps?

Do jumps follow jumps?
We answer these questions by computing the following marginal posterior probabilities

p(Jep1 = 11X), p(£t+1|£> and p(Ji41]Ji, X),

14



To compute the posterior for the jump at time ¢ + 1, we use the jump times generated
by the MCMC algorithm. Recall that at each iteration of our algorithm, we draw the
entire vector of jump times along with the other parameters. This is the key to inferring
the latent jump times and sizes. The algorithm iterates between drawing parameters, jump
times and jump sizes from their respective conditional posteriors. For example, suppose it
has generated parameters and jump sizes. The algorithm then draws updated jump times
taking into account the previous draws for the parameter and jump sizes, consistent with
the model structure. Then, given jump times, sizes and data the algorithm updates the
parameters. After iterating back and forth, the algorithm converges: it draws from the
joint distribution of parameter values, jump times and jump sizes.

The following theorem (a direct application of the Proposition in the Appendix 2) shows
how we identify the jump times using the sample averages of draws Jt(g ) from our algorithm.

G
Theorem: Let J;1q1 = é > Jt(i)l be the sample average of draws for Jiyy1. Then
g=1

Prob [TH — p(Jp = 1]X) |00 = 9(0)] —1

for m-almost all starting points of the chain, 8.

For every time period we compute the posterior probability that a jump occurred, for
example, say, p(Ji11 = 1|X) = 57%. This implies that we estimated a jump in 57% of our
draws from our algorithm or that with posterior probability 0.57, J;;1 = 1. To reconstruct
the jump times we need a simple decision rule to decide if a jump occurred. The simplest
rule is to infer a jump provided the posterior probability is larger than some specified value:

o 0if p(Jer1 = 1X) Sw

To infer the jump sizes, i.e. the computation of p (ft X ), we can use the output of
the MCMC algorithm to compute the following integral

p(£t+1|£> = Z p (£t+1|Xt+17 Xt? Jt+17 Jtu @) p(®7 Jt+17 Jt'&)d@

Jig1,J¢

The details are given in the appendix. We report the posterior mean of this distribution,
E [£t+1|1:|, as our estimate of the latent jump size.

Although we do not focus on it, the prediction problem can also be solved using the
output of our algorithm. There are three predictive distributions of interest, the predic-
tive distribution of returns (p(r;;1|X)), the predictive distribution of next periods jump
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(p(J1+1/X)) and the predictive distribution of the jump size (p(¢,,,|X). The distributions
and their MCMC estimates are easily obtained. For example, in Merton’s model, predictive
distribution of next periods returns is, taking into account parameter uncertainty is given

by:

p(riX) ~ = ZN ( €9 19 5260)(1 4 720 )J(+>1)>

These conditionals, as shown later, have important implications for Value-at-Risk calcula-
tions. Clearly, the predictive distribution for next periods returns can be heavy-tailed and
skewed as opposed to conditional normality in the standard ARCH/GARCH framework.

4 Empirical results

This section evaluates the evidence for the presence of jumps in a number of prominent
equity indices: S&P 500 and S&P Mid-Cap indices, the Russell 1000, 2000 and 3000 indices,
the Wilshire 5000 index and the Nasdaq (NDX 100) index. Most of the indices have options
and /or futures contracts written on them and are benchmarks for the mutual fund industry.

We use daily data for estimation. If a goal of inference is to estimate jump times and
sizes, daily data (or even higher frequency data) is required. To why, consider a situation
where returns jumps down on one a given day (Monday, Oct 19, 1997) and then jump up
in a following day (Oct 20" and 21°"). These jumps would not be seen if the observation
interval is weekly or longer. It is very difficult to identify jump times and sizes with daily
data, and we doubt that reliable extraction of jump times and sizes could be obtained using
less frequently sampled data.

TABLE 1. SUMMARY STATISTICS FOR U.S. EQUITY INDEX RETURNS

Estimates of the mean and volatility are annualized on the basis of a 252 day year and N is the
number of continuously compounded return observations.

Index Sample Period N Mean Std. Dev. Skewness Kurtosis
S&P 500 12.30.83 - 10.1.98 3849  0.117 0.155 -3.74 88.12
NDX 100 12.30.83 - 10.1.98 3849  0.147 0.209 -0.87 15.23

S&P Mid-Cap | 06.12.91 - 10.1.98 1906  0.115 0.125 -0.89 9.98
Russell 1000 | 01.01.88 - 10.1.98 2804  0.120 0.130 -0.80 11.20
Russell 2000 | 01.01.88 - 10.1.98 2803  0.094 0.113 -1.19 10.79
Russell 3000 | 01.01.88 - 10.1.98 2812  0.118 0.125 -0.86 11.46
Wilshire 5000 | 01.02.84 - 10.1.98 3848  0.109 0.137 -3.02 54.29
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The data source was Datastream and the starting points of the samples vary. Since
our results are exact finite sample results (conditional on the prior), the fact that some of
our series are longer than others is not a problem. Summary statistics for the log-return
series are given in Table 1. As indicated by the measures of skewness and kurtosis, the
log-returns are extremely non-normal, although the deviation from normality appear to
vary from index to index.

Before we report estimates, we assess the ability of our algorithm to accurately estimate
parameters, jump times and jump sizes via a small Monte Carlo simulation study. Since, to
our knowledge, there have been no efforts to estimate jump times and sizes under parameter
uncertainty, it is important to document the efficacy of our method in this regard.

4.1 Simulation study

The goal of the simulation study is twofold. First, to assess the ability of our algorithm
to accurately estimate the parameters (&, u, )\,02,02). Since this model is i.i.d. and the
sample size is large, we expect the method to be extremely accurate. Second, and more
importantly, we want to assess the ability of the MCMC algorithm to accurately infer the
jump times and jump sizes from the data, as this has not been done before. We also examine
the sensitivity of our results to the prior parameters and initial values in the algorithm.

The simulation study uses 100 simulated series with 2000 observations from the state
independent model with A = 1/252 (an example of which is given in the top panel of Figure
2). The parameters used in the simulations are given in left-hand column of Table 2. The
study was also performed drawing at a daily frequency from a sample path simulated at
a higher frequency ( A = 1/1260). The results were virtually unchanged due to the state
independence of the drift and diffusion. This implies that even though a time-discretization
is used, we can reliably estimate the parameters of the continuous time process.

TABLE 2. SIMULATION RESULTS

The prior parameters are given in Appendix 2 and the model estimated is:

Yrp1 = pt o & i1, i~ N (50702) Pl =1=A

Average Average Posterior
Parameter True Values Posterior Mean Standard Deviation

L 0.1777 0.1770 0.043254

& -0.0084 -0.0086 0.0044768

o 0.114 0.114 0.00221

T 0.332 0.354 0.1450

A 0.05 0.04908 0.0089409

o¢ 0.0387 0.0401 -
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We report the means and standard deviations of the posterior marginal distributions for
each parameter in Table 27. The parameters are estimated with a high degree of accuracy:
11, €, 0 and X are within 1% of the true value while 72 (and thus ¢7) is off by 13%. The true
values are well within a standard deviation of our posterior means. That we can estimate
& and O’? so accurately is surprising since the algorithm only learns about the parameters
of the jump sizes when there is a jump and the simulated process only jumps on average
100 times per sample. The results are insensitive to choice of prior parameters for u, &,, A
and o2. As discussed in the Appendix, some care was required in the choice of the prior
parameters for 72
discusses the importance of prior constraints on this parameter in the setting of maximum
likelihood.

We turn to the performance of the algorithm in estimating jump times and sizes. The

. This is not peculiar to our estimation methodology. Honore (1998)

top panel of Figure 2 displays a representative sample from the simulation study, while
the lower two panels display the estimated jump sizes and times. To determine how many
jumps we actually infer (since we only estimate a probability), we set w = 50%. Note that
there are two types of errors: not inferring a jump when one occurred (J; = 1, J; = 0) or
inferring a jump when there was not one (J; = 0, J; = 1). Over the 100 samples, there
were on average 100.97 jumps.

The results indicate that we did not infer a jump that occurred 43.39 times on average.
Thus we missed about 40% of the jumps that occurred. On average we inferred a jump
that did not occur 3.64 times per sample. These results are not surprising. Since the jump
sizes are normally distributed with a small negative mean, many of the jumps will be close
to zero. As expected, we can not pick up very small jumps since they are too small to “be
noticed” by our algorithm. To see this, note that the mean of the actual absolute jump
sizes inferred was 0.0325 compared to 0.0130 for the jumps that we did not correctly infer.
Thus when we do not infer a jump, the actual jumps were too small. It is important to note
that despite this error, we still accurately estimate A\. The reason is that in this setting,
we do not have the usual estimate of X which is 37| J; /T, if the jumps were known.

Figure 3 shows in detail a representative portion of the simulations with true jump sizes
(+), the simulated returns when a jump occurred (*) and the estimated jump sizes when
we inferred a jump (o). We comment on three episodes marked in Figure 3 as (A), (B)
and (C). Episode (A) indicates that we did not infer a jump when one actually occurred.
However, the process value in that increment was only -0.016 and was to small to be “seen”

"We ran our MCMC algorithm for 5000 iterations, discarded the first 2000 draws (burn in period), and
use the last 3000 as our Monte Carlo sample. The algorithm is extremely efficient as the output mixes well
and the draws converge for any reasonable starting value. The algorithm takes less than 2.5 minutes to
run 5000 times on a desktop PC using MATLAB in the Windows environment.

18



01 T T T T I

0.05 .

-0.05

Simulated Returns
o

0 500 1000 1500 2000 2500 3000

0'1 1 1 1 1 1

0.05 .

-0.05 |

Estimated Jumps
o

-0.1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

o
oo
|

o
(o2}
|

o
D
I

Jump Probability

o
N
I

0 500 1000 1500 2000 2500 3000

Figure 2: Summary of jump time and size estimation on simulated data. The top panel
contains a representative simulated returns series, the middle panel the estimated jump

sizes and the bottom panel the estimated probability that a jump occurred on a given day.
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by our algorithm. Episode (B) indicates that we inferred a small jump when there was not
one. Episode (C) is more indicative of our results. A 3% positive jump was nearly perfectly
inferred. Notice we correctly inferred (to some degree) all of the large jumps.

Although we do not report it, we can use the same methods to extract the Brownian
increments. A histogram of the inferred Brownian increments is very close to the histogram
a normal random variable with mean zero and variance A. The extracted Brownian incre-
ments had slightly thinner tails, but still had mean zero and variance approximately A.
The conclusion of this simulation study is that both parameter and jump time and size
estimation is accurate.

4.2 The Structure of Jumps to Equity Indices
4.2.1 State Independent Model

For the indices under study, parametric inference is summarized in Table 3. Again, we
report the posterior mean and standard deviation in each case. The signs and magnitudes
of all the variables are as expected. In all cases, as indicated by the small posterior standard
deviations, the estimates are quite accurate.

The parameter p estimates the annualized return generated by the continuous portion
of the process and is accurately estimated for all indices. In all cases, a comparison with
Table 2 indicates that p is larger than the sample mean, an implication of the negative
mean jump sizes. This difference can be quite large. For the Russell 2000, the posterior
mean of u is 31.5% while the sample mean was 9.4%.

For all of the indices, the mean jump sizes are negative and much larger than the positive
drifts (about 5 times as large on a daily basis). For most of the indices, the estimate of the
mean jump size is negative but close to zero, although it is different from zero as in most
cases the mass of the posterior is away from zero. Combined with the results for u, the
conclusion is that the indices drift upward and then, on average, fall due to jumps that are
on average negative.

The jump intensity parameter, A, is also estimated accurately and indicates indices
jump with different intensities: the Nasdaq 100 jumps once every twenty days (1/)), while
the Russell 2000 jumps every six days. This is not surprising as the indices often have
little overlap. For example, the Russell 2000 is a broad measure of “small-cap” stocks
while the Nasdaq 100 and S&P 500 consists of much larger companies. These indices have
dramatically different behavior, with the Russell 2000 jumping nearly three times as often
as the S&P 500.

This asymmetry across indices is further displayed in the last column of Table 3, given
a variance decomposition of the returns which shows how, in this model, the variance of
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the jumps dominates the diffusion variance for most of the indices®. The Russell 2000 has
the highest proportion of variance from the jump component at 62% while Nasdaq has only
39%. This is an enormous difference and has important implications for option pricing. As
noted in Merton (1976b), v = AoZ/ (0% + )\Ug) , 1s one of the main parameters controlling
the degree of mis-pricing if the Black-Scholes formula is incorrectly used when the true
data generating process was a jump-diffusion. Using the results in Merton (1976b), the
estimates indicate, for example, for the Russell 2000, and depending on the maturity of the
option, the mis-pricing could be as much as 15-20%, a nontrivial amount. For the Nasdaq
index, on the other hand, the mis-pricing would be smaller, typically less than 5%.

The structure of the jump sizes also gives insight into how jump models capture large
movements. For example, for the Nasdaq 100, a 10% decline move is a 2.44 standard
deviation move given the estimated jump distribution. Combining this with the probability
of a jump implies that we will see 10% decline in the Nasdaq 100 occurs once every 10
years. The improvement over the geometric Brownian motion model is clear. Taking the
sample standard deviation as the estimate of o, a 10% fall is a 7.6 standard deviation
move, implying it would occur every 300 billion years. This improvement should not be a
surprise, as jump models are constructed to capture this effect.

Figures 4, 5 and 6 summarize the estimated jump times and sizes for the NDX 100
index. This choice was arbitrary and the other series give similar results. The top panel of
Figure 4 displays the time series of NDX100 returns, the middle panel the estimated jump
probabilities (p(J; = 1|R)) and the bottom panel, the estimated jump sizes. Note that for
many of the jumps, we have near perfect certainty that jumps occurred as p(J; = 1|R) ~ 1.

Our decision rule
e [ ViR =1B) > w
“ T\ 0ifp(J = 1|R) S w

represents a horizontal line drawn across the middle panel of Figure 4 at probability w.
A comparison of the top and bottom panels in Figure 4 indicates that periods of the
high volatility (Fall 1987, 1995 and 1997) were also periods where, with high posterior
probability, jumps occurred quite frequently. Also note, for the “crashes” in Oct 1987 and
Oct 1997, we infer that p(J; = 1|R) = 1, which is the expected result.

The middle panel of Figure 4 gives the estimated jump sizes, while Figures 5 and 6
analyze the crashes of 1987 and 1997 in detail. From these figures, the advantage of the
JD model and our estimation procedure is clear: the jump terms captures large movements
while the Brownian motion captures that which it is designed to capture, small daily
movements. This can be most clearly seen in Figures 5 and 6. For periods prior to and

8This is the exact variance decomposition is the means of the jump sizes are zero. We choose this to
follow Merton (1976 B) for comparison purposes.
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after the crash, we infer nearly zero jump sizes. The jump term captures both the positive
and negative movements around the crash dates, as expected.

TABLE 3. PARAMETER ESTIMATES FOR MERTON’S MODEL

The prior parameters are given in Appendix 2 and the model estimated is the same
as in Table 2. 7,0, and p are annualized. The jump frequency, A, is reported in
units of the probability of a jump in a given day.

S&P NDX S&P Russell Russell Russell Wilshire
500 100 MidCap 1000 2000 3000 5000

1 17.4 22.1 22.6 19.0 31.5 20.1 19.0
(x1072) | (3.20)  (4.79)  (4.16)  (3.43)  (3.03)  (3.31)  (2.79)

& -4.00 -5.98 -4.93 -2.81 -5.39 -3.12 -3.46
(2.39)  (3.44)  (1.96)  (1.54)  (0.918)  (1.40)  (1.44)

o 11.10  17.00 9.59 9.48 7.11 9.07 9.13
(x1072) | (0.292)  (0.353)  (0.397)  (0.382)  (0.266)  (0.387)  (0.259)

T 0273 0226 0199 0206  0.199 0204  0.243
(0.0188)  (0.0161)  (0.0137) (0.0117) (0.00742) (0.0108)  (0.0115)

A 5.88 5.08 9.28 10.3 16.5 11.1 9.53
(x1072) | (1.30)  (1.12)  (258)  (245)  (257)  (2.71)  (1.54)

o¢ 3.02 3.83 1.91 1.95 1.42 1.85 2.22
(x1072) | (0.260)  (0.317)  (0.175)  (0.162)  (0.0772)  (0.150)  (0.137)

o2

Té\ag 0.523 0.394 0.476 0.527 0.621 0.537 0.586

As mentioned in earlier, the extracted jump times and sizes provide powerful diagnostics
with which to analyze the model. In this case, although the jump time and size results
are interesting, they indicate a potential problem with our model. The state independent
model specifies that the jump times and sizes are i.i.d.. The bottom panel of Figure 4
indicates significant amounts of clustering in the jump times, while the middle panel of
Figure 4 and Figure 5 and 6 indicate that large returns appear to be followed by large
returns of the opposite sign.
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Figure 5: Returns and estimated jump sizes to the Nasdaq 100 during 1987.

This type of autocorrelation is opposite the usual positive autocorrelation documented
for daily returns. It appears that there is state dependence in the jump times and maybe
also in the jump sizes. To capture these state dependencies, we use the SDJ model, as
described in Section 2.5.

4.3 State Dependent Model

Table 4 reports the posterior means and standard deviations for the SDJ model. The
conclusions from the state independent model regarding the significance of p,, 0 and o¢
still hold in the SDJ model. For all these parameters, the posterior means are well away
from zero. The posterior for the volatility, o, is very similar to that estimated in Merton’s
model indicating that the addition of state dependencies does not significantly alter the
variance coming from the normal error term. The posterior mean of the jump variance, o¢,
is slightly larger in the SDJ model than Merton’s model, although the posterior standard
deviation is also larger.

The coefficient p, is annualized and measures serial correlation of the diffusive compo-
nent. In all but one case (S&P 500), the location of the posterior is well away from zero.
Thus, even in the presence of jumps, there is some positive autocorrelation in daily returns
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Figure 6: Returns and estimated jump sizes to the Nasdaq 100 during 1997.

and the magnitudes are roughly consistent with previous studies’.

The mean jump size parameter, now labeled £,, measures the average jump sizes con-
ditional upon a zero return in the previous day. For all cases except the Russell 1000,
significant amounts of posterior mass are below zero. The magnitudes seem quite small,
usually around -0.5%. However, given the normally distributed jumps, we expect this as
the jump has to accommodate both positive and negative jumps. Since from the inferred
jump sizes, we know that the algorithm only picks up large jumps in absolute value, it
may be advantageous to specify a more flexible jump distribution such as a mixture of two
normal to capture this bi-modality.

As measured by the coefficient &, there is some evidence of predictable jump sizes
for some of the indices, most notably the S&P Mid-Cap. In all cases the coefficient is
negative, indicating a potential over-reaction effect: the market jumps too far down and
then rebounds on the next day. The conditional volatility of jumps is roughly consistent
with the results in the state independent model.

9See, for example, the discussion in Campbell, Lo and MacKinlay (1997), chapter 2.
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TABLE 4. POSTERIOR PARAMETER SUMMARIES FOR THE GENERAL STATE
DEPENDENT MODEL

The prior parameters are given in Appendix 2. 02,72, g and p, are annualized.
The model estimated is given by:

Tl = Mo + Tt + 0€ 41 + Cir1de41

Prob[Jiy = 1re, Ji] = @ (By + B1Jt + Bafre])

Cty1 = 50 + fﬂ’t + §t+17 €t+1 ~ N (07 Ug)

Parameter S&P NDX S&P Russell Russell Russell Wilshire

500 100 MidCap 1000 2000 3000 5000

o 16.42 18.59 14.83 16.52 20.97 17.38 16.77

(x1072) | (3.153)  (4.860)  (4.063)  (3.433)  (2.881)  (3.375)  (2.760)
4y 5.949 26.462 49.740 9.627 66.445 12.580 19.045
(4.272) (4.366) (6.184) (5.102) (5.545) (5.139) (4.1173)

& -4.029 -4.975 -3.940 -2.469 -4.250 -2.812 -3.477

(x1073) | (2.545)  (3.619) (2.324)  (1.707)  (9.567)  (1.553)  (1.561)

& -1.774 -5.713 -25.97 -1.398 -13.50 -0.7609 -4.075

(x1072) (9.361)  (10.93)  (14.49)  (1.122)  (7.705)  (10.70)  (8.384)

Bo -1.964  -2.066 -1.833 -1.671 -1.547 -1.599 -1.642
(0.1103) (0.1316) (0.1615) (0.1178) (0.1057) (0.1226) (0.09316)

B4 0.3811 0.5975  0.5896  0.2452 0.5540 0.2665 0.3897
(0.2388) (0.2660) (0.2787) (0.2314) (0.1604) (0.2084) (0.1832)

By 36.887 26.613  44.199 35914 62.950 34.819 30.870
(7.852)  (6.143)  11.930  (9.1963) (10.521)  (9.898)  (7.0862)

o 11.20 17.04 9.637 9.793 7.083 9.352 9.323
(x1072) | (0.2318) (0.3620) (0.3387) (0.2738) (0.2184) (0.2754)  (0.2173)

T 28.32 23.30 21.37 21.46 20.93 21.27 25.08

(x1072) | (1.852) (1.729)  (1.665)  (1.294)  (0.8744)  (1.205)  (1.264)

o¢ 3.171 3.972 2.060 2.101 1.482 1.989 2.337
(x1072) | (0.2509) (0.3568) (0.2095) (0.1666) (0.08906) (0.1513)  (0.1569)
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The state dependency in the jump intensity seems to have the greatest impact. Since
Prob[Jigr = 1ry, J;, 0] = (B + B1i + Ba|re])

(B, and 3, are very important for explaining the time series dependence of log returns. In
every case, the posteriors for 3, and (3, are tight around the posterior mean, while the
posterior for 3, indicates that lagged jump times have an important effect for five of the
indices. To interpret the impact of these results, Table 5 tabulates the daily intensity, in
percentages, under different conditions on what occurred on the previous day. The first
row of Table 5 gives ®([3,), which is the probability of a jump if the return on the previous
day was zero and J; was estimated to be zero. Clearly, relative to the state independent
model, the probability of a jump falls drastically, with intensities being around 40% of their
values in the case of Merton’s model. Again, the Russell 2000 jumps most often and the
NDX100 jumps the least.

TABLE 5. IMPLICATIONS OF THE STATE DEPENDENT JUMP INTENSITIES.

This table reports ®(8y + 31J: + Ba|rt|) for the various indices under different conditions

Jump S&P NDX  S&P  Russell Russell Russell Wilshire
Probability 500 100 Midcap 1000 2000 3000 5000
(ry=J;=0) 243  2.11 3.35 4.73 6.16 5.57 5.04

|re] = 0.05,J; =0 45.6  22.6 64.4 54.3 94.4 55.5 46.0
|re] = 0.05, J; = 1 60.3 44.5 82.9 64.0 99.5 65.9 61.4

4.4 Implications for Value-at-Risk

The implications of the previous estimates are quite severe for standard risk management
procedures. To see this, consider the following situation: the market fell 5% in the previous
day. Thus, this scenario could be the Friday before the Crash in 1987. Since jump times
are predictable, the probability of a jump occurring is much higher. Table 5 summarizes
the probability of a jump on the following day, using the posterior means as estimates of
the parameters.

In the case that a jump was not inferred on that day (J; = 0), the probabilities increase
drastically and range from a low of 22.6% for the NDX100 to a high of 94.4% for the
Russell 2000. This is an indication of the extreme amounts of persistence in periods of
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market stress. If J; = 1, this persistence is even greater and varies from a low of 44.5% for
the NDX100 to a high of 99.5% for the Russell 2000. This implies that if there is a large
movement on the previous day, the Russell 2000 is almost certain to jumps the following
day.

This result, combined with the negative posterior means for &, indicates that the jump
distribution has a positive mean for the following day. Thus a positive jump is expected
following large negative movements. The estimated jump times and sizes are very similar
to those reported in the state independent model in Figure 4 and are omitted. To see the
impact of state dependence, consider using a conditional variance decomposition. Ignoring
the mean jump sizes and drift, the conditional decomposition, conditional upon the previous
days returns and jump time is given by:

D(By + b1 + 52|Tt|)‘7§
02 A+ OBy + By + Bo|re] )og

We compute this for the S&P500 and Nasdaq 100 for the three cases in Table 5 and the
proportion of variance is given as (34.0,90.2,92.4) and (22.4, 75.6, 85.9) respectively. Thus,
as we expect, the 5% decline yesterday implies that the probability of a jump today is high
and therefore the variance of today’s return is close to the variance of the jump, as the

jump variance is an order of magnitude large than the daily diffusive variance.

What are the implications of this for VaR? We consider four different calculations: (1)
normal model (lognormal returns) with sample mean and standard deviation, (2), Merton’s
model, with the estimates in Table 3, (3) the state dependent model with r; = —5%, J; = 0
and (4) the state dependent model with r, = —5%, J; = 1. Since the log-normal model and
Merton’s model are i.i.d., the VaR calculation is independent of the previous days return.
The VaR for the four models are given by: (1) — 0.0223,(2) — 0.0329, (3) — 0.0691, (4)
—0.0729. Note that the VaR is increased by more than 45% by incorporating i.i.d. jumps
((1) to (2)). The VaR increases from 2 to 3 using Merton and the VaR in (4) is more than
double the VaR in (2) and more than triple the VaR in (1).

This result can most easily be seen looking at the distribution of tomorrow’s return
given knowledge of today’s return and J;. Figure 7 displays the conditional density of
returns in the Log-normal model (Black-Scholes), Merton’s model and the SDJ model with
re = —5%, J; = 1 for Nasdaq 100 returns. Since Black-Scholes and Merton are i.i.d., they
ignore any information contained in the previous days return and jump. The conditional
density for the SDJ model has extremely fat tails relative to the other models.

Although it appears that the conditional distribution for the SDJ model is centered left
of zero, the conditional mean is quite small (-0.00488). This results from the estimate of
&, for the NDX being close to zero implying that the jump sizes are not predictable using
previous returns.
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Figure 7: Conditional densities for Merton’s i.i.d. jump model, the log-normal model of
Black-Scholes and the SDJ model.

For risk managers who have long noted the need to fatten tails of return distributions,
especially in periods of market stress, these are important results. Simple i.i.d. models,
even those incorporating jumps cannot capture these extremely fat tails. Furthermore,
standard GARCH models update volatility very slowly and thus volatility cannot increase
quickly enough to generate these fat tails. In periods of market stress, the data is quite
informative about what is going to occur next: given that there was a jump today, there
will most likely be one tomorrow. Risk managers derivative market participants must be
aware of this dependence and adjust their pricing models and capital reserves accordingly.

4.5 Stochastic Volatility and Jumps

The previous results relied heavily on the fact that the volatility of returns, as measured
by o, is constant. This section documents that the predictability results do not depend on
this assumption. In a slightly different settings, Eraker, Johannes and Polson (1999) find
that both jumps to returns and stochastic volatility are important components, although
they assume a simple, state-independent jump process.

In order to address this issue in the state-dependent setting, consider a generalization
with a stochastic volatility component, as given in Jacquier, Polson and Rossi (1994):
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Ti+1 = fo + HqTt 1/ Visier + ci1di
log(Vii1) = k1 + kolog(Vy) + ovypq

where the jump components are the same as in the previous sections. This popular specifi-
cation has been used in many applications and the stochastic volatility component adds an
additional source of non-normalities to the process. An advantage of our modular hierarchi-
cal structure is that we can simply add additional steps to our algorithm to accomodate the
stochastic volatility. Specifically, we need to estimate three additional parameters (K1, ko
and o) as well as the latent volatility. The only difficult step is updating the latent volatil-
ity process, as the posterior for the volatility is not standard. We use the algorithm of
Shephard and Pitt (1997) to update volatility.

The estimation results are given in Appendix 3 for the S&P 500 (the other series are
similar). The results indicate that although the probability of a jump given that there
was no jump yesterday and no return (as measured by 3,) falls, the predictability results
are robust to the addition of stochastic volatility. Lagged returns and lagged jump times
are still strong predictors of jump times. As expected the variance of the jump sizes
increases (many of the small jumps are now explained by time-varying volatility) and the
mean jump size is smaller: around -2% compared to -0.004. Both of these results are as
expected. These results are important as they document that there is a persistence in the
data, not well-captured by standard stochastic volatility models.

4.6 The Predictive Power of Implied Volatility

The SDJ model has another important attribute: through the addition of exogenous state
variables, it can be used to predict or explain jump times and sizes. To examine this effect,
we examine the ability of implied volatility to predict jump times and sizes.

Although it has long been recognized that Black-Scholes implied volatility is an impor-
tant measure, it is difficult to quantify exactly what it measures in the dynamics of the
returns because it fails both as an option pricing and time series model. In spite of this
objection, Black-Scholes implied volatility is an exogenous variable that contains important
market based information not reflected in just the time series of returns.

Much like asset return volatility, implied volatility has predictable components as ar-
gued by Harvey and Whaley (1992). However, the ability of implied volatility to forecast
future volatility is at best limited, see for example, Canina and Figlewski (1992), although
in a more recent study, Christensen and Prabhala (1998) argue that it has greater abil-
ity over longer time horizons. There is also some limited evidence that implied volatility
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offers predictive power in standard models of time varying volatility such as GARCH or
EGARCH. Day and Lewis (1992) find that implied volatilities can explain GARCH and
EGARCH volatility using weekly returns from Wednesday to Wednesday, but cannot ex-
plain volatility using Friday to Friday returns. Thus there is limited, at best, evidence for
implied volatility to explain volatility in standard time varying volatility models such as
GARCH and EGARCH.

Our approach is different. We argue that the relevence of implied volatility is as a
predictor of jumps. To investigate this we add implied volatility as a regressor in the jump
intensity function and in the jump impact function:

Prob [Jt+1 = 1jry, Jt] = (8o + By Je + By || + ﬁ3gimp) (8)
1 = Co+ & +E&0 T+ €

where o™ is the implied volatility of S&P100 index options, as measured by the Market
Volatility Index (VIX) index. The VIX index is a wide measure of market volatility obtained

0 We use it to determine if it is able to predict jumps in

by using a basket of options
S&P500 index returns. If jumps are present clearly this fact will be reflected by market
participants in the way the price options. Abnormally high implied volatility might imply
that the market anticipates that a jump (or a number of them) will occur in the near future.

This specification further allows an analysis of jump risk premia through the jump im-
pact function. Specifically via £, we can measure if the market, is on average, compensated
for taking the jump risk.This mean-variance type intuition implies that participants recieve
a premia, through jumps, when the market is extremely volatility, as measured by the VIX
index. In order to avoid spuriously concluding that implied volatility predicts jumps when
it in actually predicts returns (ARCH in mean effect), we include the volatility as a re-
gressor in the drift. In this case the model considered is given by (8) and the following
equation

Tep1 = Mo + [Tt + o0y T + 011 + Cep1 i

Daily data on the VIX, beginning on January 2, 1986 through Dec. 30, 1998 was
obtained from the CBOE website and the time series is given in Figure 8. To analyze
the predictability of jump times and sizes with implied volatility, we ran three different
versions of the model to discern what impact adding implied volatility had on the results.
The results are given in Table 6. Model 1 does not include implied volatility and is used
as a reference point, since the time span is different from that used previously. Model 2

The exact construction of the index is detailed on the Chicago Board of Exchange website,
www.cboe.com.

32



0 L L L L L L
1986 19838 1990 1992 19094 1996 1998 2000

Figure 8: The VIX index, 1986-1999.

excludes implied volatility from the drift or jump impact, while Model 3 is the unrestricted
model.

The results indicate a number of interesting facts. First, as indicated by Model’s 2 and
3, the VIX is a strong predictor of jump times. The strength of the relationship drives
lagged returns to be insignificant (compare the coefficient [, across the three models).
Also, as measured by the coefficient £, the lagged VIX index is capable of predicting the
size of the jumps. This, at first, may seem counterintuitive, however there is an intuitive
explanation. Conisder the Crash in 1987. On Friday before the Crash, the VIX was at
36% which is above its historical average. On Monday, Tuesday and Wednesday, the VIX
was 150%, 140% and 73%. Since our model uses lagged implied volatility to predict future
jumps, the large returns in the S&P 500 on Tuesday (5%) and Wednesday (8%) coincide
with the highest volatility periods. Also note, that as measured by the coefficient p., there
is no premium associated with implied volatility coming from the non-jump components.
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TABLE 6. POSTERIOR PARAMETER SUMMARIES FOR THE

SDJ MODEL INCORPORATING THE VIX.

The prior parameters are given the same as those in Ap-

pendix 2.
Parameter Model 1 Model 2 Model 3

Lo 0.1905 0.1879 0.07589
(0.03580) (0.03446) (0.1443)

Ly 6.733 6.901 8.265

(4.586) (4.614) (4.761)

i 0.5242
(0.8141)

& -0.005637 -0.002837 -0.01256
(0.002900) (0.001663) (0.004667)

& -0.03613 -0.02701 0.01530
(0.1039) (0.07429) (0.08882)

&, 0.02842
(0.01184)

Bo -1.999 -4.086 -4.296
(0.1103) (0.2715) (0.2999)

04 0.2742 -0.1722 -0.1029
(0.2579) (0.2021) (0.2369)

B 41.836 12.631 10.483
(7.914) (8.593) (10.076)

Bs 12.397 12.384

(1.315) (1.328)

o 0.1162 0.1067 0.1142
(0.002409) (0.002335) (0.003154)

T 0.2872 0.2489 0.2513
(0.01922) (0.01158) (0.01476)

o¢ 0.03337 0.02655 0.0287
(0.002671) (0.001456) (0.001879)

Ter1 = o+ T+ o) T+ oeii + cpr i
Prob[Jiy = 1re, Ji] = ©(By + By + By |re| + B507") (9)
o1 = Eo T &+ &0 €
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5 Conclusions and Extensions

The results given here are important for three reasons. First, we have introduced a model
that is capable of capturing state dependencies in the jump process. Second, we have
developed a method for estimating SDJ models (and jump-diffusion models) and extracting
jump times and sizes even in the case of quite general state dependence. Furthermore, our
methodology is computationally efficient. The third, and most important contribution of
the paper is empirical: we find and document significant evidence supporting the existence
of predictable components in jumps in the time series of equity returns. The jump times
are quite predictable on the basis of past returns and jump times. The impact of this type
of state-dependency for VaR is also analyzed.

The methods developed for estimating jump diffusion models could be applied to other
areas of research, for example interest rate and foreign exchange rate modeling. In both
cases, there are a priori justifications for including jumps. In these cases, the state de-
pendency would be via the level of the rate. There is significant evidence from the
ARCH/GARCH literature on state dependencies and there is also some evidence of jumps
in these markets. An application to emerging markets could also be important given the
anecdotal evidence for extreme jump behavior.

Given that we have identified the importance of jumps and some indication of why they
occur, a next logical step is to identify other variables that are important for explaining
jump times and sizes. To this end, any evidence that explains equity crashes, currency
devaluation or interest rate changes could be used in this context to explain jumps. For
example, the S&P Future/Spot spread or the time series of implied volatilities for S&P
options might be useful in explaining jump times and sizes in our framework. We leave
these extensions for further research.
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Appendix 1: Relation to Jump-diffusion models

For derivative pricing purposes, jump-diffusion models offer increased flexibility and an
ability to account for many of the systematic mispricing (cross-section and term structure
of implied volatility) that occurs in models with continuous state variables''. This section
outlines the relationship of the SDJ model and the jump-diffusion model.

For simplicity, consider the case of state independent jump arrivals (suppressing param-
eter dependence):

Xirya = Xoa + p(Xea) A + 0(Xia)ers1 + e(Xia, §1) Jut)A- (10)

where 4 ~ 1l and Prob [J(t+1) A= 1} = MA. Weak convergence arguments (see Sko-
rohod (1965) or Platen and Rebolledo (1985)), imply that under standard regularity con-
ditions, the limit of (10) as A | 0, is given as the solution of the following stochastic
differential equation:

dX, = p(X,)dt + o (X,) dW, + dJ, = / (X, , E)p(de, dt) (11)

where p(d€, dt) is a Poisson random measure, W; is a standard Brownian motion, £ € =
and & ~ II. The Poisson random measure sums jumps of various sizes:
t Ny
| [ et omtas.an =3 e, )
0 J — ’

The time-discretization is similar in form to the Euler approximation for diffusion process.

The accuracy of this approximation depends on two factors: the length of the interval
and the frequency of the jumps. In our applications the interval between observations is
one day and it is assumed that jumps are infrequent events in equity index returns (the
Brownian motion captures day-to-day fluctuations), it is not unreasonable to assume that
at most one jump can occur in an interval since the probability of two or more is negligible.
From a practical standpoint, if a goal of inference is inferring jump time and sizes, it is
clearly more difficult to identify them if more than one could occur between observations.

The probit specification with lagged jump time included has no continuous time analog.
However, in the case where 3; = 0, even in the presence of state dependencies, a continuous
time analog exists. To see this (ignoring parameter dependence), the following limit must
exist:

1
IAIIL% ZProb [J(t+1)A =1|Xia = x] = \z)

1See Bates (1996) and Bakshi, Cao and Chen (1997) or Das and Sundaram (1999) for more detailed
analysis of these problems.

39



where ) is the intensity function of the jump process. For the probit specification, this limit
cannot be computed in closed form as the intensity function is not absolutely continuous
with respect to Lebesgue measure, however it does exist!2.

2However, a re-parameterization does provide the proper limit. Define o and #* for each z from the
following equation: ®a(By + [12) = % [®(A (a* + B"2z)) — ®(0)]. As the normal CDF is monotonic, a
solution exists. L’Hospital’s rule implies that for each x, £ [®(A (* + §*z)) — @(0)] o a*+ Fx = \(z)
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Appendix 2: MCMC Methods

MCMC methods are a computationally efficient method for creating samples from
high dimensional distributions. The idea of MCMC is simple. In most cases, the full
posterior given the data, generically p(0|X), is fully characterized by its conditionals,
p (010 : k # j, X). In our case, we have 7(6) £ p(6|X) =p (a,i,§|§). This characteri-
zation allows us to create random samples from p (©|.X)) by sampling, in an iterative fashion,
from p (0|0 : k # 7, X). The MCMC algorithm formalizes how to do the sampling and
produces a sequence of draws whose distribution converges to that of p (0|X).

Let © denote the state space for the Markov chain, ©@ the position of the whole chain
at iteration () and @gi) the position of the 5 component of the Markov chain at iteration
(7). The MCMC algorithm draws from each of the conditional posteriors in turn, updating
the state space of the chain after each draw. If all of the parameter /latent variables can be
drawn directly from their posteriors, the chain is referred to as the Gibbs sampler. It uses
the conditional posteriors p(€! " |@(l) j # k, X) to make the transition @ — QU+ a5
explained in Gelfand and Smlth (1990).

Sampling from some of the conditional posteriors is often difficult or computationally
intractable. In these cases a Metropolis algorithm'? is used to generate draws. A Metropolis
step generates a candidate draw from a kernel, Q(0®, ©0+1D) known “blanket.” and the
candidate draw is accepted with probability

' W(@(i+1))/Q(@(i), @(i+1))
min { 7(00)/Q(e ), M) 1} (12)

otherwise O+ = Q@)

The algorithm provides samples from p(©|X) by generating a sequence of random vari-
ables O, 00 ©®  that forms a Markov chain. The convergence of the chain to its
target is guaranteed via the following proposition:

Proposition (Tierney (1994)): Let (0 0W ..) be an irreducible Markov chain on the

_ a
state space © with invariant distribution 7. Let Fg = £ > F(09). Then for m—almost
g=1

all 6
Pr {FG —>/ (0)dp|e® =90 | =1

if [F(0)m(0)dd < oo where ©© = 0 s the starting position of the chain.

13See Hastings (1970) for a description of the Metropolis algorithm and Roberts and Smith (1994) for a
discussion and conditions guaranteeing the convergence of the Metropolis algorithm.
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Appendix 3: Conditional Posteriors and priors

This appendix derives the conditional posteriors given in the text. The posteriors com-
bine the prior distribution with the likelihood via Bayes formula. The relevant likelihood
is given by

£<€07 Ho, 7_27 027 J|E> = p(ELuOu 607 027 7_27 i)

and up to proportionality we have

(507#77- J 02|R 1 (T’t+1 — ILLA _ gth+1)2>> .

T
X — —
H (\/A +72Ji 1 P < 2 oA+ T2 )

Note the advantage of decoupling the normally distributed jump sizes and treating the jump
times as latent variables, our likelihood is not a discrete mixture of normal distributions.

We now specify the prior distributions for the parameters (u, &y, 0%, 7%, \) in Merton’s
model. We assume that the variance parameters, the drift parameters and the jump fre-
quency are independent, thus: p(u,&,, 02,72, X) = p(u, &)p(a?)p(7?)p(N). For the individ-
ual components, we use standard conjugate priors:

NOvEO ~ N(a'07b0)7

0'2 ~ Ig(Co,do),

T2 ~ Ig<607f0)7
A~ B(Oéo,Oél)

where B and ZG denote the Beta and inverse Gamma distributions, respectively. Here
(ag, bo, co, do, €0, fo, o, 1) are all pre-specified. By varying the prior parameters we can
easily perform a sensitivity analysis of our estimation procedure. Given our conjugate
priors, the posterior conditionals for u, &y, A and o2 are standard. p and &, are Normally
distributed, A has a Beta posterior and 02 has an Inverse Gamma posterior. Generating
samples from these distributions is straightforward.

The posterior distributions of the 72 and the jump times are given as:

b 0% LR o (A+72) P (72) 0 ey <_Gt+1 - #)
0

Jt+1|N7£07O_277—27E ~ Be?“(pt)
£t+1|/’bu 607 0-27 Jt+17 Tty N(Bt+1bt+1, Bt+1)
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where

(Tt+1 — A — fthH)z
G = Z 20%(A + 72)

tiJiy1=1

P11 = p(‘]t+1 = 1|1u7£070-277_27ﬁ) = (1 + Ot+1)71

_ A2 (reps = pA = &)° | (g — pA)?
ln(0t+1) = ln<(1_)\) /A+T2> 02(A+7'2) o2A
J, 1 Jer1(reer — pA 1
Bl = t;Al + = 2, biy1 = el i:QIA ) 0—2

The derivation of the posterior for 72 is

p(T?0%, 1, &, L, N\ R) o p(T)p(R|T%, 0%, 1, &,

1
* \=

Note that the summations in the last expressions involve only terms with J;;; = 1. When
J; = 0, the relevant portion of the posterior is independent of 72 and is thus absorbed into
the proportionality constant. Intuitively, we only learn about the parameter 72 when the

process jumps.

The posterior for the jump times is given by the odds ratio of {.J; = 1} versus {J; = 0}
which is calculated by dividing the posteriors for the two cases, using Bayes rule for discrete

)p (] ; J)
> o <_72f0) "

1 . (r = pA = & Ji)?
20’2(A +7'2Jt+1>

exp(— Z_ ((Ttgla‘;(gﬁ;ﬁoy - TQlfO))

distributions and taking the log to simplify the expression.

Pr<Jt+1 - 1|0-27 K, 507 T7E)

Pr(Jt+1 - O|027 M, 507 T7E)

Pr<Jt+1 = 1|‘72;M €0, Ty Tt41)

Jt+1 - O|U y My 6077_ rt+1)

Pr(
Pr<Jt+1 = 1N Pr(roa|Jia = L, 0%, 7%,&))
(

T
1
2

P — A )2
) (o) o ()

PI' J = 0|)\) (Tt+1|Jt+1 - 07/1’70- y T 750)
)
2

1—A (ﬁ exp (_% (%» _
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The conditional posterior for the jump size £, given the parameters is found by using
the conditional independence between current jumps and all other observations, given to
days observation, p (§t| &, a?, J,, E) =p (§t|Jt, o, ag, Tt+1), reversing the conditioning
and completing the square in the following expression:

p (£t+1|rt+1; Jtr1, 145 €, U?) X p<rt+1|£t+17 Je115 145 805 Ug)P(ftHW? €o)

where

1 2
p(realéos, Jirn, 1, €, 0) = exp EYSTN (revr — pA = &4y i) ]
T¢

1
p(ft+1|‘7§afo) = ©exp T‘g(gt+1_£0)2

We now briefly describe how the researcher sets these parameters. In our empirical
work, we use proper but highly diffuse priors on (v, &y,0% \). For 72 and the choice of
(€0, fo) we argue as follows. As 72 = ag /o?, the prior parameters, (eg, fo), are important
because they permit us to separate the variance of the jump sizes from the diffusion term.
Non-informative priors on 72 (for example, the diffuse prior, 772, 7 > 0), lead to improper
posteriors and thus we must be slightly informative. This requirement is similar to the
truncation of the parameter space used to operationalize MLE.

The actual prior parameter distribution we use are given by:

to,§o ~ N(0,1000),
o? ~ 1IG(3,25),
™ ~ IG(3,2.5),
A~ B(10,100)

)eo+1

The density function for 72 is p(73|eo, fo) o (% exp (—%) As an example

(eo, fo) = (3.0,2.5) implies that Prob|[r? € (0,0.6)] = .97. For values outside this range
(72 > 0.6), we simulated series holding jump frequency constant. The sizes of the resulting
jumps were too large (many of the jumps were larger in absolute value than 10%). Thus
our priors are quite reasonable, and, in fact, not very informative. Sensitivity analysis
confirmed this.

Given these posteriors, we require our algorithm to create the following Monte Carlo
N

sample { u(g),f(()‘Q), o2? 29 N9 g (9)} . Note that at each iteration of our algorithm we
g=1
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draw the entire vector of jump times, J. Had we not integrated the jump sizes out of the
hierarchy, we would also have to draw the entire vector of jump sizes at each iteration, in-
creasing the size of our state space from T+5 to 2T+5 dimensions. As mentioned in section
(2), the inputs required to create these samples are the posterior conditional distributions
of each parameter and the jump times given the observed data and the other parameters.

Given these conditional distributions, our MCMC algorithm iteratively updates the
parameters. We draw (u(g),fo) and (J) in blocks and 02,72 and X individually. To see
how the algorithm works, suppose that we have the output from the first (g) iterations
of our algorithm. To update, for example, 0%, we compute, 029+ by drawing it from its
posterior distribution conditional on the values of the other parameters from the previous
draw and the observed data:

@) 7(9) >
(Tt+1 - N(Q)A - 509 Jti1>

1 1
2(g+1) =4z
g Ig Co + do + 2 Z A + Tg(g)Jt(i)l

T T
2’ t=0
Given the posterior for the jump times, J;,1, it is easy to update the jump times in the
algorithm. For 72, however, the posterior distribution is nonstandard and we therefore use a
Metropolis algorithm to update 72. We choose the candidate density to closely approximate
p(T*|p, 50702,l,ﬁ)-

The Proposition from Tierney (1994) implies that the output of this algorithm converges
in distribution to the true posterior. In order to negate any affects of the starting values,
we discard the first 2000 draws from our algorithm, the “burn in” period. Thus, our
algorithm creates samples that are arbitrarily close to the joint posterior distribution,
p(u, &g, A\, 72, 0%, J|R). Given the output of the algorithm, the next section describes how
to use the output to solve the parametric inference and jump time and size extraction
problems.

The state dependent model can easily be incorporated into the MCMC algorithm using
the structure built for Merton’s model. To do so, we again need to identify the conditional
posteriors. For the prior structure, we assume that &g, 1, pt1, @ and 3 are independent
and choose conjugate priors which implies that the posteriors for &, 1, 111 are normal and
the conditional posterior for 72 is unchanged. For the additional regression parameters
(parameters in the drift, jump impact and probit), we specify the priors are mean zero and
have variance equal to 1000. These priors are extremely uninformative.

Simulation of Z;,; is simple as it is a normal draw. Assuming that p(3,, 5;, 8s) ~
N (By,03) implies that (see Albert and Chib (1993) By, 3;, 8212, R ~ N (p, 05) where

[ig = ((a?,)_l —i—E’R) B ((ag)_l ﬁO,E’Z> and 03 = ((O’%)_l —i—E’E) . The only existing
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step in our algorithm that is affected is how we draw J;;; where we need only substitute
the probit probabilities for A\. Our algorithm now generates samples of

{:u’Oa M1, 607 617 0-27 T27i? ﬁO? ﬁl? ﬁQ?Z}‘
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Appendix 3: Parameter estimates in the state-dependent stochastic volatil-

ity model

For comparison purposes, we estimate the model for the full sample using S&P 500
returns. This implies that the results should be compared to the first column of Table 4.

TABLE 8. PARAMETER ESTIMATES FOR
THE STATE-DEPENDENT JUMP MODEL

WITH STOCHASTIC VOLATILITY

S&P 500
1 | 0.0006872 | &, | -0.2825
(0.0001126) (0.2162)
1y | 0.04088 e | 0.04582
(0.01663) (0.009259)
k1 | -0.1631 8, | -2.721
(0.03942) (0.1250)
k1 | -0.01658 | B, | 30.01
(0.004006) (2.996)
o | 0.1181 3, | 0.8246
(0.0103) (0.4668)
¢ | -0.02747
(0.01458)

i1 = Ug + 7t + \/ﬁ&ﬂ + crp1de1
Prob[Ji1 = 1ry, Ji] = @ (By + 81 + Bao|ril)
1 =&+ &+ &, § ~N (07 0?)
log(Vis1) = k1 + ko log(Vy) + oviiq
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