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Wemodel the commercial World Wide Web as a directed graph that emerges as the equilibrium of a game in
which utility maximizing websites purchase (advertising) in-links from each other while also setting the

price of these links. In equilibrium, higher content sites tend to purchase more advertising links (mirroring the
Dorfman-Steiner rule) while selling less advertising links themselves. As such, there seems to be specialization
across sites in revenue models: high content sites tend to earn revenue from the sales of content, whereas low
content ones earn revenue from the sales of traffic (advertising). In an extension, we also allow sites to establish
(reference) out-links to each other and find that there is a general tendency to establish reference links to sites
with higher content. Finally, we explore network formation in the presence of search engines and find that the
higher the proportion of people using them, the more sites have an incentive to specialize in certain content
areas. Our results have interesting practical implications for search-engine optimization, the pricing of online
advertising, and the choice of Internet business models. They also shed light on why Google can use the web’s
link structure to rank sites by content.
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1. Introduction
The Internet and its most broadly known application,
the World Wide Web (WWW), are gaining tremen-
dous importance in our society. They represent a new
medium for doing business that transcends national
borders and attracts an ever larger share of social and
economic transactions. A key feature of the WWW is
that, as a decentralized network, it evolves on its own
based on its members’ incentives and activities. In this
paper we develop a model that helps us to under-
stand what structure emerges from this decentralized
network formation process.
The WWW includes an extremely broad commu-

nity of websites with a vast array of motivations and
objectives. We cannot pretend to be able to capture all
relevant behaviors on such a diverse network. Rather,
we restrict our attention to the commercial WWW,
by which we mean the collection of interlinked sites
whose objective is to profit from economic exchange
with the public and/or each other. In the following,
by WWW, we will always refer to this “subnetwork.”
Our goal is to explain the network formation process
and the resulting network structure of the commer-
cial WWW.
Understanding this network structure is important

for all firms participating in e-commerce. The network

structure has a crucial role in determining the flow
of potential consumers to each site, which is key
for demand generation. A primary interest of search
engines, for instance, is to understand how sites’ con-
tent is related to their connectedness on the Web. In
turn, websites need to be strategic about connecting
themselves in the Web to ensure that search engines
correctly reflect or even boost their rank under a given
search word.1 Indeed, “search-engine optimization”
has grown into a $1.25 billion business with a growth
rate reaching 125% in 2005.
Similarly, the primary way through which sites can

drive traffic to themselves is the purchase of adver-
tising links.2 At the same time, each site also has
the option to sell the traffic reaching it by selling
such advertising links to other sites. In a network in
which each site is a potential advertiser and a poten-
tial seller of advertising, what determines the tradeoff

1 In response to Google’s regular updates of its search algorithm,
different sites shuffle up and down wildly in its search rankings.
This phenomenon, which happens two or three times a year is
called “Google Dance” by search professionals who give names to
these events as they do for hurricanes (see The Economist 2006).
2 In 2006, Internet advertising has reached $10 billion with a yearly
growth rate of over 25% (see eMarketer Inc. 2006).
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between selling content or advertising? In particular,
how does this tradeoff depend on the site’s popular-
ity or attractiveness to the browsing public? A closely
related question is, how should sites price their adver-
tising links as a function of their content? Finally, even
on the commercial WWW, many of the links are so-
called “reference links,” which sites establish to other
sites to boost their own content or credibility (Mayzlin
and Yoganarasimhan 2006). Sites need to understand
how such links complement or interact with adver-
tising links to determine the ultimate network struc-
ture. Addressing these practical problems requires the
understanding of the forces that drive the evolution of
the network’s structure and the resulting competitive
dynamics.
Specifically, we propose a network model in which

the nodes represent rational economic agents (sites)
that make simultaneous and deliberate decisions on
the advertising in-links they purchase from each
other. Agents are heterogeneous with respect to their
endowed content, which may be thought of as their
inherent value in the eyes of the public/market. Con-
sumers are assumed to surf on the web of nodes
according to a random process, which is nevertheless
closely linked to the network structure. Sites gener-
ate revenue from two sources: (i) by selling their con-
tent to consumers and (ii) by selling links to other
sites. We start by assuming that the price per traffic
of each link is an increasing function of the originat-
ing site’s content. Next, we show that this is indeed
the case in an equilibrium, where sites first set their
prices for advertising links and then purchase links
at these prices in a second stage. We also extend the
model to the case beyond buying and selling adver-
tising links, in which sites can also establish refer-
ence out-links to each other at a small cost. Finally,
we explore the situation when a substantial part of
the public uses search engines. In this context, we ask
what happens when nodes represent multiple content
“areas.”
We find that in equilibrium, higher content sites

tend to buy more advertising links, mirroring the
Dorfman-Steiner rule well-known for traditional
media but not, so far, explored for a network medium.
Similarly, reference links tend to point from low con-
tent sites to high content ones. As such, in equilib-
rium, the number of all in-links is closely correlated
with the site’s content. This explains why search
engines have so much success using algorithms based
primarily on in-links (e.g., Google’s Page Rank) for
ordering pages in terms of content in the context of a
search word. The model also has a number of practi-
cal implications for the pricing of Internet advertising.
We find for instance, that sites with higher content
should set a higher price-per-click for their advertis-
ing links. This, combined with our result on the pur-
chase of advertising links, indicates that there is a

tendency for specialization of commercial sites’ busi-
ness models. Higher content sites emphasize product
sales driving traffic to the site, whereas lower content
ones emphasize the sales of traffic by mainly selling
advertising links. A tendency for specialization also
exists in content areas. Specifically, if we allow sites
to cover multiple content areas, we can show that the
more consumers use search engines, the more sites
have an incentive to specialize in terms of content
areas. Finally, we can show that the above equilib-
rium patterns are generally consistent with the empir-
ical reality of the commercial WWW. In particular,
we find that in-links follow a similar degree distri-
bution as out-links, as is empirically observed on the
WWW but not predicted by existing models of net-
work formation.
The paper is organized as follows. The next sec-

tion reviews the relevant literature. Section 3 presents
the basic model, which considers advertising links
and exogenous prices. Section 4 extends this model
to a two-stage game in which sites price advertising
links in the first stage and then purchase in-links from
each other. Section 5 explores two further extensions:
(i) the introduction of reference out-links and (ii) the
existence of search engines in a context where con-
tent is multi-dimensional. The paper ends with a gen-
eral discussion and concluding remarks. To improve
readability, most proofs have been delegated to the
appendix.

2. Relevant Literature
While the marketing literature related to the Inter-
net has grown considerably in recent years, there is
virtually no research exploring the link-structure of
this new medium or the likely forces that drive its
evolution. This is not to say that the social sciences
and economics in particular have not examined the
endogenous formation of networks. In an influential
paper, Bala and Goyal (2000), for instance, develop a
model of noncooperative network formation in which
individuals incur a cost of forming and maintaining
links with other agents in return for access to bene-
fits available to these agents. Recent extensions of the
model (Bramouille et al. 2004) also consider the choice
of behavior in an (anti-) coordination game with net-
work partners beyond the choice of these partners.3

These models have several features that do not really
apply to the WWW. First, they concentrate on the
cost of link formation, which is shown to be critical
for the outcome. More important, the above papers
consider that individuals in the network are identi-
cal. For example, in Bala and Goyal (2000), linking to

3 See also Jackson and Wolinsky (1996) for an early paper con-
cerned with the relationship between social network stability and
efficiency and Jackson (2004) for a recent summary of this literature.
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a well-connected person costs the same as connect-
ing to an idle one. This is clearly not the case on
the WWW, where large differences exist between the
sites’ content and their connectedness. Also, on the
WWW the cost of establishing a link largely depends
on where this link originates from. Finally, the equi-
librium networks emerging from the above models
clearly do not comply with the structure of the WWW.
Bala and Goyal (2000), for instance, find two possible
equilibrium network architectures, the “wheel” and
the “star,” and their respective generalizations.
Our work also relates to the vast literature on ad-

vertising (see Bagwell 2007 for a good recent review).4

Of particular interest for us are studies dealing with
advertising firms’ choices of advertising quantities
and the pricing of advertising by media firms. Adver-
tising quantities have been known to be determined
by the advertisers’ product margins (Dorfman and
Steiner 1954) and, of course, by the effectiveness of
advertising. Advertising expenditures have also been
shown to be affected by product quality in a vari-
ety of contexts. Nelson (1974) and Schmalensee (1978)
develop a theory of advertising as a signal of quality.
Villas-Boas (2004) studies advertising effort in the con-
text of discrimination between high and low quality
products, and Agrawal (1996) computes equilibrium
advertising levels in the presence of differential brand
loyalty. Our model does not map into these situations,
but our results linking advertising quantities to sites’
content relate to the variety of outcomes identified in
these papers.
On the supply side, recent papers in marketing (see

Dukes and Gal-Or 2003) have shown that advertiser-
and media-competition also have a significant effect
on advertising quantities. Advertising prices have
also been shown to be influenced by the above market
features, but recently two additional factors have been
revealed to be of further interest: (i) the disutility of
advertising (Masson et al. 1990) and (ii) the competi-
tive pricing of media content (Godes et al. 2008). Our
paper builds on this literature but is markedly differ-
ent from it in many respects. First, our model stud-
ies advertising via links of a network; i.e., advertising
effectiveness is endogenous, as it depends on the net-
work’s structure. Also, advertising is used to increase
traffic, not to inform, to signal quality, or to affect
brand loyalty. More important, in our model, adver-
tisers and the media are not separate entities. Each site
is a buyer as well as a seller of advertising. The cen-
tral questions are: which one of these activities domi-
nates, and how does this decision depend on the site’s
content?

4 See Zeff and Aronson (1999) for an early summary of advertising
on the Internet and Hoffman and Novak (2000) for a qualitative
description of online advertising pricing models. See also Iyer and
Padmanabhan (2006) on Internet referral services.

Finally, our work is also related to recent papers
modeling consumers’ browsing process on the WWW.
Our demand structure is based on the classic model
by Brin and Page (1998) to provide a consistent
description of how consumers flow on a complex net-
work of sites. We use some of the recent mathemat-
ical results related to this framework, in particular
Langville and Meyer (2004). We extend our model
using the concept of a reference-link, as in Mayzlin
and Yoganarasimhan (2006), to designate out-links
that sites establish to other sites to improve their
own value as perceived by consumers. With these ele-
ments, we develop a model that is more consistent
with the reality of the WWW than what is described
by the existing network formation literature. This
model is presented next.

3. The Model
We describe websites and the links between them
as a directed graph, G. The nodes of the graph cor-
respond to the sites and the directed edges to the
links between the sites. Let i → j denote if there is a
link from node i to node j and i �→ j if there is no link
between them. The number of links going out from
a site is the out-degree of the site, denoted by douti ,
and the in-degree is the number of its incoming links,
denoted by dini .
It is important to note that we consider as the

unit of analysis a single website that may pos-
sibly include multiple pages. Technically, on the
WWW, the nodes correspond to the Web pages. How-
ever, most of the time, a website offering a single
product consists of several pages having almost all
links established between them. The incoming links
of the site usually go to one of the main pages
and the outgoing links can go from any page. We
argue that in a model of network formation, these
pages should be considered as one single node rep-
resenting the website. All the links going out of
and coming in to a site’s subpages should be as-
signed to this one node.5 Beyond structural rea-
sons, considering sites as the unit of analysis also
makes sense because they represent a single decision
maker.
In what follows, we will describe consumers’

browsing behavior on such a graph, followed by the
description of the network formation game played
by the sites. In doing so, we need to stay at a rela-
tively high level of abstraction. In particular, we will

5 This perspective is shared by search professionals. When Google
calculates the rank of a page in its search function for instance, it
calculates it for the whole site and not for single pages within a site.
A possible way to do this is to consider all the pages that are in the
subdirectories under the same domain name of a site. For example
any page with an address “www.amazon.com/� � �” is considered as
part of the Amazon site.
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consider a homogeneous group of consumers and
a reduced form profit function for sites.

3.1. Consumer Browsing Process
The primary task in modeling the WWW is to
describe the process through which users browse the
Web; i.e., how they move from one site to another. We
will consider these users as potential consumers, who
may buy the content (product) sold at a particular
site. We normalize their total number to 1. Further-
more, we will neglect consumer heterogeneity and
simply assume that a consumer reaching a site may
consume the content of that site or purchase it with
probability �, that we can assume to be 1, without
loss of generality. Our goal is to establish the num-
ber of visitors at a site (in a given unit of time). To
do this consistently is not a trivial task because the
weight (incoming traffic) of incoming links depends
on how much traffic reaches their originating sites,
i.e., how many in-links the incoming links themselves
have. Obviously, two incoming links have very differ-
ent effects on a site’s traffic if they originate from dif-
ferent locations. In other words, we need to describe
the flow of consumers consistently across all nodes of
the network.
We will use the simple but very powerful solution

proposed to this problem by Brin and Page (1998),
which became one of the basic principles for Page
Rank (PR), the algorithm that Google’s search engine
uses to order Web pages. Assume n sites and imagine
that the total mass of consumers (1 unit) is initially
distributed equally between these n sites. A consumer
follows a random browsing behavior in every step.
Starting from site i, with probability �, s/he randomly
follows a link going out from that site or stays there,
choosing each of these douti + 1 options with equal
probability.6 With probability 1 − �, s/he jumps to
a random site on the Web, again choosing each site
with equal probability. The number of steps while the
user follows the links without jumping then follows a
geometric distribution, with expectation 1/
1− ��. � is
called the “damping factor,” and in practice it is often
set to �= 0�85, which corresponds to an expected surf-
ing distance of around 6.67, that is, almost seven links.
It can be shown that the iteration of the above

process results in a limit distribution of consumers
between websites. This limit distribution is called PR.7

It can be thought of as the number of visitors at a
website per unit of time. By definition, PR has to

6 The event when a consumer stays at the website can be formally
represented by drawing a loop around the node.
7 Although PR usually refers to the score that websites receive from
Google, we use PR to describe the scores that are calculated of this
simple version of the algorithm.

satisfy the following equation:

ri =
1− �

n
+ �

(
ri

douti + 1 +
ri1

douti1 + 1
+ ri2

douti2 + 1 + · · ·+ rik
doutik + 1

)
� (1)

where ri is the PR of site i (i.e. the proportion of vis-
itors reaching it), i1� i2� � � � � ik are the sites linking to
site i and doutij denotes the number of links going out
from site ij , that is, the jth site linking to site i (with-
out counting the loops).
Describing the process over time for all sites, let

r
t� denote the row vector resulting from the iteration
after step t. With this notation r
0� denotes the initial
vector of the iteration that we set without loss of gen-
erality to r
0� = 
1/n�1/n� � � � �1/n�, i.e., we distribute
browsers uniformly across all nodes. The iteration is
defined through the M transition probability matrix,
whose cells are

�M�ij =




1
douti + 1� if 
i→ j��

0 otherwise.

Notice that the ith row of the matrix represents node i
and the number in cell ij represents the probability of
moving to node j from node i. Using M , the iteration
described above reads

r
t+1� = � · r
t�M + 
1− ��r
0�� (2)

If the series r
t� is convergent as t → � and it con-
verges to r , then r provides the PR values of the nodes
in the network. These can be thought of as the steady
number of visitors at a website per unit time. It can
be shown using Markov-chain theory that the itera-
tion is indeed convergent if the graph satisfies some
properties (see Langville and Meyer 2004 for details).
We only use the following lemma.

Lemma 1 (Langville and Meyer 2004). If r
t� is a
probability distribution for every t, then the series is con-
vergent as t →�.
Obviously, in the initial step, r
0� is a probability

distribution, but r
t+1� does not satisfy this unless each
row of the matrix M contains at least one nonzero
element, that is, every node in the graph has at least
one out-link. The loops added to the nodes ensure
that this holds.
Using the matrix form of definition (1), if itera-

tion (2) is convergent and it converges to r , then it has
to satisfy

r = � · rM + 
1− ��r
0�� (3)

Notice that if r is a probability distribution, then
for any matrix �U �ij = 1/n, rU = 
1/n�1/n� � � � �1/n�.
Hence (3) can be written as

r = � · rM + 
1− ��rU = r
�M + 
1− ��U�� (4)
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This formula helps interpret the meaning of PR by
describing it as the weighted average of two matri-
ces (M and U ), each representing a different random
process. M contains the transition probabilities across
linked sites, i.e., it moves browsers along the links of
the network. Thus, it encapsulates the structure of the
Web. In contrast, U represents a process that scatters
browsers randomly around to any of the sites. The
weights given to these two processes are defined by
�, the damping factor.8 Thus, PR and the underlying
process is a consistent description of how traffic is
distributed across sites for any given link structure of
the network.

3.2. Network Formation
Assume that there are n nodes (sites) with given con-
stants c1 ≤ · · · ≤ cn, representing their contents. These
content parameters can be thought of as some mea-
sure of the website’s value for the public in a partic-
ular content domain. For instance, the site may sell a
product and c may represent consumers’ willingness
to pay for this product. Then, the variation in c may
be thought of as heterogeneity across sites in terms
of product quality. In this spirit, we assume that the
site’s net revenue from a consumer is proportional
to this parameter: the higher the public values the
site, the higher the income from a consumer visiting
it. The site’s net revenue will also be proportional to
the total number of consumers being at the site, as
measured by ri, i.e., site i’s total income from its con-
sumers is rici. The cost of each site has a fixed and a
variable component. The fixed component can be set
to 0 without loss of generality. We assume that the
variable component (e.g., a shipping cost) that is pro-
portional to the number of visitors is identical across
sites. Let C denote this per-visitor cost. Then, the total
cost of a site is riC.
We assume that there is a market for links between

sites. Every node i offers links for a fixed price-per-
click, qi, which varies across nodes, as will be clar-
ified below. This is consistent with general media
(or Internet) practice in which ad rates are typically
quoted as “rates per click-through.” The number of
clicks on a particular link can be calculated from the
consumer flow model. If site i has traffic ri and douti

out-links, then the number of visitors clicking on a
particular out-link will be �ri/
d

out
i + 1�. Then, the

total price of an advertising link from site i will be
pi = �riqi/
d

out
i + 1�.

If another node purchases a link, then this link will
be created and point from the seller to the buyer.
Given prices, nodes make simultaneous decisions
about their incoming links, that is, which other nodes

8 It is also interesting to note that r is the eigenvector of the matrix
�M + 
1− ��U with its principal eigenvalue, 1.

they buy links from. Each node is allowed to buy one
link from every other node. Essentially, this market
can be thought of as the advertising market. If a node
buys a link, it pays for an advertisement to be placed
on the seller’s page.
In our baseline model, the per-click prices for links

are exogenous but we will relax this assumption in
§4.2. Specifically, in this section we will assume that
qi = q
ci� is an increasing function of content ci and
that prices are not too high (see (16) in the appendix).
In §4.2, we show that in a two-stage game where
prices are set first, followed by the purchase of links,
equilibrium prices are indeed set this way. Neverthe-
less, even this exogenous pricing structure as reflected
by the choice of q
c� is quite intuitive. Price-per-
click increasing in content allows us to capture the
basic tradeoff between keeping a consumer or hand-
ing him/her over to another site. The higher the gain
from a consumer (i.e., the higher c), the higher the
site wants to charge for potentially letting him/her to
surf to another site. In other words, this price func-
tion captures the tradeoff between sites’ two revenue
streams.9

With these elements, a site’s profit for a given
network structure consists of its income from its
consumers plus the advertising income (from sold
links) minus the advertising costs (of bought links).
Formally,

ui = ri
ci −C�+ pi · douti −∑
j→i

pj � (5)

3.3. Equilibrium Analysis
Our objective is to determine the Nash equilibria of a
game where players’ objective function is given by (5)
and their strategies consist of buying links from one
another in a simultaneous decision. These equilibria
represent a network or a graph (a set of links between
the nodes), and our main interest is in understanding
the structure of this graph. The following proposition
describes the general structure of these equilibria.

Proposition 1. At least one Nash equilibrium always
exists and all the equilibria have the following properties.
(i) The out-degree is a weakly decreasing function of

content in the following sense. If, for a given pair of nodes
ck < cl, then doutk ≥ doutl .
(ii) If all the content parameters are different, then in-

degree and PR are increasing functions of content.

9 Notice that in our model, sites control their sold advertising links
only through their pricing. This may not entirely capture the strate-
gic interaction between sites. For example, a site may not allow
advertising by a strong rival even at a high price. We will discuss
this issue in detail at the end of the paper and would like to thank
the review team for pointing it out.
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Figure 1 A Typical Equilibrium Network Structure
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Notes. The top two figures depict the same network, a possible equilibrium network, where larger nodes denote higher content. The bottom graphs represent
the number of out- and in-links for each node, where nodes are arranged in increasing order of content.

Proof (Sketch). Here we give the main logic of the
proof and provide the detailed proof in the appendix.
In the first step, we show that in equilibrium all the
nodes buy links from the nodes with the lowest qs.
This does not mean that they will buy from the nodes
charging the lowest price for links but rather from
those that sell their traffic at the lowest “per-click
price.” Based on the increasing price structure, these
must be the sites with the lowest content parameters;
hence, out-degree is a decreasing function of the con-
tent parameter. Then, we show that nodes with higher
content can buy more links; hence, in-degree is an
increasing function of the content. Due to the special
structure of the network, this yields that the PR is also
an increasing function of content. �

Figure 1 shows a possible equilibrium network
structure. Once the nodes are arranged according to
their content (top left graph), the network structure

reveals the simple tendency whereby most links orig-
inate from low content pages (small dots) and are
directed towards high ones (large dots). The lower
part of the figure shows how in- and out-links depend
on content, where nodes are arranged in increasing
order of content. Of course, if we suppose that all the
content parameters are different, then (i) is equivalent
to saying that the out-degree is a decreasing function
of the content parameter. If there are identical con-
tent values, the nodes can still be ordered (as is done
on the figure) so that both the contents are increasing
and the out-degrees are decreasing.
This general equilibrium structure of the model,

that advertising links tend to go from lower con-
tent sites to higher content ones, is quite interest-
ing. Essentially, it means that high content sites are
the most important buyers of advertising. This result
is similar to the Dorfman-Steiner advertising rule
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well-known in traditional media.10 It is particularly
interesting that this result continues to hold even in
a network context where sellers of advertising are
competing for traffic to sell their own content. The
result also seems to have face validity as the biggest
advertising sites tend to be large, well-known brands.
Surveying the last decade in online advertising, Dou-
bleClick, for example, documents that by 2005, Fortune
500 companies’ share of all online advertising reached
30% and has steadily increased over time. Similar,
trends emerge for Europe as well.11

The result is also interesting because it suggests
that sites have a tendency to specialize in their busi-
ness model. Certain sites, the ones with low content,
specialize in selling links (i.e., traffic), whereas sites
with high content tend to buy links (advertise) in
order to benefit from content (product) sales. How-
ever, there are also sites that do both, which is specific
to the Web.
To summarize, the network’s formation is charac-

terized by two features: (i) sites tend to buy links from
other sites with lower contents, and (ii) the higher the
content of a site, the more links it will buy from other
sites. This results in a network where the number of
in-links correlates with the value of the corresponding
site.

4. Endogenous Prices and
Infinitely Many Sites

After analyzing network formation with per-click
prices as parameters, we now study a game where
prices and links are both decision variables. In partic-
ular, a key driver of our results so far was the assump-
tion that qi is increasing in content. Our goal is to
show that this is true even with endogenous prices
and that the network formation results hold. Specifi-
cally, we analyze a two-stage game where in the first
stage, sites set per-click prices for advertising links
and in the second stage, they establish links between
each other, given prices. The second stage game, as it
was described in §3.2, would be too complex to solve
for any fixed set of qi parameters. However, the size
of the Web suggests that we should consider the case
when the number of players is large enough so that a
single site’s decision does not have a significant effect
on the other sites. To capture this idea, we suppose
that there are infinitely many sites or a continuum of
sites. We describe such a model next.

10 We would like to thank the Area Editor for pointing out this
similarity.
11 See DoubleClick (2005a, b), as well as Zeff and Aronson (1999,
p. 7).

4.1. Network Formation
In the infinite version of the original network forma-
tion game, suppose that the set of players is the inter-
val I = �0�1� and each player corresponds to a node
of the infinite directed graph.
Definition 1. A directed graph on the set I is

defined as a subset G ⊆ I × I , where an element

x�y� ∈ G corresponds to a directed link from x ∈ I
to y ∈ I .
The definition of the degrees of the graph requires

measure theory. We will call the subsets of I mea-
surable if they are measurable with respect to the
Lebesgue-measure on the interval I , denoted �.
Definition 2. The out-degree of x ∈ I in the

graph G is the measure of those nodes to which links
from x exist, that is, dout
x� = ��y ∈ I � 
x�y� ∈ G if
the set is measurable; otherwise, the out-degree does
not exist. Similarly, the in-degree of y ∈ I is defined as
din
y�=��x ∈ I � 
x�y� ∈G if the set is measurable.
We will restrict ourselves to graphs where all the

degrees exist, that is, the corresponding sets are mea-
surable. We will show that any equilibrium graph
has to be such. Directly generalizing the game, we
assume that the measurable function c
i� provides the
content of site i ∈ I and the measurable function q
i�
represents the per-click prices. We can assume with-
out loss of generality that c
i� is increasing; i.e., sites
are ordered by content on I . The PR function is also
directly generalizable. However, in the infinite case,
we have to deal with the problem of zero out-degrees.
If the set of nodes that buy links from node i is a zero
measure set, then dout
i� = 0. In the finite case, the
solution is to establish a loop around node i, but that
would also be a zero-measure set in the infinite case.
Hence, we introduce the variable s > 0, accounting for
the visitors who stay at site i. Then, the proportion of
visitors who stay at the site is s/
s+dout
i��. Therefore,
the equation defining PR will be

r
i�= 
1−��+�
s

dout
i�+s
r
i�+�

∫
x→i

r
x�

dout
x�+s
dx� (6)

It can be interpreted as a density function describing
the marginal probability of visitors being at differ-
ent sites. A 
1− �� proportion of visitors is jumping
to random pages, and the rest of them are following
the links. Note that, in the s = 0 case, we can derive
(6) by multiplying (1) by n and changing the nota-
tion to r
i� #= nri. Then, as n →� we obtain (6). To
make sure that players are not indifferent between
different choices, we assume that �
q−1
x�� = 0 for
every x, that is, not many sites have the exact same
price. The total price for a link at site i is p
i� =
�r
i�q
i�/
dout
i�+ s�. Then, site i has the following
utility function:

ui = r
i�
c
i�−C�− p
i� · dout
i�−
∫
j→i

p
j� dj� (7)
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For this infinite game, the main results that were
valid for the discrete case still hold. If q
·� is an
increasing function of content and satisfies (16), there
always exists an equilibrium and in this equilibrium,
in-degree is increasing and out-degree is decreasing in
content (and in i). Proposition 2 formally states this
result.

Proposition 2. If q
i� is increasing, satisfying (16),
and the functions c and q are continuous, at least one pure-
strategy Nash equilibrium exists and in any equilibrium
din
i� is increasing and dout
i� is decreasing.

Proof. See the appendix.
Because the number of players is infinite, a single

player does not have a significant impact on the game.
Let us capture this by the following definition.
Definition 3. Two measurable functions q and

q′# �0�1�→R are equal almost everywhere (q = q′ a.e.)
if ��x � q
x� �= q′
x� = 0, that is, if they only differ in a
small set.

Lemma 2. If q = q′ a.e., then the set of equilibria of the
games corresponding to the two functions are equal a.e.,
that is, for any equilibrium function din
 � for q, there exists
an equilibrium for q′ with a din

′

 �= din
 � a.e.

Proof. Let X denote the set �i � q
i� �= q′
i� . The
payoffs and the optimal decisions do not change for
the sites that are not in X. For those who are in X, the
optimal decisions may be different, but these players
are in a null set. �

Now that we have characterized the equilibria in the
second stage (network formation) game, we will show
that q
i� is increasing in any equilibrium of the two-
stage game.

4.2. Price Setting
In the first stage, every site selects its q
i� simultane-
ously, only knowing the content function. In the sec-
ond stage, sites establish links. Because the two-stage
game may have several subgame perfect Nash equilib-
ria (SPNE), even unreasonable ones, we will rule out
some of them based on Lemma 2.
Definition 4. A subgame perfect equilibrium


q�E
q�� of the two-stage game is a refined subgame
perfect Nash equilibrium if
(i) E
q� is a pure-strategy Nash equilibrium of the

second stage and
(ii) q = q′ a.e., then E
p�= E
p′� a.e.
This definition makes sure that to any refined SPNE

corresponds an SPNE and that any SPNE with the
property that an infinitesimal perturbation in prices
(q ∼ q′) leads to a qualitatively different network in the
second stage is not a refined SPNE. Therefore, sites
have an expectation about the second stage’s network
structure in the first stage, and this expectation does
not change if only a few sites change their prices.

This approach ignores certain direct strategic effects
of the pricing decision. Specifically, we assume that
sites react to the distribution of prices across all other
sites. With infinitely many sites, this distribution does
not change if a single site alone changes its price. This
assumption is realistic in the context of the WWW
where there are over 10 billion pages and no site domi-
nates the traffic on the entire network. Using this equi-
librium concept, our main result is the following.

Proposition 3. For any refined SPNE of the two-stage
game, the first stage’s q
·� function has to be increasing.
Proof. See the appendix.
The significance of Proposition 3 is that it supports

our assumption that in the network formation stage
of the game, the per-click prices of advertising links
increase with respect to the sites’ content. Among
other findings, this reinforces our previous result that
sites tend to be specialized in terms of their revenue
models. Sites with low content tend to sell traffic to
higher content sites by selling advertising links for
relatively low prices. High-content sites, on the other
hand, benefit more from the sales of their content to
the public. They price their advertising links high and,
as a result, sell few advertising links.12 The intuition
behind the result is that sites with higher content have
a higher potential of making profits on their visitors.
Hence they set higher prices to be able to sell fewer
links. This way a higher proportion of their visitors
becomes their customers, resulting in a higher average
margin per visitor. In the second stage these sites pur-
chase more advertising, because they can more effec-
tively leverage the traffic they buy.

5. Extensions
In what follows, we explore two extensions to the
model. First, we allow sites to create reference links.
These are out-links that sites may establish to boost
their effective content. Second, we explore the impact
of search engines allowing sites to have multiple con-
tent areas.

5.1. Reference Links
So far, we have focused on a specific type of links:
advertising links. These links are established for a
fee to direct consumers to the website of the adver-
tiser. Here, we introduce another type of link that is
commonly used in the noncommercial Web: reference
links.13 These links also have an important role in

12 “Hot, well-targeted content sites have [..] been able to command
very high prices.” Zeff and Aronson (1999, Chapter 7, p. 176).
13 We are indebted to one of the reviewers for suggesting this
extension.
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forming the structure of the commercial Web. Refer-
ence links are used to increase the referring sites’ con-
tent with the help of the referred pages (Mayzlin and
Yoganarasimhan 2006). The number of reference links
going out from (coming in to) a site is denoted by doutR

(dinR ). Every node is allowed to establish one reference
link from itself to every other node at maintenance
cost '. Each site is allowed to establish an (outgoing)
reference link to every other site. The advertising links
are still included in the model, as they were in the orig-
inal version; that is, each site is allowed to buy one
(incoming) advertising link from every other site. Let
i→R j denote if there is a reference link from i to j and
i →A j if there is an advertising link between them,
whereas the number of incoming (outgoing) advertis-
ing links is denoted by dinA (doutA ).
Thus, the strategy of player i can be described by

two vectors, each consisting of 0’s and 1’s. The first
vector xR

i determines to which nodes player i estab-
lishes reference links to (xR
j�

i = 1 if s/he forms a refer-
ence link to node j and 0 if not). The second vector xA

i

describes which nodes s/he buys advertising links
from (xA
j�

i = 1 if s/he buys a link from node j and 0
if not). In the case when i decides to refer to j and j
decides to buy an advertising link from i, we assume
that both links are established and this is the only
case when two links pointing in the same direction are
allowed between two nodes. Also, to get around the
problem that players might be indifferent between two
or more possible choices of links, we will assume that
if a player is indifferent s/he establishes as many links
as possible.
The incentive to create reference links is to increase

a site’s content by referring to other sites. Therefore,
we generalize the payoff function by using the “accu-
mulated” or “effective” content term, which consists
of two elements: (i) the site’s resident content, ci,
and (ii) the sum of the content of sites linked to
through reference links multiplied by a scaling con-
stant 0≤ ) < 1. Therefore, the total payoff of node i is
defined as follows:

ui=ri

(
ci+)

∑
i→Rj

cj−C

)
−'d

outR
i +pi ·doutAi − ∑

j→Ai

pj � (8)

Introducing the reference links makes the prob-
lem much more complex; because a site cannot con-
trol its traffic by buying the appropriate number
of advertising links, the traffic is also affected by
the incoming reference links. To solve the game,
we use the following simplification. Instead of using
the stochastic model to describe the flow of con-
sumers, we use a traffic function with the follow-
ing properties. Let ri = f 
d

inR
i � d

inA
i � be the traffic or

demand that reaches the site. f is a function of the
site’s in-degrees, and we assume that it is increas-
ing and strictly concave in both advertising links

(dinA
i ) and reference links (dinR

i ). This assumption is
strongly supported by practice and is one of the
basic principles behind search engine design. Describ-
ing Google’s search engine, The Economist (2006)
claims, for example, that “[t]he most powerful deter-
minant of a Web page’s importance is the number
of incoming referral links, which is regarded as a
gauge of a site’s popularity (p. 11).”14 We also make
the natural assumption that f has increasing differ-
ences in d

inR
i and d

inA
i . That is, f 
x + h1�y + h2� −

f 
x�y+h2�≥ f 
x+h1�y�−f 
x�y� for any x�y ≥ 0 and
h1�h2 ≥ 0; i.e., the two kinds of in-degrees are weakly
complements. Then, the utility function becomes

ui = f 
d
inA
i � d

inR
i �

(
ci +)

∑
i→Rj

cj −C

)

−'d
outR
i + pi · doutAi − ∑

j→Ai

pj � (9)

With this generalization we can show the following.

Proposition 4. If pi = p
ci� is increasing, then the
game has an equilibrium, and in any equilibrium, if ci >
cj then d

inR
i ≥ d

inR
j , doutAi ≤ d

outA
j , dinA

i ≥ d
inA
j , and d

outR
i ≥

d
outR
j .

Proof. See the appendix.
Keeping the assumption that prices are increasing

with content, we can show that the structure of the net-
work formed by the advertising links is qualitatively
the same as without reference links. The network
formed by the reference links has a similar structure
but with the opposite order of out-degrees. For both
networks, the in-degrees are increasing in content,
whereas the out-degrees are decreasing in content for
advertising links and increasing for reference links.
The intuition for the distribution of reference links is

quite simple. Clearly, each site will try to establish ref-
erence links to the highest content sites, which benefit
more from these in-links as they have a higher margin
on the additional traffic generated by these in-links.
Therefore, high content sites can afford to establish
more reference out-links, increasing their margin even
more. The presence of advertising links intensifies this
effect because outgoing reference links and incoming
advertising links are complements. The more refer-
ence links a site establishes, the more advertising links
it has an incentive to buy. Thus, the increased traffic
from these advertising links results (indirectly) in extra
profit from outgoing reference links.
The general feature of the equilibrium network, that

higher content results in more reference in-links, is
very interesting. It provides, for instance, an expla-
nation for why the famous search engine Google

14 See also Economist Technology Quarterly (2004).
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had so much success introducing the quantity PR for
searches. Google’s objective is not only to find all the
pages containing the search expression but also to
rank them according to their content. As measuring
content directly is difficult, it can use PR as an indirect
measure because, according to our model, in equilib-
rium, high PR should be correlated with high content.

5.2. Search Engines and Multiple Content Areas
Search engines (SE) play an important role in the for-
mation of the network. If some consumers use SEs,
then the number of visitors at a website depends not
only on the structure of the network but also on how
search engines display the site in the result of a given
search. Today’s SEs use a twofold method to deter-
mine which pages to display as the result of a search
and in what order. On the one hand, they measure
content directly; on the other hand, they measure con-
tent indirectly through the structure of the network,
using methods such as PR. To examine the effect of
SEs, we will assume a single SE that filters the s high-
est content sites for its users, where s is a fixed integer.
We also assume that traffic is distributed across these
s sites proportional to each site’s PR. Note that we do
not consider the SE as a strategic player.
As will become clear later, when considering SEs,

we need to generalize our model in another respect,
letting content have multiple dimensions. Specifically,
we assume that content is a D-dimensional vector
ci = 
c1i � c

2
i � � � � � c

D
i �. These dimensions can be seen

as content areas (e.g., entertainment or e-commerce
in various domains, etc.). We assume that a partic-
ular consumer visiting the site is only interested in
one dimension of the site.15 The proportion of con-
sumers interested in the different dimensions is rep-
resented by the weight vector w. This vector can also
be interpreted as the probability distribution on con-
tent dimensions describing the interest of a randomly
selected consumer. Thus, the expected consumer-
specific content at site i is the scalar product w · ci,
which can also be called the (weighted) average con-
tent of a page.
Then, in the generalization of our model (5), the

income of a website from selling its content changes
from rici to ri ·w ·ci. Thus, still without the presence of
SEs, the total utility of node i is

ui = ri
w · ci −C�+ pid
out
i −∑

j→i

pj� (10)

where we assume that pi = �qiri/
d
out
i + 1� and qi =

q
w · ci� is an increasing function of average content.

15 This assumption can be relaxed. If a consumer is interested in
several dimensions, we assign a probability distribution to his/her
interest.

It is easy to see that this generalized model results
in the same equilibrium as the one described in Propo-
sition 1. The only difference is that we need to replace
content with the weighted average content in the
proposition. This shows that without introducing the
SEs in the model, multi-dimensional content does not
make much difference. In particular, if sites had the
possibility to change the allocation (distribution) of
their total content across specific content areas, they
would not have an incentive to do so, because only
(weighted) average content matters.16

What happens if we incorporate SEs in the model?
Let us assume that only a b proportion of consumers
is browsing according to the process described in §3.1.
The remaining 
1− b� consumers use an SE in every
step of browsing, which directs them to a website in
the following way. As we mentioned before, a con-
sumer is only interested in one dimension of content;
hence, s/he runs a search in that dimension. Through
the result of the search, the SE directs the consumer
randomly to one of the top content sites in that dimen-
sion. More precisely, the SE selects the pages with the
s highest content parameters in every dimension and
directs consumers to one of these with probability pro-
portional to their PR.17 Let Sd denote the set of the
s highest content pages in dimension d and Id

i denote
the indicator of the event 
i ∈ Sd�, that is, whether the
content of site i in dimension d is among the top s con-
tents. Then, the probability that a consumer from an
SE gets to a given page in dimension d is either 0, if it
is not one of the top content sites in the search dimen-
sion, or ri/Rd, where Rd = ∑

l∈Sd
rl is a normalizing

constant in dimension d. Thus, the income from con-
sumers in dimension d at site i is

bric
d
i + 
1− b�ric

d
i

I d
i

Rd

= ric
d
i 
b+ 
1− b�Id

i /Rd��

Using notation Ci = 
C1
i �C

2
i � � � � �C

D
i �, where Cd

i =
cd
i I

d
i /Rd, the expected income from selling content at

page i is ri
bw · ci + 
1 − b�w · Ci�. It is important to
see the difference between ci and Ci, the latter being
the content vector truncated by the search engine by
eliminating (setting to 0) the dimensions that do not
make it in the top s ranks. The term 
1− b�w ·Ci can
then be interpreted as the expected reward from the
search engine for being a top site in one of the con-
tent dimensions, i.e., a sort of “specialization reward.”
Let Ei denote the modified average content bw · ci +

1− b�w ·Ci. Then, the total utility of site i is

ui = ri
Ei −C�+ pid
out
i −∑

j→i

pj� (11)

16 Notice that the “cost of content” associated with a certain area
is proportional to the consumer interest in that dimension.
17 This is consistent with practice. For example, there are very few
consumers who go beyond the second page of Google’s search
results.
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where pi = �qiri/
d
out
i + 1� and qi = q
·� is an increas-

ing function of the modified average content, Ei, as
defined before.
Clearly, with a single content area, the existence of

a search engine does not matter qualitatively. It sim-
ply makes the “divide” between low and high content
pages more pronounced. Assuming multiple content
areas, the equilibria can be described by the following
proposition.

Proposition 5. At least one pure strategy Nash-equi-
librium always exists and all the equilibria have the follow-
ing properties:
(i) The out-degree is a weakly decreasing function of the

modified average content in the following sense. If, for a
given pair of nodes Ek < El, then doutk ≥ doutl .
(ii) If we suppose that all the modified average contents

are different, then the in-degree and the PR are increasing
functions of the modified average content.

Proof. The proof follows from that of Proposition 1,
replacing ci with Ei. �

The above properties of the equilibrium graph show
that the sites with the highest Ei will have the highest
in-degree and PR. Because Ek is the linear combination
of (i) the average content of site k and (ii) the expected
reward from the SE for offering leading content in par-
ticular dimensions, the proposition implies that in the
presence of a search engine the allocation of content
between dimension really matters. Specifically, there is
an incentive to specialize in a certain content area to
be one of the top sites of a particular dimension and
in this way maximize the “specialization reward.” On
the other hand, this incentive to specialize decreases as
the average content of a site is higher; because a high
average content site does not have to allocate all its
resources to one dimension, it can afford to diversify
its content. Thus, we would expect sites with low total
content to specialize, while those with high general
content to diversify. However, as more and more peo-
ple use search engines, the advantage from high aver-
age content disappears and ultimately all sites compete
for higher content in a specific area.

6. Discussion and Conclusion
We proposed to model the commercial WWW based
on the idea that profit maximizing websites purchase
(advertising) in-links from each other to direct traffic
to themselves to sell their content. A key feature of
the model is that sites are heterogeneous in terms of
their content. Homogeneous consumers are assumed
to browse the Web in a random process directed by
the network’s link structure. First, we supposed exoge-
nous per-click prices for in-links that increase in con-
tent. Later, we showed that with endogenous prices
this pattern is confirmed in equilibrium. In two exten-
sions, we introduced the presence of search engines
and the possibility for sites to establish reference

out-links to each other. In each case, we were inter-
ested in the equilibrium network structure as well as
sites’ differing incentives as a function of their content.
Overall, we found that in all equilibria, both adver-

tising and reference links point to higher content sites.
This result strongly supports the broadly accepted
search heuristic, which relies heavily on the number
of in-links to rank sites with respect to content. This
can explain, for instance, why Google’s PR algorithm
works so well in practice, by showing that in equi-
librium the number of in-links is positively related to
a site’s content. In contrast to in-links, the pattern of
out-links is markedly different for advertising and ref-
erence links. Sites tend to purchase advertising links
from lower content sites; i.e., the number of adver-
tising out-links is negatively related to the content of
a given site. In the case of reference links, however,
it is higher content sites that tend to establish more
out-links. We also show that, in the presence of search
engines, this structure becomes more pronounced.
These results provide useful guidelines for market-

ing managers on how to manage their firms’ site(s) in
terms of their connectedness in the Web. First, com-
petition seems to provide strong incentives for sites to
specialize in terms of their business models. Low con-
tent sites benefit more from the sales of traffic (adver-
tising) even though they can only price such traffic at
modest rates. High content sites, on the other hand,
benefit more from revenues earned from content sales
to consumers. These sites should charge high prices
for advertising links and, as a result, sell few of these.
Instead, they are better off attracting traffic by pur-
chasing advertising links. Because of this increased
traffic, high content sites also benefit more from refer-
ence links and should therefore establish more of such
links. Finally, if we consider multiple content areas,
then we can show that low content sites have an incen-
tive to specialize by area, while high content ones ben-
efit more from diversification. Translating to practice,
this may mean that in the context of e-commerce, for
instance, a strong online retail brand like Amazon.com
can afford to have a broad product assortment, while
a small retail brand may have to specialize in one cat-
egory to be successful.18

6.1. Limitations and Future Research
Our stylized model is limited in several ways. Prob-
ably the most severe limitation comes from our
assumptions on consumer behavior. We have assumed
away explicit consumer search and reduced it to a ran-
dom browsing process. More important, we ignored
consumer heterogeneity in preferences for content.
Such heterogeneity could be of two kinds: vertical

18 In our context, Amazon is a high content site in the sense that
consumers’ willingness to pay for items (books, CDs, etc.) at that
site is higher than their willingness to pay for the same items at
another online retailer.
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and/or horizontal. With respect to the first, while we
assume sites to be different in terms of content that
could be broadly identified with “quality,” we do not
model heterogeneity in terms of consumers’ willing-
ness to pay for content. Such considerations would
need to take explicitly into account sites’ pricing of
content that would make the model prohibitively com-
plex. Similarly, in one extension, we consider het-
erogeneity in consumers’ interest for certain “content
areas,” but we do not allow firms to influence this
interest. Again, this would require the explicit con-
sideration of pricing and maybe even the model-
ing of the advertising message (i.e., positioning).
Clearly, neglecting these important aspects of con-
sumer behavior limits the practical applicability of the
paper. Rather than providing very specific recommen-
dations for firms, our results should be interpreted
as broad structural patterns/tendencies spanning the
WWW. A more detailed modeling of consumers
(including search and heterogeneity in preferences) is
an obvious direction for future research.
Our model has important limitations on the firms’

side as well. For example, we assumed a generic profit
function across sites that only differed in terms of sites’
content. In doing so, we also neglected an important
aspect of advertising, the disutility that it represents
for consumers. In a technical appendix, we tackle this
problem and show that including advertising disutil-
ity does not change any of our results. Another lim-
itation is that sites are not allowed to strategically
choose their out-links. Rather, the creation of out-links
is only influenced by each site’s pricing strategy, which
in turn only depends on the distribution of prices.
This aspect of the model may not fully represent the
competitive dynamics between sites. For example, two
sites competing head on for consumers may not accept
advertising from one another even if they would do
so for other sites at a given price. Again, such idiosyn-
cratic relationships would change the micro-structure
of links around certain key sites. One could only spec-
ulate that, in these cases, rather than the regular pat-
terns of our equilibrium structures, one would expect
the emergence of clusters around a few large sites.
One way to account for a site’s strategic decisions

about out-links would be allowing sites to price dis-
criminate. In a possible generalization of the model,
sites could sell their out-links and charge different
(per-click) prices to different sites. We do not solve
this general model, but we conjecture that the equi-
librium structure would be similar to that in our sim-
ple model. High content sites would generally charge
higher prices, and a particular site’s price would be
increasing in the content of the potential buyer. The
intuition is that high content sites still want to sell
fewer links, thus charge higher prices, but they also
want to make the highest possible profit on sold links.

Therefore, a site would ask for a higher price if the
buyer is willing to pay more (if it has higher content).
Other ways to consider the strategic formation of out-
links and the resulting link structures is certainly a
valuable direction for future research.
Given the above limitations, one should naturally

ask, are the presented equilibrium network patterns
consistent with empirical evidence? In the technical
appendix, we compare our results to previous empiri-
cal work (Broder et al. 2000, Faloutsos et al. 1999) that
examined the degree distribution of the graph (i.e.,
the histogram of links) formed by the WWW. A broad
result found across these studies is that links follow a
scale-free power-law distribution with an exponent of
around 2. It is an empirical puzzle, however, that this
degree distribution is the same for both in- as well as
out-links. Our model can explain this pattern. Specifi-
cally, in the technical appendix, we establish the rela-
tionship between the degree distributions of in- and
out-links. In particular, we show that if either of these
is a scale-free power-law distribution with an expo-
nent of around 2, then in- and out-links follow the same
degree distribution as is the case in reality. As such,
our equilibrium network structure is more consistent
with the empirical features of the WWW than those
of previous theoretical models that do not consider
heterogeneity across sites and/or do not treat sites as
utility maximizing agents. In this respect, a key con-
tribution of our model is that it explains what drives
websites’ choices of links.
The WWW is a fascinating new medium with an

important effect on our economy and society. This
paper is just a small step toward understanding its
structure. As discussed above, there are many oppor-
tunities for both theoretical and empirical work to fur-
ther explore the drivers of its evolution.
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Appendix. Proofs
Proof of Proposition 1. First, we prove that if an equi-

librium exists, then it has to satisfy (i) and (ii). Although we
do not know the PR values, we know how a node’s rank is
related to its in-neighbors’ ranks. In particular

ri =
douti + 1

douti + 1− �

(
1− �

n
+ �

∑
j→i

rj

doutj + 1
)
� (12)

Therefore, we can transform (5) to

ui =
douti + 1

douti + 1− �

1− ��

1
n

(
ci −C + �qi

douti

douti + 1
)

+ �
∑
j→i

rj
1

doutj + 1

·
[

douti + 1
douti + 1− �

(
ci −C + �qi

douti

douti + 1
)
− qj

]
� (13)
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The first term does not depend on player i’s decision; there-
fore, it is enough to maximize the sum in the second term if
the other agents’ decisions are fixed. Player i makes a deci-
sion about which in-links to buy, hence s/he only decides
which terms to include in the sum. Thus, the sum is maxi-
mal if only those terms are included which are nonnegative.
Hence, player i buys a link from player j if and only if

douti + 1
douti + 1− �

(
ci −C + �qi

douti

douti + 1
)
− qj ≥ 0� (14)

This inequality shows that a node buys links from those
nodes for which qj is the lowest. Therefore, in an equilib-
rium, if qk < ql for a given pair of nodes 
k� l�, then the
nodes who buy from node l must form a subset of those
who buy from node k, implying that doutk ≥ doutl . Because
qk = q
ck�≥ ql = q
cl� and q is an increasing function, ck < cl

implies doutk ≥ doutl , completing the proof of part (i) of the
proposition.
To prove part (ii), we have to continue the above argu-

ment. Rearranging inequality (14), we get

T 
i� #= douti + 1
douti + 1− �


ci −C�+ �qi

douti

douti + 1− �
≥ qj � (15)

Node i buys a link from node j if and only if this holds. If
prices are such that T 
i� is increasing, then the number of
bought links is increasing in content. We can ensure this by
assuming

qi ≤ ci

�

1− �
� (16)

However, in §4.2, we will show that if sites are allowed
to set prices, T 
i� will be increasing. Therefore, if ck < cl,
that is, k < l, then T 
k� < T 
l�; hence, site l buys more links
than site k. The threshold increases as the content increases;
therefore, the in-degree is an increasing function of the con-
tent. As a consequence of the special structure of the graph,
if a node has higher content than another, it not only buys
more links, but also the set of nodes s/he buys links from
contains that of the lower content nodes. Because PR is a
linear combination of those pages a node buys links from,
this ensures that PR is also increasing in content, proving
part (ii).
Finally, we will prove that at least one equilibrium exists.

We will use the result that any game with convex and com-
pact strategy space and continuous payoff function, which
is quasi-concave in the players’ own strategies, has a pure-
strategy Nash-equilibrium. Although the strategy space in
our case is discrete, we will extend it. We will allow the
sites to establish partial links. If a site establishes a link par-
tially with weight 0< w ≤ 1, it only pays w fraction of the
price and gets w proportion of the traffic. Fixing the other
player’s actions, let

Uj→i
w� = wrj ·
1

doutj + 1

·
[

douti + 1
douti + 1− �

(
ci −C + �qi

douti

douti + 1
)
− qj

]
(17)

denote the payoff of establishing link j → i with weight w
for node i. These Uj→i
w� functions are linear; therefore, the
payoff function is quasi-concave, as it is the sum of these

functions. Because we extended the strategy space, it is com-
pact and convex. Also, the payoffs are continuous and con-
cave in the players’ own actions, and hence an equilibrium
exists. Furthermore, in this equilibrium, a player will only
establish a partial link if s/he is totally indifferent about the
link. If a site has a profit increase from establishing a link
partially, it has an even higher increase from establishing it
fully. In equilibrium, however, a player can only be indif-
ferent about one link. Therefore, in this equilibrium, every
player will establish at most one partial link, the rest of the
links will be either fully or not established. Notice also that
we only show the existence of an equilibrium, but this may
not be unique. �

Proof of Proposition 2. We begin by proving that if q
i�
is increasing and q
i� ≤ 
�/
1− ���c
i�, then in any equilib-
rium din
i� is also increasing and dout
i� is decreasing. Simi-
larly to the discrete case, player i buys a link from player j
if and only if

dout
i�+s

dout
i�+s
1−��

c
i�−C�+�q
i�

dout
i�

dout
i�+s
1−��
≥q
j�� (18)

This shows that a node buys links from those nodes for
which q
j� is the lowest. Therefore, in an equilibrium, if
q
k� < q
l� for a given pair of nodes 
k� l�, then the nodes
who buy from node l must form a subset of those who buy
from node k, implying that dout
k�≥ dout
l�; therefore, dout
i�
is decreasing.
To prove that din
i� is increasing, we have to continue the

above argument. We repeat inequality (18)

T 
i� #= dout
i�+ s

dout
i�+ s
1− ��

c
i�−C�

+ �q
i�
dout
i�

dout
i�+ s
1− ��
≥ q
j� (19)

to recall the decision rule of a node. The left hand side
defines a T 
i� threshold for node i, deciding from which
nodes to buy links. The number of links bought buy node i
depends on this quantity. The higher T 
i� is, the more links
it buys. If, for example, q
i� ≤ 
�/
1 − ���c
i�, then T 
i� is
increasing. Furthermore, we will show in Proposition 3 that
T 
i� is increasing if players set their prices. Finally, if T 
i� is
increasing, din
i� will also be increasing.
To prove the existence of an equilibrium, we will use

Tikhonov’s fixed point theorem (Istratescu 1981). It states
that if X is a compact convex subset of a locally convex
topological vector space (X) and f # X → X is continuous,
then f has a fixed point. Recall Equation (18), describing
the decision rule of player i. Player j sells links to the nodes
that satisfy T 
i� > q
j�. Therefore,

dout
j�=�
i � T 
i� > q
j��� (20)

Let L
j� denote the right hand side of Equation (20), which
is a measurable function if dout
� is measurable. A function
dout
j� satisfying dout
j�=L
j� must represent an equilib-
rium. We will show that the operator mapping L
� to the
function dout is continuous. Since q is a continuous function,∫ �
0 �T −1
j�−T ′−1
j��dj≤c1

∫
I �d
i�−d′
i��di with a suitable c1

constant, where T 
� and T ′
� are the threshold functions cor-
responding to d
� and d′
�, respectively. Also, let L
� and L′
�
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denote the functions that the operator assigns to d
� and d′
�.
Then,

∫ �
0 �L
j�−L′
j��dj=∫ �

0 �T −1
j�−T ′−1
j��dq
j�. Because
q
j� is continuous on a compact set, it has to bounded;
therefore,

∫ �
0 �T −1
j�−T ′−1
j��dq
j�≤c2

∫
I �d
i�−d′
i��di—

hence, the operator is continuous. We will apply Tikhonov’s
theorem to this operator on the normed space of L1 functions
on [0�1]. The fixed point of this operator must satisfy (20);
thus, it represents an equilibrium of the game. However, the
equilibrium may not be unique. �

Proof of Proposition 3. Let us consider a refined SPNE

q�E
q�� and look at the optimization problem that a site
faces in stage one. Let 2 denote q
i�, that is, the decision
variable of site i in stage one. We have seen in the Proof
of Proposition 2 that in the second stage a site essentially
only decides how many links to buy and establishes them
from the cheapest sites. Let 3 denote din
i�, that is, the deci-
sion variable in the second stage. Let D
2� be the aggregate
demand for out-links in the second stage (in the equilib-
rium E
q�), that is, the measure of the set of sites that want
to buy a link from site i (or any site). Let K
3� denote the
cost of 3 links, that is, K
3�= ∫

j→i p
j� dj . Obviously, K
3� is
increasing and D
2� is decreasing. Also, rewriting (6) PR is

r
i�= douti + s

douti + s
1− ��

(

1− ��+ �

∫
x→i

r
x�

dout
x�+ s
dx

)
�

Decomposing this into two factors, let

r1
2�=
D
2�+ s

D
2�+ s
1− ��

denote the first factor and

r2
3�= 
1− ��+ �
∫
x→i

r
x�

dout
x�+ s
dx

the second. Then, rewriting the utility function, we have

ui
3� 2�= r2
3�r1
2�

(
c
i�−C + �2

D
2�

D
2�+ s

)
−K
3�� (21)

Because 
q�E
q�� is a refined SPNE, 2 and 3 have to maxi-
mize this function, as if the price and in-link decisions were
simultaneously made. If we fix i, the solution of the maxi-
mization problem in 2 is the same for all 3s. This optimal
2∗
i� is increasing in i, because the function

T 
i�2� = r1
2�

(
c
i�−C+�2

D
2�

D
2�+s

)

= D
2�+s

D
2�+s
1−��

c
i�−C�+�2

D
2�

D
2�+s
1−��
(22)

has increasing differences in 
i� 2�, as the term that contains
both variables is a product of two increasing functions (of
i and 2 , respectively). Furthermore, the optimal T , that is,
T ∗
i�= T 
i� 2∗
i��, is also increasing, because if l > k then

T ∗
l�= T 
l� 2∗
l��≥ T 
l� 2∗
k�� > T 
k� 2∗
k��= T ∗
k��

Therefore, in equilibrium both q
i� and T 
i� are strictly
increasing (if c
i� is strictly increasing); hence, the second
stage results hold. �

Proof of Proposition 4. We will show that the pay-
off function has increasing differences in the players’ own
decisions 
d

inA
i � d

outR
i � and in the pairs composed of an own

decision variable and another player’s decision variable.
Although (9) is not written as a direct function of other
players’ decisions, these are captured by d

inR
i and d

outA
i .

If another player buys more advertising links, d
outA
i either

increases or does not change. If another player establishes
an extra reference link, d

inR
i does not change or increases.

Then, it is straightforward to check that the payoff func-
tion has increasing differences in the above mentioned vari-
able pairs, because with the exception of f 
·� ·�, which has
increasing differences in its variables by definition, the rele-
vant terms are always products of functions that are increas-
ing in the variables in question.
Therefore, the game is supermodular; hence, we can use

the machinery introduced by Topkis (1998). In Chapter 4
he describes the characteristics of the equilibria. It follows
from supermodularity that the pure-strategy equilibria of
the game form a nonempty complete lattice with a great-
est and a least element where the former is Pareto-optimal.
Moreover, we can show that any equilibrium has the fol-
lowing special structural properties.
One can see that if a node selects how many reference

links to establish, it connects these to the highest content
nodes. Also, every node buys advertising links from the
cheapest nodes, hence we obviously have d

inR
i ≥ d

inR
j if

ci > cj and d
outA
i ≤ d

outA
j if pi > pj ; that is, if ci > cj . Now, we

have to show that in equilibrium, the actions of players are
increasing with respect to their content.
Because every node buys advertising links from the low-

est content nodes and establishes reference links to the
highest, the two decision variables of site i are only the
number of links to establish: d

inA
i and d

outR
i . It is easy

to see that the payoff function has increasing differences
in the pairs 
d

inA
i � d

outR
i �, 
d

inA
i � i�, and 
i� d

outR
i �, checking

the terms that contain two of the variables in question.
Therefore, the optimal decisions 
d

inA∗
i � d

outR∗
i � are increasing

in i. That is, if i > j (i.e., ci > cj ), then d
outR∗
i ≥ d

outR∗
j and

d
inA∗
i ≥ d

inA∗
j . �
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