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This article discusses the diffusion process in an online social network
given the individual connections between members. The authors model
the adoption decision of individuals as a binary choice affected by three
factors: (1) the local network structure formed by already adopted
neighbors, (2) the average characteristics of adopted neighbors
(influencers), and (3) the characteristics of the potential adopters.
Focusing on the first factor, the authors find two marked effects. First, an
individual who is connected to many adopters has a greater adoption
probability (degree effect). Second, the density of connections in a group
of already adopted consumers has a strong positive effect on the
adoption of individuals connected to this group (clustering effect). The
article also records significant effects for influencer and adopter
characteristics. For adopters, specifically, the authors find that position in
the entire network and some demographic variables are good predictors
of adoption. Similarly, in the case of already adopted individuals, average
demographics and global network position can predict their influential
power on their neighbors. An interesting counterintuitive finding is that the
average influential power of individuals decreases with the total number
of their contacts. These results have practical implications for viral
marketing, a context in which a variety of technology platforms are
increasingly considering leveraging their consumers’ revealed connection
patterns. The model performs particularly well in predicting the next set of
adopters. 
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Although marketers have long recognized the importance
of word of mouth (WOM) in influencing consumer deci-
sions, it has been difficult to measure the impact of WOM
and to use it efficiently for commercial purposes until
recently. Modern technology, however, has gradually trans-
formed social interactions among people. On average, people
spend more time communicating with the help of technology

platforms (e.g., phone, VoIP [voice over Internet protocol],
e-mail, chat), and their frequent contacts are readily avail-
able to the owners of these communication platforms. With
the emergence of Web 2.0 technologies, media such as
blogs, instant messaging (e.g., msn.com), and social net-
working websites (e.g., Facebook.com) are becoming ubiq-
uitous, and they all provide a “map” of communication
paths among their users. Social networking sites such as
MySpace and Facebook are particularly interesting exam-
ples. They represent rich and popular communication inter-
faces for hundreds of millions of users. On these sites, users
exhibit their demographics as well as their preferences by
carefully editing (decorating) their profiles. More important,
they explicitly link to their friends and, in doing so, reveal
their likely communication patterns. In the past five years,
social networks have populated the world, often attracting a
critical proportion of a country’s population. Cyworld, for
example, claims to count more than 40% of Koreans among
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its membership base, whereas Facebook has more than 400
million members worldwide, recently surpassing Google in
becoming the most visited website in the United States. 

The increased importance of technology platforms for
social interactions has raised the interest of product marketers
who want to explore them as new advertising/promotion
media. Indeed, social networks’ revenue models are based
primarily on advertising, though so far, the use of (mostly)
banner-type advertising has produced disappointing results
(e.g., BusinessWeek 2008; The Economist 2007). Marketers
increasingly believe that the efficient way of using social net-
works for marketing relies on harnessing WOM by analyzing
the network of members’ connections. For example, Google
recently filed a patent for an algorithm that identifies so-
called influencers on social networks. Several other firms
(e.g., Idiro, Xtract) provide network analysis for the telecom-
munications sector and for various Web 2.0 platforms to
assist in viral marketing campaigns. Indeed, social networks
represent but one area in which network analysis might be
used for WOM marketing. Other technologies (e.g., blogs,
telecommunications, virtual worlds) that record consumers’
communication patterns are also adapted to such techniques.
In all these cases, the essential idea is that understanding the
network structure of individual consumers can help imple-
ment effective viral marketing strategies. 

The assumption that underlies all these “network-marketing”
techniques is that network information can help identify
influencers and predict consumers’ adoption probabilities.
The goal of this article is to verify this assumption and iden-
tify how the network structure drives adoption. To be spe-
cific, we develop and empirically test an individual-level
diffusion model that explicitly takes into account the
microstructure of interpersonal connections among poten-
tial adopters. Our empirical application studies the growth
of a country-specific social network site for which member-
ship can be acquired only by receiving an invitation from an
existing member. In this context, we study the adoption
process of network memberships at an early stage of the
site’s development. We assume that the social network site
gradually replicates people’s real-life social connection pat-
terns. Thus, by recording the site’s membership network at
a much later point in time, we can assume that it reflects
people’s real-life social networks accurately. Then, we can
retroactively observe a diffusion process of membership on
this “ultimate” or “final” network.1

Our primary research objective is to uncover the effects
of differences in individuals’ connection patterns on the dif-
fusion process. Motivated by both conceptual and practical
considerations, we distinguish three factors that may affect
a potential adopter’s adoption decision. The first factor,
which we call “network effects,” relates to the influence of
the structure of connection patterns of the potential
adopter’s already adopted neighbors. The second factor,
which we call “influencer effects,” refers to the (average)
individual characteristics of already adopted network mem-

bers on their not-yet-adopted neighbors. In contrast to 
the previous factor, which concentrates on the impact of the
structure, for influencer effects we essentially measure the
(average) influential power of every adopter. The average
characteristics that describe influencers may be demograph-
ics, such as age, but they also may include measures that
describe the global network position of the influencers—
that is, their position in the final social network observed.
The third factor, called “adopter effects,” captures the
effects of the adopter’s individual characteristics. For influ-
encers, these characteristics include both demographics and
characteristics that describe the adopter’s global network
position. Depending on data availability and legislative con-
straints, marketers can use each of these categories of vari-
ables to identify potential marketing targets to influence the
adoption process. They can target members of the network
who have already adopted the promoted product or poten-
tial adopters who have yet to adopt. In both cases, potential
marketing targets can be selected on the basis of their indi-
vidual characteristics or, alternatively, of the local network
structure that surrounds them. Our model helps identify
potential adopters by predicting the next set of adopters sub-
stantially better than models based solely on demographic
variables. 

In our choice of network variables, we rely on diffusion
theory and previous research in sociology. In particular, indi-
viduals who are related to many already adopted members
may have greater adoption probability because their related
partners can provide more information about the service or
innovation in question and ultimately exercise greater joint
influential power. We call this the “degree effect,” after the
number of connections (degree) an individual has. In addi-
tion to the number of connections, the density of connections
in a group of already adopted users may also affect the adop-
tion of individuals being linked to the members of this group.
A more tightly connected group should have a stronger influ-
ence on its members; we call this the “clustering effect.” We
find strong empirical evidence to support the presence of
both the degree and clustering effects, as well as a positive
interaction between them. 

Beyond network effects, we also find strong influencer
and adopter effects on the adoption probability of potential
network members. For example, some demographic charac-
teristics (e.g., age, gender) can predict adopters’ influential
power on their neighbors. In a similar way, demographic
variables can also predict potential adopters’ propensity to
adopt. More interesting is that variables that describe indi-
viduals’ position in the social network (e.g., the number of
their contacts, how connected these neighbors are, the
extent to which they are interconnecting parts of the net-
work) are also good predictors of both influential power and
adoption propensity. From both theoretical and practical
perspectives, a particularly interesting empirical result is
that the average influential power of individuals is lower the
larger their social network is. This result suggests that hav-
ing a high number of friends dilutes the influential power
that an individual has on each of his or her friends. We also
find some evidence to indicate that the same influential
power is greater the more the actors occupy a “brokering”
position among their contacts. 

We organize the rest of the article as follows. Next, we
place our work in the context of the extant literature and
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1It is important to realize that we do not study a network growth or net-
work formation process but rather a diffusion process on an already exist-
ing network of potential adopters; the results depend on the validity of the
assumption that we have indeed captured the relevant social network by
observing the membership network at a late stage. In our empirical appli-
cation, we test this assumption in various ways (see the “Network Dynam-
ics” subsection).
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highlight our points of departure. Then, we set up the sto-
chastic network-based diffusion model and introduce the
network measures used. We then present our empirical
analysis, including extensive validity tests. Finally, we dis-
cuss the results, provide our conclusions, and highlight a few
limitations.

RELATED LITERATURE

Our work draws on two broad research streams: (1) the
marketing literature on new-product diffusion and (2) the
sociology literature on social network analysis. The large
body of quantitative research on new-product diffusion is
based on models that, for the most part, ignore connection
patterns among individuals. Like most of its generalizations,
the Bass (1969) model implicitly assumes that every con-
sumer is connected to every other consumer and estimates a
uniform interpersonal influence (interpreted as WOM) on
this (assumed-to-be) complete network. This assumption
typically also applies to diffusion models that take into
account consumer heterogeneity.2 Although these models
allow for heterogeneous WOM effects, they still ignore the
network structure of the adopter population. Given the cen-
tral role of WOM communication for the diffusion process,
there has been a call in the literature to incorporate the fine-
grained structure of interpersonal connections into diffusion
models (see Mahajan 1993; Mahajan, Muller, and Bass
1990). Although various models have been developed to
address this call (e.g., Goldenberg, Libai, and Muller 2001,
2002; Shaikh, Rangaswamy, and Balakrishnan 2005; for a
review, see Valente 2005), these models could only be tested
on aggregate data.3

In recent years, various technological innovations have
made it possible to access network data on the interpersonal
relationships between consumers. Empirical studies have
developed and used models to assess the impact of network
characteristics on the diffusion process. For example, Godes
and Mayzlin (2004) study how WOM can be a driver of per-
sonal preferences in an environment in which consumer
communication via newsgroups is observed. Van den Bulte
and Lilien (2001) analyze the Medical Innovation data set,
which tracks the medical community’s understanding of a
new drug. To obtain the structure of WOM, they combined
data from two overlaid relationship networks (“discussion”
and “advice”) to get a social-influence weight matrix over
the doctors whose behavior was recorded. They then esti-
mated an individual-level diffusion model to demonstrate
that earlier findings on social contagion over the same net-
work were confounded with the marketing efforts (pricing
and promotion) of the manufacturer. Nair, Manchanda, and
Bhatia (2010) study physician prescription behavior and find
that opinion leaders in the physician’s reference group may

have a significant influence on the physician’s behavior. In
another domain, Hill, Provost, and Volinsky (2006) use
telecommunication data to provide evidence that customers
who communicated with a customer of a particular service
have an increased likelihood of adopting that service. Iyen-
gar, Van den Bulte, and Valente (2008) investigate the rela-
tionship between self-reported leadership and sociometric
leadership, that is, when a person is nominated by others as
someone to whom they turn for advice. They find that these
two types of opinion leaderships are only weakly correlated
and that there are significant differences in the adoption
behaviors of different types of opinion leaders. Studying a
different type of network, Stephen and Toubia (2010) exam-
ine the role of the link structure in seller networks in which
links facilitate customers’ navigation between stores. They
find that the network had a positive overall effect on store
performance and that the position of stores in the network
had a significant effect on their profitability.

Our work directly follows this stream of research. Our
primary goal is to understand how network characteristics
(particular patterns of connections between already adopted
network members) may influence the adoption probabilities
of their not-yet-adopted peers. To establish this relationship,
we estimate a discrete-time proportional hazards model.
This approach is the same one that Bell and Song (2007)
follow to estimate network effects on purchase behavior
across regions in the United States. However, because our
data set enables us to observe the individual network con-
nections of participants, we are able to use the same
approach to study the impact of personal network structure
on adoption. 

Sociology researchers have extensively studied how net-
work structure affects social influence, though only in small
social networks.4 Krackhardt’s (1998) influential study sug-
gests that when assessing the influence that individuals’ con-
tacts have over them, researchers should not only count the
number of related actors but also examine how those relation-
ships are embedded in the entire network of relationships.
Coleman (1988) and Burt (2005) establish two important
social phenomena, which may be tied to structural properties
of the network. When two related individuals are connected
to the same third parties, the network becomes more effective
at transmitting information, and the affected relationships
ultimately become stronger. Burt (2005) labels this “network
closure.” He argues that the shared third parties create redun-
dant paths for information flow, leading to increased trust
between the two related actors. As a consequence, friends of
individuals in social networks are typically densely connected
to one another compared with the average connectivity in the
network (Watts and Strogatz 1998). This result is consistent
with those of Granovetter (1973) and Rogers (2003), who
state that social networks in general consist of clusters of
densely connected individuals with strong ties among them
and sparse weak ties connecting such clusters to each other.
Burt (2005) highlights another phenomenon related to
the structural properties of social networks—namely, that
 individuals interconnecting these clusters may have greater
influence on their peers because they have control over infor-
mation that originates from other groups. This phenomenon

2For early papers, see, for example, Oren and Schwartz (1988); Urban
and Hauser (1993); for more recent applications, see, for example, Golden-
berg, Libai, and Muller (2002); Van den Bulte and Joshi (2007).

3Goldenberg, Libai, and Muller (2001, 2002) generate adoption data by
applying stochastic cellular automata models to simulate the diffusion
process on a two-dimensional grid. Goldenberg, Libai, and Muller (2002)
compare the results of their simulations with consumer electronics sales
data to explain double-peaked diffusion curves, observed in many product
categories. Shaikh, Rangaswamy, and Balakrishnan (2005) develop a diffu-
sion model that takes into account local network characteristics. They
demonstrate how it may be used to infer structural properties of the con-
sumer network from aggregate sales data.

4See also relevant early studies in marketing by Reingen and Kernan
(1986) and Reingen et al. (1984).



is termed “brokerage,” and the argument is often cited as
structural hole theory (Burt 2005). These arguments provide
critical input for our network measures. 

Our model is based partly on the approaches that Holtz
(2004) and Shaikh, Rangaswamy, and Balakrishnan (2005)
propose. However, these studies do not estimate the adop-
tion process at the individual level. The former author
attempts to disaggregate the Bass (1969) model to the net-
work level and uses simulations to confirm the results,
whereas the latter authors compare the fit of a small-world-
based diffusion model with the traditional models using
aggregate-level data. In contrast, in the current study, we
develop and estimate an individual-level diffusion model in
which each individual is described by both his or her local
network characteristics and demographic information. At
any point during the adoption process and for each potential
adopter, we compute the network spanned by his or her
already adopted peers. We then estimate how the structure
of the network of his or her adopted peers affects the adop-
tion probability of the potential adopters. In addition, we
also show empirically how network characteristics of
already adopted individuals may predict their influential
power on others. The estimates also provide insights into
some of the common sociological theories in network
analysis. In the next section, we present our model.

MODEL

The Adoption Process 

To examine the process of diffusion over a social net-
work, we use a hazard-rate model. We assume that all mem-
bers of the network are potential adopters of a certain prod-
uct or service. The relationships among network members
serve as paths for WOM communication, through which
network members may influence each others’ adoption. We
denote such a social network by G(V, E), where V is the set
of potential adopters and E is the set of symmetric binary
relationships among members of V.

By neighbors of a potential adopter v, denoted as N(v),
we refer to those network members (actors) who are con-
nected to v. That is, N(v) = {w | w  V and {v, w}  E}. The
degree of a node, d(v), then the number of its neighbors:
d(v) = |N(v)|. For notational convenience, we further define
an indicator function of the relationships in the network. For
every v1, v2  V,we let

We assume that at the start of the diffusion process, a
small set of actors, A0  V, have already adopted the inno-
vation in question. We then model time in a discrete way. In
every time step, some actors adopt the innovation, resulting
in the series A0  A1  ...  AT, where At denotes the set of
actors in the network who have adopted the innovation dur-
ing the first t steps. For the individuals in the network, let Tv
denote the adoption time of actor v, yielding 

It is important to make the distinction between the overall
social network and the subnetworks induced by At. The net-
work G(V, E) defined on the entire set of individuals V (the
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potential adopters) remains unchanged throughout the
process. However, as the number of adopters increases over
time, At covers an increasingly larger subset of V. The net-
work induced by At consists of the nodes of At and links of
the original network G(V, E) leading between two already
adopted members (of At). If we were to plot the network
induced by At for every t < T, with the overall network in the
background, we could see how the innovation diffused
across the network over time.

In our model, the adoption likelihood of potential adopters
depends on their individual propensity to adopt and on the
influence of their neighbors who have already adopted. As
explained previously, we distinguish conceptually among
three types of influences. First, (local) network effects refer
to the impact of the structure of connection patterns among
the potential adopter’s already adopted neighbors. Thus, in
this case we consider only the networks that are induced by
At for a given time t. Figure 1 illustrates this phenomenon:
The network among the black nodes 1, 2, and 3 may influ-
ence the adoption likelihood of later adopter 8. It is impor-
tant to emphasize that these network effects do not distin-
guish individuals in the personal networks of potential
adopters; only the local network structure drives such effects.
Over time, this local network changes as more and more
neighbors of the potential adopter adopt themselves. As
such, network variables are time-varying covariates. 

Second, influencer effects refer to the impact of average
individual characteristics of already adopted network mem-
bers on their not-yet-adopted friends. These average charac-
teristics may be demographics (e.g., age), but they also may
include measures that describe the global network position
of the influencers—that is, their position in the final friend-
ship network, G. Although these measures do not change
over time for a single influencer, because we measure the
average effect of influencers, these variables also become
time-varying covariates as additional influencers adopt the
innovation. Influencer effects may affect multiple potential
adopters. Figure 2 illustrates this point: The already adopted
actor 8 may affect the adoption likelihood of later adopters
9, 10, 12, and 13, indicated by black nodes. We assume that
such personal influences are the same on all of the influ-
encer’s later-adopting neighbors. 
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Figure 1

“NETWORK EFFECTS”: ThE SET OF ADOPTED NEIghBORS 

S = {1, 2, 3} INFLUENCES ThE ADOPTION LIKELIhOOD OF

LATER ADOPTER v = 8



Network Effects and Personal Influences 429

Finally, we consider adopter effects, which refer to the
impact of the adopters’ individual characteristics on their
adoption propensity. These are constant variables over time.
Again, some of these measures are demographic variables,
but we also include the overall network characteristics of a
certain adopter, for example, the total number of connec-
tions an individual has in the final network, G. (By consid-
ering the number of real-life friends an individual has, we
control for differences in individuals’ propensity to make
friends.) To capture the effects just described, let f denote
the influence function f:2v  V  [0, 1], which we interpret
as follows. If an actor v  V has not yet adopted by time t,
the probability that it adopts at time (t + 1) is f[N(v)  At, v],
that is, a function of the set consisting of the neighbors of
the actor who have already adopted and the actor itself. For-
mally,

(1)

Thus, the function f(S, v) captures both the propensity of
actor v to adopt the innovation in question and the strength
of influence the set of adopted neighbors S  V has on actor v.
(Note that our model formulation also allows for individual
characteristics of members of S to influence the adoption
likelihood of v.) To estimate the effect of certain structural
properties of the network on adoption probabilities, we
interpret the daily adoption decisions as binary choices of
actors between adoption and nonadoption. There are a num-
ber of different link functions that can be used to model
such binary decisions as dependent variables, including the
most frequently used logit and probit. We use the comple-
mentary log–log link function formulating the equation 

(2)

where X(S) is a set of variables that describe the local net-
work structure, W(S) is a set of variables that describe the
average characteristics of the members of S (the influencers),
and Z(v) is a set of node-specific (i.e., adopter-specific)
covariates. The choice of the complementary log–log trans-
formation has two important advantages over the logit and
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probit functions. First, the so-derived discrete-time parameter
estimates are also the estimates of an underlying continuous-
time proportional hazards model (Prentice and Gloeckler
1978). In addition, the complementary log–log link also
enables us to directly relate our model to hazard-rate models
with utility-maximizing consumers (Bell and Song 2007).

We also note that the complementary log–log and logit
formulations yield similar results for small probabilities.
However, in addition to enabling a direct interpretation of
the results as hazard ratios, the complementary log-log method
also provides a slightly better fit in such cases.

Measures

Network effect measures. We begin by discussing the
effects that the local structure of already adopted friends has
on the adoption likelihood of an individual. We keep the
notation S = N(v)  At for convenience. The first network
effect measure is degree. The most natural question to ask
regarding the influence of an actor’s adopted neighbors is
how their number affects the likelihood of the actor’s adop-
tion. Granovetter (1973) and Valente (2005) suggest that
one friend may have a greater impact on an actor’s behavior
when the actor has, in total, fewer friends. Thus, we choose
our first local network variable to be the proportion of
already adopted friends5:

It is intuitive that if a person has more friends already using
a certain service or product, he or she will adopt with a
greater probability. Thus, we expect degree to have a posi-
tive effect on adoption probability.

Our second local network variable is the clustering coef-
ficient, which measures the extent to which a set of mem-
bers are interconnected. It is clear that this measure might
be relevant in a context in which these members exert an
influence on another member. The definition of the cluster-
ing coefficient is as follows:

where the numerator counts the number of links among the
already adopted neighbors of v and the denominator is the
maximum number of relationships possible among them.
Network closure theory (Burt 2005; Coleman 1988) pro-
poses that if two actors related to the same individual are
also related to each other, they have greater power over that
individual than if they were unrelated. In our context, we
could expect that if a potential adopter hears about the
social network service from two friends, the attractiveness
of the service is greater when these two friends also know
each other. Thus, the density of relationships among
adopted friends of potential adopters may affect their adop-
tion likelihood. On the basis of this stream of research in
sociology, we expect that clusteredness has a positive effect
on adoption probability.
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Figure 2

“INFLUENCER EFFECTS”: ChARACTERISTICS OF 

ACTOR v = 8 AFFECT ThE ADOPTION LIKELIhOOD 

OF ALL LATER ADOPTERS 
w  = 9, w  = 10, w  = 12, w  = 131 2 3 4

5Subsequently, we explore an alternative formulation in which we use
the number of adopted friends an individual has.



As we already discussed, on average, a higher clustering
coefficient indicates stronger relationships. However, keep-
ing the density of one’s personal network constant, the num-
ber of relationships in the network increases quadratically
with the number of related actors. In other words, a larger
personal network with the same clustering coefficient
requires more ties per neighbor between its members.
Therefore, we expect that larger personal networks with the
same clustering coefficient indicate a stronger network clo-
sure. In other words, we expect a positive interaction effect
between the degree and clustering variables. To this end, our
third variable becomes the degree–clustering interaction:

Influencer measures. For influencer measures, we focus
on the variables that describe the characteristics of the indi-
viduals who may influence a potential adopter. The first
variable is “influencer total degree.” Opinion leaders have
always been a focus for marketers. They are considered
important targets for marketing communication. Nair, Man-
chanda, and Bhatia (2010) empirically show that in referral
networks of physicians, opinion leaders significantly alter
the behavior of other individuals in the networks. Studying
the aggregate impact of influencers on diffusion, Watts and
Dodds (2007) ran a series of computer simulations. They
show that the structure of social influence may decrease the
relative importance of highly connected individuals over a
critical mass of easily influenced individuals. Goldenberg et
al. (2009) examine this issue in an empirical study and find
that members of a social network with large network
degrees (hubs) actually had a larger-than-average overall
impact on adoption. In our model, we revisit this question,
but we focus strictly on the microlevel effects of high net-
work degree. We analyze how the average influence of
adopted network members on their later-adopting friends
depends on the total number of friends these adopted actors
have. That is, our first influencer variable is the average
number of connections that potential adopters’ friends have:

Lin (1999) argues that in social networks, the larger the per-
sonal network of actors becomes, the easier it is for these
actors get access to more diverse social resources. Goldenberg
et al. (2006) also find support for this argument: Surveying
consumers’ opinion-seeking habits, they identify conditions in
which social connectivity is more important for opinion lead-
ership than product expertise. In the context of our analysis,
however, social status alone is insignificant to influence the
behavior of not-yet-adopted individuals: New adopters had to
be actively informed about this novel type of service. Personal
communication (at least one of the adopted friends sending an
invitation, plus perhaps other, potentially offline conversa-
tions) had to precede every adoption, and many of the instru-
mental actions Lin (1999) mentions were not supported by the
medium. For this reason, we argue that the average intensity
of friendships of an actor likely diminishes with the number of
friends the actor has. This is also consistent with the findings
of Stephen, Dover, and Goldenberg’s (2010) recent marketing
study and with early sociological work by French and Raven

X (S) = X (S) X (S)3 1 2× .

W (S) = 

d(w)

S
1 w S∈

∑
| |

.

(1960), who suggest that people only have a limited amount
of influential power. In other words, although it is likely that
highly connected individuals have a high degree of influence
on their closest ties, it is also likely that they could not spend
much time communicating with all of their friends. In sum-
mary, we expect that the average influential power of actors
(on average over all actors) decreases with the total number of
friends the actors has. 

The second variable is “betweenness.” Freeman (1977,
1979) defines the “betweenness centrality” of v so that for
every pair (s, t) of the other nodes in the network, if v lies
on the shortest path between s and t, then that pair of nodes
contributes to the betweenness centrality of v. The intuition
behind such a definition is that if a message traveling from s
to t must pass through v, then the structure of connections
indeed increases the influence of v over t (and, in an undi-
rected network, over s, because the roles of source and des-
tination are interchangeable).

Although such influence may be present in general (e.g.,
organizational) social networks, we argue that in our net-
work of real-life friendships, the influence is irrelevant if s
and t are not actually neighbors (friends) of v; that is, we
argue that influence depletes rapidly with additional inter-
mediaries. Therefore, we propose a definition for local
betweenness to focus on structural holes at v by examining
only pairs of neighbors of v:

(3) 

For every unrelated pair of actors (s, t) among the neighbors
of v, the contribution of the pair (s, t) to the betweenness of
v is inversely proportional to the number of two-step paths
between s and t. For simplicity, hereinafter, we refer to the
local betweenness measure as “betweenness.”

Figure 3 illustrates the concept. In the network on the left,
actor 1 interconnects the pairs of not-related actors (2, 4)
and (3, 4) but not (2, 3), because actors 2 and 3 are related in
that network. Because actor 1 is the intermediary of the only
two-step path between actors (2, 4) and (3, 4), B(v) in Equa-
tion 3 becomes actor 2. In the same figure, on the right-hand
side, actor 1 interconnects the same two pairs of not-related
actors. However, actors (2, 4) are also connected through
actor 5, whereas actors (3, 4) are also connected through

B(v) = 
e(s, v)  e(v, t)  [1 e(s, t)

e(s t V
w V

≠ ∈
∈

∑ ∑
−× × ]

ss, w)  e(w, t)×
.
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Figure 3

SAMPLE NETWORKS TO ILLUSTRATE LOCAL BETWEENNESS

Notes: In the network on the left, the local betweenness of actor 1 is 2,
whereas in the network on the right, actor 1’s local betweenness is 5/6.
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both actors 6 and 7. In this way, B(v) becomes 1/2 + 1/3 =
5/6.

To account for the effect of local betweenness on the
adoption likelihood of v, we take the average betweenness
of v’s neighbors at the time of the adoption decision. Thus,
our second influencer variable becomes

(4)

How does this variable affect adoption probabilities?
Besides network closure, Burt (2005) details another struc-
tural pattern of network connections that may alter the influ-
ential power of network members involved. When an actor is
interconnecting two otherwise not well-communicating parts
of a network, we talk about a structural hole in the network.
The interconnecting actor may be able to broker information
between the two sides. It is clear that such brokers may have
greater influence over related actors on both sides of the net-
work. Thus, the literature on structural holes would suggest
that structural holes increase the influential power of bro-
kers. However, when the personal network of an actor has
two parts that otherwise do not communicate, the influence
of the actor in the middle of the structural hole is governed
by two opposing effects. It may increase with the sizes of the
corresponding parts because of the greater social status that
brokerage gives, but as we pointed out previously, as the per-
sonal network grows larger, on average, these relationships
become weaker, and the influence of the brokering actor on
his or her potential adopter friends may decrease.

Control variables. In addition to the variables outlined
previously, we use a number of control variables in our esti-
mations. Because of the lack of theory, we do not have
explicit predictions on the effect of these measures. How-
ever, from a practical perspective, including them in the
estimation may be interesting, because they can help  predict
adoption probabilities and identify influential  consumers.

One of our control variables is the influencer’s clustering
coefficient in the final friendship network. As we discussed
previously, this variable is a proxy for how dense the influ-
encer’s network is. Furthermore, we examine the effect of
two demographic variables. In particular, we examine how
an influencer’s age and gender affect his or her influential
power. As in the case of the network variables, we take an
average over the neighborhood of the individual. For exam-
ple, in the case of age, the variable is as follows: 

For gender, we simply include the proportion of females
within S. 

Adopter measures. This group of variables measures how
the characteristics of potential adopters affect their likeli-
hood of adoption in each time period. Again, these variables
are of two types. The first set describes the adopter’s final
network characteristics (total degree, betweenness, and
clusteredness), as in the case of influencers. For the lack of
theory, we do not have explicit predictions concerning these
variables. Rather, they should be considered control vari-
ables. The second set of (control) variables is demographics.
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Beyond age and gender, we can also include an additional
variable: population density of the city of residence. 

EMPIRICAL ANALYSIS

Data Description

Our data originate from a major European social net-
working site. The goal of this web-based networking serv-
ice is to build an online community of people who then may
use the tools provided by the website to interact (e.g., to
send messages to their friends, to share their pictures, to
maintain a profile page with personal information). People
can represent their “friendship network” graphically and can
search the membership base by various criteria. An impor-
tant feature of the site is that proposed friendships need to
be confirmed by the other party and can be severed as well.
As a result, the network contains information on mutual
relationships only. 

Today, the portal we study has more than 4 million regis-
tered users and more than 100 million friendship links
between them. In this article, we analyze adoption data from
the first 3.5 years (1247 days) of the service. We consider
this early time frame for two reasons: First, during this
period, the service was not advertised and its media appear-
ance was minimal, which means that membership growth
was entirely due to WOM effects; second, during the period
studied, the service was the only of its kind in the country.
At the end of the examined time period, the website began
experiencing technical difficulties providing the service,
and its administrators limited the number of new members
who could join. Soon after the alleviation of the technical
problems, social networking received national media expo-
sure, resulting in both the launch of competing portals and a
sudden growth of membership. 

To register to the site, potential users had to receive an
invitation from a member. During the time period we study,
a member had unlimited invitations to send; thus, the avail-
ability of invitations did not limit the growth of the network.
During the period analyzed, 138,964 users registered on the
website. To minimize the potential bias caused by including
only users who adopted during the studied time frame, we
also include some of the next adopters in the data set.
Because of computational limitations, we set the size of the
analyzed sample at 250,000 users (of whom the latter
111,036 members signed up during the first month after the
last day we examine). 

When analyzing the diffusion process, we investigate the
adoption of the portal (the social network site) over time by
members of the real-life friendship network of potential
adopters. We consider all the relationships confirmed in the
system 36 weeks after the end of the studied period as this
real-life friendship network. By doing so, we implicitly
assume two things: (1) The network recorded on the site 36
weeks after our study period contains all the “real-life” rela-
tionships between potential adopters, and (2) the relation-
ships indicated in the network were not “formed on the net-
work” (i.e., not even partly resulting from individuals’
adoption behavior). The validity of these assumptions may
be critical to our findings. In the subsection “Robustness
and Validity Tests,” we conduct several tests to conclude
that neither assumption weakens our empirical results. 

The friendship data (sampled as described previously)
contain 13,152,323 links among the 250,000 registered



users, corresponding to a friendship density of. Table 1 sum-
marizes the distributions of the demographic variables and
network characteristics defined in the “Model” section.

In Table 1, we also report the correlations of demograph-
ics and network characteristics between related actors in the
network. Whereas the network characteristics of neighbors
are indeed positively correlated, these weak correlations are
unlikely to be the drivers of the results of our estimations.
Finally, Table 2 reports correlations of the independent vari-
ables used in our estimations. These correlations, together
with the network autocorrelation information in Table 1,
suggest that age, gender, and population density are good
control variables. We note that the network autocorrelation
is higher for the age and population-density variables,
which suggests that we should consider group effects within
age clusters and within cities. We address these estimation
issues in the “Individual and Group Effects” subsection.

In the outline of the stochastic model, we defined a dis-
tinguished group of people who are already using the serv-
ice at the start of the analyzed period. In our empirical
analysis, we include the first 2121 members in this initial
group because these members received their membership
directly from the creators of the social network. Finally,
because the database contains registration dates for every
member, we choose days to be the unit of time (thus esti-
mating daily adoption probabilities in our model). Next, we
present the details of the estimation. 

Estimation

The estimation is based on the network-based influence
model described in Equations 1 and 2. We apply the com-
plementary log–log regression using the maximum likeli-
hood method to obtain parameter estimates. The observa-
tions we use are based on daily adoption decisions. Every
day, we record the decision of each individual who has not
yet adopted along with the variables described in the previ-
ous section. Some of these variables are constant over time,
and some of them change as the adoption process moves
forward. Because we have 250,000 individuals in the data
set that we analyze throughout a period of 1247 days, we
obtain close to 200 million such observations. Just storing
the values of our variables for all of these observations
would exceed our computational capacities. To overcome
this problem, we discretize some of our variables so that we
could store the observations in a grouped table. For the vari-
ables we discretize, we split the range of the variable into
100 equal intervals. For each interval, we only store the
average value of the variable over observations that lie in the
interval. In this way, we are able to reduce the space

required to store our observations (which can be represented
by integer coordinates of points in a multidimensional grid)
and run the maximum likelihood estimation. To examine in
detail how the number of intervals chosen affects the results,
we build the multidimensional grid several times, each time
with randomly selected dimensions that contain only 50
equal intervals (keeping 99 ticks at the others). We find that
the 95% confidence intervals overlap for the vast majority
of the coefficients, which confirms the validity of this
approach. Because of space limitations, we omit the exact
results from this article.

Because our primary focus is on investigating how
observed network characteristics can predict adoption prob-
abilities, we first estimate a model (Model 1) with network
effects only. Beyond these effects, Model 2 also includes
influencer effects and adopter effects that are still network
related, that is, have been calculated from the ultimate
friendship network of the population. In Model 3 (the full
model), in addition to the predictors considered in Models 1
and 2, we also include all the demographic variables. 

Results

Table 3 summarizes the results of the complementary
log–log regressions. Across Models 1, 2, and 3, we find con-
sistent support for the positive effect of degree and cluster-
ing. Specifically, following the general intuition expressed in
the “Measures” subsection, we observe a clear degree
effect: Having more adopted neighbors increases the likeli-
hood of a potential adopter to adopt, and while holding the
number of adopted friends constant, having a higher total
number of friends decreases adoption likelihood. More
interesting is the strong support for the clustering effect.
Consistent with network closure theory, a set of highly con-
nected individuals has a stronger influence on a potential
adopter than an identical number of sparsely connected
ones. It is interesting to observe how strong the clustering
effect is. When an individual has 100 friends and 6 of them
have already adopted, then one extra adopted friend has the
same effect on his or her adoption probability as one extra
friendship between the 6 adopted friends. Finally, the inter-
action of degree and clustering is also significant and posi-
tive in the richer models, which provides partial support for
the general intuition that the marginal effect of an additional
influencer is larger for highly connected networks.

For influencer variables, we do not find significant effects
for betweenness, indicating that structural hole theory may
not apply to significantly large social networks in a straight-
forward way. Another interesting finding is that total
degree has a relatively weak but significant, negative effect,
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Table 1

SUMMARY STATISTICS FOR ThE STUDIED POPULATION OF NETWORK MEMBERS

M SD Network Autocorrelation Records

Demographics
Gender (female = 1, male = 0) .52 .50 .07 250,000
Age 26.45 7.89 .38 203,030
Population density, population/hectare, of city of residence 23.59 12.93 .37 204,861

Network characteristics
Degree 206.41 152.25 .11 250,000
Clustering coefficient .17 .13 .22 235,584
Local betweenness (× .001) 36.63 93.78 .01 250,000
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Table 2

CORRELATION COEFFICIENTS OF ADOPTION DETERMINANTS

Adoption Determinant Variables

Variable X1 X2 X3 W1 W2 W3 W4 W5 Z1 Z2 Z3 Z4 Z5 Z6

Degree (X1) 
Clustering (X2) –.03
Degree × clustering (X3) .67 .40
Influencer total degree (W1) –.08 .10 –.01
Influencer betweenness (W2) –.08 .00 –.04 .73
Influencer clustering (W3) .02 .16 .15 –.19 –.10
Influencer age (W4) .03 –.04 –.02 –.13 –.09 –.29
Influencer gender (W5) .08 –.03 .04 –.10 –.06 .11 –.11
Adopter total degree (Z1) –.06 –.15 –.17 .25 .03 .03 –.29 –.05
Adopter betweenness (Z2) .00 –.03 –.03 .04 .01 –.02 –.01 –.01 .38
Adopter clustering (Z3) .03 .39 .44 .01 .00 .35 –.09 .06 –.37 –.08
Age (Z4) .20 –.06 .09 –.15 –.04 –.28 .32 –.05 –.19 .00 –.13
Gender (Z5) –.02 –.02 –.03 .01 .01 .00 –.02 .19 –.01 –.02 –.01 –.08
Population density (Z6) .24 –.06 .12 .01 –.02 –.16 .05 .03 –.06 .00 –.09 .11 .03
Network size (T1) .50 –.07 .26 –.19 –.05 .30 –.11 .18 –.11 –.02 .12 –.07 .00 –.11



suggesting that individuals with many connections have less
influential power on a particular neighbor. 

The remaining influencer variables are all significant.
The significance of the demographic variables shows that,
in a practical setting, these are useful predictors for influen-
tial power. For this social network site, we find that younger
people and female network members have a greater influ-
ence. This result is somewhat surprising because many
researchers in sociology have acknowledged that men have
a greater social power (Dépret, Fiske, and Taylor 1993).
However, influencing adoption likelihood to a social net-
work portal may be substantially different from the general
notion of social power. To further examine the effects of age
and gender, we estimate Model 3 separately for different
genders and age groups. Besides confirming the direction
and strength of the effects listed herein, we generally find
greater influencer effects for similar individuals and a sig-
nificantly greater influence of females among younger indi-
viduals. We do not report the results of these estimations
here, but in the “Individual and Group Effects” section, we

test whether such unobserved heterogeneity in the relation-
ships affects the validity of our findings. 

Regarding adopter effects, we also find significant
results. In general, these results are consistent across mod-
els except for adopter betweenness, which changes sign
between Models 2 and 3. The total degree of an individual,
for example, has a positive effect on his or her adoption
probability; this is not surprising considering that we also
included the proportion of already adopted friends in the
equation, through which the total number of friends relates
to the dependent variable negatively. However, an alterna-
tive cause may be endogeneity, whereby the “more enthusi-
astic” network users gather more friends online, which
could invalidate our assumption on the exogeneity of the
final network. To verify that this is not the case, we conduct
several tests, which we present in the “Network Dynamics”
subsection.

With respect to demographics, we find that age and popu-
lation density of the town of residence both have small but
significant effects, whereas gender does not. It is interesting
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Table 3

PARAMETER ESTIMATES OF DIFFERENT MODEL SPECIFICATIONS

Model 1: Model 2: Model 3: Model 2b: Model 3b: 
Probability of Adoption M (z-Value) M (z-Value) M (z-Value) M (z-Value) M (z-Value)

Network Effects
Degree 4.476** 4.383** 4.476** 4.401** 4.483** 

(215.95) (183.41) (114.27) (182.90) (114.21)
Clustering .361** .689** .704** .703** .713** 

(18.02) (32.48) (24.89) (33.06) (25.16)
Degree × clustering –1.916** .552** 1.305** .492** 1.274** 

(–43.31) (7.33) (10.00) (6.50) (9.76)
Influencer Effects

Average total degree –.00075** –.00090** –.00079** –.00092**
(–17.50) (–15.64) (–18.18) (–15.91)

Average (total degree)² (× .001) .000020 .000027* 
(1.86) (2.27)

Average betweenness (× .001) –.0067 .000025 –.000075 –.0000013
(–1.88) (.59) (–1.89) (–.03)

Average clustering 3.867** 4.269** 3.777** 4.197**
(28.48) (21.22) (27.70) (20.82)

Average age –.0082** –.0082** 
(–7.24) (–7.24)

Gender (fraction of females) .076** .077** 
(3.57) (3.62)

Adopter Effects
Total degree .0010** .0011** .0012** .0013** 

(39.02) (34.78) (33.57) (27.63)
(Total degree)² (× .001) –.00027** –.00020**

(–6.95) (–3.98)
Betweenness (× .001) –.00022** –.00020** .000066 –.000016 

(–7.02) (–5.44) (1.77) (–.33)
Clustering –2.614** –3.322** –2.548** –3.266** 

(–40.86) (–34.38) (–39.52) (–33.59)
Age .0029** .0030** 

(5.89) (6.11)
Gender (male = 0, female = 1) .0068 .0070 

(.96) (.98)
Population density .0012** .0012** 

(city of residence) (3.97) (4.06)
Network size (× .001) .013** .012** .012** .012** .012** 

(134.39) (118.44) (92.28) (118.08) (92.18)
Constant –8.830** –8.896** –8.903** –8.922** –8.925** 

(–1029.77) (–455.45) (–183.19) (–450.13) (–182.36)
Observations 188,631,660 188,628,849 136,829,184 188,628,849 136,829,184
Pseudo-R² .0455 .0487 .0496 .0487 .0496

*p < .05.
**p < .001.
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that age has a positive effect, which generally contradicts
empirical findings in the diffusion literature, because
younger people have been shown to be generally more
likely to adopt early. However, we already control for
 network-related variables that may cause younger users to
sign up sooner if the network density is greater among them.
In addition to age, we find that population density of
adopters’ home city has a marginal positive effect. Note that
we find this latter effect in addition to the already discussed
network effects, which already capture the potentially greater
density of social connections in highly populated areas. 

We also conclude that adopters’ propensity to join the
network increased with the overall network size, which may
indicate the presence of some offline buzz about the site.
However, because network size and time are almost per-
fectly correlated, it is also possible that this positive coeffi-
cient indicates that later network members became more
accustomed to Internet technologies (in particular, the con-
cept of a web-based online social network) over time and,
thus, adopted with larger probability. 

Comparing the fit of models, the Akaike information cri-
terion (AIC), the Bayesian information criterion (BIC), and
McFadden’s pseudo-R-square measure all rank the models
in the same order. The AIC and BIC measures require the
same number of observations across estimations; therefore,
we compute them over the 136,829,184 full observations
included in Model 3. We list the actual values of these met-
rics in Table 4. However, because we believe that consider-
ing broader samples for the simpler models is more useful
for interpreting the results, in most of the tables (including
Table 3) we only report the pseudo-R-square values. Although
Model 3 provides the best fit on the basis of all of the three
measures, the corresponding pseudo-R-square value is still
only .0496. The explanation for such low values is that,
because the mean of our dependent variable is less than

.001, the null model makes many good predictions (by
always predicting nonadoption). Thus, low fit measures do
not necessarily weaken our findings. However, because the
independent variables are weakly positively correlated for
network neighbors (see Column 4 in Table 1), it is possible
that even characteristics of the real-life friendship network
are driven by unobserved similarities among network neigh-
bors (Manski 1993). The finding that the coefficients of
Models 2 and 3 are similar while the explanatory power of
Model 3 is greater indicates that this is not the case, thus
providing support for the results. Because we are not inter-
ested in the formation of the final friendship network per se
but rather in the diffusion on an existing network of friend-
ships, we leave all further discussion of this issue to the
“Robustness and Validity Tests” subsection.

Predictive Power

The results of the previous section demonstrate how local
network characteristics may influence adoption likelihoods.
Here, we demonstrate how our models can help predict
which individuals will adopt in the near future.6 Existing
models such as the Bass (1969) model perform well in fore-
casting the overall number of adopters but do not provide
any prediction on which individuals are more or less likely
to adopt. Our methodology enables us to predict the adop-
tion probabilities of individuals who have not adopted up to
a certain point in time. However, it is not straightforward to
measure the predictive power of our model if the outputs are
probabilities, especially if these probabilities are as low as
our daily adoption rates (less than .001). In real applica-
tions, it is often required to predict who the next adopters
will be and not only provide probability predictions. There-
fore, to test the predictive power of our models, we rank-order

Table 4

COMPARINg MODEL FIT OVER ThE SAME SET OF OBSERVATIONS

Model 1: Model 2: Model 3: 
Probability of Adoption M (z-Value) M (z-Value) M (z-Value)

Network Effects
Degree 4.929* (154.49) 4.535* (120.68) 4.476* (114.27)
Clustering .363* (13.51) .690* (24.47) .704* (24.89)
Degree × clustering –2.144* (–22.88) 1.312* (10.06) 1.305* (10.00)

Influencer Effects
Average total degree –.00087* (–15.57) –.00090* (–15.64)
Average betweenness (× .001) .000022 (.52) .000025 (.59)
Average clustering 4.516* (24.20) 4.269* (21.22)
Average age –.0082* (–7.24)
Gender (fraction of females) .076* (3.57)

Adopter Effects
Total degree .0011* (34.66) .0011* (34.78)
Betweenness (× .001) –.00018* (–5.22) –.00020* (–5.44)
Clustering –3.354* (–34.86) –3.322* (–34.38)
Age .0029* (5.89)
Gender (male = 0, female = 1) .0068 (.96)
Population density (city of residence) .0012* (3.97)
Network size (× .001) .013* (106.69) .012* (94.59) .012* (92.28)
Constant –8.830* (–845.80) –8.981* (–367.65) –8.903* (–183.19)

Observations 136,829,184 136,829,184 136,829,184
Pseudo-R² .0461 .0495 .0496
AIC 1,368,561.20 1,363,723.66 1,363,624.20
BIC 1,368,644.87 1,363,907.74 1,363,891.95

*p < .001.

6We thank the associate editor for suggesting this.



the individuals in decreasing adoption likelihood and com-
pare the top m individuals of this list with the set of the next
m individuals who adopted in reality. We do this for differ-
ent values of m; to determine the number m to be used in the
context of a real application, one could, for example, use an
aggregate-level model to predict the number of individuals
adopting in the next period under consideration. 

Because our adoption data are distorted after the studied
period for previously mentioned reasons, we make predictions
for the last ten days before the cutoff point, day 1247.7 There-
fore, we first estimate our models on the first 1237 days of the
adoption data. Next, using the resulting coefficients and the
total network data, we calculate the predicted probability of
adoption for each individual on day 1238. Then, we rank these
predicted probabilities and list the nodes to which the m high-
est probabilities belong as a prediction for the next m adopters.
Let M denote the set of these individuals with |M| = m. 

We test the predictive power of four models. The first
three are the same three main models we used in the “Esti-
mation” subsection. Model 4 is a benchmark in which we
ignore the network variables and include only demographics
and network size. We drop all observations for which any of
the variables used in any of the models are missing. To test
predictive power, we calculate what percentage of individu-
als in M really adopted during the ten-day period. Table 5
shows the results for different values of m. 

The highest value we use, m = 9944, is the actual number
of adopters during this period, which constitutes 11.66% of
the potential adopters in our sample. Thus, a random set of
size 9944 would have a hit rate of 11.66%. We use this as a
benchmark, in addition to the prediction based on only the
available demographic variables (Model 4), which success-
fully predicts 13.25% of the adopters. Using any of our three
main models, we can almost double the hit rate from the ran-
dom benchmark to approximately 21%, substantially
improving the predictive power over that of Model 4. Dis-
playing the success rates for Models 3 and 4 as a function of
m, Figure 4 shows this pattern. As Table 5 shows, Models 1
and 2 yield results similar to those of Model 3. If the appli-
cation only requires the identification of a lower number of
adopters than the total expected number of adopters, then the
hit rate becomes even higher. For values around m = 500,
Models 1, 2, and 3 predict adoption successfully with an
approximate 30% probability. That is, for applications for
which not only successful predictions are of interest but also

the cost of “false-positive” predictions is somewhat larger, it
may be best to focus on only approximately 5%–10% of
future adopters. In such scenarios, our model performs much
better than the random selection (11.66% success rate) and
the model based solely on demographic variables (13.60%
success). 

Robustness and Validity Tests

In this section, we address several limitations of our model,
data, and estimation procedure. We begin by allowing for
latent individual heterogeneity in the propensity to adopt.
Because of the computational limitations discussed in the
“Estimation” subsection, we are only able to estimate such
models on a smaller (random) sample of individuals. In a dif-
ferent approach, we implode the friendship network into net-
work layers containing only relationships within the same
city of residence to examine whether our results still hold
within these networks to garner further support for our sub-
stantive findings. We continue by considering alternative
model formulations. We change the link function, and we test
an alternative definition of our main independent variable.
Third, we discuss a number of issues related to network
dynamics. By eliminating certain individuals, links, and deci-
sions from our data set, we challenge our assumption on the
exogeneity of the real-life friendship network and explore the
potential effects of heterogeneous link strength on our results. 
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Figure 4

PROPORTION OF ADOPTERS AMONg PREDICTED 

OUT-OF-CALIBRATION SAMPLE ADOPTERS 

AS A FUNCTION OF ThE SIZE OF ThE PREDICTION LIST

Table 5

ADOPTION PERCENTAgE OF PREDICTED ADOPTERS

Successful Prediction Rate (%)

Number of Adopters Predicted (m) Model 1 Model 2 Model 3 Model 4 Random

500 30.60 29.60 28.80 13.60 11.66
1000 26.80 27.60 27.20 13.40 11.66
2000 24.45 24.45 24.40 12.35 11.66
4000 23.15 23.32 23.22 12.10 11.66
9944 20.71 21.19 21.19 13.25 11.66

7The prediction process does not depend on the number of days, and the
predicted sets would be the same for different periods. However, the actual
probabilities would be small for one day, and it is more realistic to consider
a longer period.
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Individual and group effects. In this section, we carry out
tests to verify the validity of the assumption on the inde-
pendence of the error terms in our main models. First, we
estimate our model including random effects:

(5)

where we assume that uv ~ N(0, s2). Because the random
effects vary according to individual, we have to break with
our estimation method of discretizing the independent vari-
ables, which assumes homogeneity within each cell in the
grid (which may contain observations from different individ-
uals). Thus, to run the random-effects model on the whole
adoption data set, we would have to deal with well over 100
million observations. Because this is clearly infeasible, we
randomly select 5000 individuals from the 250,000 network
members and run the random-effects estimation on the data
comprised of observations concerning only these individu-
als. (However, we compute the independent variables from
the network spanning over all the individuals in the data.) We
present the results of this process in Table 6. The large value
of r  confirms that the low model fit measures reported in
Table 3 may indicate unobserved heterogeneity in the rela-
tionships. Nevertheless, although the coefficients cannot be
directly compared with those in Table 3, we find that most
of the effects identified by our main estimation are sup-
ported by the results herein as well. The finding that some
of the demographic variables become insignificant suggests
that demographics may be correlated with the unobserved
propensity of adoption, which we capture here by individ-
ual random coefficients. Finally, our choice of restricting
the structure of individual effects to the normal distribution
is a result of computational limitations: The data sample that

f(S, v)� =� 1 X (S)�

+� W(S) Z(v)� +

v− − + ×

× + ×

exp{ exp[α β

γ ϕ �� uv ]},

we consider contains several million observations per
regression, which makes estimating 5000 fixed-effect dum-
mies infeasible. 

Next, we return to our original model formulation (with-
out individual effects), but we allow the error terms to be
correlated for homogeneous age or gender groups to arrive
at more robust standard-error estimates. In general, we find
that the network effects we examine remain significant. In
Table 7, we present a specific example leading to the largest
decrease in the strength of the effects that we obtain this way.
For this estimation, we divide the population into five age
clusters (21, 22–23, 24–26, 27–29, and 30). The parame-
ter significances corresponding to the robust standard error
estimates provide further support for the degree and cluster-
ing effects and also for the negative effect of influencer total
degree. However, the degree–clustering interaction and
betweenness do not have significant effects under these cir-
cumstances. 

Finally, to explore the validity of some of our substantive
findings, we refine the personal networks by dedicating spe-
cial attention to friendships within the same city of resi-
dence. We split all network variables except clustering. We
jointly estimate the impact of the number of friends from
the same city and the impact of the number of friends from
other towns. In a similar way, the average betweenness of
network neighbors from the same city and the average of
those from other towns become two independent variables.
(In the case of the clustering variable, we do not have a
straightforward way to do the same, because across-town
friendships in one’s personal network may be present. Thus,
clustering may not arise as a sum of within-city and across-
cities components.) For the degree–clustering interaction,
we have two choices: In Model 5, we include the degree
variable as before (referring to the proportion of adopted
friends), and in Model 6, we include the within-city degree

Table 6

PARAMETER ESTIMATES: RANDOM-EFFECTS COMPLEMENTARY LOg–LOg REgRESSION

Model 1: Model 2: Model 3: 
Probability of Adoption M (z-Value) M (z-Value) M (z-Value)

Network Effects
Degree 31.144** (59.23) 36.963** (36.60) 35.655** (28.82)
Clustering 1.275* (3.41) 3.013* (3.47) 1.400* (2.84)
Degree × clustering –13.635** (–10.90) 24.959** (4.23) 25.448** (5.46)

Influencer Effects
Average total degree –.012** (–9.67) –.011** (–7.38)
Average betweenness (× .001) .0054** (7.35) .0040** (6.81)
Average clustering 31.374** (6.33) 23.383** (4.69)
Average age .012 (.59)
Gender (fraction of females) .145 (.34)

Adopter Effects
Total degree .0088** (4.48) .0081** (4.91)
Betweenness (× .001) .0034 (.52) .0064 (1.66)
Clustering –32.318** (–13.60) –33.609** (–12.46)
Age .027 (.96)
Gender (male = 0, female = 1) .067 (.27)
Population density (city of residence) .0054 (.52)
Network size (× .001) .079** (45.93) .067** (39.30) .088** (28.52)
Constant –21.543** (–99.44) –22.411** (–36.41) –24.331** (–17.02)

Observations 3,780,234 3,772,389 2,730,623
Individuals 4594 4552 3208
r .9741 .9653 .9825 

*p < .01.
**p < .001.



(proportion of adopted friends considering only within-city
friendships). 

In Table 8, we show the coefficient estimates of Models 5
and 6. We find support for the degree and clustering effects
as well as the negative effect of influencer total degree. The
degree–clustering interaction is only supported in Model 6,
and we cannot detect the positive effect of betweenness
(that structural hole theory would predict). An interesting
phenomenon is the effect of network size: Despite all the
within-city network variables being more significant than
their across-cities pairs, the opposite is true for network
size, and the coefficient of within-city network size is nega-
tive. This suggests that the positive coefficient of network
size in Models 1–3 indicates the evolution of users’ affinity
for technology rather than the presence of offline buzz. 

Alternative model formulations. In this section, we dis-
cuss the most straightforward alternatives to some of our
modeling choices. We begin by including two quadratic
terms in our models to determine if the negative effect of
influencer total degree is driven by actors with signifi-
cantly large personal networks. As the results (see
Columns 5 and 6 of Table 3) indicate, the square of influ-
encer total degree is not or is only marginally significant,
and it has a positive coefficient. This result suggests that
our main results are not driven by highly connected indi-
viduals and that they hold for actors with smaller personal
networks as well. 

Next, we change our main independent variable from the
proportion of already adopted friends within all friends of
adopters to their number. Table 9 lists the estimates of the
model. Although we find that all major results are consis-
tent with those presented in Table 3, we also note that the
model fit values are lower for this alternative specification.
In summary, the proportion, not the sheer number, of

already adopted friends explains more about the adoption
decisions studied.8

Finally, we replace the complementary log–log link func-
tion (Equation 2) with the logit function and reestimate our
original models. Because all coefficients and z-values are
similar to the results of the complementary log–log regres-
sion, we do not report the results herein.

Network dynamics. Throughout this work, we have relied
on the assumption that the observed network at the time of
the study is final and static in the sense that we can observe
all the real-life friendships among individuals in the network;
this is inaccurate for two related reasons. On the one hand,
numerous friendships appearing in the data could have been
made during the 3.5 years we analyze. On the other hand,
there were probably some existing real-life friendships not
confirmed in the network before the friendship data were col-
lected. If the observed final network data are not a good proxy
for the structure existing in real-life friendships, our results
may be biased. In that case, it could be argued that individu-
als who had spent less time as users (i.e., people joining the
network later) might not have enough time to map out all
their friends present in the network. Then, the independent
variables for these people (i.e., their network characteristics)
might be erroneous. Similarly, being a member of the service
to make more friends might be a typical user behavior. In
such a case, members with many friends would have a greater
propensity to make new friends. In this case, the rate of the

438 JOURNAL OF MARKETINg RESEARCh, JUNE 2011

8An interesting difference between the estimates of the two models is
the coefficient of Adopter Total Degree. Goldenberg et al. (2009) propose
that social hubs tend to adopt earlier because of more exposure to the prod-
uct in question. In Table 9, the number of (possible) exposures is directly
captured in the Network Degree variable. Because the coefficient of
Adopter Total Degree is negative in this estimation, we indeed find empiri-
cal support for the explanation of hubs’ early adoption.

Table 7

PARAMETER ESTIMATES: CORRECTINg FOR UNOBSERVED hETEROgENEITY

Model 1: Model 2: Model 3: 
Probability of Adoption M (z-Value) M (z-Value) M (z-Value)

Network Effects 
Degree 4.476*** (10.01) 4.383*** (11.54) 4.476*** (12.53)
Clustering .361*** (7.43) .689*** (25.18) .704*** (70.19)
Degree × clustering –1.916*** (–5.06) .552** (2.68) 1.305 (1.69)

Influencer Effects
Average total degree –.00075** (–3.40) –.00090*** (–5.53)
Average betweenness (× .001) –.0067 (–1.86) .000025 (.66)
Average clustering 3.867*** (11.31) 4.269*** (9.04)
Average age –.0082* (–2.39)
Gender (fraction of females) .076 (1.91)

Adopter Effects
Total degree .0010*** (10.35) .0011*** (20.11)
Betweenness (× .001) –.00022*** (–8.89) –.00020*** (–3.72)
Clustering –2.614*** (–13.30) –3.322*** (–6.28)
Age .0029 (.76)
Gender (male = 0, female = 1) .0068 (.26)
Population density (city of residence) .0012** (3.28)
Network size (× .001) .013*** (4.19) .012*** (4.20) .012*** (4.91)
Constant –8.830*** (–27.25) –8.896*** (–31.45) –8.903*** (–25.46)

Observations 188,631,660 188,628,849 136,829,184
Pseudo-R² .0455 .0487 .0496

*p < .05.
**p < .01.
***p < .001.
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network’s growth could vary on the basis of how many
friends a user already has, leading to sampling bias.

To verify that these concerns do not lead to qualitatively
different results, we conduct a series of tests. We first exam-
ine whether the network spanned by the analyzed set of
adopters grows uniformly. Because we do not have access to

the evolution of the complete network, we selected a random
sample of users in our data and recorded the number of their
friends among the analyzed pool of network users both at the
time when the observed snapshot of the friendship network
was taken and at a much later date (1002 days after the end of
the studied period). We then analyzed the overall growth rate

Table 8

PARAMETER ESTIMATES WITh WIThIN-CITY NETWORKS CONSIDERED (MODELS 5 AND 6)

Model 5 Model 6

Probability of Adoption M z-Value M z-Value

Network Effects
Degree, within city 2.731** 103.35 2.226** 97.05
Degree, across cities .070** 4.65 –.00084 –.06
Clustering .588** 16.35 .129** 4.10
Degree × clustering 6.027** 57.05
Degree, within city × clustering –.067 –.77

Influencer Effects
Average total degree, within city –.00034** –6.73 –.00040** –7.84
Average total degree, across cities .000084 1.94 .000048 1.17
Average betweenness, within city (× .001) –.00037** –7.25 –.00027** –5.59
Average betweenness, across cities (× .001) –.00023* –2.64 –.00013 –1.57
Average clustering 3.067** 14.44 4.354** 21.94
Average age –.017** –14.87 –.016** –13.34
Gender (fraction of females) .010 .47 .063* 2.81

Adopter Effects
Total degree .0014** 40.64 .0011** 32.47
Betweenness (× .001) –.00042** –8.33 –.00025** –5.82
Clustering –1.520** –17.52 –4.493** –46.35
Age .0030** 6.02 .0015* 2.90
Gender .0084 1.15 .0072 .99
Population density (city of residence) .0073** 23.13 .0035** 10.87
Network size, within city (× .001) –.0088** –52.45 –.0087** –50.97
Network size, across cities (× .001) .087** 253.59 .087** 259.41
Constant –8.733** –182.87 –8.312** –174.60

Observations 118,612,170 118,612,170 
Pseudo-R² .0582 .0603

*p < .01.
**p < .001.

Table 9

PARAMETER ESTIMATES: NONNORMALIZED DEgREE

Model 1 Model 2 Model 3
Probability of Adoption Mean (z-Value) Mean (z-Value) Mean (z-Value)

Network Effects
Degree .0071*** (96.95) .011*** (96.84) .0088*** (61.27)
Clustering .554*** (33.25) .333*** (17.17) .490*** (18.69)
Degree × clustering .019*** (40.20) .017*** (29.83) .020*** (28.34)

Influencer Effects
Average total degree –.00088** (–19.82) –.00065*** (–11.13)
Average betweenness (× .001) –.000070 (–1.96) .00016** (3.47)
Average clustering –1.808*** (–11.29) .532* (2.32)
Average age –.0092*** (–8.35)
Gender (fraction of females) .036 (1.76)

Adopter Effects
Total degree –.0015*** (–44.84) –.0010*** (–23.98)
Betweenness (× .001) .00014** (3.18) .00014*** (4.00)
Clustering .664*** (16.00) –1.803*** (–20.95)
Age .0083*** (17.95)
Gender (male = 0, female = 1) .0090 (1.27)
Population density (city of residence) .0059*** (19.99)
Network size (× .001) .016*** (170.14) .013*** (131.62) .016*** (122.57)
Constant –8.768*** (–1069.21) –7.964*** (–374.62) –8.425*** (–169.13)

Observations 188,631,660 188,628,849 136,829,184
Pseudo-R² .0363 .0392 .0432

*p < .05.
**p < .01.
***p < .001.



of network density to find that the network of the observed
138,964 individuals continued to grow after the completion
of the study at an average yearly growth rate of approxi-
mately 10%. Here, we test whether factors such as the num-
ber of friends already present or the length of time an individ-
ual has been a member affect this rate. We present the results
of this estimation in Table 10. These results show that neither
the size of individuals’ personal networks nor the date on
which they joined had a significant effect on the growth rate
of their networks. In other words, the friendship network
grows “uniformly,” which in turn provides support against the
presence of a sampling bias in the data we analyzed. 

Although the test we just described eliminates concerns
linked to particular types of user behavior, it also reveals
that the real-life friendship network slowly evolves over
time. Now we examine the potential impact of this trend by
estimating three variants of our model. We begin with
changing the sample of adopters to include only the 138,964
network members who adopt by the end of the analyzed
period. Table 11 presents the results of this estimation. The
sign and significance of the coefficients of the degree and
clustering variables do not change, and the effect of
betweenness remains insignificant. Moreover, as the num-
ber of observations drops to less than half, we find that the
model fit increases across Models 1–3.

Next, we condense the friendship network and focus on
presumably stronger relationships. In two tests, we keep any

relationship if and only if the endpoints of the correspon-
ding edge in the network adopted the service within 30 and
60 days, respectively. We then recompute the network vari-
ables on these friendship networks and reestimate our mod-
els. Table 12 presents the results of this procedure. It is clear
that by tailoring the network in this way, the personal net-
works of users shrink. Therefore, such a condensation of the
friendship network works against our argument for a posi-
tive degree–clustering interaction, and a negative effect of
the influencer total degree, and it also may affect the chance
of detecting the impact of structural holes (in the network
defined by the stronger ties) on adoption. In Table 12, we
show that after this transformation, we indeed do not find
support for a positive degree–clustering interaction, and that
the other two effects also vanish when we apply the 30-day
cutoff threshold. However, note that for the 60-day thresh-
old, we still find evidence for the impact of structural holes
and that a larger total degree leads to a smaller average
influence. In summary, we find that the negative effect of
influencer total degree is robust; nevertheless, it should be
treated with care when only the network spanned by the
strongest ties between members is being considered.

Finally, in a similar vein to the test we just discussed, we
reestimate our models by considering up to 30 and 60 adop-
tions per user, respectively.9 This results in censoring obser-
vations for those individuals who adopt the service much
later than their first adopting friend. In this estimation, we
keep the network variables from the original model. Table 13
presents the results. We find that this estimation confirms our
results pertaining to the degree and clustering effects and to
the negative effect of influencer total degree. For the positive
effect of local betweenness, we find only partial support. An
important finding is that the significance of the degree–
clustering interaction in the richer models decreases, which
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Table 10

UNIFORMITY OF NETWORK gROWTh

Percentage Growth of Personal Network 
During Two Years (748 Days) After Sampling Coefficient z-Value

Day joined –.0000025 –.11
Number of friends in sample –.19 –.99
Constant 55.53 1.95

Notes: Number of observations = 93; F(2, 90) = .49. 9We thank an anonymous reviewer for suggesting this test.

Table 11

PARAMETER ESTIMATES OF DIFFERENT MODEL SPECIFICATIONS FOR ThE FIRST 138,964 ADOPTERS

Model 1 Model 2 Model 3
Probability of Adoption Mean (z-Value) Mean (z-Value) Mean (z-Value)

Network Effects
Degree 2.554** (102.58) 2.481** (90.66) 2.151** (49.72)
Clustering .441** (20.84) .694** (30.91) .753** (25.10)
Degree × clustering –1.103** (–22.26) .621** (8.06) 1.514** (11.06)

Influencer Effects
Average total degree –.0011** (–25.55) –.0011** (–18.70)
Average betweenness (× .001) .00027** (8.59) .00022** (5.65)
Average clustering 2.797** (20.00) 2.681** (13.07)
Average age –.0062** (–5.32)
Gender (fraction of females) .130** (5.92)

Adopter Effects
Total degree .00054** (21.53) .00068** (21.15)
Betweenness (× .001) –.000030 (–1.47) –.000086* (–2.91)
Clustering –1.868** (–30.75) –2.540** (–26.88)
Age .0054** (11.25)
Gender (male = 0, female = 1) –.033** (–4.58)
Population density (city of residence) –.00056 (–1.87)
Network size (× .001) .027** (261.41) .026** (237.42) .028** (191.56)
Constant –8.553** (–953.97) –8.372** (–425.88) –8.489** (–170.33)

Observations 84,784,888 84,782,177 61,276,734
Pseudo-R² .0692 .0708 .0743

*p < .01.
**p < .001.
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indicates that the interaction effect is (at least) partly driven
by “slow adopters,” who only sign up for the service once
large dense subnetworks of their friends have already joined.

CONCLUDING REMARKS

With the emergence of new communication technologies,
the communication patterns of individuals are increasingly
being recorded, providing an opportunity to study WOM at the
individual level. Network data enable us to discover how each
individual’s social connections influence his or her adoption
decisions. Furthermore, it enables the measurement of each
person’s influence on others. The insights gained from such
analyses are invaluable for marketers who search for new viral
marketing tactics to foster new-product diffusion. 

In this article, we analyze data from a social networking
site to identify WOM effects at the individual level. Our
central goal was to discover how the local communication
network structure affects the diffusion process. In this
respect, we confirmed the general intuition that the number
of already adopted friends has a positive effect on the
probability of an individual’s adoption. In addition, we

found that the interconnectedness of an individual’s already
adopted friends has a positive effect on his or her adoption
probability. This finding is important because it shows that
beyond sheer network size, strong communities are more
relevant for WOM influence.

In a second step, we measured the average influential
power of already adopted friends. At this end, we found that
people with many friends have a lower average influence
than those with fewer friends. Similarly, influencers who
occupy structural holes in the network have, on average,
greater influential power. In addition to these global net-
work variables, we found that demographics are useful for
identifying strong influencers. Finally, demographics and
global network variables are useful for identifying not only
influencers but adopters as well.

These findings have important implications for firms that
want to better understand how customers adopt a product or
service. If data are available on the interpersonal connection
patterns among (potential) customers, our model may serve
as a methodology for identifying customers who play an
important role during the diffusion of the new product or

Table 12

PARAMETER ESTIMATES FOR CONDENSED FRIENDShIP NETWORKS

Friends Adopting Within 60 Days Friends Adopting Within 30 Days

Model 1: Model 2: Model 3: Model 1: Model 2: Model 3: 
Probability of Adoption M (z-Value) M (z-Value) M (z-Value) M (z-Value) M (z-Value) M (z-Value)

Network Effects
Degree 3.742** 3.682** 3.809** 3.066** 2.813** 2.857** 

(258.07) (214.03) (184.80) (195.11) (148.92) (127.96)
Clustering .287** .219** .163** .316** .128** .068* 

(15.68) (11.40) (6.99) (16.11) (6.26) (2.78)
Degree × clustering –.758** –.795** –.722** –.658** –.739** –.583** 

(–24.62) (–17.37) (–12.70) (–20.79) (–16.39) (–10.55)
Influencer Effects

Average total degree –.0022** –.0021** .0049** .0054** 
(–9.74) (–7.78) (12.85) (11.91)

Average betweenness (× .001) .037** .038** –.038** –.041** 
(8.59) (5.65) (–8.30) (–7.59)

Average clustering .700** .649** .515** .483** 
(16.73) (12.39) (14.47) (11.10)

Average age .00050 –.00053 
(.71) (–.72)

Gender (fraction of females) –.099** –.100** 
(–7.10) (–7.03)

Adopter Effects
Total degree .000024 .000033 –.0039** –.0038**

(.13) (1.66) (–10.54) (–8.86)
Betweenness (× .001) –.022** –.022** –.080** –.080** 

(–14.42) (–13.07) (–19.96) (–17.62)
Clustering .0031 .031 .209** .187** 

(.09) (.77) (6.76) (4.95)
Age .00079 –.0015* 

(1.45) (–2.47)
Gender (male = 0, female = 1) –.0046 –.0013 

(–.60) (–.16)
Population density .0021** .0014** 

(city of residence) (6.43) (3.87)
Network size (× .001) .0026** .0026** .0030** –.00028* .0020** .0023** 

(29.19) (26.55) (24.28) (–3.01) (19.33) (18.15)

Constant –5.293** –5.317** –5.418** –4.120** –4.164** –4.125** 
(–474.07) (–358.38) (–175.02) (–333.52) (–258.03) (–127.72)

Observations 5,078,035 5,053,555 3,718,551 1,817,996 1,795,121 1,322,861
Pseudo-R² .0863 .0875 .0882 .0840 .0912 .0917

*p < .01.
**p < .001.



service. For example, at the initial phase of the adoption
process, marketers may be interested in targeting potential
customers with a high probability of adoption. Our research
shows that they can do so by using demographics as well as
global network variables. Similarly, the promotion effort can
be targeted to influencers, who, like potential adopters, may
be identified by their demographics and global network posi-
tions. At a later stage of the diffusion process, marketers may
have information about the connections of already adopted
customers. The information on this subnetwork can be used
again to target both potential adopters (e.g., people sur-
rounded by a large and dense network of adopted friends) and
influencers (members of such subnetworks). Our findings
show that when the goal is to make predictions about the next
set of adopters, our model can provide predictions that are
successful in up to 30% of the cases, compared with approxi-
mately 13% when using only demographic information.

Using similar statistical models to improve viral marketing
efforts must be adapted to the actual application context. Never-
theless, our findings confirm the general insight that a viral
marketing campaign may be more effective if it is initiated on
a sample of highly connected customers rather than on a

sample of customers with simply the largest numbers of con-
nections. Our results specifically indicate that, in the case of
high-involvement products for which high average influential
power is required to convince others to adopt, the firm may be
better-off focusing on individuals who have fewer connec-
tions. In contrast, in the case of low-involvement products,
highly connected customers may play the most important role
because they have the greatest overall influence.

Our study has a number of limitations, some of which we
addressed in the “Robustness and Validity Tests” subsection,
including the potential endogeneity of connections. Our valid-
ity tests indicate that this does not influence the results signifi-
cantly and that the final network we have is a good proxy for
people’s real-life networks. However, we only consider indi-
viduals who eventually signed up for the service. Thus, self-
selection might bias our estimated adoption probabilities but
not the direction of the effects we find. Another limitation of
our study is that we do not possess data on the actual commu-
nication between individuals; we are only aware of links based
on revealed friendships. Although this is a simplified mapping
of social connections, we know that these links are mutual,
because both parties had to agree when establishing such a
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Table 13

PARAMETER ESTIMATES FOR MODELS CONSIDERINg ONLY A BOUNDED NUMBER OF ADOPTION DECISIONS

First 60 Adoption Decisions Considered First 30 Adoption Decisions Considered

Model 1: Model 2: Model 3: Model 1: Model 2: Model 3: 
Probability of Adoption M (z-Value) M (z-Value) M (z-Value) M (z-Value) M (z-Value) M (z-Value)

Network Effects
Degree 4.686*** 4.006*** 4.573*** 4.890*** 3.400*** 3.787*** 

(35.30) (27.23) (14.71) (20.57) (12.48) (4.88)
Clustering .739*** .666*** .696*** 1.251*** .951*** .974*** 

(13.16) (11.68) (8.90) (13.83) (10.22) (7.65)
Degree × clustering –1.188*** .087 1.465* –1.502*** –.522 –.080 

(–7.67) (.31) (2.46) (–5.84) (–1.35) (–.08)
Influencer Effects

Average total degree –.0016*** –.0012*** –.0028*** –.0026***
(–7.90) (–4.03) (–8.89) (–5.23)

Average betweenness .00023 .00014 .00094** .0011** 
(× .001) (.93) (.40) (2.66) (3.22)

Average clustering 1.763*** 3.866*** 1.460** 2.661 
(4.11) (4.03) (2.99) (1.91)

Average age –.0022 –.0014 
(–.50) (–.19)

Gender (fraction of .019 .058 
females) (.19) (.38)

Adopter Effects
Total degree –.0021*** –.00027 –.0064*** –.0027*** 

(–9.30) (–.92) (–13.05) (–4.11)
Betweenness (× .001) .00058*** .000089 .0022** –.0028 

(5.76) (.15) (2.78) (–.55)
Clustering –1.262*** –3.521*** –.686* –2.221** 

(–5.19) (–6.73) (–2.39) (–3.15)
Age .029*** .020***

(11.76) (4.01)
Gender (male = 0, –.398*** –.236* 

female = 1) (–6.55) (–2.22)
Population density .0096*** .0015 

(city of residence) (3.67) (.35)
Network size (× .001) .013*** .0083*** .017*** .017*** .0088*** .020*** 

(14.79) (8.57) (9.56) (16.77) (7.87) (9.80)
Constant –8.311*** –7.216*** –8.775*** –8.433*** –6.267*** –7.597***

(–237.15) (–76.60) (–36.79) (–119.31) (–42.14) (–17.73)
Observations 4,553,579 4,553,526 3,265,048 1,185,452 1,185,430 840,973
Pseudo-R² .0718 .0793 .0406 .1353 .1637 .0841

*p < .05.
**p < .01.
***p < .001.
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connection. In addition, because of the computational issues
arising from the size of our data set, we had to keep relation-
ships within the network homogeneous. (The related actors
and their personal networks are the only sources of hetero-
geneity.) Manchanda, Xie and Youn’s (2008) results indicate
that this may be an important limitation. Finally, we only have
access to limited demographic information, such as age, gen-
der, and city of residence. It would be interesting to examine
how other variables that directly influence social connections,
such as the schools a person attended, affect the diffusion
process. These limitations undoubtedly weaken our study.
However, despite the limitations, the results show the potential
impact of network analysis for efficient WOM marketing. Fur-
thermore, the models we presented provide a first step toward
developing statistical tools to analyze the impact of network
structure on new-product diffusion.
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