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Abstract

In the standard certainty multiperiod demand problem it is well-known

that if a consumer’s preferences are log additive (or equivalently Cobb-Douglas),

demand in each period is myopic in the sense of being independent of future

prices. As a result, less stringent informational requirements in terms of

price expectations are imposed on the consumer. Given the general aversion

of Fisher (1930), Hicks (1965) and Lucas (1978), among others, to requiring

preferences to be additively separable, it is natural to ask whether myopia can

hold for non-additive forms of utility. In a multigood, multiperiod setting, we

first show that neither additive separability nor logarithmic period utility is

required for myopia and then characterize the form of utility which generates

myopic demand. As an application, we derive simple restrictions on equilib-

rium interest rates which are necessary and suffi cient for utility to take the

myopic form. The resulting conditions for myopic utility are arguably less

restrictive than those implied by preferences which are additively separable.

KEYWORDS. Myopic demand, additive separability, utility, equilibrium interest

rates
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Consider a multigood, multiperiod setting in which a well-behaved utility function

is maximized subject to a standard intertemporal budget constraint. In order to

derive an optimal consumption plan, the consumer needs to know all current and

future prices. It is natural to ask when these informational requirements can be

reduced. Kurz (1987) defines an optimal consumption plan in a given time period to

be myopic if and only if that period’s demand function depends only on exogenous

variables in current and past periods and not in future periods.1

It is well known that a suffi cient condition for myopia to hold in each time

period is that the representation of preferences is log additive (or equivalently Cobb-

Douglas).2 As a result, two questions naturally arise which to our knowledge

have not been addressed. First given the general reluctance, following for example

Fisher (1930), Hicks (1965) and Lucas (1978), to require preferences to be additively

separable, is it possible for consumption plans to be myopic for non-additive forms

of utility? Second, is it possible to exhibit less extreme forms of myopia where, for

instance, demand in period t ∈ {1, 2, ..., T} is a function of prices in periods 1 to t+1
but not of prices in subsequent periods? We characterize in a general multigood,

multiperiod setting the restrictions on preferences that are necessary and suffi cient

for demand to be myopic in (i) the current period, (ii) all periods and (iii) a subset

of periods. In general, there is no requirement for these myopic preferences to be

additively separable over time or homothetic as in the log additive case. Examples

of these more general forms are provided.

As an application, we consider the implications of preferences being myopic for

equilibrium interest rates. In a standard representative agent equilibrium setting,

the assumption that preferences are myopic is seen to imply and be implied by

a very simple restriction on equilibrium interest rates. This restriction is quite

different from the restrictions implied by preferences being additively separable or

homothetic. Interestingly, some may view the implications of additive separability

as being more restrictive than those corresponding to myopia —thereby providing

an equilibrium justification for the preference based reservations associated with

1It should be noted that the notion of a myopic plan as defined by Kurz and employed through-

out this paper differs from its use in the changing tastes literature. In Strotz (1956), for example, a

myopic plan is used interchangeably with a naive plan where a consumer bases her plan for current

and future consumption on current multiperiod preferences ignoring the fact that her preferences

in the next period for the then remaining consumption vector may differ.
2In a multiperiod uncertainty setting, if intertemporal preferences are represented by log additive

Expected Utility, then the consumer’s multiperiod investment plan is myopic (see, for example,

Rubinstein 1974). In the finance literature, an alternative notion of myopic investment plans is

also considered where investors are assumed to maximize Expected Utility of terminal wealth. See,

for example, Mossin (1968) and Hakansson (1971). In this paper however, we focus only on the

certainty case.
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additive separability cited above.

In the next Section, we derive the necessary and suffi cient conditions for demand

to be myopic in one and multiple periods. Section 3 investigates the implications

of myopia for equilibrium interest rates.

2 Myopia: Necessary and Suffi cient Conditions

Assume a T period, multigood consumption setting. In each period, one or more

goods are consumed. The quantity (purchase) and price of good i in period t are

denoted by cti and pti, respectively.3 The corresponding consumption and price

vectors in period t are denoted by ct and pt. Assume a well-behaved T period

utility function U(c1, ..cT ) which is maximized subject to the budget constraint

T∑
t=1

pt · ct = I, (1)

where I is period one income or wealth. The price and consumption vectors are

elements of the positive orthant. Define the set U to be the collection of real-
valued functions defined on (a subset of) the positive orthant of a Euclidean space,

which are C2, strictly increasing in each of their arguments and strictly quasicon-

cave. Throughout this paper, it will be assumed that the T period utility function

U(c1, ..cT ) ∈ U . (As can be easily verified, these assumptions are satisfied by each
of the utility functions employed in the examples below.) Unless otherwise stated,

we will always assume that U is defined on the whole positive orthant. It should be

stressed that our setting is static even though the consumer confronts a multiperiod

decision problem, since we only consider her optimal consumption plan as set at the

beginning of the initial time period t = 1.

Following Kurz (1987), myopic demand is defined as follows.

Definition 1 Optimal demand in period t, ct, is said to be myopic if and only

if it depends on past and current prices {p1,p2, ...,pt} but not on future prices
{pt+1, ...,pT}.

Remark 1 Definition 1 implies that ct is myopic if and only if for any k ∈ {1, 2, ..., T − t}

∂ct
∂pt+k,i

= 0 ∀i, (2)

where i is the index of good i in period t + k. Using the classic Slutsky demand

equation (see, for example, Mas-Colell, Whinston and Green 1995, p. 71), eqn. (2)

3If there is only one good in each period, the subscript i will be ignored.
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is equivalent to (
∂ct

∂pt+k,i

)
U=const

= ct+k,i
∂ct
∂I

, (3)

where the left- and right-hand sides correspond respectively to the substitution effect

and minus the income effect. Thus ct being myopic is equivalent to the income and

substitution effects exactly offsetting each other. As we will see, eqn. (3) can be

viewed as a more general characterization of myopic behavior. We return to this

characterization in the equilibrium analysis in the next Section.

The representation of preferences generally associated with myopic demand is log

additive (or equivalently Cobb-Douglas) utility. However, since these preferences

are (ordinally) additively separable and homothetic, it is natural to wonder whether

these properties are necessary to generate myopic demand.4 The fact that ho-

motheticity is not required is easily demonstrated by the following non-homothetic

utility which generates myopic demands

U (c1, c2, c3) = − exp (−c1) + ln c2 + ln c3. (4)

The question of whether additive separability is required is more involved since none

of the widely used non-additively separable utility functions, of which are we aware,

results in myopic consumption plans. We return to this issue below.

In this paper we seek to fully characterize the class of preferences which imply

and are implied by myopic demand in a multigood, multiperiod setting. We begin by

establishing the necessary and suffi cient condition for the period one consumption

vector to be myopic.5 This condition is then applied recursively in Result 1 to

characterize the form of utility associated with the consumption vector being myopic

in several (or all) periods.

Proposition 1 Assume that in the first period, there are m goods, where the quan-

tities are denoted by c1, c2, ..., cm. In periods 2 to T there are n goods, where the

quantities are denoted by cm+1, cm+2, ..., cm+n and the distribution of goods across

periods is arbitrary. The utility function U (c1, ..., cm+n) is maximized subject to

m+n∑
i=1

pici = I. (5)

4Homothetic preferences are characterized as being representable by a homogeneous function.

Moreover the preferences give rise to linear Engel curves. See, for example, Chipman (1974).
5For the following Proposition, since the distribution of goods in periods doesn’t matter, we use

ci instead of cti in order to simplify the notation in the proof.
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The optimal period one consumption vector (c1, ..., cm) is myopic if and only if

U (c1, ..., cm+n) takes the form6

U (c1, ..., cm+n) = f (g (c1, ..., cm) cm+1, g (c1, ..., cm) cm+2, ..., g (c1, ..., cm) cm+n) ,

(6)

where f, g ∈ U and g > 0.7

Proof. Although a T period setting is assumed in Proposition 1, since we are only
interested in when the period one consumption vector is myopic, we can combine

all of the future periods into one long period and the problem effectively becomes

a two period problem. Therefore, to prove Proposition 1, we need only verify the

following Lemma.

Lemma 1 For the two period case, assume that goods 1, ...,m are consumed in

period one and m+ 1, ...,m+ n in period two. The utility function U (c1, ..., cm+n)

is maximized subject to the budget constraint

m+n∑
i=1

pici = I. (7)

The optimal period one consumption vector (c1, ..., cm) is myopic if and only if

U (c1, ..., cm+n) takes the form

U (c1, ..., cm+n) = f (g (c1, ..., cm) cm+1, g (c1, ..., cm) cm+2, ..., g (c1, ..., cm) cm+n) ,

(8)

where f, g ∈ U and g > 0.

Proof. First prove suffi ciency. Introduce the following notation

fi =
∂f

∂ (g (c1, ..., cm) cm+i)
and gj =

∂g (c1, ..., cm)

∂cj
, (9)

where i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}. The first order conditions are
fig (c1, ..., cm)

fjg (c1, ..., cm)
=
fi
fj
=
pm+i
pm+j

i, j ∈ {1, 2, ..., n} , (10)

6Given the interest in utility functions with translated origins such as members of the Modified

Bergson family and habit formation models (see, for example, Pollak 1970), it is natural to ask

whether any of these utilities can exhibit myopic demand. It is clear from the general form (6)

that this is not possible where the origins for cm+1, ..., cm+n are translated.
7In order to simplify the statement of this result, we follow the convention throughout the paper

of assuming without loss of generality that g > 0. However it should be noted that for the proof

of suffi ciency, f, g ∈ U and g > 0 cannot guarantee that U ∈ U , which is always assumed in this
paper, since the strict quasiconcavity of f and g cannot ensure the strict quasiconcavity of U . For

necessity if U ∈ U and g > 0, we prove that this implies f, g ∈ U . It should be emphasized that

when g < 0, one can always reverse the sign of g and the signs of the arguments in f such that the

form of U remains the same and f, g ∈ U and g > 0.
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gi
∑n

k=1 fkcm+k
gj
∑n

k=1 fkcm+k
=
gi
gj
=
pi
pj

i, j ∈ {1, 2, ...,m} , (11)

and
gi
∑n

k=1 fkcm+k
fjg (c1, ..., cm)

=
pi
pm+j

i ∈ {1, 2, ...,m} , j ∈ {1, 2, ..., n} . (12)

Combining (10) and (12), we have

n∑
k=1

fkpm+jcm+k = fj

n∑
k=1

pm+kcm+k =
pifjg (c1, ..., cm)

gi
, (13)

which is equivalent to

n∑
k=1

pm+kcm+k =
pig (c1, ..., cm)

gi
. (14)

Substitution of the above equation into the budget constraint, yields

m∑
i=1

pici +
pjg (c1, ..., cm)

gj
= I (15)

for ∀j ∈ {1, 2, ...,m}. Choosing for example j = 1 in (15) and i = 1 in (11), we get
the following system of m equations in the m variables c1, ..., cm:

m∑
i=1

pici +
p1g (c1, ..., cm)

g1
− I = 0, (16)

p1g2 − p2g1 = 0,
...

p1gm − pmg1 = 0.

This system is functionally independent. In fact, the Jacobian matrix of derivatives

with respect to the variables c1, ..., cm is equal to
2p1 ... 2pm

p1g12 − p2g11 ... p1g2m − p2g1m
...

...
...

p1g1m − pmg11 ... p1gmm − pmg1m

 . (17)

An easy computation shows that the determinant of (17) is just the bordered Hessian

determinant of g. Since g is strictly quasiconcave, by Theorem VI of Bernstein and

Toupin (1962) this determinant does not vanish in a dense open subset of every

indifference surface of g, so that the system (17) determines c1, ..., cm. Noticing

that both (11) and (15) are independent of pm+1, ..., pm+n, the optimal period one

consumption vector (c1, ..., cm) is myopic.
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Next prove necessity. Introduce the following notation

Ui =
∂U

∂ci
and Uij =

∂2U

∂ci∂cj
i, j ∈ {1, 2, ...,m+ n} . (18)

The first order conditions give

piU1 − p1Ui = 0 (i = 2, 3, ...,m+ n) . (19)

Since the optimal (c1, ..., cm) depends only on (p1, ..., pm), differentiating both sides

of the ith first order condition with respect to pk (k ∈ {m+ 1,m+ 2, ...,m+ n}) we
have

m+n∑
j=m+1

(p1Uij − piU1j)
∂cj
∂pk

= δikU1, (20)

where δik is the Kronecker δ. Differentiation of the left hand side of the budget

constraint with respect to pk, yields

m+n∑
j=m+1

pj
∂cj
∂pk

= −ck. (21)

We have a system of n + 1 linear equations with n unknowns ∂cj
∂pk

(j = m + 1,m +

2, ...,m + n).8 There exists at least one nonzero (non-trivial) solution for this

equation system if and only if the augmented coeffi cient matrix of this system is

singular, i.e.,

detM = 0, (22)

where

M =



p1Um+1,m+1 − pm+1U1,m+1, · · · , p1Um+1,m+n, − pm+1U1,m+n, 0
...

...
...

...

p1Uk,m+1 − pkU1,m+1, · · · , p1Uk,m+n − pkU1,m+n, U1
...

...
...

...

p1Um+n,m+1 − pm+nU1,m+1, · · · , p1Um+n,m+n − pm+nU1,m+n, 0

pm+1, · · · , pm+n, −ck


.

(23)

Define

H =



p1Um+1,m+1 − pm+1U1,m+1, · · · , p1Um+1,m+n, − pm+1U1,m+n,
...

...
...

p1Uk,m+1 − pkU1,m+1, · · · , p1Uk,m+n − pkU1,m+n,
...

...
...

p1Um+n,m+1 − pm+nU1,m+1, · · · , p1Um+n,m+n − pm+nU1,m+n,


. (24)

8The n+1 equations include eqns. (20) (one equation for each i ∈ {m+ 1, ...,m+ n}) and eqn.
(21).
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Using the Laplace Expansion to expand the determinant in eqn. (22) by the last

column (and the cofactor of U1 by the last row), yields

(−1)k−m+n+1 U1
m+n∑
j=m+1

(−1)n+j−m pjHj−m,k−m − ck detH = 0, (25)

where Hj−m,k−m is the j −m, k −m minor of H. Substituting eqn. (19) into (25),

we have

p1

m+n∑
j=m+1

(−1)k+j UjHj−m,k−m = −ck detH. (26)

Assume first that H is non-singular and notice that

(−1)k+j Hj−m,k−m

detH
(27)

is the (j −m, k −m) component of
(
HT
)−1
. Denoting

∇U = (Um+1, Um+2, ..., Um+n) and c = (cm+1, cm+2, ..., cm+n) , (28)

it follows from eqn. (26) that

p1
(
HT
)−1

(∇U) = −c⇔ p1∇U = −HTc, (29)

or equivalently

m+n∑
j=m+1

(p1Uji − pjU1i) cj = −p1Ui (i = m+ 1,m+ 2, ...,m+ n) . (30)

The determinant detH is proportional to the bordered Hessian of U when considered

as a function of the last n variables. The strict quasiconcavity of U implies by

Theorem VI of Bernstein and Toupin (1962) that detH 6= 0 on a dense set, so that
(30) holds on a dense set. By continuity (30) holds everywhere. Notice that for

any i ∈ {m+ 1,m+ 2, ...,m+ n},

∂

∂ci

∑m+n
j=m+1 cjUj

U1
=

(
Ui +

∑m+n
j=m+1 cjUij

)
U1 − U1i

∑m+n
j=m+1 cjUj

(U1)
2 . (31)

It follows from eqn. (30) and the first order conditions that

m+n∑
j=m+1

(UijU1 − UjU1i) cj = −UiU1 (i = m+ 1,m+ 2, ...,m+ n) . (32)

Substituting eqn. (32) into (31), it follows that

∂

∂ci

∑m+n
j=m+1 cjUj

U1
= 0. (33)
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Therefore, we have ∑m+n
j=m+1 cjUj

U1
= h(1) (c1, ...cm) , (34)

where h(1) (c1, ...cm) is an arbitrary positive function. Similarly, it can be proved

that for ∀i ∈ {1, 2, ...,m} ∑m+n
j=m+1 cjUj

Ui
= h(i) (c1, ...cm) , (35)

for certain positive functions h(i) (c1, ...cm). By Frobenius integrability conditions

h(i) ∂h
(j)

∂ci
= h(j) ∂h

(i)

∂cj
for i, j ∈ {1, 2, ...,m}. Integrating the above over-determined

system yields

U (c1, ..., cm+n) = f (g (c1, ..., cm) cm+1, g (c1, ..., cm) cm+2, ..., g (c1, ..., cm) cm+n) ,

(36)

and g can be obtained from the following integrable system of equations

g

gi
= h(i) (c1, ...cm) (i ∈ {1, 2, ...,m}) . (37)

Finally, we show that f, g ∈ U . Since g > 0, from the first order condition, it

can be easily verified that U being strictly increasing is equivalent to f and g being

strictly increasing. Since U is strictly quasiconcave in each of its argument, for any

c′ =
(
c′1, c

′
2, ..., c

′
m+n

)
, c′′ =

(
c′′1, c

′′
2, ..., c

′′
m+n

)
and 0 < α < 1, one has

U (αc′ + (1− α) c′′) > min (U (c′1) , U (c′′1)) . (38)

Assuming that the m+ 1 to m+ n components in c′ and c′′ are the same (denoted

by (cm+1, cm+2, ..., cm+n)) and denoting

mc
′ = (c′1, c

′
2, ..., c

′
m) and mc

′′ = (c′′1, c
′′
2, ..., c

′′
m) (39)

it follows that

U (αc′1 + (1− α) c′′1) = f (g ((α)m c
′ + (1− α)m c′′) cm+1, ..., g ((α)m c′ + (1− α)m c′′) cm+n)

> min (f (g (mc
′) cm+1, ..., g (mc

′) cm+n) , f (g (mc
′′) cm+1, ..., g (mc

′′) cm+n)) . (40)

Since f is strictly increasing in each of its argument, it follows that

g ((α)m c
′ + (1− α)m c′′) > min (g (mc′) , g (mc′′)) , (41)

implying that g is strictly quasiconcave, so that g ∈ U . One can prove f ∈ U
similarly.
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Given the equivalence between the utility (6) and optimal consumption being

myopic, it will prove convenient throughout the rest of this paper to adopt the con-

vention of referring to (6) as myopic utility or corresponding to myopic preferences.

Based on Proposition 1, it is now possible to answer both questions raised in

Section 1. First relating to whether additive separability of U is necessary for

myopic behavior, it is clear from eqn. (6) that this is not the case.9 Concrete non-

additive examples are given below. Second, Proposition 1 demonstrates that it is

not necessary for demand to be independent of all future prices as in the log additive

case. It is possible for demand in period t to be a function of prices in periods 1 to

t + 1 but be independent of subsequent prices by appropriately combining periods

1 to t+ 1 to form a long period and then applying Proposition 1.

As summarized next, if there is only one good in certain periods, then the utility

function given in Proposition 1 can take simpler forms.

Remark 2 For simplicity, assume that there are two periods and at most two goods
in each period. Then the following summarizes the forms of utility implied by

Proposition 1.

i Suppose there is only one good in periods one and two. Optimal period one demand
c1 is myopic if and only if U (c1, c2) takes the form

U (c1, c2) = f(g (c1) c2), (42)

which is ordinally equivalent to

U (c1, c2) = h (c1) + ln c2, (43)

where f, g, h ∈ U and g > 0.

ii Suppose there are two goods in period one and one good in period two. Optimal

period one demands c11 and c12 are myopic if and only if U (c11, c12, c2) takes

the form

U (c11, c12, c2) = f(g (c11, c12) c2), (44)

which is ordinally equivalent to

U (c11, c12, c2) = h (c11, c12) + ln c2, (45)

where f, g, h ∈ U and g > 0.
9It should be noted that in the special case of two periods with one good per period, (ordinal)

additive separability is necessary for demand to be myopic —see eqn. (43) below.
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iii Suppose there is one good in period one and two goods in period two. Optimal

period one demand c1 is myopic if and only if U (c1, c21, c22) takes the form

U (c1, c21, c22) = f(g (c1) c21, g (c1) c22), (46)

where f, g ∈ U and g > 0.

The following Examples illustrate cases (ii) and (iii) above, respectively.

Example 1 Assume a two period setting, where c11 and c12 are the quantities of
the period one goods and c2 is the quantity of the period two good. The consumer’s

utility takes the following special myopic form of eqn. (45)

U (c11, c12, c2) = −
c−δ11
δ
− c−δ12

δ
+ ln c2, (47)

which is maximized subject to

p11c11 + p12c12 + p2c2 = I, (48)

where δ > −1 and δ 6= 0. Combining the first order conditions with the budget

constraint yields

p11c11 + p12

(
p11
p12

) 1
1+δ

c11 + p11c
1+δ
11 = I, (49)

implying that c11 depends only on p11 and p12. Since

c12 =

(
p11
p12

) 1
1+δ

c11, (50)

c12 also depends only on p11 and p12. Hence the optimal period one consumption

vector (c11, c12) is myopic.

Example 2 Assume a two period setting, where c1 is the quantity of the period one
good and c21 and c22 are the quantities of the period two goods. The consumer’s

utility takes the following special myopic form of eqn. (46)

U (c1, c21, c22) = (c1c21)
1
4 +
√
c1c22, (51)

which is maximized subject to

p1c1 + p21c21 + p22c22 = I. (52)

Combining the first order conditions with the budget constraint yields

c1 =
I

2p1
, (53)

implying that period one optimal consumption c1 is independent of p21 and p22.
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Remark 3 The utility (51) is of particular interest, since it is neither additively
separable nor homothetic but still results in myopic period one demand.

Next we derive the necessary and suffi cient condition for consumption vectors in

multiple periods, including the first, to be myopic. The key tactic is to reformulate

the problem so that Proposition 1 can be applied recursively. Since the notation

for the general T period case is quite messy, without loss of generality, we state the

following Result for three periods. The argument for more general cases proceeds

in a similar manner.

Result 1 Assume there are three periods. In periods one, two and three, the quan-
tity of goods is denoted by (c11, c12) , (c21, c22, c23) and (c31, c32) , respectively. The

optimal consumption vector in each period is myopic if and only if U (c11, c12, ..., c32)

takes the form

U = f (1)
(
g(2) (c11, c12, c21, c22, c23) g

(1) (c11, c12) c31, g
(2) (c11, c12, c21, c22, c23) g

(1) (c11, c12) c32
)
,

(54)

where

g(2) (c11, c12, c21, c22, c23) = f (2)
(
g(1) (c11, c12) c21, g

(1) (c11, c12) c22, g
(1) (c11, c12) c23

)
,

(55)

f (1), f (2), g(1) ∈ U and f (2), g(1) > 0.

Proof. To apply Proposition 1, combine the first and second periods into a single
long period. Then the necessary and suffi cient condition for the optimal consump-

tion vector in this combined period to be myopic is that the utility function U takes

the form

U = f (1)
(
g(2) (c11, c12, c21, c22, c23) g

(1) (c11, c12) c31, g
(2) (c11, c12, c21, c22, c23) g

(1) (c11, c12) c32
)
.

(56)

This form of utility ensures that the optimal period two demands (c21, c22, c23) are

myopic.10 For the optimal consumption vector in period one to be myopic, Proposi-

tion 1 can be applied again to g(2) (c11, c12, c21, c22, c23). The necessary and suffi cient

condition for the optimal period one consumption vector (c11, c12) to be myopic is

g(2) (c11, c12, c21, c22, c23) = f (2)
(
g(1) (c11, c12) c21, g

(1) (c11, c12) c22, g
(1) (c11, c12) c23

)
.

(57)

10Note that, in general, g(1) can be combined with g(2) if one only requires (c21, c22, c23) to be

myopic. However, in order to ensure the myopia of (c11, c12) as well as (c21, c22, c23), g(1) and g(2)

need to be separated.
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Since U takes the form

U = f
(
g(1) (c11, c12) c21, g

(1) (c11, c12) c22, g
(1) (c11, c12) c23, g

(1) (c11, c12) c31, g
(1) (c11, c12) c32

)
,

(58)

where f is a function determined by f (1) and f (2), it follows from Proposition 1 that

the optimal period one consumption vector (c11, c12) is myopic. In conclusion, the

optimal consumption vector in each period is myopic in this three period setting

if and only if the utility function U takes the form (56), where g(2) is defined in

(57). Without loss of generality, assume that f (2), g(1) > 0. Applying the similar

argument as in the proof of Lemma 1, it can be shown that f (1), f (2), g(1) ∈ U .
If there are three periods and in each period there is only one commodity, then

using Remark 2 and applying Proposition 1 recursively (as discussed in Result 1),

optimal consumption in every period is myopic if and only if U takes the following

form up to an increasing monotone transformation

U (c1, c2, c3) = f (g (c1) c2) + ln (g (c1) c3) , (59)

where f, g ∈ U and g > 0.11 It should be noted that if f (x) = ln x and g (x) =
√
x,

we have

U (c1, c2, c3) = ln c1 + ln c2 + ln c3, (60)

which is the well-known log additive (or ordinally equivalent Cobb-Douglas) utility.

The stronger restriction on preferences (60) guarantees that demand in each period

is not only independent of future prices (as in the myopia Definition 1), but also of

past prices. Thus for instance, optimal c2 will depend on both p1 and p2 in general

if U takes the form of (59) but only on p2 if U is given by (60).

On the other hand, in contrast to demand being myopic in each period as in

(59), it follows from Remark 2 that optimal consumption will be myopic in period

one if and only if U takes the form

U (c1, c2, c3) = f(g (c1) c2, g (c1) c3), (61)

where in general there is no requirement for the functions f and g in (61) to be

related to f and g in (59). However, the utility functions (59) and (61) will give

the same optimal c1 if and only if g (c1) is the same. Moreover, it follows from (59)

and (61) that given period one demand is myopic, period two demand will also be

myopic if and only if the utility U is ordinally additively separable in c3.

11More generally in a four period setting (with one good per period), optimal consumption in

each period is myopic if and only if U (c1, c2, c3, c4) takes the form

U (c1, c2, c3, c4) = f (1)
(
f (2)

(
g(1) (c1) c2

)
g(1) (c1) c3

)
+ ln

(
f (2)

(
g(1) (c1) c2

)
g(1) (c1) c4

)
,

where f (1), f (2), g(1) ∈ U and f (2), g(1) > 0.
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Remark 4 Although our focus in this paper is on the consumer’s period one op-
timization and not her decisions in subsequent periods, the comparison of utilities

(59) and (61) prompts an observation on decisions over time. Whereas the assump-

tion that the consumer is myopic in every period is clearly stronger than assuming

myopia in the first period (or some subset of periods), there is a sense in which the

former assumption may be viewed as more natural. If the consumer is assumed to

be myopic just in the first period, then why when period one ends doesn’t she become

myopic in the second period — retaining the same intertemporal pattern? If that

were the case and her preferences in period one were represented by the utility form

in eqn. (61) and not (59), then her utility in period two would have to take the

form of eqn. (43), U (c2, c3) = h (c2) + ln c3. In this case the MRS (marginal rate

of substitution) between c2 and c3 would change from period one to period two and

the consumer would be inconsistent. On the other hand, if the consumer is myopic

in every period, implying that her preferences in the first period can be represented

by the utility in eqn. (59), then the same utility with the given c1 can be assumed

in the second period and her period two demands will still be myopic, i.e., indepen-

dent of the period three price. Since her MRS between c2 and c3 remains the same

when changing periods, the consumer will not revise her plan and thus is consis-

tent.12 Whereas some may find this argument for assuming the consumer is myopic

in every period to be persuasive at the individual demand and preference level, we

will see in Examples 3 and 4 below that the equilibrium implications of being myopic

in each period are considerably stronger than those associated with the assumption

of being myopic in just the first period.

3 Interest Rate Implications

In this Section, we investigate the implications of preferences being myopic for equi-

librium interest rates. A standard certainty representative agent equilibrium model

is assumed (see, for example, Kocherlakota 2001).13 In period one, assume a single

good, denoted by c1, and T − 1 zero coupon bonds, where bt (t = 2, 3, ...T ) denotes
the quantity of zero coupon bonds purchased in period one and maturing at the

beginning of period t and paying one unit of ct.14 The period one price of the zero

coupon bond is denoted qt, where subscript t indicates that the bond matures at the
12For a detailed discussion of changing tastes and consistency, see Selden and Wei (2012).
13Since a static setting is assumed, all bond prices are observed at the beginning of the current

time period and all interest rates are current spot rates. We do not consider implied forward rates

or future spot interest rates.
14It should be noted that in order to investigate the impact of myopia on the term structure,

the choice of a zero coupon bond versus a standard nonzero coupon bond is not innocuous. For

example, consider a three period setting in which the two period bond pays a coupon rate of ξ per

14



beginning of period t. And as is standard, the net interest rate rt−1 during period

t − 1 associated with the zero coupon bond purchased in period one and maturing
at date t is given by

qt =
1

(1 + rt−1)
t−1 . (62)

The representative agent is endowed in period one with a fixed supply c1 of

period one consumption and b2, b3, ..., bT zero coupon bonds15 and has preferences

over consumption streams (c1, ..., cT ) represented by U .16 The optimization problem

is given by

max
c1,b2,...,bT

U (c1, ..., cT ) S.T. c1 +
T∑
t=2

qtct = c1 +
T∑
t=2

qtbt (63)

S.T. ct = bt ∀t ∈ {2, 3, ..., T} . (64)

It is clear that in this optimization, if U takes one of the myopic forms of utility

derived in the prior Section, optimal demands will not be independent of future

prices since prices will always enter into the demand functions through total income

or wealth, i.e.,

I = c1 +
T∑
t=2

qtbt. (65)

As a result, the presence of endowments precludes using Definition 1 to define myopic

demand. Endowments introduce a third term into the classic Slutsky equation

typically referred to as the endowment (income) effect (see Arrow and Hahn, 1971,

p. 225 and Varian, 1992, p. 145). However, the myopic forms of utility will ensure

that the corresponding demand function income and substitution effects discussed

in Remark 1 continue to exactly offset each other. Thus in the present exchange

economy setting, when we say that ct is myopic we will mean that this equality of

minus the income effect and the substitution effect holds and the endowment effect

cent at the end of periods one and two. Then period two consumption is given by c2 = b2 + ξb3,

which is a function of both b2 and b3. Thus, it would not be appropriate to say that c2 is myopic

if and only if it is independent of the two period bond price q3. The advantage of the zero coupon

bond assumption is that all of the information concerning the bond is incorporated in its price and

this diffi culty can be avoided.
15Here we assume that b2, b3, ...bT 6= 0. Such an assumption is not atypical. It could for

instance be associated with the debt being issued by a government which is outside the model (see,

for example, Parlour, et al., 2011 and the literature cited therein). Alternatively, our assumption

of nonzero supplies of bonds could be dropped if we were to allow for endowments in the form of

period two and three income (in units of consumption). This would change none of the conclusions,

only making the notation more complicated.
16It should be noted that because we do not assume additive utility, our analysis will not include

the typical period discount factors present in standard equilibrium interest rate models.
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is ignored. And in this sense, each of the preference conditions derived in Section

2 can be applied to our equilibrium analysis. Indeed our goal in this Section is to

investigate the implications of these forms of utility for equilibrium interest rates.

To examine the implications of myopic preferences, assume the first and second

time periods are combined to form a new "long" period with consumption c1 and

c2 (or b2). It follows from Proposition 1 that in a pure demand setting (without

endowments) the following myopic utility

U (c1, ..., cT ) = f (g (c1, c2) c3, g (c1, c2) c4, ..., g (c1, c2) cT ) . (66)

results in optimal demands for both c1 and c2 (or b2) being independent of the

interest rates on the 3- through T -period zero coupon bonds. It is natural to

ask what are the implications of the myopic utility (66) for equilibrium interest

rates. One natural conjecture might be that myopia is necessary and suffi cient

for the equilibrium period one interest rate r1 to be independent of the supplies bt
(t = 3, 4, ..., T ). Indeed it can be verified that for the utility (66), one always has

1 + r1 =
1

q2
=
∂U/∂c1
∂U/∂c2

=
∂g (c1, c2) /∂c1
∂g (c1, c2) /∂c2

∣∣∣∣
(c1,c2)=(c1,b2)

, (67)

which is independent of bt (t = 3, 4, ..., T ). However, r1 being independent of bt
(t = 3, 4, ..., T ) although necessary is not suffi cient for myopic utility. The interest

rate r1 is also independent of bt (t = 3, 4, ..., T ) when utility takes the additively

separable form, as we show below. And as we have seen additive separability does

not imply myopic utility. In the remainder of this paper, we derive the different

equilibrium interest rate implications corresponding to preferences being additively

separable, homothetic or myopic. It should be noted that the most widely assumed

form of myopic utility the log additive form (60) not only exhibits myopia and

additive separability but also homotheticity.

Beginning with additive separability, it is possible by applying a classic result of

Samuelson (1947) to the current representative agent equilibrium setting, to derive

the restrictions on equilibrium interest rates that are equivalent to preferences being

additively separable.

Proposition 2 Assume the representative agent’s optimization problem is charac-

terized by (63) and (64). For all t ∈ {1, 2, ..., T − 1} and T > 2, rt is independent of

bond supplies other than bt+1 if and only if the agent’s preferences can be represented

by an ordinally additively separable utility,

U (c1, ..., cT ) =

T∑
t=1

ut (ct) . (68)
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Proof. Observing that in a representative agent exchange economy

1

(1 + rt−1)t−1
= qt =

∂U/∂ct
∂U/∂c1

∀t ∈ {2, 3, ..., T} , (69)

the proof of this Proposition directly follows from Samuelson (1947) pp. 176-183.17

Whereas the weak separability corresponding to period one myopia ensures that

r1 only depends on b2, additive separability ensures that this same result holds

for every period. As can be seen from Example 4 below, myopia in each period

differs from additive separability in allowing the equilibrium interest rates rt (t =

2, 3, ..., T−1) to depend on the supply of bonds in all prior periods and not just bt+1.
Therefore the equilibrium interest rate restrictions implied by additive separability

are clearly stronger which is fully consistent with the preference based reservations

of Fisher (1930), Hicks (1965) and Lucas (1978) referenced above in Section 1.

Next we isolate the restriction on the equilibrium interest rates corresponding to

preferences being homothetic.

17It should be noted that in addition to

∂qt

∂bi
= 0 (∀t, i ∈ {2, 3, ..., T} , i 6= t) ,

implied in our Proposition 2, Samuelson also gives the following in his eqns. (33) (Samuelson 1947,

p. 179)
∂

∂c1

(
qt
q2

)
= 0 (∀t ∈ {3, 4, ..., T})

for the necessary and suffi cient condition such that preferences can be represented by an additively

separable utility function. As Samuelson states, his condition implies integrability and if this is

postulated as a precondition then eqns. (33) cease to all be independent and can be reduced in

number. Since we have assumed the existence of U , we don’t need to include the above set of

equations in Proposition 2. To be more explicit, we can show that this set of equations can be

directly derived from ∂qt
∂bi

= 0. Noticing that

q2 =
∂U
∂c2
∂U
∂c1

and q3 =
∂U
∂c3
∂U
∂c1

,

one can obtain
∂q2
∂c3

= 0⇔ ∂2U

∂c2∂c3

∂U

∂c1
− ∂2U

∂c1∂c3

∂U

∂c2
= 0

and
∂q3
∂c2

= 0⇔ ∂2U

∂c2∂c3

∂U

∂c1
− ∂2U

∂c1∂c2

∂U

∂c3
= 0,

implying that

∂2U

∂c1∂c3

∂U

∂c2
− ∂2U

∂c1∂c2

∂U

∂c3
= 0⇔ ∂

∂c1

(
∂U
∂c3
∂U
∂c2

)
=

∂

∂c1

(
q3
q2

)
= 0.
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Proposition 3 Assume the representative agent’s optimization problem is charac-

terized by (63) and (64). The interest rate in each period remains the same when

the endowments of period one consumption and each zero coupon bond are increased

by the same percentage if and only if the agent’s preferences are homothetic.

Proof. First prove suffi ciency. Note that homotheticity implies that there exists a
homogeneous utility function U such that for ∀t ∈ {2, 3, ..., T}

1

(1 + rt−1)t−1
= qt =

∂U/∂ct
∂U/∂c1

. (70)

Assuming without loss of generality that U is homogeneous of degree 1, Euler’s

Theorem implies that ∂U/∂ct (∀t ∈ {1, 2, ..., T}) is homogeneous of degree 0. It

then follows that increases in the endowments of period one consumption and each

zero coupon bond by the same percentage imply that the set of equilibrium interest

rates is unchanged. Next prove necessity. Since the interest rate (equilibrium price)

in each period remains the same when changing all of the consumption and bond

endowments by the same percentage, it follows from the budget constraint that if

income I = c1 +
∑T

t=2
bt

(1+rt−1)t−1
the total wealth increases by a certain percentage,

the optimal demands will increase by the same percentage for fixed prices, implying

that preferences are homothetic.

Given that r1 being independent of the supplies bt (t = 3, 4, ..., T ) is only a neces-

sary condition for (c1, c2) to be myopic, we next characterize the equilibrium interest

rate implications which are both necessary and suffi cient for preferences to be rep-

resentable by the myopic utility (6) in Proposition 1.

Proposition 4 Assume the representative agent’s optimization problem is charac-

terized by (63) and (64). The equilibrium interest rates exhibit the property that

for any t ∈ {1, 2, ..., T − 1} , the present value
∑T

i=t+1
bi

(1+ri−1)i−1
is independent of bj

(j ∈ {t+ 1, t+ 2, ..., T}) if and only if preferences are representable by the myopic
utility (6) corresponding to optimal period t consumption ct being myopic.

Proof. Without loss of generality, we only need to prove the Proposition for optimal
period two consumption. First prove suffi ciency. It follows from Proposition 1 that

period two consumption c2 is myopic if and only if

U (c1, ..., cT ) = f (g (c1, c2) c3, g (c1, c2) c4, ..., g (c1, c2) cT ) . (71)

In equilibrium, the first order conditions are

gfj

g1
∑T−2

i=1 fibi+2
=

1

(1 + rj+1)j+1
, (72)
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implying that

T∑
i=3

bi
(1 + ri−1)i−1

=

T−2∑
i=1

bi+2
(1 + ri+1)i+1

=
g
∑T−2

i=1 fibi+2

g1
∑T−2

i=1 fibi+2
=

g

g1

∣∣∣∣
(c1,c2)=(c1,b2)

(73)

and hence
∑T

i=3
bi

(1+ri−1)i−1
is independent of bj (j ∈ {3, 4, ..., T}). Next prove ne-

cessity. If
∑T

i=3
bi

(1+ri−1)i−1
is independent of bj (j ∈ {3, 4, ..., T}), then we have

∂

∂cj

∑T
i=3 ciUi
U1

= 0 ∀j ∈ {3, ..., T} , (74)

implying that

U (c1, ..., cT ) = f (g (c1, c2) c3, g (c1, c2) c4, ..., g (c1, c2) cT ) . (75)

The intuition for why Proposition 4 works is that for myopic preferences the set

of equilibrium interest rates adjusts so as to keep the present value constant. It

should be noted that if preferences take the form associated with consumption being

myopic in each period, then we can apply Proposition 4 recursively and conclude

that for all t ∈ {1, 2, ..., T − 1}, rt is independent of bj+1 and
∑T

i=t+1
bi

(1+ri−1)i−1
is

independent of bj (j ∈ {t+ 1, t+ 2, ..., T}), where the latter is not only necessary
but also suffi cient.

Remark 5 The Proposition 4 conclusion that the present value of future bond sup-
plies is independent of changes in the supply of bonds in each period may strike

the reader as being reminiscent of the irrelevance of government financial policy in

the macroeconomics literature (e.g., Wallace 1981, Bryant 1983 and Stiglitz 1986).

There it is assumed in an intertemporal setting that a government exists which both

collects taxes and issues debt of differing maturities. If for a given supply of bonds

a general equilibrium exists, then modifying the supply of bonds will not affect the

equilibrium value of real variables such as consumption although equilibrium interest

rates may change. (There is a clear analogy of this result to the famous Modigliani

and Miller capital structure irrelevance in corporate finance.) However it should

be stressed that the source of "independence" in our setting comes from the form of

utility since the government sector in our model is not closed as we do not allow for

taxes.

We conclude this Section with two Examples and a Remark. They illustrate in

a four period setting the Proposition 2 and 4 implications on equilibrium interest

rates of preferences taking the different forms associated with c1 and c2 being myopic

versus c1, c2, c3 and c4 being myopic and the implications of log additive utility.
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Example 3 Assume the representative agent’s optimization problem is character-

ized by (63) and (64), where there are four periods and utility takes the form

U (c1, c2, c3, c4) = ((ln c1 + ln c2) c3)
1
4 +

√
(ln c1 + ln c2) c4, (76)

where c1, c2 > 1 and c3, c4 > 0 are assumed to ensure U ∈ U . It follows from

Proposition 1 that the optimal consumption vector (c1, c2) is myopic. Using the

representative agent’s first order conditions paralleling eqn. (67), straightforward

computation results in the following characterization of equilibrium interest rates

1

1 + r1
=
c1

b2
, (77)

1

(1 + r2)
2 =

c1
(
ln c1 + ln b2

) ((
ln c1 + ln b2

)
b3
)− 3

4

b3

(((
ln c1 + ln b2

)
b3
)− 3

4 + 2
((
ln c1 + ln b2

)
b4
)− 1

2

) (78)

and
1

(1 + r3)
3 =

2c1
(
ln c1 + ln b2

) ((
ln c1 + ln b2

)
b4
)− 1

2

b4

(((
ln c1 + ln b2

)
b3
)− 3

4 + 2
((
ln c1 + ln b2

)
b4
)− 1

2

) . (79)

First we can see that r1 is independent of
(
b3, b4

)
, but r2 and r3 depend on all of the

bond supplies. Moreover, using (78) and (79) it follows that the present value of

period 3 and period 4 bond supplies

b3
(1 + r2)2

+
b4

(1 + r3)3
= c1

(
ln c1 + ln b2

)
(80)

is independent of b3 and b4.

Example 4 Assume the representative agent’s optimization problem is character-

ized by (63) and (64), where there are four periods and utility takes the form18

U (c1, c2, c3, c4) =
√
ln (c1c2) c1c3 + ln (ln (c1c2)) + ln c1 + ln c4, (81)

where c1, c2 > 1 and c3, c4 > 0 are assumed to ensure U ∈ U . It follows from

Proposition 1 and Result 1 that optimal consumption in each period is myopic. Using

the representative agent’s first order conditions paralleling eqn. (67), straightforward

computation results in the following characterization of equilibrium interest rates

1

1 + r1
=

c1

b2
(
1 + ln

(
c1b2

)) , (82)

18The utility (81) can be obtained from the general four good myopic utility in footnote 11 by

assuming

f (1) (x) =
√
x, f (2) (x) = lnx and g(1) (x) = x.

It should be noted that if the coeffi cients in (81) are varied arbitrarily, the resulting utility will not

be a special case of the general form and will not result in myopic demand behavior.
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1

(1 + r2)2
=

(
c1 ln

(
c1b2

))2
(
1 + ln

(
c1b2

))(
c1b3 ln

(
c1b2

)
+ 2
√
c1b3 ln

(
c1b2

)) (83)

and
1

(1 + r3)3
=

2c1 ln
(
c1b2

)
b4
(
1 + ln

(
c1b2

))(
2 +

√
c1b3 ln

(
c1b2

)) . (84)

It is clear that r1 is independent of
(
b3, b4

)
, r2 is independent of b4 and r3 depends

on all bond supplies. Moreover using (82)-(84), it follows that

i
b2

1 + r1
+

b3
(1 + r2)2

+
b4

(1 + r3)3
= c1, (85)

where the present value is independent of b2, b3 and b4;

ii
b3

(1 + r2)2
+

b4
(1 + r3)3

=
c1 ln

(
c1b2

)
1 + ln

(
c1b2

) , (86)

where the present value is independent of b3 and b4; and

iii
b4

(1 + r3)3
=

2c1 ln
(
c1b2

)
(
1 + ln

(
c1b2

))(
2 +

√
c1b3 ln

(
c1b2

)) , (87)

where the present value is independent of b4.

Remark 6 It is interesting to contrast the equilibrium in Example 4 with that re-

sulting from utility taking the log additive form

U (c1, c2, c3, c4) = ln c1 + ln c2 + ln c3 + ln c4, (88)

where the representative agent is also myopic in each period. In this case, it can be

verified that

1

1 + r1
=
c1

b2
,

1

(1 + r2)2
=
c1

b3
and

1

(1 + r3)3
=
c1

b4
, (89)

implying that
b2

1 + r1
+

b3
(1 + r2)2

+
b4

(1 + r3)3
= 3c1, (90)

b3
(1 + r2)2

+
b4

(1 + r3)3
= 2c1 (91)
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and
b4

(1 + r3)3
= c1. (92)

It can be seen that a change in the endowment bt+1 exactly cancels out the interest

rate change (1+ rt)t and the present value is always a function of only c1. Whereas

myopia in each period ensures that each present value sum is independent of changes

in the respective endowment, additive separability ensures that a change in bt+1 only

affects rt and hence implies that the changes in the endowment must be canceled out

exactly by the interest rate change.
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