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Asset Demand Based Tests of 
Expected Utility Maximization †

By Felix Kubler, Larry Selden, and Xiao Wei *

We provide conditions under which contingent claim and asset 
demands are consistent with state independent Expected Utility max-
imization. The paper focuses on the case of a single commodity and 
demands are allowed to be functions of probabilities and not just 
prices and income. We extend prior analyses by deriving three dis-
tinct tests for demands to be rationalized by Expected Utility: (i) a
contingent claim analogue to the certainty strong axiom of revealed 
preference, (ii) a characterization of the functional form for demand,
and (iii) necessary and sufficient conditions based on the Slutsky
matrix. (JEL D01, D11, D81)

The neoclassical certainty model of consumer behavior postulates that a consum-
er’s demand can be described as having been derived from utility maximization sub-
ject to a budget constraint. One is then naturally led to ask what this model implies 
about observed demand behavior. This question has been addressed using two quite 
distinct approaches. The first, originating in the work of Slutsky (1915) and Antonelli 
(1886), derives necessary and sufficient conditions for utility maximization assum-
ing knowledge of the consumer’s demand functions. The second approach known 
as “revealed preference,” following the classic work of Samuelson (1938), provides
necessary and sufficient restrictions on a finite set of demand-price pairs such that 
the demand behavior of a consumer is consistent with utility maximization.

In this paper, we extend both approaches to a classic portfolio choice problem, 
where consumers possess state independent Expected Utility preferences and there is 
a single commodity in each state. We focus only on the complete market case, where 
the financial asset setting is equivalent to the contingent claim setting and hence it 
is only necessary to discuss demand tests for the latter. We depart from the standard 
contingent claim theory by assuming that state of nature probabilities are not fixed 
and we model demand as a function of probabilities as well as prices and income.

For the revealed preference approach, with the restriction of a single commodity 
in each state, we derive a much simpler test for Expected Utility maximization than 
those that currently exist in the literature. For example the formulation of Green and 
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Srivastava (1986), as in the revealed preference models of Afriat (1967) and Varian 
(1983), postulates the existence of unknown utility levels and multipliers. We do 
not require these existential quantifiers and our condition is analogous to the strong 
axiom of revealed preference in classical demand theory. The conditions involve 
probabilities but remain necessary and sufficient when probabilities are fixed (and 
known). From our revealed preference test, it is possible to tell whether the Expected 
Utility hypothesis is consistent with the assumed finite dataset. If consistency is not 
refuted and one wants to use the data to estimate a demand function, one requires 
restrictions on the functional form to be employed which ensure that the estimated 
function is rationalized by an Expected Utility function.

We derive simple restrictions on contingent claim demand functions which are 
necessary and sufficient for preferences to be representable by a state independent 
Expected Utility function. Going back to at least Samuelson (1947), there is a substan-
tial literature on the certainty version of this problem but there are few results in the 
literature that are concerned with contingent claim demand and Expected Utility max-
imization. Our approach differs from that of Dybvig (1983) in two ways. First, we do 
not need to assume that the representation is additively separable. Second, we require 
knowledge of how demand varies with exogenously varying probabilities. Dybvig’s 
test can be conducted on the functional form of demands with or without knowing 
the explicit values of probabilities. Because probabilities are fixed for him, however, 
his test fails to distinguish between demands coming from Expected Utility functions  
and representations which one would not typically refer to as Expected Utility.1

Given the seminal role played by restrictions on the Slutsky matrix in ensuring 
the existence of a well-behaved utility function that rationalizes demand, we inves-
tigate what additional Slutsky restrictions correspond to utility taking the Expected 
Utility form. Goldman and Uzawa (1964) give necessary and sufficient conditions 
for additively separable utility based on terms in the Slutsky matrix. We simplify 
their conditions for our case of one good per state and derive two additional con-
ditions, one of which is a new derivative condition involving terms in the Slutsky 
matrix. Together these three conditions are necessary and sufficient for demand to 
be rationalized by Expected Utility.

Clearly our assumption that state of nature probabilities vary confronts obvious 
obstacles in practical implementation. However, the implicit assumption in the stan-
dard approach that repeated observations on demands can be obtained while holding 
probabilities fixed seems less than fully compelling. One would expect that obser-
vations on an individual’s choices in financial markets where prices change could 
correspond to the case where probability distributions of asset payoffs also change. 
To explore these issues, recent new approaches to laboratory experiments may offer 
some promise for extending classical tests of consumer behavior to models with 
uncertainty (see, for example, Choi et al. 2007 and Andreoni and Sprenger 2012).

The rest of the paper is organized as follows. The next section introduces notation 
and the basic contingent claim/asset optimization problem. In Section II, we derive 
necessary and sufficient conditions for an observed finite set of demand, price, and 
probability triplets to be consistent with Expected Utility maximization. Section III 

1 See Example 1 and Remark 3.
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provides restrictions on demands such that they are rationalizable by Expected 
Utility functions.

I.  Preliminaries

Throughout this paper we consider a classic complete market portfolio choice set-
ting with S states of nature, a single commodity per state, and J = S financial assets. 
Denote the payoff for asset j ​(  j ∈ ​{ 1, 2, … , J }​ )​ in state s ​( s ∈ ​{ 1, 2, … , S }​ )​ by ​ξ​js​ 
and the matrix of payoffs by Ξ. The quantities of assets are denoted by ​z​ j​ and their 
prices are denoted by ​P​j​. An individual has preferences over state contingent con-
sumption, x ∈ ​핉​ ++​ S

  ​, that depend on the probabilities ​π​1​, … , ​π​S​ and is represented 
by a utility function U(x; π) which is assumed to be strictly quasiconcave, strictly 
increasing in x, and three times continuously differentiable in x and π. It should be 
noted that π enters into U as a parameter that is allowed to vary exogenously, but 
π is not a choice variable. The consumer’s preferences are defined over contingent 
claims. The utility U(x; π) is said to take the state independent Expected Utility 
form when

(1) 	  U(x; π)  = ​ ∑​ 
s=1

​ 
S

  ​ ​π​s​ u​( ​x​s​ )​,

where u denotes the NM (von Neumann-Morgenstern) index and satisfies u ∈ ​C​ 3​, ​
u′​ > 0, and u″ < 0.

Given income I and facing prices P and probabilities π, the agent solves

(2) 	​    max    
x∈​핉​ ++​ s  ​, z∈​핉​ J​

​ U(x; π)  S.T.  P  ·  z  ≤  I

 	​  x​s​  = ​ ∑​ 
j=1

 ​ 
J

  ​ ​z​j​ ​ξ​js​  for all  s  =  1, … , S.

We investigate what restrictions the assumption of state independent Expected 
Utility imposes on the solution of this maximization problem as a function of prices, 
incomes, and probabilities. We consider two settings. First we assume that we have 
N observations on asset demands, prices, as well as probabilities (​z​ i​, ​P​ i​, ​π​ i​ ​)​ i=1​ N

  ​. 
Second, we assume that we observe the demand function z(P, π, I ) for an open set 
of prices, incomes, and probabilities. Probabilities are assumed to be known. In our 
demand function tests we investigate when U takes the Expected Utility form (1) for 
all specifications of π. Some of our tests will be seen to depend critically on how the 
probability parameter π enters into the consumer’s demand function.

Our assumption that markets are complete ensures that the S assets’ payoffs are 
linearly independent. This allows us to transform our observations into (x, p, π), 
where x = Ξz and ​P​T​ = ​p​T​ Ξ. Therefore, we focus on the contingent claim demand 
x(p, π, I ) that solves

(3) 	​   max   
x∈​ℝ​ ++​ s  ​

​U(x; π)  S.T.  p · x  ≤  I,
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where p = (​p​1​, … , ​p​S​) is the contingent claim price vector. Note that if contingent 
claim demand is derived from the Expected Utility function (1), demand is 
homogeneous of degree zero in π. It is not necessary to normalize probabilities and 
since we consider derivatives with respect to probabilities, it will prove convenient 
not to do so. We therefore assume π ∈ ​ℝ​ ++​ S

  ​.
We next consider an example which highlights our key assumption that demand 

is a continuous, differentiable function of probabilities as well as prices and income. 
This differentiates our approach from most contingent claim formulations which 
assume demand is a function of prices and income, but probabilities are fixed 
parameters.

EXAMPLE 1: Assume there are three states of nature and preferences are repre-
sented by the following utility:

(4) U​( ​x​1​, ​x​2​, ​x​3​; ​π​1​, ​π​2​, ​π​3​ )​  =  −​∑​ 
s=1

​ 
3

  ​ ​π​s​​( exp ​( −​π​1​ ​x​s​ )​ + exp ​( −​π​2​ ​x​s​ )​ + exp ​( −​π​3​ ​x​s​ )​ )​.

Clearly this representation is not an Expected Utility function since probabilities 
do not enter into the function linearly. Moreover each subutility u(​x​s​), although 
being state independent, is probability dependent which of course is inconsistent 
with the classic NM index in equation (1). Suppose instead of assuming that π is an 
exogenous variable, probabilities take on fixed values as in the standard contingent 
claim setting (e.g., Dybvig 1983). Then, if

(5) 	​  π​1​  =  0.6, ​ π​2​  =  0.3  and ​ π​3​  =  0.1,

the utility (4 ) can be expressed as

(6) U​( ​x​1​, ​x​2​, ​x​3​; ​π​1​, ​π​2​, ​π​3​ )​ = −​∑​ 
s=1

​ 
3

  ​​π​s​​( exp ​( −0.6​x​s​ )​ + exp ​( −0.3​x​s​ )​ + exp ​( −0.1​x​s​ )​ )​.

This can be viewed as taking the state independent Expected Utility form of equa-
tion (1 ) with the NM index given by

(7) 	  u​( x )​  =  −​( exp ​( −0.6x )​  +  exp ​( −0.3x )​  +  exp ​( −0.1x )​ )​.

If one alternatively assumes that probabilities are given by

(8) 	​  π​1​  =  0.50, ​ π​2​  =  0.35  and ​ π​3​  =  0.15,

once again the form of U can be viewed as taking the state independent Expected 
Utility form. However now the NM index

(9) 	  u​( x )​  =  −​( exp ​( −0.50x )​  +  exp ​( −0.35x )​  +  exp ​( −0.15x )​ )​ 
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differs from (7 ) by more than a positive affine transform. Any demand test based on the 
assumption of fixed probabilities will not be able to distinguish between (4 ) and (6 ).

II.  A Revealed Preference Test

In this section, we provide conditions for a finite set of demand-price-probability 
triplets which are necessary and sufficient for the demand behavior of a consumer to 
be consistent with state independent Expected Utility maximization.

Green and Srivastava (1986) derive a complete market revealed preference test 
of Expected Utility maximization in a setting where there are multiple goods in 
each state. We consider the simpler case where there is a single good in each state. 
This will enable us to eliminate the assumption of existential quantifiers required in 
Green and Srivastava (1986) and obtain a result that is essentially analogous to the 
strong axiom of revealed preference.

We have N observations on contingent claim demands, prices, and probabilities 
(​x​ i​, ​p​i​, ​π​ i​ ​)​ i=1​ N

  ​ with ​x​ i​ ∈ ​ℝ​ ++​ S
  ​, ​p​ i​ ∈ ​ℝ​ ++​ S

  ​ and ​π​ i​ being a vector of positive prob-
abilities for each i = 1, … , N. In line with the rest of the paper, we assume that 
the probabilities are observable and can vary across observations.2 Without loss of 
generality, we assume throughout this section that ​x​ s​ i ​ ≠ ​x​ ​s​′​​ j

 ​ for all i, j and all s, ​s′​ 
(the case where ​x​ s​ i ​ = ​x​ ​s​′​​ j

 ​ for some i, j and some s, ​s′​ can be easily considered sepa-
rately). In order to eliminate the assumption of existential quantifiers required in 
Green and Srivastava (1986), it will prove convenient to define ​ρ​ s​ i ​ = ​p​ s​ i ​/​π​ s​ i ​ for all 
i = 1, … , N, s = 1, … , S, and the operator

(10) 	  L(i, j )  = ​   max     
s, ​s​′​ : ​x​ s​ i ​  > ​x​ ​s​′​​  j ​

​ ​ 
​ρ​ s​ i ​ _ 
​ρ​ ​s​′​​  j

 ​
 ​ ,

where we set L(i, j ) = 0 if ​x​ s​ i ​ < ​x​ ​s​′​​ j
 ​ for all s, ​s′​.

DEFINITION 1: We say that (​x​i​, ​p​i​, ​π​ i​​ )​ i=1​ N  ​ satisfy the strong axiom of revealed 
expected utility (SAREU ) if for any m > 1 and all ​i​1​, … , ​i​m​ ∈ {1, … , N } we have

(11) 	  L(​i​1​, ​i​2​)  ·  L(​i​ 2​, ​i​3​)  ·  ⋯  ·  L(​i​m−1​, ​i​m​)  ·  L(​i​m​, ​i​1​)  <  1.

REMARK 1: Note that the case where m = 2 and ​i​1​ = ​i​2​ = i implies that L(i, i) < 1, 
which is equivalent to

(12) 	​  x​ s​ i ​  > ​ x​ ​s​′​​ i
 ​  ⇒ ​ ρ​ s​ i ​  < ​ ρ​ ​s​′​​ i

 ​

for each i and all s, ​s′​.

2 If probabilities are not observable, our conditions in Theorem 1 remain necessary and sufficient if one treats 
probabilities as unknown positive numbers and condition (ii) is adjusted to say that there exist real numbers ​π​ s​ i ​ > 0 
and ​λ​ i​ > 0.
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Comparing our analysis with the certainty formulation of Afriat (1967), it can be 
observed that SAREU plays the role of Afriat’s cyclic consistency which as Varian 
(1982) argues is a version of the general axiom of revealed preference (GARP). As 
in Afriat (1967), our condition (11) must hold for all cycles. However our condition 
involves the product of the risk neutral prices ​( i.e., ​ ​p​s​ _ ​π​s​ ​ )​ rather than a sequence of 
price-quantity inequalities.

We have the following theorem:

THEOREM 1: The following three statements are equivalent:

	 (i )	 There exists a continuous, strictly increasing and strictly concave NM index 
u : ​ℝ​++​ → ℝ such that for all i = 1, … , N

(13) 	​  x​ i​  ∈ ​ arg  max   
x∈​ℝ​ ++​ S  ​

  ​​ ∑ ​ 
s=1

 ​ 
S

  ​​π​ s​ i ​ u(​x​s​)  s.t. ​ p​i​  ·  x  ≤ ​ p​i​  · ​ x​i​.

	 (ii )	 There exist real numbers ​λ​i​ > 0 for i = 1, … , N such that for all 
i, j = 1, … , N and any s, ​s′​ = 1, … , S,

(14) 	​  x​ s​ i ​  > ​ x​ ​s​′​​ j
 ​  ⇒ ​ λ​i​​ρ​ s​ i ​  < ​ λ​j​​ρ​ ​s​′​​  j

 ​.

	 (iii )	 The observations (​x ​i​, ​p​ i​, ​π​ i​ ​)​ i=1​ N
  ​ satisfy SAREU.

PROOF:
The equivalence between (i) and (ii) is standard, see e.g., Kubler and Schmedders 

(2010), Lemma 2. To show the equivalence of (ii) and (iii), we first show that (ii) 
implies (iii). From (ii), for i = j, clearly we have

(15) 	​  x​ s​ i ​  > ​ x​ ​s​′​​ i
 ​  ⇒ ​ λ​i​​ρ​ s​ i ​  < ​ λ​i​​ρ​ ​s​′​​ i

 ​  ⇒ ​ ρ​ s​ i ​  < ​ ρ​ ​s​′​​ i
 ​,

implying that SAREU holds for this case. For all i ≠ j if ​x​ s​ i ​ > ​x​ ​s​′​​ j
 ​, we must have 

that ​ ​λ​  j​ _ 
​λ​ i​

 ​ > L(i, j ). Since ​ ​λ​ ​i​2​​ _ 
​λ​ ​i​1​​

 ​ · ​ ​λ​ ​i​3​​ _ 
​λ​ ​i​2​​

 ​ ⋯ · ​ ​λ​​i​1​​ _ 
​λ​​i​m​​

 ​ = 1, we must have that equation (11) 
of SAREU holds. Finally we show that (iii) implies (ii). Given that SAREU holds, 
and given N observations, there must be an ϵ > 0 such that for any m > 1, all 
​i​1​, … , ​i​m​ ∈ {1, … , N } we have

(16) 	  L(​i​1​, ​i​2​)  ·  L(​i​2​, ​i​3​)  ·  ⋯  ·  L(​i​m−1​, ​i​m​)  ·  L(​i​m​, ​i​1​)  < ​   1 _ 
(1 + ϵ​)​m​

 ​  .

We can then construct (​λ​i​​)​ i=1​ N
  ​ as follows. First without loss of generality we can take ​

x​1​ from the first observation to contain the largest consumption value, i.e., there is an 
s so that ​x​ s​ 1​ > ​x​ ​s​′​​ i

 ​ for all i, ​s′​. Then define ​λ​1​ = 1 and for j = 2, 3, … , N,

(17) 	​  λ​ j​ = ​max    
k
  ​ ​  max     

(1, ​i​ 2​, … , ​i​k−1​,  j ) ∈ ​​k​
​ L(1, ​i​ 2​)  ·  ⋯  ·  L(​i​k−1​, j)(1 + ϵ​)​k​,
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where ​​k​ = ​{ ​​ ​( ​i​1​, ​i​ 2​, … , ​i​k−1​, ​i​k​ )​ |​ ​i​m​ ∈ ​{ 1, 2, … , N }​  for each m = 1, … , k }​.  
Note that equation (16) and the assumption that ​x​ s​ 1​ is the largest consumption 
value for some s guarantee that each ​λ​ j​ is positive and well defined. In effect, 
the maximum is only taken over vectors of at most length N, since equation (16) 
implies that cycles where ​i​l​ = ​i​k​ for some l, k can never be part of the maximizing 

sequence of L(i, j). To prove that (iii) implies (ii), it suffices to show that ​λ​i​ > ​λ​ j​ ​ ​ρ​ s​ 
  j​
 _ 

​ρ​ ​s​′​​ i ​
 ​ 

whenever ​x​ s​  j​ > ​x​ ​s​′​​ i
 ​. Note that there must be some k and some ​i​ 2​, … , ​i​k−1​ so that ​λ​ j​  

= L(1, ​i​ 2​) · ⋯ · L(​i​k−1​, j )(1 + ϵ​)​k​. But by the definition of L( j, i ), we have

(18) 	​  λ​i​  >  L​( 1, ​i​2​ )​ … L(​i​k−1​, j)(1  +  ϵ​)​k​  ·  L( j, i )  ≥ ​ λ​j​ ​ 
​ρ​ s​  j​ _ 
​ρ​ ​s​′​​ i

 ​
 ​ .

This proves the theorem.

REMARK 2: Note that in Theorem 1 (i) we only require the NM index u to be con-
tinuous and concave and do not require u ∈ ​C​ 3​ as assumed in Section I. However 
it follows from Chiappori and Rochet (1987) that with a finite number of observa-
tions, it is irrelevant whether one assumes differentiability or not. In particular, 
their Theorem ( p. 688) implies that one can take u ∈ ​C​ ∞​ since for any finite set of 
observations satisfying SAREU there exists an infinitely differentiable utility func-
tion that rationalizes these observations.

Of course, Theorem 1 holds for fixed probabilities and is then comparable to 
Theorem 1 in Green and Srivastava (1986). It follows that although Green and 
Srivastava only consider a fixed probability setting, actually their analysis can 
naturally be extended to the case when state probabilities are allowed to change. 
Conditions (i) and (ii) of Theorem 1 are then essentially the same as conditions (i) 
and (ii) of Theorem 1 in Green and Srivastava (1986). They show that (i) is equiva-
lent to the existence of (​u​ s​ i ​​)​i=1, … , N, s=1, … ,  S​ and (​λ​i​​ )​ i=1​ N  ​ such that

(19) 	​  u​ ​s​′​​ j
 ​  − ​ u​ s​ i ​  ≤ ​ λ​i​​ρ​ s​ i ​(​x​ ​s​′​​  j

 ​  − ​ x​ s​ i ​)  for all  i, j, s, ​s′​,

with the strict inequality holding in our one commodity case, whenever ​x​ ​s​′​​ j
 ​ ≠ ​x​ s​ i ​. 

Adding up the inequalities for j, ​s′​ and i, s and the one for i, s and j, ​s′​, we obtain

(20) 	  0  ≤ ​ λ​i​​ρ​ s​ i ​(​x​ ​s​′​​ j
 ​  − ​ x​ s​ i ​)  + ​ λ​ j​​ρ​  s​  j ​(​x​ s​ i ​  − ​ x​ ​s​′​​  j

 ​),

which is obviously equivalent to (ii) if we assume that ​x​ s​ i ​ ≠ ​x​ ​s​′​​  j
 ​. Since the ​x​ s​ i ​ are sca-

lars, the converse is also true. This is easily seen by observing that given ​x​ s​ i ​, ​ρ​ s​ i ​ , and ​
λ​i​ for all i, s, we can construct a piecewise linear and concave utility function where ​
λ​i​​ρ​ s​ i ​ is taken to be the slope at ​x​ s​ i ​.

Since we impose the more restrictive assumption that there is only one good in 
each state, we are able to derive the new result, Theorem 1(iii), which does not 
require the existential quantifiers (​λ​i​​)​ i=1​ N

  ​. In this sense, Theorem 1(iii) is analogous 
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to Afriat’s (1967) cyclic consistency and is analogous to the strong axiom of revealed 
preference.

Varian (1983) derives a revealed preference condition for asset demand in a set-
ting with possibly incomplete markets and a single commodity. For the case of com-
plete markets, Theorem 1 in his paper becomes the same as equation (19) above. As 
in Green and Srivastava (1986) all his conditions involve unknown multipliers and 
utility levels.

It follows from Varian (1988) that a necessary and sufficient condition for an 
Expected Utility function to exist that rationalizes one demand observation ​( x, p, π )​ 
is that ​x​s​ is a decreasing function of ​p​s​/​π​s​ . This is equivalent to Theorem 1(ii) when 
i = j. The contribution of our result is to show the equivalence between (ii) and our 
new condition SAREU (iii) for any finite number of observations.

Two interesting, recent papers focus on revealed preference tests for Expected 
Utility preferences. Echenique and Saito (2013) develop a revealed preference test 
for (Savage) subjective Expected Utility preferences and probabilities. They show 
that our SAREU is similar to their revealed preference axiom if probabilities become 
observable in their framework. Polisson and Quah (2013) provide a new procedure 
for testing the consistency of observed contingent claim demands with maximizing 
general uncertainty preferences without assuming concavity.

III.  Demand Function Tests

Suppose the consistency test for Expected Utility preferences based on a finite 
dataset discussed in the prior section is not refuted and one wants to use the data 
to estimate a demand function. Then it is necessary to derive restrictions on the 
functional form to be employed in the test. In this section, we derive two different 
sets of restrictions on the demand functions which are necessary and sufficient for 
preferences to be representable by an Expected Utility function. The Slutsky matrix 
for any given demands (asset or contingent claim) is assumed to be symmetric and 
negative semidefinite, implying that the demands can always be rationalized by a 
utility function. The question is whether it takes the Expected Utility form.

A. Functional Form Restrictions

The following characterizes restrictions on the form of the demand functions 
x(p, π, I   ) which are necessary and sufficient for the generating utility to be ordinally 
equivalent to a state independent Expected Utility function.3

THEOREM 2: Assume that S > 2 and contingent claim demands ​x​s​(p, π, I ) > 
0 (s = 1, 2, … , S) can be rationalized by a well defined utility function. Then 
this utility function is ordinally equivalent to a state independent Expected Utility 

3 Relative to the result in Theorem 2, it should be noted that Andreoni and Sprenger (2012) observe that in a 
two period discounted Expected Utility (DEU) model, intertemporal allocations will depend only on the ratio of 
the intertemporal probabilities ​π​1​/​π​2​ and not on ​π​1​ or ​π​2​ separately, where ​π​1​ and ​π​2​ are the probabilities of the 
outcomes with nonzero utility value in periods one and two, respectively. They point out that this is a critical and 
testable implication of the DEU model. This conclusion uses a similar idea to equation (21) in Theorem 2, although 
their setting is very different from ours.
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function as defined in equation (1) if and only if there is a twice continuously dif-
ferentiable function f : ​ℝ​ ++​ 2

  ​ → ​ℝ​++​ such that the contingent claim demands  
​x​s​(p, π, I   ) ​( s = 1, 2, … , S )​ satisfy ​x​s​ = f ​( ​x​1​, ​k​s​ )​, where ​k​s​ is defined by

(21) 	​  k​s​ ​ =​def​ ​ 
​π​s ​​p​1​ _ ​π​1​ ​p​s​ ​ ,

f ​( ​x​1​, ​k​s​ )​ is strictly increasing in ​k​s​ and f (x, 1) = x for all x.

To prove this result, we will utilize a modified version of Samuelson’s (1947) 
classic necessary and sufficient condition for additive separable utility (in a certainty 
setting).

LEMMA 1: When S > 2, preferences are representable by a twice continuously dif-
ferentiable additively separable utility

(22) 	  U(x)=​ ∑ ​ 
s=1

 ​ 
S

  ​​u​s​​( ​x​s​ )​

if and only if

(23) 	​  
∂  ​( ​ ∂ U/∂ ​x​s​ _ ∂ U/∂ ​x​1​

 ​ )​
 _ 

∂ ​x​i​
 ​   =  0 ​ ( ∀i, s  ∈ ​ { 2, 3, … , S }​, i  ≠  s )​.

It should be emphasized that Samuelson (1947, p. 179) actually considers condi-
tions on the inverse demand function that ensure existence of a separable utility and 
that he does not assume the existence of U in his discussion. In his framework, the  
marginal rate of substitution in (23) is replaced by the inverse demand function

(24) 	​  
∂ U/∂ ​x​i​

 _ 
∂ U/∂ ​x​j​

 ​  = ​ 
​p​i​ _ ​p​j​ ​ ,

and he requires that, in addition to (23), the following holds:

(25) 	​  
∂  ​( ​ ∂ U/∂ ​x​s​ _ ∂ U/∂ ​x​2​

 ​ )​
 _ 

∂ ​x​1​
 ​   =  0 ​ ( ∀s  ∈ ​ { 3, 4, … , S }​ )​.

If one does not start with inverse demand, but assumes that U exists, then (23) 
implies (25). To see this, notice that ∀s ∈ ​{ 3, 4, … , S }​,

(26) 	​  
∂  ​( ​ ∂ U/∂ ​x​2​

 _ ∂ U/∂ ​x​1​
 ​ )​
 _ 

∂ ​x​s​
 ​   =  0  ⇔  ​  ​∂ ​ 2​U _ 

∂ ​x​2​∂ ​x​s​
 ​ ​ ∂ U _ 
∂ ​x​1​

 ​  − ​   ​∂ ​ 2​U _ 
∂ ​x​1​∂ ​x​s​

 ​ ​ ∂ U _ 
∂ ​x​2​

 ​  =  0
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and

(27) 	​  
∂  ​( ​ ∂ U/∂ ​x​s​ _ ∂ U/∂ ​x​1​

 ​ )​
 _ 

∂ ​x​2​
 ​   =  0  ⇔ ​   ​∂ ​ 2​U _ 

∂ ​x​2​∂ ​x​s​
 ​ ​ ∂ U _ 
∂ ​x​1​

 ​  − ​   ​∂ ​ 2​U _ 
∂ ​x​1​∂ ​x​2​

 ​ ​ ∂ U _ 
∂ ​x​s​

 ​  =  0.

Subtracting the above two equations yields (25)

(28) 	​    ​∂ ​ 2​U _ 
∂ ​x​1​∂ ​x​s​

 ​ ​ ∂ U _ 
∂ ​x​2​

 ​  − ​   ​∂ ​ 2​U _ 
∂ ​x​1​∂ ​x​2​

 ​ ​ ∂ U _ 
∂ ​x​s​

 ​  =  0  ⇔ ​   ∂  _ 
∂ ​x​1​

 ​​( ​ ∂ U/∂ ​x​s​
 _ 

∂ U/∂ ​x​2​
 ​ )​ = 0.

Next we will give the proof of Theorem 2.

PROOF:
Necessity follows directly from the first order condition. Next we prove suffi-

ciency. We first show that for S > 2, the condition ​x​s​ = f ​( ​x​1​, ​k​s​ )​ implies that U is 
(ordinally) additively separable. Given the existence of U, the first order conditions 
for the maximization (3) are

(29) 	​  
∂ U/∂ ​x​1​

 _ 
∂ U/∂ ​x​s​

 ​  = ​ 
​p​1​ _ ​p​s​ ​ ​ ( s  =  2, 3, … , S )​.

For each s ∈ {2, … , S}, since ​x​s​ = f ​( ​x​1​, ​k​s​ )​ and f ​( ​x​1​, ​k​s​ )​ is a strictly increasing 
function of ​k​s​ , we have

(30) 	​  
​π​s​ ​p​1​ _ ​π​1​ ​p​s​ ​  = ​ k​s​  = ​ f​ ​x​1​​   −1​​( ​x​s​ )​,

or equivalently

(31) 	​  
∂ U/∂ ​x​s​

 _ 
∂ U/∂ ​x​1​

 ​  = ​ 
​π​s​ _ 

​π​1​ ​f​ ​x​1​​   −1​​( ​x​s​ )​
 ​ ,

implying that

(32) 	​  
∂  ​( ​ ∂ U/∂ ​x​s​ _ ∂ U/∂ ​x​1​

 ​ )​
 _ 

∂  ​x​i​
 ​   =  0 ​( ∀i, s  ∈ ​ { 2, 3, … , S }​,  i  ≠  s )​ .
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When S > 2, (32) is obviously identical to equation (23) in Lemma 1. Thus it fol-
lows from Lemma 1 that one can assume U takes the form

(33) 	  U(x; π)  = ​ ∑​ 
s=1

​ 
S

  ​ ​u​s​ ​( ​x​s​; π )​ .

Therefore the first order condition can be written as

(34) 	​  
​u​ 1​ ′ ​​( ​x​1​; π )​
 _ 

​u​ s​ ′ ​​( ​x​s​; π )​
 ​  = ​ 

​p​1​ _ ​p​s​ ​  ⇔ ​ 
​π​s​ ​u​ 1​ ′ ​​( ​x​1​; π )​

  _ 
​π​1​​u​ s​ ′ ​​( ​x​s​; π )​

 ​  = ​ k​s​ .

Since ​x​s​ = f  ​( ​x​1​, ​k​s​ )​, we have ​k​s​ = ​f​ ​x​1​​   −1​​( ​x​s​ )​, implying that

(35) 	​  
​π​s​ ​u​ 1​ ′ ​​( ​x​1​; π )​

  _ 
​π​1​​u​ s​ ′ ​​( ​x​s​; π )​

 ​  = ​ f​  ​x​1​​  −1​​( ​x​s​ )​

must be independent of π. Denoting

(36) 	​  h​s​​( ​x​s​; π )​  = ​ 
​u​ s​ ′ ​​( ​x​s​; π )​
 _ ​π​s​ ​  ,

we have

(37) 	​    ∂  _ 
∂ π

 ​ ​( ​ ​h​1​​( ​x​1​; π )​
 _ 

​h​s​​( ​x​s​; π )​
 ​ )​  =  0,

implying that

(38) 	​  
∂  ​( ln ​h​1​​( ​x​1​; π )​ )​

  __ 
∂  π

  ​  = ​ 
∂  ​( ln ​h​s​​( ​x​s​; π )​ )​

  __ 
∂  π

  ​ .

Taking the derivative with respect to ​x​s​ on both sides of the above equation yields

(39) 	​  
​∂ ​ 2​ ​( ln ​h​s​​( ​x​s​; π )​ )​

  __  
∂ ​x​s​ ∂  π

  ​  =  0,

implying that

(40) 	  ln ​h​s​​( ​x​s​; π )​  = ​ G​s​​( ​x​s​ )​  + ​ H​s​​( π )​,
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where ​H​s​​( π )​ is a function of probabilities and ​G​s​​( ​x​s​ )​ is a function of ​x​s​ . Defining

(41) 	​  K​s​​( π )​  =  exp ​( ​H​s​​( π )​ )​   and ​ v​s​​( ​x​s​ )​  =  exp ​( ​G​s​​( ​x​s​ )​ )​ ,

we immediately obtain

(42) 	​  h​s​​( ​x​s​; π )​  = ​ K​s​​( π )​ ​v​s​​( ​x​s​ )​,

where ​K​s​​( π )​ is a function of probabilities and ​v​s​​( ​x​ s​ )​ is a function of ​x​s​. Due to equa-
tion (37), ​K​s​​( π )​ must be the same for all s = 1, 2, … , S, and can be denoted K​( π )​. 
Therefore from (36), we have

(43) 	​  u​ s​ ′ ​​( ​x​s​; π )​ = K​( π )​ ​π​s​ ​v​s​ ​( ​x​s​ )​ ​ ( s = 1, 2, 3, … , S )​.

Since when ​k​s​ = 1, ​x​s​ = f ​( ​x​1​, 1 )​ = ​x​1​, we must have ​v​1​ = ​v​s​ = v. Defining

(44) 	  u​( ​x​s​ )​  = ​ ∫​ 
 
​ 
 
​v​( ​x​s​ )​ d​x​s​,

it immediately follows that the given demands can be rationalized by a utility func-
tion that is ordinally equivalent to a state independent Expected Utility function as 
defined in equation (1). Finally, since

(45) 	  f ​( ​x​1​, ​k​s​ )​  =  u​′​−1​ ​( ​ ​u′​​( ​x​1​ )​
 _ 

​k​s​
 ​  )​

is strictly increasing in ​k​s​, u is strictly concave.
The demand restriction ​x​s​ = f ​( ​x​1​, ​k​s​ )​ in Theorem 2 will be referred to as the k-test. 

It should be stressed that f depends on prices and probabilities only through ​k​s​ .
It is natural to wonder why the S = 2 case is not included in Theorem 2. Before 

addressing this question, we provide an example which illustrates that when S = 2 
the k-test by itself is not sufficient if U is not additively separable.

EXAMPLE 2: Assume that

(46) 	  U​( x; π )​  = ​ ( ​  ​π​1​ ​x​1​ _ 
​π​1​ + 2​π​2​

 ​  + ​ x​2​ )​ ​x​ 1​ ​ ​π​1​
 _ 2​π​2​ ​​ ,

which can be verified to be strictly increasing in each of its arguments and strictly 
quasiconcave. Next we directly verify that the demand functions corresponding to 
this utility pass our k-test. The first order condition gives that

(47) 	​  
​π​1​​( ​x​1​ + ​x​2​ )​

 _ 
2​π​2​ ​x​1​

 ​   = ​ 
​p​1​ _ ​p​2​ ​ ,
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implying that

(48) 	​  x​2​  = ​ ( 2 ​k​2​  −  1 )​ ​x​1​,

where

(49) 	​  k​2​  = ​ 
​π​2​ ​p​1​ _ ​π​1​ ​p​2​ ​.

Denote

(50) 	  f ​( ​x​1​, ​k​2​ )​  = ​ ( 2 ​k​ 2​  −  1 )​ ​x​1​.

It is clear that ​x​2​ =  f ​( ​x​1​, ​k​ 2​ )​ where f ​( ​x​1​, ​k​ 2​ )​ is increasing in ​k​ 2​ and f ​( x, 1 )​ = x. 
Therefore the k-condition is satisfied. However, (46) is clearly not an Expected 
Utility. Therefore for the S = 2 case, the Theorem 2 k-test is not sufficient and is 
only valid as a necessary condition.

To understand why the k-test fails for this example, consider the very different 
treatment of the S = 2 and S > 2 cases in Samuelson (1947, pp. 176–183) when 
discussing additive separability. When S = 2, U is (ordinally) additively separable 
if and only if

(51) 	​  
∂  ln ​( ​ ∂ U/∂ ​x​1​

 _ ∂ U/∂ ​x​2​
 ​ )​
  _ 

∂ ​x​1​∂ ​x​2​
 ​   =  0.

When S > 2, the necessary and sufficient conditions become (23) and (25) in 
Lemma 1. However when S = 2, there is no way to derive (51) from Theorem 2. 
This can also be seen from the proof of Theorem 2. The first part of the proof shows 
that for S > 2, the condition ​x​s​ = f ​( ​x​1​, ​k​s​ )​ implies additive separability (indepen-
dent of whether probabilities vary or are fixed). The second part of the proof demon-
strates that if this condition is satisfied for any S, the separable utility must be a state 
independent Expected Utility. Therefore, when S = 2, Theorem 2 can only work as 
a necessary and not sufficient condition. Of course if one assumes that U is addi-
tively separable (ruling out Example 2), then the conditions in Theorem 2 become 
necessary and sufficient for any S.

REMARK 3: In contrast to our approach, Dybvig (1983, Theorem 10) assumes that 
U is additively separable. He then shows that U is a (state independent) Expected 
Utility function if and only if the following holds:

(52) 	​​ 
​
 ​ 
∂ U/∂ ​x​1​

 _ 
∂ U/∂ ​x​s​

 ​ |​​ ​x​1​=​x​s​
​  = ​ 

​π​1​ _ ​π​s​ ​ .
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Therefore combining the results of Samuelson and Dybvig, one obtains another 
demand test for Expected Utility. It should be noted that Dybvig’s test also assumes 
a standard contingent claim setting, where probabilities are fixed and treated as 
constants. This is a key difference between Dybvig’s test and the k-test in Theorem 2, 
where probabilities are parameter values which are allowed to vary exogenously. It 
should be stressed that Theorem 2 requires probabilities and prices to enter into the 
relationship between ​x​1​ and ​x​s​ only through ​k​s​ and this condition cannot be verified 
if the probabilities are fixed numbers. This important difference between our result 
and that of Dybvig can be illustrated using the exponential utility function (4) in 
Example 1. For this utility, it follows from the first order condition that for s = 2, 3,

(53) 	​  
​π​1​​( exp ​( −​π​1​​x​1​ )​ + exp ​( −​π​2​​x​1​ )​ + exp ​( −​π​3​​x​1​ )​ )​

    ____     
​π​s​​( exp ​( −​π​1​​x​s​ )​ + exp ​( −​π​2​​x​s​ )​ + exp ​( −​π​3​​x​s​ )​ )​

 ​  = ​ 
​p​1​ _ ​p​s​ ​,

or equivalently

(54) 	​  
exp ​( −​π​1​ ​x​1​ )​ + exp ​( −​π​2​ ​x​1​ )​ + exp ​( −​π​3​ ​x​1​ )​    ____    
exp ​( −​π​1​ ​x​s​ )​ + exp ​( −​π​2​ ​x​s​ )​ + exp ​( −​π​3​ ​x​s​ )​

 ​  = ​ k​s​ ,

where

(55) 	​  k​s​  = ​ 
​π​s​ ​p​1​ _ ​π​1​ ​p​s​ ​.

Since the left-hand side of equation (54) depends on probabilities, it is impossible 
to have ​x​s​ = f ​( ​x​1​, ​k​s​ )​, where f is a function independent of prices and probabilities. 
Therefore, the demands generated by this utility function cannot pass our test in 
Theorem 2. However, the demands generated by (4 ) will always pass Dybvig’s test. 
To see this, first note that the utility function (4 ) is additively separable. Moreover, 
it follows from the first order condition that

(56) 	​  
∂ U/∂ ​x​1​

 _ 
∂ U/∂ ​x​s​

 ​  = ​ 
​π​1​​( exp ​( −​π​1​ ​x​1​ )​ + exp ​( −​π​2​ ​x​1​ )​ + exp ​( −​π​3​ ​x​1​ )​ )​

    ____     
​π​s​​( exp ​( −​π​1​ ​x​s​ )​ + exp ​( −​π​2​ ​x​s​ )​ + exp ​( −​π​3​ ​x​s​ )​ )​

 ​ .

When evaluating the right-hand side of the above equation at ​x​1​ = ​x​s​, one can obtain

(57) 	​​ 
​
 ​ 
∂ U/∂ ​x​1​

 _ 
∂ U/∂ ​x​s​

 ​ |​​​ x​1​=​x​s​
​  = ​ 

​π​1​ _ ​π​s​ ​ ,

which satisfies Dybvig’s condition.

We next consider an example which illustrates for the S = 2 case the application 
of Theorem 2 as a necessary condition.
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EXAMPLE 3: Consider the following pair of demand functions:

(58) 	​  x​1​  = ​ ( ​  1 __  
​p​1​ + ​p​2​​​( ​ ​π​2​ ​p​ 1​

 _ ​π​1​ ​p​ 2​ ​ )​​2​
 ​  + ​ 

​π​1​ _  
(​π​1​ + ​π​2​)​p​1​

 ​ )​ ​ I _ 
2
 ​

and

(59) 	​  x​2​  = ​ ( ​  ​​( ​ ​π​2​ ​p​1​
 _ ​π​1​ ​p​2​ ​ )​​2​
 __  

​p​1​ + ​p​2​​​( ​ ​π​2​ ​p​1​
 _ ​π​1​ ​p​2​ ​ )​​2​

 ​  + ​ 
​π​2​ _  

(​π​1​ + ​π​2​)​p​2​
 ​ )​ ​ I _ 

2
 ​.

Defining the component of the Slutsky matrix as ​σ​ij​ (i, j = 1, 2) where

(60) 	​  σ​ij​  = ​ 
∂ ​x​i​ _ 
∂ ​p​j​

 ​  + ​ x​j​  ​ 
∂ ​x​i​ _ 
∂ I

 ​,

it can be verified that

(61) 	​  σ​12​  = ​ σ​21​, ​ σ​11​  <  0, ​ σ​22​ < 0  and ​ σ​11​​σ​22​  = ​ σ​12​ ​σ​21​,

implying that the Slutsky matrix is symmetric and negative semidefinite. Therefore, 
the given demands can be rationalized by a utility function. Following the 
Hurwicz-Uzawa integration process (Hurwicz and Uzawa 1971), we obtain

(62) 	  U​( ​x​1​, ​x​2​; ​π​1​, ​π​2​ )​  = ​   m __  

​π​1​​√ 
_

 ​ 
p ​ ​π​2​ + 2​π​1​

 _ ​π​1​+​π​2​  ​
 _ 

​π​ 1​ 2​ + p​π​ 2​ 2​
 ​ ​

 ​ ,

where the relative price p = ​p​1​/​p​2​ is given by

(63) p  = ​ 
​π​1​​( ​π​2​ ​x​2​ − ​π​1​ ​x​1​ )​ + ​√ 

____
     ​π​ 1​ 2​​( ​π​ 1​ 2​ ​x​ 1​ 2​ + ​π​ 2​ 2​ ​x​ 2​ 2​ + 2​x​1​ ​x​2​​( 4​π​ 1​ 2​ + 4​π​ 2​ 2​ + 9​π​1​​π​2​ )​ )​ ​
     _____    

2​x​1​​π​2​​( ​π​1​ + 2​π​2​ )​
  ​ 

and the normalized income m = I/​p​2​ is given by

(64) m = ​ 
​π​1​​( ​π​2​ ​x​2​ − ​π​1​ ​x​1​ )​ + ​√ 

____
     ​π​ 1​ 2​​( ​π​ 1​ 2​ ​x​ 1​ 2​ + ​π​ 2​ 2​ ​x​ 2​ 2​ + 2​x​1​ ​x​2​​( 4​π​ 1​ 2​ + 4​π​ 2​ 2​ + 9​π​1​​π​2​ )​ )​ ​
     _____    

2​π​2​​( ​π​1​ + 2​π​2​ )​
  ​ + ​x​ 2​ .
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The above form of utility (62) is clearly not additively separable and does not take 
the Expected Utility form. This is confirmed by the following application of the k-test 
from Theorem 2. Noticing that

(65) 	​  
​x​2​ _ ​x​1​ ​  = ​ 

​  1 _  
​p​1​ + ​p​2​​​( ​ ​π​2​ ​p​1​

 _ ​π​1​ ​p​2​ ​ )​​2​
 ​ + ​  ​π​1​

 _ ​( ​π​1​ + ​π​2​ )​ ​p​1​ ​

   __   
​ 

​​( ​ ​π​2​ ​p​1​ _ ​π​1​ ​p​2​ ​ )​​2​
 _  

​p​1​ + ​p​2​​​( ​ ​π​2​ ​p​1​ _ ​π​1​ ​p​2​ ​ )​​2​
 ​ + ​  ​π​2​

 _ ​( ​π​1​ + ​π​2​ )​ ​p​2​ ​

 ​ 

is not solely a function of ​k​2​ = ​ ​π​2​ ​p​1​
 _ ​π​1​ ​p​2​ ​, it follows from Theorem 2 that the demand 

functions (58)–(59) cannot be rationalized by an Expected Utility representation 
for all values of ​x​1​ and ​x​2​.

B. Demand Derivative Restrictions

In Section IIIA, we provide a characterization that is necessary and sufficient for 
demands to be rationalizable by a state independent Expected Utility. To ensure 
that the given functions are actually demand functions (i.e., can be rationalized by 
some utility function), we have assumed that the Slutsky symmetry and negative 
semidefiniteness conditions are satisfied. But what additional conditions does the 
assumption of Expected Utility impose on the Slutsky matrix? Goldman and Uzawa 
(1964) provide a partial answer—they show that the assumption of separable util-
ity can be tested with a condition on the Slutsky terms. We simplify their condition 
in our setting and provide additional conditions which collectively are necessary 
and sufficient for Expected Utility maximization. Our conditions involve the partial 
derivatives of the assumed demand with respect to probabilities.

It will prove useful to derive the Slutsky equation using the implicit function theo-
rem (see, for example, Kreps 2012). From this it will be straightforward to derive 
the matrix of partial derivatives of demand with respect to probabilities given by 
equation (72).

The solution to the optimization problem (3) is determined by F(x, λ, p, I, π) = 0 
where

(66) 	  F(x, λ, p, I, π)  = ​ {  ​​D​x​U(x; π) − λp = 0
       

I − p · x = 0 ​ 
​
​,

and λ is the Lagrange multiplier. The utility U is assumed to be differentiably strictly 
concave. It follows that ​D​ xx​ 2

 ​U(x; π) is negative definite which, as is well-known (see 
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Kreps 2012, Proposition 11.10), implies that ​D​x, λ​F(x, λ, p, I, π) is invertible and the 
implicit function theorem can be applied. We can define

(67) (  −τ )  = ( ​D​ xx​ 2
 ​U(x; π) −p ​)​

−1

​ ,
−​τ​ T​ b −​p​T​ 0

where  is a symmetric S × S matrix and τ is a S × 1 vector. Defining

(68) 	  Σ  =  λ

and then applying the implicit function theorem yields

(69) 	​  D​p, I, π​(x, λ)  =  −(​D​x, λ​F ​)​−1​​D​p, I, π​ F.

Therefore we have

(70) 	​  D​p​x  =  Σ  −  τ ​x​T​ ,

(71) 	​  D​I​ x  =  τ,

(72) 	​  D​π​ x  =  −​D​ πx​ 2
  ​U(x; π).

It is well-known that the symmetric matrix Σ = (​σ​ij​​)​S×S​ has rank S − 1 with 
Σp = 0.

We have the following theorem:

THEOREM 3: When S > 2, demand is rationalized by a state independent Expected 
Utility function of the form (1) if and only if the following conditions hold:

(73) 	​  
​ ∂ ​x​1​

 _ ∂ ​p​j​
 ​
 _ ​τ​1​ ​   = ​ 

​ ∂ ​x​i​ _ ∂ ​p​j​
 ​
 _ ​τ​i​ ​   ∀i, j  ∈ ​ { 2, 3, … , S }​  and  i  ≠  j,

(74) 	​  
∂ ​x​j​

 _ 
∂ ​π​s​

 ​  =  −​σ​js​ ​ 
​p​s​ _ ​π​s​ ​  ∀j, s  ∈ ​ { 1, 2, … , S }​,

and

(75) 	​  x​i​  = ​ x​j​  only if ​ 
​p​i​/​π​i​

 _ 
​p​j​/​π​j​

 ​  =  1  ∀i, j  ∈ ​ { 1, 2, … , S }​.
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Before proving the theorem it is useful to note that (73) is equivalent to the fol-
lowing condition on ​σ​ij​:

(76) 	​  
​σ​1j​

 _ ​τ​1​ ​  = ​ 
​σ​ij​

 _ ​τ​i​ ​  ∀i, j  ∈ ​ { 2, 3, … , S }​  and  i  ≠  j,

and that (74) implies that demand is homogenous of degree zero in probabilities, 
i.e., we have

(77) 	​  ∑​ 
s=1

​ 
S

  ​ ​ 
∂ ​x​j​

 _ 
∂  ​π​s​

 ​ ​π​s​  =  0.

To prove the theorem, first note that Theorem 4 in Goldman and Uzawa (1964) 
implies the following lemma:

LEMMA 2: Demand is rationalizable by a separable utility function

(78) 	  U(x; π) = ​∑​ 
s=1

​ 
S

  ​ ​u​s​(​x​s​; π)

if and only if equation (76 ) holds.

Since Goldman and Uzawa (1964) consider a more general setting, their condi-
tion is actually more complicated. They require that for all i ≠ j and all k ≠ l,

(79) 	​  
​σ​ij​

 _ ​τ​i​​τ​j​ ​  = ​ 
​σ​kl​ _ ​τ​k​​τ​l​ ​.

However, note that equation (79) is equivalent to (76) together with the following:

(80) 	​  
​σ​1s​ _ ​τ​s​ ​   = ​ 

​σ​1k​ _ ​τ​k​ ​ .

In our setting with only one good per state, this latter equation, (80), is redundant 
since it follows from (76) by Slutsky symmetry. The fact that for all s, k, ​σ​ks​ = ​σ​sk​ 
implies that ​ ​σ​1s​ _ ​τ​s​  ​ = ​ ​σ​ks​ _ ​τ​k​ ​ = ​ ​σ​sk​ _ ​τ​k​ ​ = ​ ​σ​1k​ _ ​τ​k​  ​ .

We are now in a position to prove the theorem.

PROOF:
To see the necessity of (73)–(75), note that under the assumption of state indepen-

dent Expected Utility, equation (72) simplifies to

(81) 	​  D​π​x = − diag​( ​u′​(​x​s​) )​ = −Σ diag ​( ​ ​p​s​ _ ​π​s​ ​ )​, 
where diag denotes the diagonal matrix. The second equality in (81) follows from 
the definition of Σ and the fact that the agent’s first order conditions imply that for 
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all s = 1, … , S, ​u′​(​x​s​) = λ​ ​p​s​ _ ​π​s​ ​. Therefore (81) implies (74) while (73) follows from 
Lemma 2. Conditions (75) are obvious. To prove sufficiency, first note that follow-
ing Lemma 2 condition (76) implies the existence of a utility function of the form

(82) 	  U(x; π) = ​∑ ​ 
s=1

 ​ 
S

  ​​u​s​(​x​s​; π).

Conditions (74) uniquely determine the matrix ​D​π​ x(p, I, π). Since Σ has rank S − 1 
and Σx = 0 only if x = αp for some α all solutions to equation (74) must have the 
form for each s, j ∈ {1, … , S},

(83) 	​  
​∂ ​ 2​​u​s​ _ 

∂ ​π​j​  ∂ ​x​s​
 ​  = ​ α​j​  ​p​s​  if  j ≠ s; ​ 

​∂ ​2​​u​s​ _ 
∂ ​π​j​  ∂ ​x​s​

 ​  = ​ α​s​  ​p​s​  +  λ​ 
​p​s​ _ ​π​s​ ​ if j = s, 

for some ​α​1​, … , ​α​S​, where λ denotes, as above, the Lagrange multiplier. Noticing 
that

(84) 	​  
​∂ ​ 2​​( ​ ​u​s​ _ ​π​s​ ​ )​

 _ 
∂ ​π​s​∂ ​x​s​

 ​  = ​  1 _ ​π​s​ ​ ​ 
​∂ ​ 2​​u​s​ _ 

∂ ​π​s​∂ ​x​s​
 ​  − ​  1 _ 

​π​ s​ 2​
 ​ ​ 
∂ ​u​s​ _ 
∂ ​x​s​

 ​

and

(85) 	​  
∂ ​u​s​ _ 
∂ ​x​s​

 ​  =  λ ​p​s​ ,

we can rewrite (83) as

(86) 	​  
​∂ ​ 2​​( ​ ​u​s​ _ ​π​s​ ​ )​ _ 
∂ ​π​j​  ∂ ​x​s​

 ​  = ​ 
​α​j​  ​p​s​

 _ ​π​s​ ​   ∀j, s  ∈  {1, 2, … , S}.

Without loss of generality, assume that ​α​k​ ≠ 0 ​( ∀k ∈ {1, 2, … , S} )​.4 Then for all 
i ≠ j ∈ {1, 2, … , S}, we have

(87) 	​  
​ ​∂ ​ 2​​( ​u​i​/​π​i​ )​

 _ ∂ ​x​i​ ∂ ​π​k​
  ​
 _ 

​ ​∂ ​ 2​​( ​u​j​/​π​j​ )​
 _ ∂ ​x​j​ ∂ ​π​k​

  ​

 ​  = ​ 
​π​j​ ​p​i​

 _ ​π​i​ ​p​j​ ​  ∀k  ∈  {1, 2, … , S}.

4 If ​α​k​ = 0 for some k, one can always multiply the utility function by some nonzero function of ​π​k​ to make ​
α​k​ ≠ 0.
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But the first order conditions for optimality imply that

(88) 	​  
​p​i​ _ ​p​j​ ​  = ​ 

​ ∂ ​u​i​ _ ∂ ​x​i​
 ​
 _ 

​ ∂ ​u​j​
 _ ∂ ​x​j​
 ​
 ​  ⇔ ​ 

​ ∂ ​( ​u​i​/​π​i​ )​ _ ∂ ​x​i​
  ​
 _ 

​ ∂ ​( ​u​j​/​π​j​ )​
 _ ∂ ​x​j​

  ​
 ​  = ​ 

​π​j​ ​p​i​
 _ ​π​i​ ​p​j​ ​ ,

and hence we obtain

(89) 	​  
​ ​∂ ​ 2​​( ​u​i​/​π​i​ )​

 _ ∂ ​x​i​∂ ​π​k​
  ​
 _ 

​ ​∂ ​ 2​​( ​u​j​/​π​j​ )​
 _ ∂ ​x​j​ ∂ ​π​k​

  ​

 ​  = ​ 
​ ∂ ​( ​u​i​/​π​i​ )​ _ ∂ ​x​i​

  ​
 _ 

​ ∂ ​( ​u​j​/​π​j​ )​
 _ ∂ ​x​j​

  ​
 ​ .

Denoting

(90) 	​  h​s​​( ​x​s​; π )​  = ​ 
∂ ​( ​u​s​/​π​s​ )​

 _ 
∂ ​x​s​

 ​  ​( s  =  i, j )​,

we have

(91) 	​  
∂ ​( ln ​h​i​​( ​x​i​; π )​ )​

  __ 
∂ π

  ​  = ​ 
∂ ​( ln ​h​j​​( ​x​j​; π )​ )​

  __ 
∂ π

  ​ ,

where it follows from the additive separability of U that ​h​s​ must be a function of only 
one ​x​s​ ​( s = i, j )​. Following the proof of Theorem 2,

(92) 	​  h​s​​( ​x​s​; π )​  = ​ K​s​​( π )​ ​v​s​​( ​x​s​ )​ ​ ( s  =  i, j )​,

where ​K​s​ and ​v​s​ are defined in (41). Finally, it follows from the first order condition that

(93) 	​  
​K​i​​( π )​ ​v​i​​( ​x​i​ )​

 _  
​K​j​​( π )​ ​v​j​​( ​x​j​ )​

 ​  = ​ 
​π​j​ ​p​i​

 _ ​π​i​ ​p​j​ ​.

Condition (75) implies that for all x and i ≠ j ∈ {1, 2, … , S},

(94) 	​  
​K​i​​( π )​ ​v​i​​( x )​

 _ 
​K​j​​( π )​ ​v​j​​( x )​

 ​  =  1,

and hence ​K​1​​( π )​ ​v​1​​( x )​ = ​K​s​​( π )​ ​v​s​​( x )​ for all s. Without loss of generality, taking

(95) ​ K​s​​( π )​ = K​( π )​  and  u​( ​x​s​ )​ = ​∫​ 
 
​ 
 
​​v​s​​( ​x​s​ )​ ds = ​∫​ 

 
​ 
 
​v​( ​x​s​ )​ ds ​ ( ∀s =  1, 2, … , S )​,
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it immediately follows that the given demands can be rationalized by a utility func-
tion that is ordinally equivalent to a state independent Expected Utility function as 
defined in equation (1), which concludes the proof.

REMARK 4: It should be noted that additive separability plays a crucial role in the 
above proof. Without additive separability, it can be verified that for the utility func-
tion in Example 2, we have

(96) 	​  
∂ ​x​1​ _ 
∂ ​π​1​

 ​  = ​ 
2​π​2​ ​p​1​I  __   

​​( ​π​1​  ​p​2​ − ​( ​π​1​ + 2​π​2​ )​ ​p​1​ )​​2​
 ​ ,

(97) 	​  
∂ ​x​2​ _ 
∂ ​π​1​

 ​  =  − ​ 
2​π​2​ ​p​ 1​ 2​I

  __   
​p​2​​​( ​π​1​  ​p​2​ − ​( ​π​1​ + 2​π​2​ )​ ​p​1​ )​​2​

 ​ ,

(98) 	​  σ​11​  =  − ​ 
2​π​1​​π​2​I  __   

​​( ​π​1​  ​p​2​ − ​( ​π​1​ + 2​π​2​ )​ ​p​1​ )​​2​
 ​ ,

(99) 	​  σ​21​  = ​ 
2​π​1​​π​2​ ​p​1​I  __   

​p​2​​​( ​π​1​  ​p​2​ − ​( ​π​1​ + 2​π​2​ )​ ​p​1​ )​​2​
 ​ ,

implying that

(100) 	​  
∂ ​x​1​ _ 
∂ ​π​1​

 ​  =  −​σ​11​​ 
​p​1​ _ ​π​1​ ​  and ​ 

∂ ​x​2​ _ 
∂ ​π​1​

 ​  =  − ​σ​21​​ 
​p​1​ _ ​π​1​ ​.

Similarly, we can verify that

(101) 	​  
∂ ​x​1​ _ 
∂ ​π​2​

 ​  =  −​σ​12​​ 
​p​2​ _ ​π​2​ ​  and ​ 

∂ ​x​2​ _ 
∂ ​π​2​

 ​  =  −​σ​22​​ 
​p​2​ _ ​π​2​ ​.

Therefore, (74) holds. However, the utility function in Example 2 is clearly not an 
Expected Utility.
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