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1. INTRODUCTION AND SUMMARY 

In recent years there has been extensive research on multiperiod decision 
problems in which economic agents are assumed to possess preferences over 
certain current/uncertain future consumption plans. Frequently, these 
problems are cast in a simplified two-period setting-see for instance, the 
papers of Dreze and Modigliani [2, 31, Leland [9], Sandmo [16-181 and 
Mirman [I 11, which deal with the consumption/savings (portfolio) problem. 
Almost without exception the agent’s preferences are assumed to be represen- 
table by an expected TPC (Two-Period Cardinal) utility function, with the 
reader generally referred to the classic axiomatization of von Neumann and 
Morgenstern [22] (or Savage [19]). 

The purpose of this paper is to investigate relationships among three types 
of preferences and their associated utility representations in a two-period 
context. The objects of choice are ordered pairs (x, F) in the product set 
S = C, x X where C, = (0, cc) is the set of certain consumption possi- 
bilities for the first period, and X is the set of cumulative distribution 
functions on C, = (0, cc), the elements of which represent risky consumption 
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the authors. 
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possibilities for the second period. We consider the following three types of 
preference-utility structures: 

(i) time preferences over certain consumption pairs in C, x C, 
described by the binary relation <” on C, x C, and represented by a 
(continuous, strictly monotone) ordinal index U: C, x C, + R with 
(Cl 9 CA =C (4 , cI> iff U(c, , 4 < U(c; , ~6); 

(ii) a set of conditional risk preferences {<, 1 x E C,), each of which is 
defined over X and conditioned on a fixed level of first-period consumption 
and is representable according to the expected utility principle where 
Vz: C, -+ R is a (continuous and strictly monotone increasing) second-period 
NM (von Neumann-Morgenstern) index such that, for all F, G E g, 

(1.1) 

(each V, is unique up to a positive affine transformation); and 
(iii) preferences over S = C, x X, described by the complete pre- 

ordering < and represented by a (continuous, strictly monotone) TPC 
(two-period cardinal) utility function W: C, x C, + R for which 

The two-period NM index W is unique up to a positive affine transformation. 

Assuming the existence of a two-period von Neumann-Morgenstern 
utility W, we consider in Section 2 when and how such a function can be 
constructed from a time preference index U and a single conditional NM 
utility function W, . These results formalize a procedure suggested by 
Hirshleifer [7] and D&e and Modigliani [3]. 

Unfortunately, even when the necessary conditions for constructing a TPC 
utility are satisfied, not every (perfectly standard) CT and W, pair is compatible 
mathematically and economically. Several interesting examples of incompa- 
tibilities are presented in Section 3. For instance, if time preferences are 
representable by a strictly quasi-concave ordinal utility function (from a 
subclass of the constant elasticity of substitution, or CES, family) and if the 
conditional index W, exhibits risk aversion, then for x’ infinitesimally larger 
than x the constructed conditional NM utility W,,(c,) need not be risk 
averse everywhere and, in fact, can exhibit strong risk ufinity. 

Now instead of assuming the existence of a TPC utility function, one can 
ask whether it, in fact, is implied by the set of axioms sufficient for the 
existence of the ordinal time preference function U and a complete set of 
conditional second-period NM indices {V,}. This is seen not to be the case. 
In Section 4, we identify that additional axiom, referred to as “coherence,” 
which is necessary and sufficient for the existence of a TPC utility function. 
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The coherence postulate essentially requires a very special kind of meshing 
together of the consumer’s set of conditional risk preferences {&} and time 
preferences <“. 

Our notion of coherence is formally similar to the concept of “time 
adjustment calculus” formulated by Prakash [13] for the case of “date- 
income” pairs. We comment on this paper briefly toward the end of Section 4. 
Some related issues also are discussed by Kreps and Porteus in their paper [8] 
on temporal resolution of uncertainty and by Fishburn [4] in the context of 
multilinear expected utility. 

In the last section, the TPC utility model is compared with the OCE 
(“Ordinal Certainty Equivalent”) representation hypothesis developed in 
Selden [20]. We show that the OCE representation of < is a two-period 
expected utility representation if and only if coherence is assumed. Since 
under the OCE theory given time preferences and conditional risk preferences 
are not incompatible (in the sense discussed above), it is the addition of 
coherence and hence the desire to have a TPC utility function which produces 
the possibility of incompatibilities. 

2. CONSTRUCTION OF A TPC INDEX 

Imagine a decision maker confronting a choice among alternative “certain 
x uncertain” consumption pairs. Suppose we know that a two-period expected 
utility function exists. Then how can it be constructed from the individual’s 
“time” preferences and “risk” preferences? 

To begin, we assume the following: 

Assumption 1. There exists a complete preference preordering < on 
c, x z. 

Assumption 2. The preordering < is NM representable as in Eq. (1.2), 
where W is the continuous TPC index. 

It follows from (A.l) that there will exist a conditional preordering =& on 
each subset (x} x x, where x E C, , and from (A.2) that each such ordering 
possesses an expected utility representation with Wz: C, + R being the 
conditional NM utility. The collection of orderings (=&} is referred to as the 
individual’s “risk preferences.” 

Turning next to “time preferences,” a basic assumption required for the 
results in this section is 

Assumption 3. There exists a complete preordering <t on C = C, X C, 
which is (i) continuous and strictly monotone and (ii) representable by the 
real-valued continuous time preference index U: C - R. 
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We make extensive use of the following notation to highlight an important 
characteristic of time preferences. 

DEFINITION 1. If x E C, , then C(x} denotes the class of pairs in C 
(temporally) indifferent to some pair in the set C[x] =der {x} x C, ; i.e., 

CCC) =def {(cl , c2) E C I(c, , cz) kt (x, c& where (x, ~4) E C[xl}. 

As proved in Lemma 1 below, four types of regions may appear as C{x} when 
gf is continuous and monotone. This is illustrated in Fig. 1, where each 
type of region except the fourth is exhibited by a member of the CES 
class of utility functions: (1) U(c, , cz) = clcz , (2) U(c, , c2) = (c:” + ~,l”)~, 
(3) WC1 % CJ = (c;l + I$-‘. (For an interpretation of the elasticity of 
substitution as a measure of (intuitive) intertemporal complementarity 
cf., Selden [21].) 

(1) 

FIGURE 1 

642/19/I-6 
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LEMMA 1. If < t is continuous and strictly monotone, the set C(x), x E C, , 
is one of the following four types: 

(1) cm = Cl x G 5 
(2) C(x) = (c / c’ Xt c) for some c’ E C, 

(3) C{x} = (c 1 c Xt c”} for some C” E C, 

(4) C{x} = (c 1 c’ <t c Xt c”} for some c’, C” E C. 

The proof follows from the continuity and strict monotonicity of gt and 
the connectedness of C. 

Finally, let us explicitly relate the time preference and TF’C utilities. 

Assumption 4. The preference orderings <” and < are related by the 
condition W = h 0 U, where h is some strictly monotone increasing function. 

(In Section 4 we invoke an analogous assumption independent of the 
existence of W. Our present goal is to state a simple but quite useful relation- 
ship which must be satisfied by W, U, and a single arbitrary prespecified 
conditional NM utility W, . For this purpose, Assumptions 1 through 4 are 
adequate.) 

Given a conditional NM index W, and a time preference relation on C{x}, 
the following formalizes a procedure suggested by way of an example in 
Hirshleifer [7, pp. 237-2391% 

THEOREM 1. Let x E C, be arbitrarily chosen, and suppose (A.l)-(A.4) 
hold. Let W, be the conditional NM utility function (corresponding to <, on 
{cl} x X). Then for all c E C{x}, W can be computed according to 

WC1 9 4 = KG3wl , c,)), 

where x E C, and U, = U 1 C[x]. 

cw 

The proof is given in Appendix A. Thus the composition W, 0 U;l defines 
the increasing monotonic transform h which distinguishes the TPC index 
from the time preference function U. 

A number of brief comments about Theorem 1 are in order. First, it does 
not prove the existence of an expected utility representation; rather the 
theorem only provides a computational formula which is valid provided a 
TPC utility exists. Second, as can be seen from the proof, the restriction of 
the validity of the formula to the domain C{x} is absolutely crucial. Third, 
whereas W, and U$, in general, depend on x, h does not. 

We shall use Theorem 1 to shed some light on interconnections posited by a 
TPC utility between +t and the collection of conditional risk preferences 

1 Hirshleifer credits D&e and Modigliani [3] with introduction of this procedure. 
However, the latter seem more concerned with indirect utility for wealth than with con- 
ditional (period-two) expected utility for uncertain consumption. 



TIME AND CONDITIONAL RISK PREFERENCES 69 

{=& j x E C,}. The first question for us to consider is whether a prespecified 
<t and a single conditional risk preference relation <, on (x} x y may be 
incompatible with the existence of a two-period von Neumann-Morgenstem 
utility representation of < on the whole of S = C, x Y. 

3. INCOMPATIBLE TIME AND CONDITIONAL RISK PREFERENCES 

We continue for the moment to suppose that the orderings 6 and <” 
satisfy (A.l)-(A.4). Let x E C, be preassigned and suppose that in C, C(x> 
has an upper boundary (i.e., it is of type 3 or 4 in terms of Lemma 1). Any 
(ordinal) utility function U representing the corresponding time preferences 
must be conditionally bounded which, in turn, forces the boundedness of W, .2 

The impact of this boundary condition is illustrated by the following 
example, in which a specific (<t, <‘,)-pair is seen to be incompatible with 
the existence of a TPC representation of <. 

EXAMPLE 1. Suppose time preferences are represented by U(c, , CJ = 
(c;” + c;“)-ll”, where 6 > 0. If c1 = x, lJ, is bounded by x. Assume further 
that for some x, the conditional risk preferences <, are NM representable 
where the second-period NM index takes the form (up to a positive affine 
transform) log c2 , which is not bounded above. According to (A.4) these 
utility functions must satisfy, for c1 = x, the equation 

log c2 = h(U(x, CJ). (3.1) 

But since the log function is not bounded above and since U, is bounded, the 
required relation (3.1) cannot hold for any increasing function defined on all 
im U = (0, co). Therefore, NM representable preferences < over S cannot be 
compatible with the given <t and =& . This conclusion is echoed if we 
formally compute W, 0 U;‘(U) = log( U-” - x--~)-~/~, since the transform (1) 
is not defined for every possible value of U and (2) is not strictly increasing 
everywhereg 

The following result, complementary to Theorem 1, states simple compa- 
tibility requirements on <t and a single <, such that there can exist an 
ordering < on all of S = C, x x satisfying (A.l)-(A.4). 

2 To see this, note first that sup U I C[x] is finite since there is a c” E C such that for each 
c E C(x), U(c) < U(c”). If <, is NM representable, the conditional risk preference index 
W, must also be bounded above. Assumption 4 guarantees that W = h 0 U on C; and, 
since sup I!/ 1 C[x] < U(f) for some C” E C, the monotone function h is bounded on 
im U 1 C[x], forcing the boundedness of W 1 C[x] = W, . 

s This example also illustrates the fact that the conditional NM index W, may be bounded 
for reasons quite distinct from a desire to circumvent the St. Petersburg paradox (Arrow [l]). 
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THEOREM 2. Assume <t satisfies (A.3), and let the initial condition c1 = x 
be given. Assume that the continuous, strictly monotone function Wz: C, + [w 
is a conditional NM utility for <, over {x} x X. Then there exists on 
S = C, x g an ordering < satisfying (A.l)-(A.4) compatible with gt and <, 
ifSone of the foIlowing is true: 

(i) C{x} is type 1; 
(ii) C{x} is type 2, and W, is bounded below; 

(iii) C{x} is type 3, and W, is bounded above; or 
(iv) C{x} is type 4, and W, is bounded below and above, 

0nl.v in case (i) must the < be unique. 

The proof is given in Appendix B. 

Remark. Though many preference relations on S are obtainable from a 
(U, W,)-pair under cases (ii)- of Theorem 2, all of the resulting TPC, 
NM utilities coincide in C{x}. 

Theorems 1 and 2 together provide the framework for investigating a 
second question. Given that <” and <, satisfy the conditions of Theorem 2 
so that there exists a Q for which (A.l)-(A.4) hold (i.e., < is “NM repre- 
sentable”), may they nevertheless be incompatible in some behavioral sense? 
For instance, will the resulting TPC index W exhibit undesirable properties? 

We continue to assume CES time preferences 

U(c, ) c2) = (CL” + c;*y, (3.2) 

where 6 > 0 and the elasticity of substitution is given by 7 = l/(6 + 1). We 
denote the two-period analogue of the Arrow-Pratt [l, 141 relative risk 
aversion function (in the spirit of Sandmo [16, 171) by 

TR(cl , cd =def -% w,&l , %)/W&I , c,), 

and the conditional relative risk aversion function by 

(3.3) 

TR%(%) =def -Cz W~(C& W&(C&, (3.4) 

where x E C, . Suppose the conditional NM index assumes the form 
W,(c,) = -S&//3, where /? > 0 and TV= = p + 1 (the constant value 
of relative risk aversion being denoted simply T).” Formal application of 
Theorem 1 yields an expression for W in C{x> and hence one for TR(C1 , c2) 
also in C(x}. 

EXAMPLE 2. Let us assume the following: #? = 1,6 = 2, and x = 10,000. 

4 Note that 7~’ being constant does not imply that T$’ (x’ # x) will be. 
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Then the resulting TPC utility function may be described over C{x> (but not 
over all of C) by W(c, , c2) = -2(c;” + c;~ - 1O-s)1j2. For this function, 
direct computation reveals that T Rx = 2 and q = l/3. If we consider the 
point cr = x = 10,000, c2 = 22,400 in C{x}, another direct computation 
using (3.3) yields ~,(lO,OOO, 22,400) = ~~“(22,400) = 2. However, if current 
consumption is increased by only 10 y0 to c1 = 11,000, then for 
(I 1,000, 22,400) E C{x} we obtain 7R(11,000, 22,400) = -4.76! (See Fig. 2.) 

FIGURE 2 

More generally, any values of the constant elasticity of substitution and 
relative risk aversion function satisfying 0 < ~17 < 1 and q < 1 will produce 
preferences for which the property of being conditionally risk averse is 
unstable under small perturbations of first-period consumption. Yet this 
seemingly pathological behavior of the TPC representation occurs when U and 
W, exhibit perfectIy “standard” properties. 

We leave to the interested reader consideration of other properties of the 
constructed TPC utility functions. Our only concern here is to indicate the 
possibility of behavioral incompatibilities between the time preferences and 
conditional risk preferences underlying two-period expected utility functions. 

4. EXISTENCE 

In this section we consider the existence of a TPC representation of 
preferences over S(= C, x x). Necessary and sufficient conditions are derived 
within a framework which directs attention to the interplay of conditional 
risk preferences and time preferences. By contrast, virtually all previous 
discussions of existence known to us proceed by applying directly the 
classical von Neumann-Morgenstem axiomatization. However, such an 
approach in the present setting confronts an immediate stumbling block in 
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providing the choice space S with a mixture structure. Specifically, if (c; , F”) 
is a mixture of (cr , F) and (c; , F’), how should c; be interpreted and/or 
defined when c1 and c; are distinct? To form general “lotteries” appears 
to require dropping the distinction between current consumption being 
“certain” and future consumption being “risky” or “uncertain.” On the 
other hand, without a mixture structure on S, the NM axiomatization cannot 
be directly applied. 

In the present discussion, we overcome this difficulty by relying solely 
upon mixtures defined only within the “slices” S[x] = {x) x X. Further, 
the classical NM axioms will be applied to conditional risk preferences, not 
to the relation < over S. Specifically, we relax Assumption 2 to read 

Assumption 2’. For each x E C, , the conditional risk preference relation 
<, (i.e., < / S[x]) is NM representable as in Eq. (l.l), with the continuous 
NM index V, strictly monotonically increasing. 

This assumption implies that we have a collection of second-period, 
conditional NM indices {V, j x E C,), but no longer have the TPC utility 
function W. As a result, it is necessary to use a reformulation of (A.4) which 
does not presume the existence of a W. To do so, first define the natural 
embedding r: C---f S by mapping (cr , v) tt (cr ,8’$) where F,* is the one- 
point c.d.f. with its saltus point at y E C, . 

Assumption 4’. The preordering < satisfies the condition that time 
preferences are preserved under the natural embedding, i.e., c <t c’ * 
cc < ld, vc, cr E c. 

(It is easily verified that (A.]), (A.2), (A-3), (A.4) 0 (A.l), (A.2), (A.3), 
(A.4’).) 

For the ensuing existence discussion, we use the modified axiom structure 
(A.]), (A.2’) (A.3) and (A.4’). This represents a substantive weakening of 
the assumptions used in Sections 2 and 3, since the OCE preferences intro- 
duced in [20] and discussed in Section 5 satisfy this new axiom set but need 
not be NM representable. 

The results of Sections 2 and 3 imply that the present modified set of 
axioms must be supplemented by some property interrelating conditional risk 
preferences. Theorem 1, in fact, suggests the nature of this interconnection. 
Let us rewrite Eq. (2.1) as 

where X, x’ E C, . According to this expression, the conditional NM index W, 
can be obtained from W,, by using U,;‘Ur. The function U,;‘U, provides a 
map from points in C[x] to points in C[x’], which we call the transfer and 
denote Y. 
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DEFINITION 2. If x, x’ E C, , the transfer mapping y: C[x] n C(x’} + 
C[x’] is characterized by the relation c 4 yc, for each c in the domain of y 
(cf., Fig. 3a). Let S(x) denote the set of pairs (cl , F) in S such that {cl) x 
supp F C C{x}, where supp F is the support of F. The induced transfer 
mapping S[x] n S{x’} -+ S[x’] associates to a pair (x, F) the pair (x’, G), 
where F(y) = G(y’) if y(x, v) = (x’, y’) (cf., Fig. 3b). 

The induced transfer mapping will be denoted by the same symbol y as 
that used for the transfer mapping. 

If (x, F) is in the domain of the induced transfer y, then the corresponding 
pair (x’, G) = y(x, F) is obtained by “sliding along the intertemporal 

c2 i- C[xl 
r- 

c b'l 

Y --c 1-;:~~ Y’ .- 
-7 

--- yc 

I . 
X X’ 

Cl 

(a) 

I F(yi) = G(Y’i), i=1,2 

I  
.  

X X’ Cl 

(b) 

FIGURE 3 
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indifference curves.” Thus for instance, suppose F has n-jump points 
{Yl ,-**, y,}. Then under the induced transfer one constructs a c.d.f. G which 
(1) also has n-jump points, (yi ,..., y;}, where each yi is obtained by finding 
that (x’, yi) E C[x’] lying on the same indifference curve as (x, yi) and (2) has 
the same “probability structure” as F, i.e., F(yi) = G(yj) for each yi and y: . 
Hence, the transfer is determined completely by the preference relation <“. 
It is clear that the induced transfer is an affine mapping: y(x, aF + bG) = 
ay(x, F) + by(x, G) where a, b > 0 and a + b = 1.j 

The simplest interpretation of W, = W,,U,;‘U, involves asserting that the 
induced transfer maps < 1 S[x] onto < 1 S[x’]. More formally, we provide 

DEFINITION 3. Conditional risk preferences {<, / x E C,} are coherent if 
VS, , s2 E S[X] n S{X’>, sI - S, + ysl - ys2 . 

Assumption 5. Conditional risk preferences are coherent. 

Coherence of the set of conditional risk preferences implies that the 
induced transfer y maps a conditional indifference set in S[x] into a condi- 
tional indifference set in S[x’]. Since y is determined purely by <t, coherence 
is thus a property interrelating time and conditional risk preferences. As 
should be clear, this integrative property underlies both Theorem 1 and the 
existence of Examples 1 and 2 in Section 3. Moreover, it plays a crucial role 
in the proof of our basic two-period NM representation result. 

THEOREM 3. (A.l), (A.2’), (A.3), (A.4’), and (A.5) are together necessary 
and suficient conditions for the existence of a continuous, strictly monotone 
increasing TPC utility W: C + R. 

The proof is to be found in Appendix C. 
The relation s - ys which plays a crucial role in the proof of Theorem 3 

can be given an interesting compensation interpretation. Consider a distri- 
bution F with probability mass concentrated at y1 and yz so that Prob( yl} = p, 
Prob{y2) = 1 - p (see Fig. 3b). Let y(x, F) = (x’, G). We can regard y(x, F) 
as being obtained from (x, F) by a compensation process: using “time 
preferences” <t, the increase dx = x’ - x in current consumption is 
compensated by adjusting the levels y1 and yz downward to y; and yi without 
altering the probability structure (i.e., without changing the value of p). 
So far we have assumed nothing which would imply that the conditional risk 
preferences on S[x’] are or are not compatible with y. If the transfer com- 
pletely compensates, according to the preference relation <, for the alteration 

5 Note (uF + bG)(y) = aF(y) + bG(y) = aF’(y’) + bG’(y’) = (aF’ f bG’)(y’) by 
Definition 2. 
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dx, then (x, F) N y(x, F). In this case, therefore, the utility of (x, F) deter- 
mined by any index S + R representing < would depend on the time 
preferences for the possible outcomes of the distribution, and the induced 
transfer mapping y: S[x] n S{x’} + S[x’] would map indifference sets into 
indifference sets. 

Remark. Given the family {VcI} of conditional NM indices, there is a 
naturally associated function V defined by V(c, , c.J = Vc,(cz). This mapping 
V: C - R must be interpreted with the greatest of care. The temptation is 
great to view this expression as a TPC utility. However, this would be 
totally unwarranted on the basis of (A.2’). As we have been arguing, (A.l), 
(A.2’) (A.3), and (A.4’) are not sufficient to establish the existence of a TPC 
representation. One is only justified in using EV(c, , ?.J for choices between 
points in S characterized by a common value offirst-period consumption. The 
fact that V depends on c1 reflects a dependence of the second-period risk 
aversion (as, for instance, in the Arrow-Pratt sense) on the preceding period’s 
level of consumption. 

Remark. The thoughtful reader may well note the possibility of an 
alternative approach to the existence question. Let Y be the space of joint 
c.d.f.‘s defined over C, x C, . Clearly, many elements of Y may not be 
meaningful economically (because whereas future consumption will in general 
be uncertain, current consumption will not be). Nevertheless 9 is mathe- 
matically definable and supports a natural mixture structure which permits 
application of the traditional von Neumann-Morgenstern axioms (e.g., 
Fishburn [5]). The idea would then be to embed the economically meaningful 
world of <, S (where S is not a mixture space) into the mathematically “nice” 
world of .Y and assert the following: 

< is NM representable on S iff there is a complete preordering 
over 9’ which satisfies the traditional axioms and which agrees 
with < when restricted to S. 

This result is easily verified. However, the approach may not be operationally 
meaningful since (i) the decision-maker may simply not possess preferences 
outside of S or (ii) he may have an ordering over all 9’ which, although NM 
representable over S, is not consistent with the NM axioms over other regions 
of Y. The embedding approach has still another disadvantage which is more 
significant economically: the traditional axioms for TPC utility are not 
known to reveal the interconnection between time and conditional risk 
preferences developed in this paper. Finally, the result provides no indication 
of a test which could determine when such an extension is possible; as a 
consequence, the condition given for existence would be difficult to verify 
or to disprove in any particular theoretical discussion. 
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Remark.- The connection between time and NM preferences has also been 
investigated recently by Prakash [ 131, though in a quite different context. The 
notion of a “time adjustment calculus” is used to consider preferences over 
date-income pairs (t, m) E [w, x [w where Iw, = [0, co). In addition to 
relatively minor differences in setting occasioned by Prakash’s use of the 
closed half-plane rather than the open positive orthant, more fundamental 
differences are produced by his use of the standard assumption that un- 
certainty is present at each time t. Nevertheless, his Theorem 3.5 (restricted 
to the domain of S,,) should be compared with our Theorem 1 (reformulated 
in terms of the transfer). Despite the differences in economic context, the 
results are mathematically analogous. However, Prakash’s argument depends 
upon a claim (his Proposition 3.4) which amounts to asserting that con- 
tinuous, strictly monotone NM preferences over date-income pairs imply 
ordinal time preferences whose regions are only of type 1 (cf., Lemma 1 
above). A counterexample in his context is provided by preferences defined 
by the utility U(t, m) = (exp(--21) + exp(-2m))-l, since the date-income 
pair (log 2, log 2) is then superior to every income at time t = 0.6 Prakash 
examines neither the question of existence addressed by our Theorem 3 
(possibly because in his setting mixtures are always available) nor that of 
the possible mathematical and/or behavioral incompatibilities considered in 
Section 3. 

5. OCE UTILITY 

In this section we show that the coherence postulate represents the 
conceptual link between TPC utility and the OCE (“Ordinal Certainty 
Equivalent”) representation of < developed in Selden [20]. 

Let us first introduce some additional notation. Given a first-period 
consumption of x, the certainty equivalent period-two consumption 
associated with the c.d.f. Fis denoted c”,(x, F). Then the “OCE Representation 
Theorem” can be stated as follows: 

THEOREM 4 (Selden [20]).’ Under (A.l), (A.2’), (A.3), and (A.4’), the 
ordering < on S is OCE representable, in that Vx, X’ E C, and F, G E x, 

(x, F) < (x’, G) * W, 4(x, F)) < U(x), 4(x’, G)), 

where c^,(x, F) = V;’ SC, V,(c,) dF(c,) and &(x’, G) = V.’ SC, V&c,) dG(c,). 

6 The “discontinuity” argument in the proof of Proposition 3.4 incorrectly asserts that 
(s, m’) < I for all p E (0, I]. 

7 Although the assumptions employed here are not exactly the same as those introduced 
in [20], the essential logic of the proof is. 
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In relating the OCE and TPC representations, we can state the following 
result as an immediate consequence of Theorems 3 and 4. 

COROLLARY 1. Under (A.l), (A.21, (A.3), and (A.4’), any OCE represen- 
tation can also be expressed as a TPC representation if and only if risk 
preferences are coherent. 

This result can be expressed in another, related way. If, in addition to (A.l), 
(A.2’) (A.3), and (A.4’), one invokes the coherence postulate, then corre- 
sponding to a given (U, VJ-pair will be a two-period NM index W which 
differs from U by the transform h = I’, 0 U.$. But this transform is exactly 
what is required to undo the nonlinear (in the probabilities) OCE represen- 
tation:b 

=I ~&s) WCs). C, 
We conclude this paper with a brief discussion of the implications of 

invoking the coherence axiom. Consider once again the case of the pairs 
(x, F) and (x’, G) described in conjunction with Fig. 3b. One can compute 
the conditional certainty equivalent period-two consumption values as 
follows: 

On the basis of conditional risk preferences, (x, 9) will be indifferent to (x, F), 
and (x’. j’) to (x’, G). Now, in terms of Fig. 4 it is straightforward to see 
that if (x, J’~) & (x’, A> and (x, ~4 wt (x’, JQ, then coherence requires that 
(x, 9) and (x’, 9’) lie on the same time preference indifference curve (and 
similarly for all such lotteries). In contrast, the OCE representation hypo- 
thesis would, in general, allow an indifference curve passing through (x, 5) to 
lie above or below (x’, 3’). As this evidences, the coherence axiom in con- 
junction with the other assumptions produces a very strong interdependence 
between time and conditional risk preferences. It is as a consequence of this 
interdependence that the incompatibilities described in Section 3 arise. 
Under an OCE representation, a given (U, (I’,))-pair will not exhibit such 
incompatibilities as long as coherence (which certainly possesses some 
intuitive appeal) is not assumed. (This, of course, is not to say that an 

s Clearly, no increasing monotonic transform of CJ, such as h, will affect the ordering 5 
(cf., [20, Corollary I]). 
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arbitrarily specified (U, { V,})-collection might not imply unreasonable 
behavior-for instance, in specific applications such as the consumption/ 
savings problem.) As argued in [20], the OCE representation permits one to 
prescribe U and { VG} and hence model the interrelationship between time and 
risk preferences. In contrast, under the TPC approach, this interdependence 
is determined by a desire for the “mathematical simplification” of linearity 
in the probabilities, or equivalently by adoption of the coherence axiom. 

APPENDIX 

A. Proof of Theorem 1. Let T be a TPC index defined throughout C. 
Then by (A.4), we have T = h 0 U for a strictly increasing function h: 
im U -+ R. By restricting consideration to C{x> and noting that im U j C{xj = 
im U, , we obtain T 1 C(x) = h j im U, 0 U 1 C(x). On the other hand, by 
restricting to C[x], we obtain T, = h / im U, 0 U, . Therefore, h : im U, == 
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T, 0 U$. Since T, and W, are both conditional NM utilities for <, on 
(x] x g, we may write T, = A 0 W, , where A is affine. Consequently, 
T / C(x) = A 0 W, 0 U;’ 0 U I C{x}. It follows that W, 0 U;’ 0 U 1 C{x} is 
also a TPC, NM index over C(x). Q.E.D. 

Observe that h / im (I, is affinely equivalent to W, 0 U;l, which is not the 
same as having h affinely equivalent to W, 0 U;’ unless im U, = im U. This 
distinction is at the root of all of our labor in proving Theorem 2 (Section 3), 
where we begin with a candidate for h 1 im U, and are required to obtain the 
extension h. 

B. Proof of Theorem 2. The general line of argument establishing the 
necessity of one of the conditions (i)-(iv) is indicated in the discussion of 
Example 1. To establish sufficiency, i.e., existence of <, we shall consider 
the cases separately. 

Cuse (i). Where C{x} = C, x C, , we have im U, = im U. But if the 
monotone transform h: im U, + R’ is defined by h = W, 0 U;l, then h 0 U 
is well defined. Consequently, the function W = h 0 U defines a < on 
S(==der C, x X) for which it is the TPC index. Moreover, the resulting W 
has W, as its conditional NM utility for <, (on {x> x X). The uniqueness 
assertion is clear from Theorem 1. 

Case (iii). Again take h = W, 0 U,‘. In this case the domain of h is 
equal to im CJz . But im U, is just the open interval (inf U, sup U,), where 
sup U, is finite and less than sup U. Moreover, since W, is bounded above, 
h is also bounded above. Therefore, lim,,,,,g h(u) exists. But this is exactly 
what is required to extend h to a monotone function H: im U -+ II& Now 
take < to be the relation over S having W = H 0 U as its TPC index. This 
preordering is not unique because the extension His not unique. (Note that 
if W, and U are continuous, we can choose a continuous extension. Therefore, 
W is continuous if so desired.) 

Cases (ii) and (iv) can be verified by a similar argument. Q.E.D. 

FIGURE 5 
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C. Proof of Theorem 3. The transfer mappings provide the essentia1 
structure which allows the existence result of classical NM theory to be 
extended to the certain first-period,uncertain second-period setting considered 
in this paper. At the level of riskless consumption pairs, the transfer mappings 
provide no more than a nonstandard, formal specification of <t over 
C = C, x C, . The induced transfers form a class of extensions of the 
transfer concept to the level of conditional risk preferences: an extension 
characterized by the property that the induced mappings be afine. This 
structure can be taken into account provided it is compatible with the 
structure imposed by the a priori relation < on S. In particular, the transfer 
allows an atline representation on S[x], where x is an arbitrary current 
consumption level, to be extended to S(x) (which in some circumstances 
may be all of S). In the general case, the desired representation can be 
established throughout the entire choice space S by defining the represen- 
tation over each set S(x) of a collection of sets covering S, and by verifying 
that these definitions are identical where the covering sets S(x) overlap. 

Let us first define the following property of an induced transfer mapping. 

DEFINITION. Risk preferences {<,} are invariant under transfer if s - ys 
for any s in S[x] n S{x’}. 

In the context of this paper it is easy to show that coherence and invariance 
are logically equivalent properties. 

The following lemmas show that the representation can be extended 
from S(x) to the entire space S, and therefore that the TPC utility can be 
captured by restricting the extended affine index to the set L(c~, cZ) as in [6]. 

LEMMA 2. Given x’ E C, , let h be a representation of preferences on S[x’] 
which is afine in the probabilities. Then a (slicewise) afine index x on S{x’} is 
defined by x(s) = Xy(s) f or each s E S(x), where y is the appropriate transfer. 

Prooj Given that conditional risk preferences are coherent, as suggested 
above, they will also exhibit invariance, i.e., ys - s for each s. Therefore, 
s1 < sZ 5 &s,) < x(s,), and s1 - s2 * x(s,) = x(s,). Therefore, x represents 
< on S{x’}. Since both h and each transfer y are affine, the extension x must 
be athne slicewise. q 

The above lemma establishes the desired representation for arbitrary 
regions of the form S(x), x E C, . To extend this representation to all of S, 
a framework of subsets C@‘), N = 0, 1, 2,..., is chosen such that (1) P’) C 
P’fl) C C, (2) UN CN) = C, and (3) an affine representation over choices 
supported by W’) can be extended to an affine representation over choices 
supported by CtN+l). Accordingly, the existence of an affine representation 
over all S is proved inductively. The following lemma provides the material 
for constructing CtN) as a union l-l:=-, C{x,} of fundamental equivalence 
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regions determined by the time preference relation St. The regions C{x,) 
are themselves inductively defined. 

LEMMA 3. There is a subset {x, / n = 0, il, f2,...} of C, such that 

(i) C{x,} n C{x,+,) # ec fir each n, 

(ii) x, -=c x,+~ for each n, 

(iii) lJn C{x,> = C. 

Proof. Proceed inductively by choosing x0 arbitrarily. It will suffice to 
demonstrate the extension of the chain C{x-,},..., C{x,} to the chain 
C{X+&., C{x,+,>. If C{X,] has no right boundary, or if the right boundary 
approaches no point in (0, co) x {0}, define x~+~ and x,,,+~ by x~+~ = 1 + x, , 
X N+2 = 2 + xN ; i f the right boundary approaches (x, 0) E (0, co) x {0}, 
then set x~+~ = x and choose x,,,+~ to satisfy xN < x~+~ < xN+2 . The choice 
of xmN-r and x-w-z is made in a similar way based on discrimination among 
left boundaries. 

It is clear that the inductive step preserves properties (i) and (ii). Moreover, 
from the construction we shall prove that x, ---f co as n -+ co, and similarly 
x, --, 0 as n + - co. These limiting behaviors guarantee property (iii) of 
the claim. 

Suppose sup x, < co. Then the left boundary of C(x} must lie to the right 
of C&X,], where x = sup x, . Since these verticals approach C[x], the left 
boundary must lie in [x, co) x C, . But strict monotonicity of <t makes 
this impossible. Therefore sup x, = co. 

In a parallel fashion, one may see that inf x,, = 0. I%J 

Before proceeding to establish the principal inductive step of the extension 
proof, we need a preliminary result. 

DEFINITION. If KC C, x C, , then S(K) denotes the class of all s ES 
whose support lies in K. 

With this notation, S[x’] = S({x’} x C,) and S{x’} is S(C{x’}). Observe 
that S(K n L) = S(K) f? S(L) if K, L C C. Moreover, it is easy to show 

LEMMA 4. If K, L C Cl x C, are two nondisjoint open intervals determined 
by <t, then each s, E S(K u L) is ind@erent to an element s, E S(K) U S(L) C 
S(K u L). 

To prove the theorem, it is enough to establish 

LEMMA 5. For N = 0, 1, 2 ,... there is a (slicewise) ajffine index A, repre- 
senting < over S(Uf”, C{x,J) such that &,?+, 1 domain A, = h, . 

ProoJ Lemma 2 supplies A, . Proceed inductively. Let K = UrN C{x,}, 
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L = C{x,,,}. By Lemma 2 there is an affine index h representing < over L. 
Since both L and K are intervals determined by <” (use Lemma 1 and 
propositions (i) and (ii) of Lemma 3), K n L is a subinterval of L. We propose 
to show that some affine modification of X will coincide with h,,, in S(K) n S(L) 
by using the classical NM uniqueness result. First view S(K n L) as 
S({x,+,} x (y, CO)), where y E C, . Since S(K n L) C S(L), both h, and h 
provide affine indices representing < over S(K n L); by classical expected 
utility theory, there is an affine transform T such that T 0 h 1 S(K n L) = 
h, I S(K n L). Consequently, h,,, may be defined by 

According to Lemma 4, the extension to S(K) U S(L) determines the extension 
to S(Ku L). 

Two points must be verified: (1) X,,, represents < over S(K u L),‘and 
(2) &,I is slicewise affine. 

To establish that h,,, represents <, consider s and s’. Suppose s < s’. 
Then we may suppose that s = LC, S’ = HZ’, where c, c’ E K v L. Since s < s’, 
it must be true that c xt c’. Since we need not consider the cases where 
{c, c’> C K or where (c, c’} C L, we may assume c E K and c’ E L. Now if 
c’ $ K, then c wt cn and c’ wt cm, where {c”, c”‘> C C[xN+J and c” < c”‘. But 
the same may be said for any c E K such that c 4 L and c <t c’. Therefore, 
Av+1(S) = &f(S), kv+dS’) = T 0 h(s’), and 7 0 h(s’) 3 sup h,,, > hN+1(~). 
Thus, s < s’ implies h,+,(s) < X,+,(s’). If s - s’, then c mt c’. Thus 
{c, c’> C K n L, and clearly h,,,+,(s) = hN+1(s’). Now it follows immediately 
that s =$ s’ iff h,+,(s) < X,+,(s’). 

Finally, to establish that an afine representation is possible, we use the 
classical uniqueness result once again to show that X,,, coincides with an 
affine transform over S[x] for every x such that S[x] C S(K u L). This clearly 
implies that the inductively defined representation over all of S is (slicewise) 
affine. First, note that there is some affine index q over S[x], for x E C, . But 
then qz~ and X,,, g ive affine indices over S[x] n S(K). So A,,, 1 S(K) n S[x] = 
TV 0 9 / S(K) n S[x]. Moreover, X,,, / S(L) A S[x] = T2 0 y j S(L) n S[x]. 
Consequently, 71 0 v 1 S(K n L) n S[X] = T2 0 q~ 1 S(K n L) n S[x]. Since 
S(K n L) n S[x] contains at least two elements which are not indifferent, 
the affine transforms 71 and T2 must be identical. Therefore, A,+, I [S(K) U 

S(L)] n S[x] = 7 0 g, j [S(K) u S(L)] n S[x]. Therefore, A,+, j S[x] = 7 0 y 
when S[x] C S(K U L). As IJI is affine, h N+l must also be affine on each slice 
lying in S(K u L). q Q.E.D. 
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