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For a collection of agents with von Neumann-Morgenstern preferences, a price- 
independent income distribution, and identical probability beliefs, there exists a von 
Neumann-Morgenstern approximate aggregator. The risk tolerance of the 
approximate aggregator is equal to the sum of the individual agent risk tolerances 
at prices which yield constant, “risk-free”, contingent consumption. The application 
of the approximate aggregator to standard asset pricing models in finance is dis- 
cussed briefly. Journal c~/‘ Economic Literature Classification Numbers: 022. 026. 
521. 1“ 1986 Academx Press, Inc 

I. INTRODUCTION 

The problem of aggregation concerns the possibility of rationalizing 
aggregate demand by a utility function. When it exists, this utility function, 
or a fictitious agent possessing it, is termed an “aggregator.“’ The construct 
of an aggregator has been employed in many different areas in economics. 
In international trade, the aggregator, or community indifference map, is 
used to derive market demand functions.” When income is optimally dis- 
tributed, the aggregator is interpreted as a social welfare function.” In 
financial economics, the aggregator is often used to derive market 
valuation expressions for financial securities; standard versions of the 
capital asset pricing model satisfy the requisite conditions for the existence 
of an aggregator.4 

* The work of the tirst two authors was supported in part by National Science Foundation 
Grants SES 82-10034 and SES 80-07100, respectively. We wish to thank the referee and 
especially the associate editor for very insightful and constructive comments and suggestions. 
This paper is a revised version of Discussion Paper 8006. C.O.R.E.. Universite Catholique de 
Louvain. 

’ Samuelson 1211. 
‘See, for example, Chipman [S]. 
3 Chipman and Moore [S]. 
‘See. for example, Rubinstein 1201. 
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Despite this interest in the existence of an aggregator, most of the results 
to date have been negative.’ Two exceptions are the special cases of essen- 
tially identical homothetic (or quasi-homothetic) preferences6*’ and of 
diverse homothetic preferences with a fixed (i.e., price-independent) dis- 
tribution of incomea Furthermore, homotheticity has been shown to be 
not only sufficient for aggregation but essentially necessary as well9 

While most of this work on aggregation posits a deterministic setting, 
the issue can also be raised in risky settings such as the standard one- 
period portfolio allocation problem. Consider the demand for contingent 
commodities by agents with identical probabilistic beliefs and continuous, 
monotone, and concave expected utility functions. Then, paralleling the 
certainty case, aggregation is possible when individual agents possess essen- 
tially identical, homothetic (or quasi-homothetic) von Neumann- 
Morgenstern preferences, lo or diverse, homothetic von Neumann- 
Morgenstern preferences with a price-independent distribution of income. 

In the framework of choice under uncertainty, this problem acquires an 
additional dimension. Even if an aggregator exists, the aggregator need not 
be von Neumann-Morgenstern. Homotheticity requires that the cardinal 
utility index of each agent exhibit constant relative risk aversion.” If the 
degree of relative risk aversion varies across agents, then although an 
aggregator exists (assuming a price-independent income distribution) the 
aggregator is not additively separable and hence not von Neumann- 
Morgenstern. Moreover, the aggregator can be identified only indirectly-a 
closed form expression for the utility function is not known.” 

5 It was Sonnenschein’s [23] original argument that in the absence of further restrictions on 
individual preferences, aggregate excess demand need satisfy only homogeneity and Walras’ 
law. Debreu [6] gave a definitive version of the argument. which was elaborated on in 
Geanakopolos and Polemarchakis [S], among others, and in Polemarchakis [IS] for the 
case of additively separable preferences. Polemarchakis [ 173 and Sonnenschein [24] partially 
extended the argument to the case of demand functions in which income varies independently 
of prices. Hildenbrand [I I]. on the other hand, derived restrictions on aggregate demand by 
imposing restrictions on the distribution of income. 

6 Preferences which are representable by a continuous utility function that is ordinally 
homogeneous of degree one are said to be homothetic. The Engel curves (income expansion 
paths) associated with homothetic preferences are rays through the origin. If the Engel curves 
are lines but not necessarily through the origin, preferences are said to be quasi-homothetic. 

‘Chichilnisky and Heal [2] and Gorman 19, IO]. 
‘See Eisenberg [7] and Chipman [4]. 
9 Jerisson [12], Polemarchakis [16], and Schafer [22]. 
“See Milne [ 141 and Rubinstein [20]. 
‘I Pollak [ 181. 
“This problem has, of course, an analogue under certainty: If individual agents have 

preferences which are representable by constant elasticity of substitution utility functions but 
the elasticity of substitution differs across agents, then although an aggregator exists it does 
not have an additively separable representation, 
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Our goal in this paper is to investigate the degree to which the aggregate 
demand of a collection of von Neumann-Morgenstern agents can be 
approximated by the demand of a single von Neumann-Morgenstern 
agent. Such an approximate aggregator is of interest for a number of 
reasons: 

( 1) Expected utility maximization is frequently identified with 
“rationality” in single-period allocation problems under uncertainty. 

(2) Interesting properties of aggregate demand, and of the objective 
function of the exact aggregator when it exists, are revealed by comparison 
with the demand and utility function of the approximate aggregator. 

(3 ) Tractability and estimation: The applications mentioned above 
require not just knowledge that an aggregator exists, when this is the case, 
but knowledge of the aggregator itself or at least of a good approximation. 
Unless the aggregator, or approximate aggregator, takes a sufficiently sim- 
ple form, it is not possible to see how individual preferences are being 
aggregated and the resulting impact on aggregate demand. 

Following preliminaries (in Section 2) we demonstrate (in Section 3) 
that, assuming individual agents possess identical probabilistic beliefs, an 
approximate aggregator can be constructed which is von Neumann- 
Morgenstern and has risk tolerance equal to the sum of the risk tolerances 
of the individual agents at prices which yield constant (“risk-free”) con- 
tingent consumption or, equivalently, has relative risk aversion equal to the 
income-weighted harmonic mean of the relative risk aversions of the 
individual agents. We explore several criteria of accuracy for the 
approximation. The approximation is exact locally (some may prefer the 
term infinitesimally); its global behavior is characterized by means of 
asymptotic results and error bounds. Subsequently (in Section 4) we extend 
parts of the analysis to the case of heterogeneous beliefs. We conclude (in 
Section 5) with a discussion of the application of our results to asset pricing 
models in finance and a discussion of the extension to the case of price- 
dependent income distributions. Proofs are given in the Appendix. 

2. PRELIMINARIES 

States of nature, or, equivalently, primitive securities or commodities, are 
indexed by i, j, k = l,..., n and individual agents by h = l,..., m. The expected 
utility function of agent h is given by 
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where rch = (..., z,,~,...) is a strictly positive probability vector and uh is a 
twice continuously differentiable, strictly increasing (u; > 0) and strictly 
concave (ul< 0) cardinal utility index defined on the state contingent con- 
sumption domain. The relative risk aversion function ph is defined by I3 

Phi= PhtXhi) = -xhiu~(xh~)lul(x*j)~ 

and the risk tolerance r,, is defined by I4 

rhi = rh (.xhi) = - ~4; ( xhi)/u;: ( xhi). 

Aggregate income is normalized to equal unity; agent h receives the con- 
stant share b,, > 0 of aggregate income. Prices are strictly positive vectors 
p = (..., pi ,... ). The demand function of agent h, xh (p) = (..., x,,,(p) ,... ), is 
thus the solution to the optimization problem of maximizing the objective 
function 4h(~h) subject to the budget constraint 

We restrict attention to prices for which a solution to the optimization 
problem of each individual agent exists, is unique, and is characterized by 
the first-order conditions. It follows that the derivative of agent h’s demand 
for commodity i with respect to the price of another commodity j is given 
by 

d,ii(P)=(r,i(P)r,(p)-r,,JP).~~i(P))(,f, PkrhkCP))-‘, i#j, 

and (1) 

4;,(P) = - ~+(r~iCP)‘-r,jCP)X,i(p))(~~~p~r~~(p)) ‘. 
I 

(See the Appendix for the derivation of these expressions.) 
The aggregate demand function, indexed by A, I~ (p) = (__., xA, (p) ,... ), is 

-y/d(p)= -f Xh(P) 
h=l 

and its derivatives satisfy 

I3 Arrow [I ] and Pratt [ 191. 
I4 Wilson [25 J. 
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We seek an approximate aggregator, indexed by A^, with cardinal utility 
index uA, probabilistic beliefs ~2 = (..., ~a,,...), and hence the expected 
utility function 

The demand function of the approximate aggregator is derived subject to 
the aggregate budget constraint 

,z, Pi”Ai = ‘. 

The derivatives satisfy, as in the case of the individual agents, 
-I 

d,-,(P)=(r,-,(P)rA^,(P)-rA,(P)S~jii(P)) 
> 

, i#j, 

and 

d/x,,(P) = -: r4i(p)+ (rn,(P)‘-r,-,(p).~,,-i(P)) i Pkr.h(P) 
i 1 

-1 
, 

PI k=l 

where rA is the risk tolerance of the approximate aggregator. 
Of interest is the special case of the cardinal utility index 

U,? (-Yu,i) = $ (.Yh,P, rh< l, 
I 

which displays constant relative risk aversion 

Ph = 1 - a/r 

or, equivalently, constant elasticity of substitution 

and leads to homothetic preferences represented by the homogeneous 
expected utility function 

It follows that the demand function x,(p) = (..., .~,,~(p),...) is given com- 
ponentwise by 
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where 
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i#j, 

and 

Approximate aggregators with the same form of cardinal utility 

242 (x,-;) = $ (x.#, cr,-<l, 
.4 

displaying constant relative risk aversion 

or, equivalently, constant elasticity of substitution 

1 
‘IA = 1 _ olA3 

lead to the expected utility function 

It follows that the demand function x2(p) = (..., xdi(p),...) is given corr 
ponentwise by 

Xdi(P)Z y 
UP.2 

L! i g/3(P), 

where 

i #j, 
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and 

1 X,-,(P) 1 

d.2ii(P) = -pA -+ p-- 1 sA;(p)? 
 ̂ Pi ( 1 4 

Returning to the general case, we introduce the following definition: 

DEFINITION. An approximate aggregator displays the Oth-order 
property at prices p* if 

-".ai(P*)=-u,4i(P*), i = l,..., n. 

The approximate aggregator displays the lst-order property at prices p* if 

~aijfP*)=~,,fP*), i,,j= I ,..., n. 

The Oth-order property is easily satisfied. For the lst-order property on 
the other hand, if n is large, the number of conditions to be satisfied can far 
exceed the number of parameters available. In the next section we show 
that, under the assumption of identical probabilistic beliefs, these con- 
ditions can indeed be met, however, and stronger ones as well. 

3. IDENTICAL BELIEFS 

Suppose that the probabilistic beliefs of the individual agents coincide, 
i.e., 7th = (...( 7th; )...) = 7r, h = l,..., m, and consider the possibility of 
approximate aggregation at prices colinear with the probability vector 7c, 
i.e., p* = (l/q) n, f or some q > 0. At such prices, all agents equate their 
levels of consumption across states of nature. Hence, 

and 

xhi(P*)=96h, 

d,,,(p*)=q(rh(P*)-q~h), i#j, 

r,(p*) d,,,(p*) = -- pT + q(r,(p*) - qdh). 
I 

It follows that any approximate aggregator satislies the lst-order property 
at p* provided his risk tolerance at p* is the sum of the risk tolerances of 
the individual agents at p*. 

ra(P*)= f r,(p*). 
h=I 

(2) 
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For example, the approximate aggregator with ~2 = 71 and constant relative 
risk aversion PA equal to the income-weighted harmonic mean of the 
relative risk aversion of the individual agents at p*, 

(3) 

does indeed satisfy the lst-order property at p*. 
We have thus demonstrated the following: 

PROPOSITION 1. For a collection of agents with von Neumann- 
Morgenstern preferences, a price-independent income distribution, and iden- 
tical probability beliefs, there exists a von Neumann-Morgenstern 
approximate aggregator which displays the &h-order and Ist-order properties 
at p* and has risk tolerance (relative risk aversion) equal to the sum of the 
individual agent risk tolerances (income-weighted harmonic mean of the 
relative risk aversion of the individual agents). Is 

Remark 1. Observe that the risk tolerance function ra determines (up 
to a positive afflne transformation by integration as, for instance, in Pratt 
[ 191) the corresponding cardinal utility index UA of the approximate 
aggregator. 

Remark 2. The above does not require the individual agents to exhibit 
constant relative risk aversion and thus does not require the existence of an 
exact, albeit non-von Neumann-Morgenstern, aggregator. 

Remark 3. It may seem puzzling that the risk tolerance of the 
approximate aggregator is not an income-weighted average of the risk 
tolerance of the individual agents: an individual with zero income may 
influence aggregate behavior. But this is to be expected if preferences are 
well defined for negative state contingent consumption, since we have 
imposed no restrictions on short sales. Of course, the demand and risk 
aversion of the individual agents will not be independent of income. 

Remark 4. At first glance, it may seem that the expressions for r.4 (p*) 
and ~2, (2) and (3), are incompatible in that the income distribution, (6,}, 
appears in the latter, but not in the former. However, this is not the case, 
as the {S,} is present implicitly in the set of functions {r,(p*)}. 

We next examine briefly the special case of two agents, h = 1,2, and two 
states of nature, i= 1,2. We suppose furthermore that both agents display 
constant relative risk aversion, ph, h = 1,2, and hence an exact, but not 
necessarily von Neumann-Morgenstern, aggregator, A, exists. Two of the 

I5 We are indebted to the Associate Editor for helpful suggestions which significantly 
generalized an earlier version of this result. 
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FIGURE 1 

indifference curves in Fig. 1 correspond to the expected utility functions #,,, 
h = 1,2. At p* = (l/q) rc both agents select demands along the 45” ray and 
their indifference curves share a common tangent with slope n1/rr2. The 
indifference curve of the approximate aggregator constructed above also 
shares the same tangent line along the diagonal. Furthermore, since the 
elasticity of substitution I]A = l/p~ is by construction the income-weighted 
average of the elasticities of substitution of the individual agents, the level 
curves of #a are intermediate in curvature between the level curves of the 
individual agents. 

Returning to the general case, is there any particular reason to center the 
approximation at prices p* colinear with the probability vector rc? At such 
prices, the individual agents and the economy as a whole equate con- 
sumption across states of nature; thus p*, in effect, constitutes the special 
case of certainty, and small deviations from p* generate small differences in 
aggregate demand for the two commodities and hence “small risks” (in 
much the same sense as in the classic Arrow-Pratt work on risk aversion). 
When an exact aggregator exists, even if it fails to be von 
Neumann-Morgenstern, risk aversion can be identified with the convexity 
of the contingent commodity indifference curves and hence its curvature 
can be used as a measure of the degree of risk aversion.r6 It then follows 

l6 As #A fails, in general, to be an expected utility function, it is necessary to adopt a general 
notion of risk aversion such as that developed in Yaari 1261. The argument proceeds by 
deriving a local measure of risk aversion from the acceptance frontier (indifference curve) in 
state contingent consumption space; for expected utility functions, the Yaari measure coin- 
cides with the Arrow-Pratt measure of absolute risk aversion. A straightforward modification 
yields the analogous result for relative risk aversion. 
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from the lst-order property that the exact and the approximate aggregator 
display the same degree of risk aversion at p*. 

We conjecture but we have not been able to prove analytically that, if 
individual agents display constant relative risk aversion, the approximate 
aggregator constructed above is the only approximate aggregator with con- 
stant relative risk aversion at p* or any other price vector. 

To evaluate further the accuracy of the approximation we first examine 
more closely its local behavior at p* for the case of constant relative risk 
aversion agents. The difference between the second derivative of the 
aggregate demand function and the second derivative of the demand of the 
approximate aggregator is given by 

i#j#k, 

(4) 

2 ij,(/,;‘-I)‘- 
h=l 

2 
II 7 i#j, 

(See the Appendix for the derivation of these equations.) 
It is worth noting that the expression in brackets can be viewed as the 

(weighted) variance of the quantities P;’ about the value ph = 1; when P,, 
does not vary with h, the expression vanishes. 

We now attempt to shed some light on the global behavior of the 
approximation, i.e., for prices p not necessarily close to p*, we maintain the 
assumption that the individual agents as well as the approximate 
aggregator display constant relative risk aversion. 

We consider first asymptotic properties of the (generally nonconstant) 
elasticity of substitution for consumption in states i and j, i # j: 

where this simplified expression for the elasticity of substitution follows 
from the homogeneity of tiA. Note that the elasticity of substitution, qaii, is 
a measure of the curvature of the aggregator’s indifference curve and hence 
of the degree of risk aversion with respect to consumption in states i and j. 
The idea is to show that qaii does not depart too drastically from the con- 
stant elasticity of substitution of the approximate aggregator 
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qA = CT=, bhqh, even for prices far from p *. For simplicity, we assume that 
either ph < 1 (qh > 1; fxh >O) for all h or ph > 1 (nh < 1; ah < 0) for all h. Let 

‘I+ =yx h?h v- =mjn {vh}, 

and assume these extrema are realized by unique agents indexed h = + and 
h = - , respectively. We consider limits as the price vector p + p with pi = 0, 
p, > 0. 

We obtain the following: 

hOPOSITION 2A. For individual agents with constant relative risk aver- 
sion, expected utility preferences: 

(a) Ifall qh> 1 (P,,< f), then 

(b) Ifall q,,<l (ph>l), thenfor h>2 

lim qaii= 1 + 
P-P 

6-y;!) (rl, - 1); 

for h = 2 

iim tfao=v+ (p-‘I. 
P-F 

(The proof is given in the Appendix.) 
Observe that if the agents’ elasticities of substitution all exceed (are less 

than) that of the logarithmic utility index (having a = 0), then 
asymptotically the economy as a whole exhibits the elasticity of sub- 
stitution of the agent with the smallest (largest) elasticity of substitution, 
that is, the agent closest to the logarithmic case.” 

Next we examine global behavior from a different point of view; we 
exhibit bounds on the growth of the error resulting from deriving aggregate 
demand using the expected utility function of the approximate aggregator 
4~ (x2). Using commodity n as a reference, we measure the relative value of 
the demand of the approximate aggregator with respect to that of the exact 
aggregator by 

XAI(P)IX&(P) 
ei(p) = .xAi(p)/.Y.q,(p)’ 

i = l,..., n - 1; 

” FOT II-IOT~ than two goods it can be shown that, as p approaches the boundary of the 
price simplex, every qai/ approaches a finite constant; typically, these constants are rather 
complex. 
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the approximation is exact when ei = 1. Let 

nilPi 
i= l,..., n - 1. 

It then follows that: 

PROPOSITION 2B. 

(a) , z~‘fPa^~llP+~~e.~z~‘lP”-ll”.‘, 
I- I T,_ll, 

lb) z 
T(llPn-&m)~e <T!uPR-vP+) 

I- I T,ll. 

(The proof is given in the Appendix.) Note that the bounds are exact at 
p =p*, where z = (..., zi ,...) = 1. 

Observe that if the individual agents have similar but not identical 
preferences, the powers (l/p,- - l/p + ) and (l/pa - l/p- ) are near zero; 
hence, as p departs from p* and thus r from 1, the upper and lower bounds 
grow away from 1, but only slowly. 

To conclude the case of identical beliefs, observe that exact aggregation 
is possible if the cardinal utility indices of individual agents are exponential 
functions 

uh(xhi) = -ep’h’hr, ah > 0, 

displaying constant risk tolerance 

1 
rh=-. 

%h 

Let 

m 
rA= 1 rh 

h=l 

or, equivalently, 

and consider the aggregator with cardinal utility index 

The aggregate demand xA(p) clearly coincides with the demand of the 
aggregator for prices p colinear with the probability vector rc. To see that 
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the aggregate demand coincides with the demand of the aggregator for all 
prices, it then suftices to observe that 

and 

4& 

d,it(P 

= (TA - XAj(P)) ( i P,> -I i#j, 
k=l 

= -Z+(r, , 
Hence, the aggregate demand function satisfies the differential equation 
that characterizes the demand function of the aggregator; this completes 
the argument.18 

Remark 5. The example of agents with diverse negative exponential, 
expected utility preferences raises an interesting issue. Had we not known 
that an exact aggregator exists, we probably would have chosen to 
approximate the economy with a constant relative risk aversion $2 satisfy- 
ing the condition (3). As a general proposition, the error bounds and 
asymptotic properties derived above justify assuming 42 exhibits constant 
relative risk aversion. More fundamentally, however, the question can be 
raised whether for common (parametric) classes of von Neumann- 
Morgenstern representations the best approximation, appropriately defined, 
need be in the same class. Thus, for instance, if each agent in the economy 
is characterized by a different expected utility function in the HARA class 
widely employed in finance models, and an exact aggregator fails to exist 
or is not obtainable in closed form, then must the “best” approximate 
aggregator be in the same preference class? 

4. DIVERSE BELIEFS 

We now attempt to relax the assumption of identical beliefs across 
agents. Our results are limited, however to the case of only two agents 
(m = 2), both displaying constant relative risk aversion. 

When the degrees of relative risk aversion of the two agents are distinct, 
the approximate aggregator with constant relative risk aversion 

‘* This observation was made by Lintner [13] under the joint assumptions of negative 
exponential cardinal utility and normal probability beliefs. 

h1$‘.38.‘2.7 
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and probability beliefs ZA = (..., no,,...) given by 

satisfies the Oth-order and lst-order properties at p* = (...,p:,...) with 

The results on the asymptotic behavior extend directly to the present 
case. Analogous error bounds can also be derived, but they are more com- 
plex and depend on the divergence of the probability beliefs as well as of 
the preferences. 

We conjecture, but we have not been able to prove, that the results 
generalize to an arbitrary number of agents. 

The case of identical preferences but distinct probability beliefs presents 
an anomaly. Assume, for convenience, that n = m = 2. The previous results 
would suggest setting pi = p, where p = p, = p2. For p # 1, however, it can 
be shown that pA(p) fp. In particular, the risk aversion of the exact 
aggregator is closer to that of the logarithmic cardinal utility function than 
either of the two agents are. (This assertion is demonstrated in the last sec- 
tion of the Appendix.) 

5. APPLICATIONS AND EXTENSIONS 

In this section we consider an application of our approximate aggregator 
and a possible extension of the analysis to a more general setting. 

Aggregators have frequently been employed to characterize equilibrium 
in securities markets. Consider an economy extending over a single time 
period in which there are N states of nature and M assets (NZM), one of 
which is risk-free (denoted F). Individual agents have identical probability 
beliefs concerning the distribution of returns of the various assets. 

As mentioned in the Introduction, if agents have identical, homothetic 
preferences, an aggregator exists and is von Neumann-Morgenstern. Then 
the first-order conditions for maximization of the aggregate expected utility 
function, Eu, (x), combined with the balance equations yield the relations” 

EC4 (x)(R, - &)I = 0, j= l,..., M- 1, 

E(Rj) = RF + lk,o(R,i), j = l,..., M- 1, 

I9 Rubinstein [20] 
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where E and [T are the expectation and standard deviation operators, 
respectively, Rj is the random rate of return of the risky asset i, RF is the 
risk-free rate of return, u>(x) is the marginal utility of random end-of- 
period consumption, k, is the “correlation coeficient” between R., and 
-u;(x), and 1 E a(u>(x))/E(u>(x)). Suppose now agents have diverse von 
Neumann-Morgenstern preferences with fixed income shares-quivalently 
colinear initial endowments. Then an exact aggregator need not exist 
and/or need not be von Neumann-Morgenstern. Yet, the cardinal utility 
index of the approximate aggregator u/i can be employed to yield 
approximate pricing relations. 

Remark 6. When aggregation obtains under the assumption of essen- 
tially identical homothetic preferences, markets are effectively complete: 
The introduction of new assets, assuming M -C N, does not affect either the 
prices of the existing assets or the state contingent consumptions of 
individual agents at equilibrium.” The new securities will, in fact, not be 
held by any agent because of the assumed homogeneity of the individual 
agents and the required zero net supply of the securities. In our framework, 
aggregation obtains even though individual agents may have diverse 
preferences. Although the introduction of new assets in our incomplete 
market setup still leaves the equilibrium price of existing securities 
unchanged (they are priced based on the objective function of the 
aggregator), the new securities may, however, be traded among the diverse 
agents in which case their introduction will lead to a Pareto improvement 
in the allocation of resources at equilibrium. The possibly adverse effects on 
individual agents of changes in the prices of existing securities are 
precluded by the existence of an (exact) aggregator as argued above. 

Remark 7. The heterogeneity of individual agents has still an additional 
consequence: The prices of assets at equilibrium are not independent of the 
distribution of income. (See Remark 3 above.) This differs from the case of 
essentially identical individual agents in which the attitude toward risk of 
the aggregator is independent of the distribution of income across 
individuals. When individuals are diverse, the characterization of the 
aggregator, and hence asset prices, depend on the assumed income dis- 
tribution. 

Turning to extensions, preliminary work indicates that the assumption of 
fixed income shares can be relaxed, at least when the agents display con- 
stant relative risk aversion. Using the shares S,* = 6,(p*) which obtain at 
p* = (l/q) z for the case of identical beliefs allows us to define pA, the con- 
stant relative risk aversion of the approximate aggregator as above. The 

‘O Rubinstein [ZO]. 
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Oth-order and M-order properties at p* can then be demonstrated and 
global error bounds can be obtained. Thus, in two senses at least, 
aggregate demands are closely approximated by 42. 

APPENDIX: PROOFS 

Equation (1) in Section 2 

The demand function of individual h is derived as the solution to 

Max 2 ~hi~h(.~hr), 
-Yh i=l 

s.t. i: p,xh;= 6,. 
i=l 

The first-order necessary and sufficient conditions for an interior solution 
are 

nnhiUh txhi) = LhPi7 i=l Iz, ,..., 

i PiXhi= 6h, 
i=l 

for some R, > 0. 
Totally differentiating the first-order conditions, we obtain 

_ -p1 ‘..., -pi ,..., -p” 

and 

!?fb = IhShV - VhiXhi, 
aPi 

But a straightforward argument implies that 

-Oh1 

- Ohn 
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Shii = - - n/J& &(&g~ 
1.c > Vhi = I f - -l. P: 

nhi”L kc 1 nhk”ik 

Setting rhi = -~j,~/& = -&,pj/z,ju~i and substituting yields Eq. ( 1) in the 
text. 

The remaining arguments assume that each agent exhibits constant 
relative risk aversion. For convenience, we express all quantities in terms of 
VI = l/P. 

Equation (4) in Section 3 

For constant p,, we have 

and so 

dk~=(n,i”hj’ltlhiis~h)(t~kxh*4h)-’ 

= 6h(qh- l)(ni~j/PiP~)“* &Th’, i#j, 

d/zii= -“hiqh/Pi+ (x~i?~j-X~i~h) C P X yI (k k hk h)-’ 

= -BhYlh(71i/pi)~*Pi1gk1 + h/z(Vh- l)(~i,‘~i)~‘l~ gh2. 

Now, direct differentiation yields 

dhqk =26h(V~- 1)2(7tinjxk/pipjpk)~hg,3, ifjfkfi, 

At p* we have g, = &@%n,/q = qvh- I, and so 

d,, = 2q3 c 6, (41, - 1 12> i#j#k, 

d,io = - (q3/ni) C 6h (?h - 1) qh + 2q3 1 ah (Yh - 1 J2, i#j, 

h h 
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dAii;=(q3/nT)C b/zV/r(llh+ l)-3(q3/ni)Cbh(~h-l) l]h 

h h 

+2q3c6h(qh--1)2. 
h 

Also, at p* 

&k = 2q3(11,J - 1 12, ifjfk 

4lig = - (q3hni)h - 1) g,- + 2q3(yJ - 1 )2, i#j, 

dAiii=(q3/n;) ?,l(?,l+ 1)-3(q3/nf)(qA- 1) T],J +2q3(qA - 1)‘. 

The result now follows from observing that 

~bh(~h-l))lh-(~,d)~A 
h 

= ~Bh(~h-1)2+t3 
[ 1 -[(%J--1)2+~,J] 

=&hbh- li’-[Za,(~h- 1)12 
h h 

and 

c bh (l]h + 1 ) qh - (92 + 1 ) q.2 

= cBh(qh-1)*+3qA^ 
[ 1 -[(q~-1)~+3?7~^] 

=~5h~~h-,,-[~6,1,1*1~]2. 
h 

Proposition 2A in Section 3 

(a) All yl,,> 1 (ph< 1): 

For all i, h, we have 

Using this equation, we have, for i#.j, 
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The terms in the first summation for k # i go to zero faster than the term 
for k = i, since yl,, > 1, as p +p. In the second summation all terms go to 
constants except for v = i, and that term + co. Hence, as p +p, 

Similarly, 

Now, in this summation, the term with qh = qP eventually dominates the 
others, since pf ~ q- either goes to zero faster (if u ~ < 2) or to co slower (if 
q _ > 2) than the other p: ~ Oh. The same is true of dA,,. Hence, 

where 6 _ is the 6, corresponding to q _ . 

(b) All q,,< 1 (P,,> 1): 

Writing 

it is clear that, as p +p, g goes to a finite constant, Also, we have 

As p -P ~7, all terms + co, and the one having qh = ‘1 + dominates the others, 
Similar remarks apply to d,,. Thus, 

vaij-‘l+ 
6+ Cni/Pi)‘+g;’ (Irj/Pj)‘+gY’ 
6, (%/Pi)9+g;1 'Aj I c9 + _ 1) 

= 1 +(x+j/~+xA,)(v+ - 1). 
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For n = 2, we have for all h x,~/~,,x~~ + 1. Hence, 

vlaij+l+(v+-l)=r+. 

Proposition 2B in Section 3 

We may write 

xhi= ki,(n,/p,)““g;’ = XhnT:h, for all h, i. 

Defining wh = xhn/xAnr we have 

We now apply a version of the intermediate value theorem (Zipkin [27]) 
to conclude that there exist functions u,(p) such that 

rl- Q?i(P)G?+, for all i and p, 

and 

Since 

we have 

ei=zyA-“‘(P) 
I 

The bounds now follow by replacing vi(p) by its worst-case value, either 
q - (p + ) or r] + (p ~ ) depending on 7,. 

Diverse Beliefs and Homogeneous Preferences-Section 4 

As suggested in the text, assume there are two constant relative risk 
averse agents. Then we have 

yIA=l+ axAliap2 =1+(1-l) 
xAl xA2 
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Define 

nhl f =[-I 
tl 

-I 
h Plgh . 

PI 

Using the definition of g,, we have 

l-fh= 2 opzg,l. [ 1 
Multiplying the top and bottom of the fraction above by p1p2, we have 

i 
~lfl(l-.fl)+bf2(1 -f2) 

qA=l+(q-l) c~,f,+~*f2lc~,(1-fi)+62(1-fi)l I 

Now, let N be the numerator of this fraction and D the denominator. 
Using 6;=6,-6,6,, 

D=S:fi(l-f,)+~:f,(l-f,)+6,6,Cf,(l-f,)+f,(l-f,)] 

=N+wLf-Iu -f2)-fl(l -f,)-f2(1 -f,)+f*(l -f,)l 

=N+bMfl-f2)2. 

Moreover, 

so xii # x2, implies fi #fi for all p, hence 

O<NJD<l. 

Thus,ifq-l>O(p<l),~,<~(p,>p),whileif~-l<O(p>l),~,,>~ 
(pA < p), as asserted. 
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