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1 Introduction

Computing maximum likelihood estimates (MLE) in latent variable models is notoriously
difficult for three reasons. First, the likelihood for the parameters is not known in closed form.
Computing it typically requires Monte Carlo methods to draw from the latent state distribution
and then approximate the integral that appears in the likelihood. Second, a nonlinear search
algorithm must be used to optimize this approximated likelihood over the parameters. Finally,
asymptotic standard errors depend on numerical second order derivatives of this simulated

function, which introduces further computational difficulties.

In this paper, we provide a Markov Chain Monte Carlo (MCMC) algorithm that simul-
taneously performs the evaluation and the optimization of the likelihood in latent state models.
Our methodology provides parameter estimates and standard errors, as well as the smoothing

distribution of the latent state variables.

Our approach combines the insights of simulated annealing (SA) and evolutionary MCMC
algorithms.? Like SA, the goal of our approach is simulation-based optimization without resort-
ing to gradient methods. However, unlike SA, we do not require that the objective function,
in our setting the likelihood L (6), can be directly evaluated. Simulated annealing generates
samples from a sequence of densities, 7 ;) (0) < L (Q)J(g) , where ¢ indexes the length of the
Markov Chain. As g increases, the control J must also be increased so that 7 (f) concen-
trates around its maximum, the MLE. In contrast, evolutionary MCMC generates J copies (or
draws) of the parameter § and a Markov chain over these copies. It often has better convergence
properties than SA despite this increased dimensionality. However, neither simulated annealing
nor standard evolutionary MCMC algorithms can be applied when the likelihood, £ (0), is an

integral over the latent variables and cannot be directly computed.

We solve this problem by using data augmentation of the latent state variables. That is,

I Alternative approaches developed for computing MLE’s include the expectation-maximization algorithm
of Dempster, Laird and Rubin (1982), Geyer’s (1991) Monte Carlo maximum likelihood approach, and Besag
(1974) and Doucet et al. (2002) for maximum a posteriori estimation. Most existing simulation-based MLE
methods use some form of importance sampling, and require optimization, see our discussion in section 3.

2See, for example, Kirkpatrick et al. (1983) and Van Laarhoven and Aarts (1987) for simulated annealing,
Liang, and Wong (2001) and Mueller (2000) for evolutionary MCMC.



we generate J independent copies of the latent state variables for a given parameter draw. In
contrast to standard evolutionary MCMC, we do not need to generate copies of the parameter
itself. Specifically, we define a joint distribution (6, X7 ) on the space of the parameters 6 and
the J copies of the latent state variables X7. Standard MCMC methods provide samples from
75(8, X7) by, for example, iteratively sampling from the conditional distributions, 7(8|X”) and
w()? 7|6). As g increases for a given .J, the parameter samples, 79 converge to draws from the
marginal 7;(6). The augmented joint distribution (6, X7 ) has the special property that the
marginal distribution of the parameters 7;(6) is proportional to £(#)”, the likelihood function
raised to the power J. Therefore, as in simulated annealing, 7;(#) collapses to the maximum

of £ (0), thus the draws #(9) converge to the MLE, as J increases.

To help choose J and compute the MLE standard errors, we provide the asymptotic
distribution, as J increases, of the marginal density 7;(6). We show that it is approximately
normal, centered at the MLE, and that its asymptotic variance-covariance matrix is the observed
MLE information matrix appropriately scaled by J. Hence, we can compute MLE standard
errors by simply scaling the MCMC draws. Moreover, we can diagnose convergence of the
chain and determine the degree of augmentation J required, without knowing the true MLE
by checking the normality of the scaled MCMC draws. As convergence to the point estimate
likely occurs before convergence in distribution, this constitutes a tough test of convergence.
Normality of the scaled draws is checked informally with normality plots, and can be tested

formally with, for example, a Jarque-Bera test.

Our approach has several practical and theoretical advantages. First, unlike the other
simulated maximum likelihood approaches for state estimation, that substitute the final param-
eter estimates into an approximate filter, our algorithm also provides the optimal smoothing
distribution of the latent variable, that is, its distribution at time ¢ conditional on observing
the entire sample from time. This is especially important in non-linear or non-normal latent
variable models for which the Kalman filter is misspecified, see for example Carlin, Polson and
Stoffer (1992) or Jacquier, Polson and Rossi (1994). Second, the algorithm has the advantages
of MCMC without the disadvantages sometimes perceived. For example, unlike a Bayesian

approach, we do not per se require prior distributions over the parameters. However, we do



need conditional and joint distributions to be integrable. Third, we compute the MLE estimate
without resorting to numerical search algorithms, such as inefficient gradient based methods,
which often get locked into local maxima. Our approach also handles models with nuisance pa-
rameters and latent variables as well as constrained parameters or parameters on boundaries.?

Finally, our estimator inherits the asymptotic properties, in sample size, of the MLE.

It is important to compare and contrast our MCMC approach with the quasi-Bayes
MCMC procedure proposed by Chernozhukov and Hong (2003). Their methodology applies to
a wide class of criterion function. Instead of finding the maximum of the criterion, they advo-
cate estimating its mean or quantiles. They show that their estimators have good asymptotic
properties as the sample size increases. This is because they exploit the asymptotic properties
of Bayes estimators, albeit with flat priors in their case (see, for example, Dawid, 1970, Heyde
and Johnstone, 1978, or Schervish, 1995). It will become clear that this approach corresponds
to J = 1 in our framework. In contrast, we show how to compute the maximum of the criterion
function, the likelihood in this paper, by increasing J for a fixed sample size. As Chernozhukov
and Hong note in their appendix, their method, applied to the power of the criterion essentially
turns it into a form of simulated annealing algorithm. Unfortunately, SA, unlike the algorithm
presented here, requires that the criterion function be analytically known and can not handle

likelihood functions generated by models with latent state variables.

To illustrate our approach, we analyze two benchmark models in financial econometrics.
The first is the standard log-stochastic volatility model (SV) of Taylor (1986), initially analyzed
with Bayesian MCMC by Jacquier, Polson and Rossi (1994). The second is a multivariate
version of Merton’s (1976) jump-diffusion model. This model is of special interest in asset
pricing because it delivers closed-form option prices. It is however difficult to estimate with
standard methods given the well-known degeneracies of the likelihood, see, for example, Kiefer
(1978). In another implementation, Boivin and Giannoni (2005) use our approach on a high
dimensional macro-model for which computing the MLE by standard methods is impractical.

For both models implemented here, the approach is computationally fast, of the same order

3Pastorello, Patilea and Renault (2003) address a case where the latent variables are a deterministic function
of the observables when conditioned on the parameters.



of CPU time as popular Bayesian MCMC methods, as CPU time is linear in J and G, and

convergence to the MLE occurs with low values of J.

Our approach also applies to other problems in economics and finance that require joint
integration and optimization. Standard expected utility problems are an excellent example of
this, as the agent first integrates out the uncertainty to compute expected utility and then
maximizes it. In Jacquier, Johannes and Polson (2005) we extend the existing approach to

maximum expected utility portfolio problems.

The rest of the paper proceeds as follows. Section 2 provides the general methodology
together with the convergence proofs and the details of the convergence properties of the al-
gorithm. Sections 3 and 4 provide simulation based evidence for two commonly used latent
state variable models in econometrics, the log-stochastic volatility model and a multivariate

jump-diffusion model. Finally, Section 5 concludes with directions for future research.

2 Simulation-based Likelihood Inference

Latent state variable models abound in finance and economics. In finance, latent state
variables are used for example to model time-varying equity premium or volatility, jumps,
and regime-switching. In economics, models using latent state variables include random utility
discrete-choice models, censored and truncated regressions, and panel data models with missing

data.

Formally, let Y = (Y1, ...,Yr) denote the observed data, X = (X,..., X7) the latent

state vector, and 6 a parameter vector. The marginal likelihood of 6 is defined as

(o) = / p(Y]X,0)p(X|0)dX. 1)

where p(Y|X,0) is the full-information or augmented likelihood function, and p(X|0) is the

distribution of the latent state variables.

Directly maximizing £(#) is difficult for several reasons. First, £(6) is rarely known in

closed form. To evaluate it, one must first generate samples from p(X|6) and then approximate



the integral with Monte Carlo methods. Even though it is sometimes possible to draw directly
from p(X0), the resulting sampling errors are so large that a prohibitively high number of draws
are often required. Second, iterating between approximating and optimizing the likelihood is
typically extremely computationally burdensome. Third, in some latent variable models, the
MLE may not exist. For example, in a time-discretization of Merton’s (1976) jump-diffusion
model the likelihood is unbounded for certain parameter values. Finally, the computation of
the MLE standard errors, based on second order derivatives, at the optimum presents a final

computational challenge. Our approach offers a simple solution for all of these issues.

To understand the approach, consider J independent copies (draws) of X, denoted
X7 = (X', .., X7), where X7 = (X, ... , X7)'. We will construct a Markov chain on the joint
density J(H,)? J|Y) of the parameter and the J copies of the state variables. In contrast,
standard MCMC-based Bayesian inference for latent state models defines a Markov Chain
over m(#, X). We will use insights from evolutionary Monte Carlo to show that increasing the

dimension of the state space of the chain by a factor of J has important advantages. Namely,

it helps us make draws that converge to the MLE.

The joint distribution of the parameters and augmented state matrix given the data Y

is given by:
J

(0, X7) [ [ p(Y 16, X7) p(X76). (2)

j=1
since the J-copies are independent. The density 7;(6, X’ ) may sometimes not integrate, even

for large J. It is then useful to introduce a dominating measure p(df) with density p(6) and

consider the joint distribution 7(#, X”) defined by

w (0.X7) o< [Tp(v10, X7) p(X716)12 (6) (3)

Jj=1

For example, the dominating measure could induce integrability without affecting the MLE
by dampening the tails or bounding parameters away from zero. We discuss the choice of the

dominating measure later. It can often be taken to be proportional to a constant.

MCMC algorithms sample from 7/ (6, X7 ) by drawing iteratively from the conditionals



71’5(9’55 7) and 71’5(55 710). For formal results, see the discussions of the Clifford-Hammersley
theorem in Robert and Casella (1999), Johannes and Polson (2004), or others. Specifically,

given the ¢ draws of X7 and 0, denoted respectively X7 and 09, one draws

PuD|XD gt <9|)}J,(g)> (4)

XHotD|gloth) o i ()N(J|9(g+1)) . (5)

The J copies of the latent states in (5) are typically J independent draws from 7 (X [09+1),

that is y

4 <)?J]9(g+1)> = Hﬂ' (X7l

j=1
Alternatively, the algorithm drawing J copies from W()? 710) can have a genetic or evolution-
ary component. That is, the Metropolis kernel updating X7 can be made to depend on
(X1, ..., X971 X9+ X7). This can improve convergence for difficult problems. This may
seem counterintuitive as the state space has a high dimension. However, if the algorithm is

genetic, it is harder for an element of X to get trapped in a region of the state space, as this

can only happen if all J copies get stuck in that region, which is far more unlikely.

The joint distribution 7/(6, X7 ) has the property that the marginal distribution of § has
the same form as the objective function used in simulated annealing. Hence, as J increases, it

concentrates around the maximum likelihood estimate. The marginal distribution is
w _ w I\ JvJ
T (0) _/WJ (9,X >dX .
Substituting for 74(6, X7) in (3), we obtain:
J
w(0) o <H / p<Y|Xf,e>p<Xf|e>de) (6).
j=1

Now recall that £(0) = [p(Y|X7,0)p(X7|0)dX?. Assume that we choose pu(df) so that



[ L£(0)7 u(df) < oo, then we have that

Lo o)
[ L) u(6)do

my(0)

If we re-write the density as 7} (0) o pu(6)exp(Jlog L (6)), the main insight of simulated
annealing implies that as we increase J, 7', (¢) collapses onto the maximum of log £ (6), the

finite sample MLE.

In summary the approach provides the following. First, the parameter draws 69 con-
verge to the finite-sample MLE denoted 0. As T is fixed throughout, our approach inherits
all the classical asymptotic properties of the MLE as T increases. Second, we show below
that by appropriately scaling the parameter draws and looking at @ = /J (6(9) — (/9\), one
obtains a MCMC estimate of the observed Fisher’s information matrix. Finally, the simulated
distribution of 9 provides us with a diagnostic on how large J must be. As soon as 9 is
approximately normal the algorithm is deemed to have converged. Quantile plots and formal
tests such as Jarque-Bera, can be used to assess the convergence to normality of /(9. In many
cases, due to the data augmentation, our approach will result in a fast mixing chain and a low

value of J will be sufficient.

2.1 The Choice of J and u(0)

J and u(df) have two main effects on the joint density 7#(0,)2' 7). First, J raises the
marginal likelihood to the J** power. Second, p(df) can be used to ensure integrability, which
can be useful in some state space models, for example, the jump model. In many cases however,

we can assume that p(6) is proportional to a constant.

It helps to distinguish three different cases. First, when J = 1 and u(0) = p(#) where p(6)
is a subjective prior distribution, 7} is the posterior distribution of the states and parameters
given the data. Our approach collapses to Bayesian inference of the posterior distribution.
Second, when J = 1 and p(f) o 1, there may be a danger of non-integrability of the objective

function. This is exactly the situation that may arise when using diffuse uniform priors in a



non-informative Bayesian analysis. Third, for J > 1, the likelihood is raised to the J** power
and the effect of u (#) disappears (as J increases) on the range of values where the likelihood
assigns positive mass. However, raising the likelihood to the power of J may or may not by

itself overcome the non-integrability of the likelihood.

To illustrate the role of the dominating measure, consider two simple examples. The
examples are, of course, highly stylized. Since the marginal likelihood is rarely available in

closed form in latent variable models, it is difficult to find examples in that class of models.

First, consider the simplest random volatility model: y; = /Vi&;, & ~ N (0,1), and
Vi ~ ZG(«, 3), where ZG denotes the inverse Gamma distribution and « is known. The joint

distribution of the parameters and volatilities is
L1 o4 8
_ gt __rP
T (a7 57 V) X H Ve 2V; ﬁa‘/;oHrle 2Vt |
t
t=1

For this model, the marginal likelihood for (3 is given by

ﬁl(yt +ﬁ>a'

7 (B) does not integrate in the right tail for any «. Hence, raising the likelihood to a power

J will not change anything. In this case, a dominating measure downweighting the right tail
is required to generate a well-defined likelihood. A similar degeneracy occurs with the time-
discretization of Merton’s (1976) jump-diffusion model. In this model, when one of the volatility
parameters is driven to zero, the likelihood function increases without bound, and thus has no

maximum. In this case, 1(0) helps by bounding this parameter away from the origin.

In contrast, the second example is a model for which raising the likelihood to a power gen-
erates integrability. Consider a two-factor volatility model, where y; = vy + oe;, vy ~ N (0, 772).

The joint likelihood of the parameters is

T
67 tgl (th2+‘72)

=7



where 7 = (11, ...,7r). Consider the conditional density (7|0, 7_;) implied by this likelihood,
where 7_; refers to the 7’s for all periods but ¢. In its right tail, for fixed o and 7_;, this density

1

behaves like 7, *, which is not integrable. On the other hand, 7;(7|o, 7_;) behaves like 7,7 in

that tail and integrates without the need for a dominating measure whenever J > 1.

These examples show how the dominating measure and raising the likelihood to a power
can help overcome integrability problems. It is difficult to make general statements regarding
these issues as integrability is model dependent and, in the presence of latent variables, one can

rarely integrate the likelihood analytically.

2.2 Convergence Properties of the Algorithm

This section formally describes the convergence properties of the Markov chain as a

function of GG, the length of the chain, and J, the augmentation parameter.

2.2.1 Convergence in G

For a fixed J, the standard MCMC convergence implies that {69, )?J’(g)}ngl — (0, X7)
as G — 00, see Casella and Robert (2002). Hence we can choose the length G of the MCMC
simulation using standard convergence diagnostics such as the information content of the draws.
Johannes and Polson (2004) provide a review of practical issues in implementing MCMC algo-

rithms.

Next, consider the convergence of the distribution of the latent state variables. Since
the vectors X7|0 are independent across j, we can first fix j and consider the convergence of

the marginal distribution of X7. As g — oo, we have that
p(X7) = By [p(X7109)] — p(3719).

which implies that the algorithm recovers the exact smoothing distribution of the state variables.
The argument underlying this is as follows. Ergodicity implies that the average of the G draws

of a function with a finite mean converges to that mean as the number of draws increases. That



is,

9. X" — E[f(0,X7)].

HMQ

Now apply this to f(0, X”) = p(XJIG), it follows that:
G
Z (X79109)) — By [p(X710)] V5.

Since #@ — 6, we also have that p (X7) = JLim p(X7|09) = p(X7|A). Hence, each of the latent
7g_>m

variable draws comes from the smoothing distribution of X7 conditional on 9.

2.2.2  Convergence in J

We now discuss the limiting behaviour of 7//(0) as J increases, for a fixed G. The key
result from simulated annealing, see for example Pincus (1968) and Robert and Casella (1999),

is that for sufficiently smooth p(df) and L (6),

where we recall that 6 is the MLE. Simulated annealing requires that J increases asymptotically
together with G. For example, Van Laarhoven and Aarts (1987) show how to choose a suitable
sequence J so that J?;JﬁzOOHJ " — 9. Instead, we choose J by first proving an asymptotic
normality result for 7/;(¢). While this requires some suitable smoothness conditions for £(6), it
will provide us with a diagnostic of whether a given J is large enough. Moreover, it will allow

us to find the asymptotic variance of the MLE. We find that J as small as 10 is appropriate in

our applications.

The main result given now shows formally how 69 converges to 0 as J increases. Define

o2(0) = 0" (5)*1, the inverse of the observed information matrix.
Theorem: Suppose that the following reqularity conditions hold:

(A1) The density () is continuous and positive at 0;

10



(A2) L(0) is almost surely twice differentiable in some neighborhood of 0;

(A3) Define the neighborhood Nga’b)((]) = (0 + ai'/(g),é + I’U—\/(g)) Also define Rp(0) =
A\ 1 N
<£”(9)) (E”(@) - E”(@)). There exists a J and an €; such that e; — 0 as J — oo and

SUP y(a) |Rr(0)| < ey <1. Then,
P9 =V J9 (09 — §) = N(0,5%(0)).

Hence,

~

Var(v'?) — o*(0)

Proof: See the Appendix.

Assumptions (1) and (2) are clearly innocuous. R(f) quantifies the difference in curva-
ture of the likelihood at its maximum and at any other point . Assumption (3) is a regularity
condition on the curvature of the likelihood stating that, as 6 gets closer to é\, the curvature of
the likelihood gets closer to its value at the MLE. This results means that asymptotically in .J,
99 converges to the MLE (/9\, and the variance covariance matrix of ¥ converges to the vari-
ance covariance matrix. The draws 6 only need to be multiplied by v/J to compute a MCMC
estimate of the observed variance covariance matrix of the MLE. Finally, the convergence to a
normal distribution is the basis for a test of convergence based on the normality of the draws,

which does not require the knowledge of 9.

2.8  Details of the MCMC' algorithm

Standard MCMC techniques can be used to simulate the joint distribution (6, )N(J)
MCMC algorithms typically use the Gibbs sampler, with Metropolis steps if needed. For a
Gibbs sampler, as outlined in (5) and (4), at step g+ 1, we generate independent draws of each

copy 7 = 1, ..., J of the state variable vector:

XHIDNGD Y~ p(XI|09, V) o p(Y]09), X7 )p(X7]619)), (6)

11



and a single draw of the parameter given these .J copies:

J
9(9+1)|55J7(9)7 Y ~ Hp(yw(g)’ X7t p( X7 H199)) (99, (7)

j=1
For complex models, it is possible that the draws in (7) and especially (6) may not be made

directly but required a Metropolis step.

Metropolis algorithms provide additional flexibility in updating the J states. For ex-
ample, instead of drawing each of the X7’s independently as in (6), we could propose from a

transition kernel y

Q (X(9+1), X(g)) _ H Q (X(j,g+1)’ X(g)) ,

j=1

accepting with the probability

P (X(9+1)|0, y) Q (X(QH), X(g))
p(X@1]0,Y)Q (X, X(g+D)

a (X(g),X(g+1)) = min |1,

The key here is that the Metropolis kernel can now depend on the entire history of the X’s.
The intuition why this may help is as follows. Consider a random walk Metropolis proposal,
X7+ = X309 4 r¢. Tt is well known that the random walk step can wander too far and the
choice of 7 is problematic. Using the information in the other J — 1 samples, we can instead
propose X797+ = %Z;]:l X9 4 7¢ and similarly adjust the variance of the random walk

error.

We now develop MCMC algorithms to find the MLE and its standard errors for two
benckmark latent state models in financial econometrics; a stochastic volatility and a multi-
variate jump-diffusion models, precisely showing how to construct 7/ (6, X7 ), and documenting

convergence in J.

12



3 Application to the Stochastic Volatility Model

We first consider the benchmark log-stochastic volatility model where returns g, follow

a latent state model of the form:

Y =V Vies

log (V;) = a+ dlog (Vi_1) + oy

V, is the unobserved volatility and y; can be a mean-adjusted continuously-compounded return.
The shocks ¢ and v; are uncorrelated i.i.d. normal. Let § = («,0d,0,) denote the parameter
governing the evolution of volatility. This model has been analyzed with a number of econo-
metric techniques, for example Bayesian MCMC by Jacquier, Polson and Rossi (1994), Method
of Moments by Melino and Turnbull (1991) and Andersen and Sorensen (1996), and simulated
method of moments by Gallant et al. (1997). A more realistic extended model with lever-
age effect and fat tails in ¢; could easily be implemented but this would only complicate the

exposition, see Jacquier, Polson and Rossi (2004) for a Bayesian MCMC implementation.

More related to our MLE approach here are a number of approximate methods involving
simulated maximum likelihood. Danielsson (1995) proposed a simulated maximum likelihood
algorithm for the basic stochastic volatility model. Durham (2002) studies the term struc-
ture of interest rates using stochastic volatility models. He proposes a simulated method of
moments procedure for likelihood evaluation but notes that it can be computationally bur-
densome. Durham and Gallant (2004) examine a variety of numerical techniques and greatly
accelerate the convergence properties. Their approach applies to nonlinear diffusion models
with discretely sampled data and is based on a carefully chosen importance sampling function
for likelihood evaluation. Brandt and Santa-Clara (2002) also provide a simulation likelihood

approach for estimating discretely sampled diffusions.

Other methods based on Monte Carlo importance sampling techniques for full likelihood
function evaluation are reviewed in Fridman and Harris (1998) and Sandmann and Koopman

(1998). Brandt and Kang (2004) provide an application of this methodology to a model with

13



time-varying stochastic expected returns and volatilities. Durbin and Koopman (1997) develop
general importance sampling methods for Non-Gaussian state space models from both a Clas-
sical and Bayesian perspective and consider an application to stochastic volatility models. Lee
and Koopman (2004) describe and compare two simulated maximum likelihood estimation pro-
cedures for a basic stochastic volatility model and Liesenfeld and Richard (2003) develop an
efficient importance sampling procedures for stochastic volatility models with the possibility of

fat-tails.

The main difficulty encountered by all these methods is that the likelihood requires
the integration of the high-dimensional vector of volatilities with a non-standard distribution.
Indeed, the likelihood is the integral [ p(Y'|V,0)p(V|0)dV, where V is the vector of volatilities.
Therefore the likelihood is not known in closed form and direct computation of the MLE is
impossible. Maximizing an approximate likelihood is also complicated for the same reasons.
Moreover, these methods do not provide estimates of the latent volatility states, other than
substituting the MLE into a Kalman filter. We now describe the implementation of our MCMC

maximum likelihood approach.

3.1 Algorithm

We first derive the conditional distributions required for the algorithm. The distribution
7T§L(X7J ,0) requires J independent copies of the volatility states. Let V7 = (V{, ..., Vi) be the
draw j of a 1 x T" vector of volatilities, ‘71;] = (V}},...,V7) be a vector of J copies of V; and
VI = v ., VJ}/ is the J x T matrix of stacked volatilities. We need to draw from p(8|V”,Y)
and p(V710,Y) for j =1,...,J. For the J copies of V;, we can write:

log (V') = a+ dlog (V7,) + o = [17,1og (V2. )] NI RES (8)

14



where 1, is a J x 1 vector of 1’s. Stacking the equations (8) over t, we obtain:
log (\71‘]> 1; log <I7OJ> v/

log (\N/j]> 1.‘] log <XN/T2]_1> vy

This is a regression of the form logV = X3 + o,v. We can write the density 7, (60|]V7,Y) for

this regression as

p(0177.7) o (2% exp <‘—1 [(5 —5) xx (3-5) + s]) , )

2
207

N\ /

where S = (logV - Xﬁ) (logV - XB), and 3 = (X'X)"1X'log V.
The algorithm for the evaluation of the maximum likelihood by MCMC is as follows:

Choose an initial parameter value #(°). Then, for ¢ =1, ...,G

1. Draw from (V7|0 Y):
Here we draw the J copies of the volatilities from p (Vj 009, Y) independently for each j,
using a Metropolis Hastings algorithm as in JPR (1994). Note that these are the smoothed

values of the volatilities because the conditioning is on the entire vector of observables Y.

2. Draw from 7, (0|V7@+) Y in (9):
This is a simple regression with normal errors, done here in two steps, first p(av|‘~/‘], Y),

then p(a, 0|0y, VY, Y). Note that Y is redundant given the knowledge of V. Namely, we

draw ¢9*Y from

p(av’(x(gﬂ)’ 5(g+1), 17J,(g+1)) ~ IG (J7 S(g+1)) _

And we draw a@tD §6+D from

v

p(a,cﬂav,fﬁ) ~N (B\(g-i-l)? (02)(9) [X(9+1)’X(9+1)]*1> |

where 3 is the OLS estimate ()((“1)’)((~‘?+1))_1 Xt [og V0gtD),
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One noticeable feature of the algorithm is that we can choose p(#) = 1 for J > 2. This
is because, even for diffuse priors, the distribution for o,, p(o,|a, d, VI ), is proper when J > 2.
This contrasts with the Bayesian MCMC analysis of this problem, which requires a proper prior

for o,, see for example Jacquier, Polson and Rossi (1994, 2004).

3.2 Performance

We demonstrate the behavior of the algorithm for the basic stochastic volatility model
with parameters a = —0.363, § = 0.95, 0, = 0.26. These parameters are consistent with
empirical estimates for daily equity return series and often used in simulation studies. We
simulate one series of 7' = 1000 observations. We then run the MCMC algorithm for G = 25000
draws, for four different values of J = 1,2,10 and 20. For J = 1, the algorithm is essentially
identical to that in JPR (1994). As a dominating measure is needed for J = 1, we use the same
prior, very diffuse but proper, as JPR (1994). In this case, the algorithm converges to draws of
the posterior distribution of the parameters and volatilities. As J becomes large, the algorithm

produces a sequence of draws of the parameters, which average converges to the MLE.

The CPU time required to run the algorithm is comparable to a standard Bayesian
MCMC algorithm, as the CPU time is linear in J and in G. A run with J = 20 and G = 25000
required about 20 minutes on a SUN workstation. However these J = 20 times G = 25000
draws are far more informative than a CPU-time equivalent run of, say, J = 1 times G' = 500000

draws. This is because as J increases, the variance of the sequence of draws decreases.

The theoretical convergence results in the previous sections indicate that, as J increases,
the draws will converge to the MLE. In practice, these results would not be very useful if an
inordinately high value of J was required for the algorithm to approach the MLE. We now
empirically show that this is not the case in our examples. Namely, the algorithm is quite
effective for even moderate values of J. To study this we look at the distribution of the scaled
draws of 1)(9). Recall that looking at whether 9 is close to or far from the true @ is not useful
in itself since 89 for large g is only an estimate of f which we know converges to the true

parameter only as the sample size T' gets large.
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Figure 1 shows the draws of § for the four runs of the algorithm with J = 1,2,10 and
20. Each draw of § is conditional on a vector of volatilities of length T'J. The plots confirm
that moderate increases in .J quickly reduce the variance of the draws. Figure 2 shows a similar
result for o,. One may worry that a drastic reduction in the variability of the draw might
hamper the ability of the algorithm to dissipate initial conditions. We see that this is not the
case. Even for J as large as 20, the algorithm dissipates initial conditions very quickly, moving
promptly to the MLE. Now note the horizontal lines showing the true parameter value and the
average of the last 24000 draws. The estimate of the MLE for o,, J = 20, is very close to the
true value of 0.26, that for ¢ is around 0.93. These results, obtained for this one sample do not
constitute a sampling experiment for the MLE. One expects the MLE itself to converge to the
true value only for very large sample sizes T', as the finite sample MLE is in general biased in

these types of models.

Figure 3 shows the rate at which the draws converge to normality in distribution. The
left and right plots in Figure 3 show the normal probability plots for 4 and o,, with J =1, 2,
and 10. Recall that for J = 1, the algorithm produces the Bayesian posterior. Panels (a) and
(d), J =1, show strong skewness and kurtosis, reflecting the well known non-normality of the
posterior distribution for this model, see for example JPR (1994). Then the convergence to
normality is all the more remarkable as .J increases to 2, in panels (b) and (e), and then 10, in
panels (¢) and (f). With as few as J = 10 copies of the states, the algorithm produces samples
of draws very close to normality. This is consistent with a very rapid convergence to the MLE
as J increases. Note again that this visual diagnostic can be supplemented by formal tests of

normality of the draws, such as Jarque-Bera or others.

While Figures 1 to 3 confirm that the algorithm effectively estimates the MLE for even
small values of J, we now turn to the effect of J on the smoothed volatilities. Again, for J =1,
the algorithm produces the Bayes estimator of the volatility. For example, averaging the draws
yields a Monte Carlo estimate of the posterior mean. Consider a specific draw, for example
the last one G = 25000. For this GG, consider computing the average of the J draws. Figure 4
plots the time series of these averages of the V;’s. Panel (a), the Bayes case of J = 1, shows

the large noise inherent in one draw, obscuring any time series pattern in the true smoothing
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distribution of the V,’s. As the averaging is done over an increasing .J, the noise decreases and
a time series pattern of the volatilities emerges. Figure 4 shows that this happens immediately
for relatively small values of J. Namely, panels (c¢) and (d) - averages over J = 10 and 20,
present remarkably similar time series although coming from two unrelated runs. This increase
in precision for the state variables is at the source of a commensurate increase in precision in

the draws of the parameters «, 9, o,, as each draw uses the information over the J copies.

The algorithm also produces smoothed estimates of the volatilities V;, by averaging the
JG draws of V;. Figure 5 shows that these smoothed estimates of volatility are nearly identical
for all values of J. Panel (a) follows from an averaging over G = 25000 draws while panel (c) is
over GJ = 250000 draws. Their estimates are identical because the precision in the averaging
in the Bayesian case is high enough to make any further increase in precision - via a larger J,
insignificant. Effectively, the small changes in the parameter estimates result in even smaller
changes in the volatility estimates. This is confirmed in Figure 6, which plots the estimated
versus the true volatilities. Panel (a) and (b) represent J = 1 and 20. They are very similar
with a cross-correlation of 0.74. So, our algorithm preserves the efficient smoother originally
produced by the Bayesian MCMC algorithm. This is in sharp contrast with an approximate

smoother which would for example substitute the MLE of the parameters into a Kalman filter.

4 Application to Merton’s Jump-Diffusion Model

A multivariate version of Merton’s jump-diffusion model specifies that a vector of asset

prices, Sy, solves the stochastic differential equation:

Ny
dSt = lj,Stdt + O'Stth + d (Z STj_ (er — 1)) y

j=1

where 00’ = ¥ € RE x RX is the diffusion matrix, NNV, is a Poisson process with constant

intensity A and the jump sizes, Z; € R* Z; ~ N (u.,%.). Solving this stochastic differential
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equation, continuously compounded equity returns (Y;) over a daily interval are

Nit1

Yirn=p+ o6+ Z Z;
j=Ni+1

where, €;,1 = Wy 1 — W, and the drift vector is redefined to account for the variance correction.

Following Merton (1976), the univariate version of this model is commonly used for
option pricing. The multivariate version maybe even more useful. For a vector of risky assets,
the multivariate jump model generates fat tails and allows for a different correlation structure
between ‘normal’ movements (o) and large market movements (3,). For example, this allows
for large returns to be more highly correlated than small returns. Duffie and Pan (2001)
provide closed form approximations for the value-at-risk (VAR) of a portfolio of the underlying

or options on the underlying, but they do not estimate the model.

Likelihood based estimation of the model is very difficult for two reasons. First, random
mixtures of normal have well-known degeneracies in one dimension. These degeneracies are
likely much worse in higher dimensions. Second, even for moderate K, there are a large number
of parameters and gradient based optimization of a complicated likelihood surface is rarely
attempted. Our simulation based optimization is immune to these difficulties. We now describe

the algorithm and provide evidence on the performance of the algorithm.

4.1 Algorithm

The time-discretization of the model which we consider implies that at most a single

jump can occur over each time interval:
Yisi = p+ o€ + L1 Zisa, (10)

where ¢€; is a unit normal shock, I; is 1 if there is a jump and 0 otherwise, P [I; = 1] = X € (0,1)
and the jumps retain their structure. Johannes, Kumar and Polson (1999) document that, in

the univariate case, the effect of time-discretization in the Poisson arrivals is minimal, as jumps
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are rare events.

The parameters and state variable vector are given by 0 = (u, X, A\, puz,3z) and X =
{L, Zt}thl. Our MCMC algorithm samples from p(0, X|Y) = p(0, 1, Z]Y'), where I and Z are

vectors containing the time series of jump times and sizes.

Our MCMC algorithm draws 6, Z and [ sequentially. Each posterior conditional is a
standard distribution that can easily be sampled from. Thus the algorithm is a pure Gibbs

sampler. This is because the augmented likelihood function is
T
p(Y10.1,Z) = [ p(Yil0. L. Z2) .
t=1

where p (Y4]0, 11, Z;) ~ N (un+ Zi1;, %), i.e., it is conditionally Gaussian. On the other hand,
the marginal likelihood, p (Y]0), is difficult to deal with because it is a mixture of multivariate
normal distributions. In the univariate case, this observed likelihood has degeneracies, it is
infinite for certain parameter values, and well-known multi-modalities. Multivariate mixtures

are even more complicated and direct maximum likelihood is rarely attempted.

We assume standard Normal-Inverse Wishart conjugate prior distributions for the pa-
rameters u, Y, and puz,Xz. Namely, u ~ N (a,A), ¥ ~ W (b, B), uz ~ N(c,C) , and
Yz ~ W™H(d,D). For A\, we use a conjugate beta distribution, A ~ B (e, E). The MCMC

algorithm iteratively draws the parameters and the state variables:

Diffusive Parameters : p (3,1, Z,Y) o< N (a*, A")

N (e, C7)

p( )
(ST, Z,Y) W (1, B)
Jump Size Parameters : p (uz|Xz, 1, Z) x
:p(Xglpz, I, Z) c W (d*, D*)
Jump Time Parameters : p (A\|I) < B (e*, E¥)
Jump Sizes : p (Z;]0, 11, Y;) < N (m;, V[")
p (1

Jump Times : p (1|0, Z;,Y;) o< Binomial (\})
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The MCMC algorithm samples from p («9, T, Z |Y> by the iteratively drawing

9+ g (9‘ 19, 70, y)
7o) o p (f’g(gﬂ)’ 7). y>

760 ) ( Z|gW+D, T+, y)

where we note that the last two draws are just J draws from the same distribution.

4.2 Performance

We analyze a three-dimensional version of Merton’s model. We simulate a vector of
1000 returns using the following parameter values, scaled to daily units: pu = (0.2,0.15,0.1),
p. = (=3,-3.5,—-4), A = 0.10, ol =3, 02 =4, 03 =5, ol =15, 02 =1, 0% = 0.5, the
off diagonal elements of the diffusive and jump-covariance matrix are such that the diffusive or
jump correlation between any two assets is fifty percent. These parameters are typical of those
that would be found in an analysis of large, volatile equity indices in the United States. The
method can generate a large number of draws in little CPU time. On a Pentium 4, 3.00Ghz,
5000 draws (G) for this sample size and J = 1 take about 30 seconds. Recall that the CPU

time is proportional to J as well as G and T

We report results of sampling experiments similar to those in the previous subsection.
Figures 7 to 10 display a summary of the MCMC output for G = 5000, and J = 1, 2, 10 and
20. The results are largely consistent with those seen for the SV model. For example, consider
Figure 7, which plots the draws of the parameter \. As J increases, the variability of the draws
reduces drastically, collapsing on the true value of 0.10. As a comparison, the volatility of
the draws for A decreases from 0.00705 to 0.0016, when J increases from 1 to 20, a reduction
by a factor of 4.4. This is right in line with the implications of our central limit theorem as
V20 = 4.47. Figure 8 provides normality plots of the draws for J = 1, 2, 10 and 20. As J

increases, the draws converge very fast to their limiting standard normal distribution.

Figure 9 and 10 provide the trace plots for two other parameters of interest, the jump
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mean ! and the jump intensity ol. Again the plots collapse as expected, albeit with slight
biases. For example, for u!l the average of the draws is roughly —2.7, for a true value of -3.
Similarly, for ol, the mean of the draws for J = 20 is 3.15, a bit above the true value of
3. These estimates appear slightly biased. Again, there is no reason to believe that either
the Bayes (J = 1) or the maximum likelihood estimator are unbiased in finite samples. Both

estimators are only asymptotically (in 7) unbiased.

5 Conclusion

In this paper, we develop MCMC algorithms for computing finite sample MLE’s and their
standard errors in latent state models. Computing the MLE requires a joint integration of the
state variables and optimization over the parameters. Our MCMC algorithms simultaneously

perform this integration and optimization without the need to resort to gradient method.

Our approach makes use of data augmentation and evolutionary MCMC. MCMC meth-
ods allow us to simulate from the high-dimensional joint distribution 7/ (0, X7 ) that arises for
the parameters and J copies of the latent state variables. We show how to avoid singularities
in the marginal likelihood by the choice of a suitable dominating measure for this joint density.
Our asymptotic is in J, and we provide diagnostics to determine whether J is high enough. We
estimate a stochastic volatility and a multivariate jump diffusion model, two complex and very
different models. Our implementation shows that convergence occurs quickly for low values of

J for both models.
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Appendix: Convergence in J

Consider the marginal distribution 74 (0) = £(6)”1(0)/m,, where m; = [ L(0)’ u(d8).
We study the asymptotics , in J, of 19 = \/7(9(9) — é), where 89 are the MCMC draws from
the algorithm and 0 is the MLE for the sample considered.

We first write the target marginal density as a function of £(), the logarithm of the
likelihood

Now write

w4 (0) = mh(0)e” OO,

By Taylor’s theorem we can write £(6) = £(0) + 10— 0)20"(6*), where 0* = 0 + (A — ) with
0 < 7 < 1. Denote 62() the inverse of £"(f), and let R(0) = o2(0)(¢"(9) — £"(0)). Note that
R is a measure of distance of 6 to 6. Combining the above two equations, and substituting for

R(0), we can write
2(0) = % (9) o007 RO

Recall that 4 is v Jo='(0 — é) We need to show that for any a < b we have that

lim P(a < ¢y <b)=®(b) — D(a)

J—o00

where ®(+) is the standard normal cumulative distribution function. Now

~ ao N bo eJE(G)
Pla < <b)=P 0+—<9<0+—):/ do).
@< <n=p (047 75) = ooy Sy 0

Now, for any € > 0, by continuity of x(f) at , assumption (A1), we can find J so that

(1—¢€) < inf M(GA)< sup o)

= < 1+e.
Ny () NS () 1(0)
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Hence we need only consider

JZ(G) Ty é
[:/ ——du(6) = ﬁ/( Lo — 52 (60-0)>(1-R(0 @) dy(6)
N N:*P(T)

ga,b)( Jy Mg my
6

By assumption (A3) we can also find J such that there exists an 0 < £; < 1 where €¢; — 0 as
J — oo and

sup |R(#)| <e; <1l
NP ()

Therefore
/ e 52000y | </ e 7z 0=0 (e g
N ()

(a,b)
NP ()

Now as Nga’b)(J) (9 + %,9 + b") we have

/N . ¢T3 O N g — oo (14 ey) 7 <q> (V%%%)) — (ﬁal(%)»

Taking the limit as J — oo and noting that ¢, — 0 we have that P(a < ¢y < b) — ®(b) — P(a)

as required.
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Figure 9: MCMC draws for the jump intensity, p!, three-dimensional Merton’s model, G =
5000, J = 1,2,10,20. The true p! is -3.
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Figure 10: MCMC draws for the jump intensity, o!, from the three-dimensional Merton’s model
for G = 5000, and the cases J = 1,2, 10, and 20. The true o, is 3.
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