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Abstract

In this paper, we provide an exact particle filtering and parameter learning algorithm.

Our approach exactly samples from a particle approximation to the joint posterior

distribution of both parameters and latent states, thus avoiding the use of and the

degeneracies inherent to sequential importance sampling. Exact particle filtering

algorithms for pure state filtering are also provided. We illustrate the efficiency of our

approach by sequentially learning parameters and filtering states in two models. First,

we analyze a robust linear state space model with t-distributed errors in both the

observation and state equation. Second, we analyze a log-stochastic volatility model.

Using both simulated and actual stock index return data, we find that algorithm

efficiently learns all of the parameters and states in both models.
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1 Introduction

Sequential parameter learning and state filtering is a central problem in the statistical

analysis of state space models. State filtering has been extensively studied using the Kalman

filter, analytical approximations, and particle filtering methods, however, these methods

assume any static model parameters are known. In practice, parameters are typically

unknown and filtered states are highly sensitive to parameter uncertainty. A complete

solution to the sequential inference problem delivers not only filtered state variables, but

also estimates of any unknown static model parameters.

This paper provides an exact particle filtering algorithm for sequentially filtering unob-

served state variables, xt, and learning unknown static parameters, θ, for wide class of mod-

els. Our algorithm generates exact samples from a particle approximation, pN (θ, xt|yt), to
the joint posterior distribution of parameters and states, p (θ, xt|yt), where N is the number

of particles and yt = (y1, ..., yt) is the vector of observations up to time t. Our algorithm

is “optimal” in the sense that we provide exact draws from the particle approximation

to p (θ, xt|yt), thus avoiding the use of and the inherent degeneracies associated with im-
portance sampling. The algorithm applies generally to nonlinear, non-Gaussian models

assuming a conditional sufficient statistics structure for the parameter posteriors.

The algorithm relies on three main insights. First, we track a triple consisting of

parameters, sufficient statistics, and states, denote by (θ, st, xt), as in Storvik (2002) and

Fearnhead (2002). Second, by tracking this triple, we can factorize the joint posterior

density via

p
¡
θ, st+1, xt+1|yt+1

¢
∝ p (θ|st+1) p

¡
st+1|xt+1, yt+1

¢
p
¡
xt+1|yt+1

¢
. (1)

This representation suggests an approach of sampling the joint density via a marginaliza-

tion procedure: update the states first via the filtering distribution, p (xt+1|yt+1), update
the sufficient statistics, st+1, given the data and updated state, and finally drawing the pa-

rameters via p (θ|st+1). Third, the key to operationalizing this factorization is generating
draws from the particle approximation to p (xt+1|yt+1). We essentially follow this outline.
To do this, we use an alternative representation to express pN (xt+1|yt+1) as a mixture dis-
tribution that can be directly sampled. Given samples from pN (xt+1|yt+1), updating the
sufficient statistics and parameters is straightforward.

The key advantage to our algorithm is that it does not rely on sequential importance

sampling (SIS). SIS methods are popular and have dominated previous attempts to imple-
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ment particle-based sequential learning algorithms. Importance sampling, however, suffers

from well known problems related to the compounding of approximation errors, which leads

to sample impoverishment and weight degeneracies. Since our algorithm exactly samples

from the particle distribution, it avoids the particle degeneracies of SIS algorithms.

To demonstrate the algorithm, we analyze in detail the class of models with linear

observation and state evolutions and non-Gaussian errors. This class includes robust spec-

ifications such as models with t, stable, and discrete mixtures of normals errors, as well

as dynamic discrete-choice models. In this class of models, the key to efficient inference

is to represent the errors as a scale mixture of normals, to introduce an auxiliary latent

scaling variable, and to use data augmentation. This scale mixture representation has been

extensively used to analyze the state and parameter smoothing via MCMC methods (see,

for example, Carlin and Polson (1991), Carlin, Polson, and Stoffer (1992), Carter and Kohn

(1994, 1996), and Shephard (1994)) and for pure state filtering using standard particle fil-

tering (Gordon, Salmond, and Smith (1992)) and extensions such as the auxiliary particle

filter (Pitt and Shephard (1999)) and mixture Kalman filter (Chen and Liu (2000)).

Pure state filtering is special case of our algorithm if the static parameters are known.

In this case, our general algorithm simplifies and generates an exact algorithm for particle-

based state filtering. Again, this state filtering algorithm has the advantage that it does

not resort to sequential importance sampling (SIS) methods. This algorithm provides an

exact alternative to popular SIS algorithms that include the approach in Gordon, Salmond,

and Smith (1993) and extended in Pitt and Shephard (1999) and Chen and Liu (2000).

We illustrate our approach using two models. The first is a model with a latent au-

toregressive state process controlling the mean and t-distributed observation and state

equation errors, a robust version of the classic linear Gaussian state space model. In the

case of pure filtering, models with t-distributed errors in either (but not both) the state or

observation have been analyzed in depth using approximate filters; see, for example, Mas-

reliez and Martin (1977), Meinhold and Singpurwalla (1987), West (1981), and Gordon

and Smith (1993). We also analyze a log-stochastic volatility parameterized via a mixture

of normals error term as in Kim, Shephard, and Chib (1998). In both cases, we show that

the algorithm is able to accurately learn all of the parameters and state variables in both

simulated and real data examples. We view our algorithms as simulation based robust

extensions of the Kalman filter that handle both parameter and state learning in models

with non-normalities.
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To date, algorithms for parameter learning and state filtering have achieved varying

degrees of success. Previous attempts include the particle filters in Liu and West (2001),

Storvik (2002), Chopin (2002, 2005), Doucet, and Tadic (2003), Johansen, Doucet, and

Davey (2006), Andrieu, Doucet, and Tadic (2006), and Johannes, Polson, and Stroud

(2005, 2006), the pure MCMC approach of Polson, Stroud, and Muller (2006), and the

hybrid approach of Berzuini, Best, Gilks, and Larizza (1997) and Del Moral, Doucet, and

Jasra (2006). Most of these algorithms have limited scope or difficulties even in standard

models. For example, Stroud, Polson, and Muller (2006) document that Storvik’s algorithm

has difficulties handling outliers in an autoregressive model, while their MCMC approach

has difficulties estimating the volatility of volatility in a stochastic volatility model.

The rest of the paper is outlined as follows. Section 2 describes our general approach to

understand our updating mechanism. We discuss in detail the simple case of state filtering

and parameter learning in a linear Gaussian state space model and the special case of

pure filtering. We introduce latent auxiliary variables to transform non-normal models

into conditionally Gaussian models with a sufficient statistic structure. Section 3 provides

examples of the methodology in the case of t−distributed errors and a stochastic volatility
model using simulated and real data examples. Finally, Section 4 concludes.

2 State filtering and parameter learning

Consider a state space model specified via the observation equation, p (yt|xt, θ), state evo-
lution, p (xt+1|xt, θ), initial state distribution, p (x0|θ), and prior parameter distribution,
p (θ). The sequential parameter learning and state filtering problem is characterized by the

joint posterior distribution, p (θ, xt|yt), for each time t via analytical or simulation methods.
The focus on p (θ, xt|yt) follows from the optimality properties of the posterior distribution
for solving the filtering problem via p (xt|yt) and learning problems via p (θ|yt).
Sequential sampling from p (θ, xt|yt) is difficult due to the dimensionality of the pos-

terior and the complicated functional relationships between the parameters, states, and

data. MCMC methods have been developed to solve the smoothing problem, namely sam-

pling from p
¡
θ, xT |yT

¢
, but are too slow for the sequential problem, which requires on-line

simulation based on a recursive or iterative structure. The classic example of recursive es-

timation is the Kalman filter in the case of linear Gaussian models with known parameters

and most particle filtering algorithms utilize a recursive structure.
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We use a particle filtering approach to characterize p(θ, xt|yt). Particle methods use a
discrete representation of p(θ, xt|yt)

pN(θ, xt|yt) =
1

N

NX
i=1

δ(xt,θ)(i),

where N is the number of particles and (xt, θ)
(i) denotes the particle vector. As in the

case of pure state filtering, the particle approximation simplifies many of the hurdles that

are inherent to sequential problems. Liu and West (2001), Chopin (2002), Storvik (2002),

Andrieu, Doucet, and Tadic (2005), Johansen, Doucet, and Davey (2006), and Johannes,

Polson, and Stroud (2005, 2006) all use particle methods for sequential parameter learning.

Given the particle approximation, the key problem is how to jointly propagate the para-

meter and state particles. This step is complicated because the state propagation depends

on the parameters, and vice versa. To circumvent the codependence in a joint draw, it is

common to use importance sampling. This, however, can lead to particle degeneracies, as

the importance densities may not closely match the target densities. Degeneracies are also

apparent in hybrid MCMC schemes due to the long range dependence between the parame-

ters and state variables. One essential key to breaking this dependence is to track a vector

of conditionally sufficient statistics, st, as in Storvik (2002) and Fearnhead (2002). We char-

acterize p(θ, st, xt|yt) via a particle approximation and update the particles in three steps,
in which each component is sequentially updated. As we now show this allows to generate

an exact draw from pN(θ, st+1, xt+1|yt+1), given existing samples from pN(θ, st, xt|yt).

2.1 General approach

Our approach begins by expressing the joint distribution p (θ, st+1, xt+1|yt+1) as

p
¡
θ, st+1, xt+1|yt+1

¢
= p (θ|st+1) p

¡
st+1|xt+1, yt+1

¢
p
¡
xt+1|yt+1

¢
, (2)

where st+1 is a conditionally sufficient statistic defined by the recursion

st+1 = S (st, xt+1, yt+1) .

The sufficient statistic is a functional relative to the random variables xt+1 and st, and yt+1
is observed. Viewed at this level, our algorithm uses the common mechanism of expressing

a joint distribution as a product of conditional and marginal distributions. Our approach
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essentially follows these steps, taking advantage of the mixture structure generated by a

discrete particle approximation pN (θ, st, xt|yt). We now discuss the mechanics of each step.
We first express p (xt+1|yt+1) relative to p (xt, θ|yt), via

p
¡
xt+1|yt+1

¢
=

Z
p (yt+1|xt, θ) p (xt+1|xt, θ, yt+1) dp

¡
xt, θ|yt

¢
. (3)

This representation is somewhat nonstandard, and we discuss this issue further below in

Section 2.2. Given a particle approximation, pN (xt, θ|yt), to the previous period’s posterior,
this implies that pN (xt+1|yt+1) is given by

pN
¡
xt+1|yt+1

¢
=

Z
p (yt+1|xt, θ) p (xt+1|xt, θ, yt+1) dpN

¡
xt, θ|yt

¢
(4)

=
NX
i=1

w
³
(xt, θ)

(i)
´
p
³
xt+1| (xt, θ)(i) , yt+1

´
, (5)

where the weights, w, are given by

w (xt, θ) =
p (yt+1|xt, θ)PN
i=1 p (yt+1|xt, θ)

.

The distribution pN (xt+1|yt+1) is a discrete mixture distribution, where w (xt, θ) are the
mixing probabilities and p (xt+1|xt, θ, yt+1) is the conditional state distribution. Standard
simulation methods can now be applied to sample from pN (xt+1|yt+1) by first resampling
the particle vector (θ, xt, st):

(θ, xt, st)
(i) ∼MultiN

µn
w
³
(xt, θ)

(i)
´oN

i=1

¶
,

where MultiN denotes an N -component multinomial distribution. Note that resampling

applies to the triple (θ, xt, st), implying that
³
θ(i), s

(i)
t , x

(i)
t+1

´
is drawn from pN (θ, st, xt+1|yt+1).

The multinomial draw selects which mixture components to simulate from, and given the

mixture component, the states are simulated from p
³
xt+1| (xt, θ)(i) , yt+1

´
.

To update st+1, we use the fact that the sufficient statistics are functionally related to

the previous sufficient statistic (which was resampled), x(i)t+1, and yt+1,

s
(i)
t+1 = S

³
s
(i)
t , x

(i)
t+1, yt+1

´
.

Finally, given the sufficient statistic structure, the parameter posterior is assumed to be a

recognized distribution, and therefore θ(i) ∼ p
³
θ|s(i)t+1

´
propagates the parameters.
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The exact particle filtering and parameter learning is given in the following four steps.

––––––––––––––––––––––––––––––––––––—

Algorithm: Exact state filtering and parameter learning

Step 1: Draw (θ, xt, st)
(i) ∼MultiN

µn
w
³
(xt, θ)

(i)
´oN

i=1

¶
for i = 1, ..., N

Step 2: Draw x
(i)
t+1 ∼ p

³
xt+1| (xt, θ)(i) , yt+1

´
for i = 1, ..., N

Step 3: Update sufficient statistics: s(i)t+1 = S
³
s
(i)
t , x

(i)
t+1, yt+1

´
for i = 1, ..., N

Step 4: Draw θ(i) ∼ p
³
θ|s(i)t+1

´
for i = 1, ..., N .

––––––––––––––––––––––––––––––––––––—

From the representation in equation (2), the algorithm provides an exact draw from

pN (θ, xt+1, st+1|yt+1). Since there are fast algorithms to drawmultinomial random variables
(see Carpenter, Clifford, and Fearnhead (1998)), the algorithm is O (N). For convergence

proofs as N increases, see Doucet, Godsill, and West (2004) in the state filtering case and

Hansen and Polson (2006) for the case with state filtering and parameter learning. As

with any Monte Carlo procedure, the choice N will depend on the model, the dimension

of the state and parameter vectors, and T . In particular, to mitigate the accumulation of

approximation errors, increasing N with T is important for long datasets.

Discussion: The algorithm requires three steps: (1) A sufficient statistic structure for

the parameters, (2) an ability to evaluate p (yt+1|xt, θ) , and (3) an ability to sample from
p (xt+1|xt, θ, yt+1). In the next section, we use a linear Gaussian model as an example, as all
of these distributions are known. Section 2.2 shows how to tailor the algorithm to models

with discrete or continuous scale mixture of normal distributions errors. This modification

introduces auxiliary variables indexing the mixture component in the error distributions,

and generates a conditional sufficient statistic structure.

For nonlinear models, the only formal requirement is that there exists a conditional

sufficient statistic structure. The distribution p (yt+1|xt, θ) can be computed in many mod-
els using, for example, accurate and efficient numerical integration schemes. Similarly, if

p (xt+1|xt, θ, yt+1) cannot be directly sampled, indirect methods such as rejection sampling
or MCMC can be used, although the computationally efficiency of these methods will de-

pend on the dimensionality of the distribution. In models for which these densities are

not known, sequential importance sampling can be used to approximate p (yt+1|xt, θ) and
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p (xt+1|xt, θ, yt+1). Johannes, Polson, and Stroud (2006) develop a general algorithm for

this case, and provide an example using an inherently nonlinear model.

2.1.1 Example: AR(1) with noise

For a concrete example, consider the latent autoregressive, AR(1), with noise model:

yt+1 = xt+1 + σεyt+1

xt+1 = αx + βxxt + σxε
x
t+1,

where the shocks are independent standard normal random variables and θ = (αx, βx, σ
2
x, σ

2).

We assume an initial state distribution, x0 ∼ N (μ0, σ
2
0) and standard conjugate priors for

the parameters: σ2 ∼ IG (a,A) and p (αx, βx|σ2x) p (σ2x) ∼ NIG (b,B), where NIG is the
normal/inverse gamma distribution.

In order to implement our algorithm, we need the following quantities: the predictive

likelihood, the updated state distribution, the sufficient statistics, and the parameter pos-

terior. The predictive likelihood used in the initial resampling step is

p (yt+1|xt, θ) ∼ N
¡
αx + βxxt, σ

2 + σ2x
¢
,

which implies that

w
³
(xt, θ)

(i)
´
∝ 1q

(σ2)(i) + (σ2x)
(i)
exp

⎛⎜⎝−1
2

³
yt+1 − α

(i)
x − β

(i)
x x

(i)
t

´2
(σ2)(i) + (σ2x)

(i)

⎞⎟⎠ .
The updated state distribution is

p (xt+1|xt, θ, yt+1) ∝ p (yt+1|xt+1, θ) p (xt+1|xt, θ) ∼ N
¡
μt+1, σ

2
t+1

¢
,

where
μt+1
σ2t+1

=
yt+1
σ2

+
αx + βxxt

σ2x
and

1

σ2t+1
=
1

σ2
+
1

σ2x
.

The p (xt+1|xt, θ, yt+1) shows how sensitive the state updating is to the model parameters.
For the parameters and sufficient statistics, we re-write the state evolution as

xt+1 = Z
0
tβ + σxε

x
t+1
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where Zt = (1, xt) and β = (αx, βx)
0. To update the parameters, we note that the posterior

is given by

p (θ|st) = p
¡
β|σ2x, st

¢
p
¡
σ2|st

¢
p
¡
σ2x|st

¢
,

and we can update first the volatilities and then the regression coefficients. The conditional

posteriors are known and given by

p
¡
σ2|st+1

¢
∼ IG (at+1, At+1)

p
¡
σ2x|st+1

¢
∼ IG (bt+1, Bt+1) ,

p
¡
β|σ2x, st+1

¢
∼ N

¡
ct+1, σ

2
xC

−1
t+1

¢
,

where the vector of sufficient statistics, st+1 = (At+1, Bt+1, ct+1, Ct+1) , is updated via the

via the functional recursions

At+1 = (yt+1 − xt+1)
2 +At,

Bt+1 = Bt + c0tCtct + Z 0t+1Zt+1 − c0t+1Ct+1ct+1,

ct+1 = C−1t+1

¡
Ctct + xt+1Z

0
t+1

¢
, and

Ct+1 = Ct + Zt+1Z
0
t+1.

The hyperparameters are deterministic and given by at+1 = 1/2 + at and bt+1 = 1/2 + bt.

The full algorithm consists of the following steps:

––––––––––––––––––––––––––––––––––––—

Algorithm: AR(1) model state filtering and parameter learning

Step 1: Draw (θ, st, xt)
(i) ∼MultiN

∙n
w
³
(xt, θ)

(i)
´oN

i=1

¸
Step 2: Draw x

(i)
t+1 ∼ p

³
xt+1|x(i)t , θ(i), yt+1

´
for i = 1, ..., N

Step 3: Update s(i)t+1 = S
³
s
(i)
t , x

(i)
t+1, yt+1

´
for i = 1, ..., N

Step 4: Draw (σ2)(i) ∼ p
³
σ2|s(i)t+1

´
∼ IG

³
a
(i)
t+1, A

(i)
t+1

´
,

(σ2x)
(i) ∼ p

³
σ2x|s

(i)
t+1

´
∼ IG

³
b
(i)
t+1, B

(i)
t+1

´
, and

(β)(i) ∼ p
³
β| (σ2x)

(i)
, s
(i)
t+1

´
∼ N

³
c
(i)
t+1, (σ

2
x)
(i) ¡

C−1t+1

¢(i)´
for i = 1, ..., N .

––––––––––––––––––––––––––––––––––––—
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This algorithm essentially provides a simulation based extension to the Kalman filter

that can also estimate the parameters. Johannes, Polson, and Stroud (2006) develop a

similar algorithm using a slightly different interacting particle systems approach. Johannes

and Polson (2006) provide extensions in multivariate extensions where the observed vec-

tor or states are multivariate. These multivariate Gaussian state space models are used

extensively in modeling of macroeconomic time series.

2.1.2 State filtering

We utilize a somewhat nonstandard expression for p (xt+1|yt+1) in updating the states. To
understand the mechanics of this step and to contrast it with common particle filtering

algorithms, we consider the simpler case of pure filtering. For the rest of this subsection,

we assume the parameters are known and fixed at those true values.

The distribution p (xt+1, yt+1|xt) can be expressed in different ways. We express

p (xt+1, yt+1|xt) = p (xt+1|xt, yt+1) p (yt+1|xt) , (6)

which combines the predictive likelihood p (yt+1|xt) and the conditional state posterior
p (xt+1|xt, yt+1). This leads to the marginal distribution

p
¡
xt+1|yt+1

¢
=

Z
p (yt+1|xt) p (xt+1|xt, yt+1) p

¡
xt|yt

¢
dxt. (7)

A particle approximation to p (xt|yt) implies that

pN
¡
xt+1|yt+1

¢
=

NX
i=1

w
³
x
(i)
t

´
p
³
xt+1|x(i)t , yt+1

´
, (8)

where the mixing probabilities are given by

w
³
x
(i)
t

´
=

p
³
yt+1|x(i)t

´
PN

i=1 p
³
yt+1|x(i)t

´ . (9)

It is important to note that the mixture probabilities are a function of xt not xt+1. This

implies a two-step direct draw from pN (xt+1|yt+1).
The state filtering algorithm consists of the following steps:

––––––––––––––––––––––––––––––––––––—

Algorithm: Exact state filtering
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Step 1: (Resample) Draw x
(i)
t ∼MultiN

n
w
³
x
(1)
t

´
, ..., w

³
x
(N)
t

´o
Step 2: (Propagate) Draw x

(i)
t+1 ∼ p

³
xt+1|x(i)t , yt+1

´
.

––––––––––––––––––––––––––––––––––––—

In contrast, the standard particle filtering approach expresses p (yt+1, xt+1|xt) as

p (xt+1, yt+1|xt) ∝ p (yt+1|xt+1) p (xt+1|xt) (10)

and treats p (xt+1|yt+1) as a marginal against p (xt|yt):

p
¡
xt+1|yt+1

¢
=

Z
p (yt+1|xt+1) p (xt+1|xt) p

¡
xt|yt

¢
dxt. (11)

The particle approximation of p (xt|yt) by pN (xt|yt) then implies that

pN
¡
xt+1|yt+1

¢
=

NX
i=1

w
³
x
(i)
t+1

´
p
³
xt+1|x(i)t

´
, (12)

where

w
³
x
(i)
t+1

´
=

p
³
yt+1|x(i)t+1

´
PN

i=1 p
³
yt+1|x(i)t+1

´
Sampling from this mixture distribution is difficult because the natural mixing prob-

abilities depend on xt+1, which has yet to be simulated. Instead of direct sampling, the

common approach is to use importance sampling and the sampling-importance resampling

(SIR) algorithm of Rubin (1988) or Smith and Gelfand (1992). This generates the classic

SIR PF algorithm:

(Propagate) Draw x
(i)
t+1 ∼ p

³
xt+1|x(i)t

´
for i = 1, ..., N

(Resample) Draw x
(i)
t+1 ∼MultiN

∙n
w
³
x
(i)
t+1

´oN
i=1

¸
.

We use a multinomial resampling step, although other approaches are available (see Liu

and Chen (1998) or Carpenter, Clifford, and Fearnhead (1999)). The classic PF algorithm

suffers from a number of well-known problems as it blindly simulates states, even though

yt+1 is observed, and relies on importance sampling. Importance sampling typically results

in weight degeneracy or sample impoverishment.
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Notice that our algorithm is in exactly the opposite order as the classical particle filter.

First, the algorithm selects particles to propagate forward via their likelihood p
³
yt+1|x(i)t

´
.

This results in propagating high-likelihood particles multiple times and is key to an effi-

cient algorithm. Second, the algorithm propagates states via p
³
xt+1|x(i)t , yt+1

´
, taking into

account the new observation. The draws all have equal probability weights, so there is no

need to track the weights.

Our algorithm is closely related to the optimal importance function algorithms derived

in Doucet, et al. (2000). Their algorithm effectively reverses our Steps 1 and 2, by first

simulating from p
³
xt+1|x(i)t , yt+1

´
and then reweighting those draws. Like Doucet, et al.

(2000), our algorithm requires that p (yt+1|xt) is known and p (xt+1|xt, yt+1) can be sim-
ulated. However, our algorithm is not an importance sampling algorithm as it provides

exact draws from the target distribution, pN (xt+1|yt+1).

2.2 Non-Gaussian models

In this section, we consider in detail the class of mixture models:

yt+1 = xt+1 + σ
p
λt+1εt+1

xt+1 = αx + βxxt + σx
√
ωt+1ε

x
t+1,

where the specification of λt+1 and ωt+1 determines the error distribution. For exam-

ple, λt+1 ∼ IG (ν/2, ν/2) generates a marginal distribution for observation errors that is

t−distributed with ν−degrees of freedom. The case of discrete mixtures is handled simi-
larly. We also assume that there exist conditional sufficient statistics for the parameters,

p (θ|st) , where the recursions for the sufficient statistics are given by

st+1 = S (st, xt+1, ωt+1, λt+1, yt+1) .

It is important to note that the parameter posteriors generally do not admit sufficient

statistics unless we introduce the latent auxiliary variables.

This class of shocks has a long history in state space model. T -distributed errors in the

observation equation were analyzed by Masreliez (1975) and Masreliez and Martin (1977),

but they did not consider t-distribution state shocks. In the case of smoothing, this class of

shocks is considered using MCMC methods by Carlin, Polson, and Stoffer (1992), Carter

and Kohn (1994, 1996) and Shephard (1994). This implies that we allow for t−distributed
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errors, stable errors, double exponential errors, and discrete mixture errors. This latter case

includes the important class of log-stochastic volatility models using the representation of

Kim, Shephard, and Chib (1998).

The algorithm outlined in Section 2.1 requires an analytical form for p (yt+1|xt, θ) and
an ability to simulate from p (θ|st+1) and p (xt+1|xt, θ, yt+1). For the mixture models, these
densities are analytically known. However, the algorithm can be slightly modified to handle

these non-Gaussian and non-linear components. The key is twofold: utilizing the fact that

p (yt+1|xt+1, λt+1, θ) and p (xt+1|xt, λt+1, θ) are Gaussian distributions and then a careful
marginalization to sequentially update xt+1 and λt+1.

2.2.1 Main algorithm

The algorithm proceeds via an analog to (1). For notational parsimony, we will denote the

latent variables by just λt+1 from now on. The factorization is

p
¡
θ, st+1, λt+1, xt+1|yt+1

¢
= p (θ|st+1) p

¡
st+1|xt+1, λt+1|yt+1

¢
p
¡
xt+1|λt+1, yt+1

¢
p
¡
λt+1|yt+1

¢
,

by first updating λt+1, then xt+1, then st+1, and finally θ. As in Section 2.1, to generate

samples from the joint, we rely on the factorization and careful marginalization arguments.

Given existing particles, the first step is to propagate the mixture variables, λt+1. To

do this, we generate draws from a higher dimensional distribution, and then obtain draws

from p (λt+1|yt+1) as the marginal distribution. To do this, first note that

p
¡
λt+1, xt, θ|yt+1

¢
∝ p (yt+1|θ, λt+1, xt) p

¡
θ, λt+1, xt|yt

¢
.

To sample from this joint distribution, we use the fact that

p
¡
λt+1, xt, θ|yt

¢
= p (λt+1) p

¡
xt, θ|yt

¢
,

as λt+1 is conditionally independent. To sample this distribution, we first simulate λt+1 ∼
p (λt+1) and augment the (xt, θ)

(i) draw to obtain a joint draw (θ, λt+1, xt)
(i) . Next, we

sample from p (λt+1, xt, θ|yt+1) by drawing from the discrete distribution

(θ, λt+1, xt)
(i) ∼MultN

½n
w
³
(θ, λt+1, xt)

(i)
´oN

i=1

¾
,

where the weights are given by

w
³
(θ, λt+1, xt)

(i)
´
=

p
³
yt+1| (θ, λt+1, xt)(i)

´
Pn

i=1 p
³
yt+1| (θ, λt+1, xt)(i)

´ .
13



Since p (yt+1|λt+1, xt, θ) is known for all of the models that we consider, this step is feasible.
To propagate the states, express

p
¡
xt+1|λt+1, yt+1

¢
=

Z
p (xt+1|θ, λt+1, xt, yt+1) p

¡
θ, xt|yt+1

¢
d (θ, xt) .

and note that we already have draws from the particle approximation to p (xt, θ|yt+1) as a
marginal from p (λt+1, xt, θ|yt+1). Therefore, we can sample xt+1 via

x
(i)
t+1 ∼ p

³
xt+1| (θ, λt+1, xt)(i) , yt+1

´
,

since the distribution p (xt+1|θ, λt+1, xt, yt+1) is known for all of the mixture models. Given
the updated states, we update the sufficient statistics via

s
(i)
t+1 = S

³
s
(i)
t , x

(i)
t+1, λ

(i)
t+1, yt+1

´
,

and draw θ(i) ∼ p
³
θ|s(i)t+1

´
.

The full algorithm is given by the following steps.

––––––––––––––––––––––––––––––––––––—

Algorithm: Non-Gaussian sequential parameter learning and state filtering

Step 1: Draw λ
(i)
t+1 ∼ p (λt+1) for i = 1, ..., N

Step 2: Draw (θ, st, λt+1, xt)
(i) ∼MultN

½n
w
³
(θ, λt+1, xt)

(i)
´oN

i=1

¾
for i = 1, ..., N

Step 3: Draw: x(i)t+1 ∼ p
³
xt+1| (θ, λt+1, xt)(i) , yt+1

´
for i = 1, ..., N

Step 4: Update: s(i)t+1 = S
³
s
(i)
t , x

(i)
t+1, λ

(i)
t+1, yt+1

´
for i = 1, ..., N

Step 5: Draw θ ∼ p
³
θ|s(i)t+1

´
for i = 1, ..., N .

––––––––––––––––––––––––––––––––––––—

This algorithm provides an exact sample from pN (θ, st+1, λt+1, xt+1|yt+1).
After Step 3, an additional step can be introduced to update λt+1 from p (λt+1|θ, xt+1, yt+1).

This is effectively a one-step MCMC replenishment step. As the algorithm is already ap-

proximately sampling from the “equilibrium” distribution, the marginal for λt+1, an addi-

tional replenishment step for λt+1 may help by introducing additional sample diversity.
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2.2.2 Pure state filtering

If we assume the parameters are known and focus on the state filtering problem, we can

adapt the algorithms from the previous section to provide exact particle filtering algorithms.

Existing state filtering algorithms for these models rely on importance sampling methods

either via the auxiliary particle filter of Pitt and Shephard (1999) or the mixture-Kalman

filter of Chen and Liu (2000). Both of the algorithms above provide exact O (N) algorithms

for state filtering, and we briefly discuss these algorithms as they offer generic improvements

on the existing literature.

There are two ways to factor the joint filtering densities:

p
¡
xt+1, λt+1|yt+1

¢
= p

¡
xt+1|λt+1, yt+1

¢
p
¡
λt+1|yt+1

¢
or

p
¡
xt+1, λt+1|yt+1

¢
= p

¡
λt+1|xt+1, yt+1

¢
p
¡
xt+1|yt+1

¢
,

with the differences based on the order of auxiliary variable or state variable updates.

The first factorization leads to an initial draw from p (λt+1|yt+1). Since,

p
¡
λt+1, xt|yt+1

¢
∝ p (yt+1|λt+1, xt) p

¡
λt+1, xt|yt

¢
and the latent auxiliary variables are i.i.d., we have that p (λt+1, xt|yt) ∝ p (λt+1) p (xt|yt) .
Therefore, to draw from

p
¡
λt+1|yt+1

¢
=

Z
p (yt+1|λt+1, xt) p (λt+1) p

¡
xt|yt

¢
dxt,

we can augment the existing particles x(i)t from pN (xt|yt) with λ
(i)
t+1 draws, and resample

with probabilities given by

w (λt+1, xt)
(i) =

p
³
yt+1| (λt+1, xt)(i)

´
Pn

i=1 p
³
yt+1| (λt+1, xt)(i)

´ .
Next, we update state variables via

p
¡
xt+1|λt+1, yt+1

¢
=

Z
p (xt+1|xt, λt+1, yt+1) p (yt+1|xt, λt+1) p

¡
xt|yt

¢
dxt

which implies that we can draw xt+1|λ(i)t+1 using the resampled (λt+1, xt)
(i) and draw from

p
³
xt+1| (λt+1, xt)(i) , yt+1

´
.
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This generates an exact draw from pN (xt+1, λt+1|yt+1).
The second approach updates the state variables and then the latent auxiliary variables.

To sample from pN (xt+1|yt+1), we use a slight modification of the filtering distribution,

p
¡
xt+1|yt+1

¢
=

Z
p (yt+1|λt+1, xt) p (xt+1|xt, λt+1, yt+1) p

¡
λt+1, xt|yt

¢
d (λt+1, xt) .

Since λt+1 is independent of yt and xt, we can simulate λt+1 ∼ p (λt+1) and create an

augmented particle vector
³
x
(i)
t , λ

(i)
t+1

´
. Given this particle approximation for (xt, λt), we

have that

pN
¡
xt+1|yt+1

¢
=

NX
i=1

w
³
x
(i)
t , λ

(i)
t+1

´
p
³
xt+1|x(i)t , λ

(i)
t+1, yt+1

´
,

where

w
³
x
(i)
t , λ

(i)
t+1

´
=

p
³
yt+1|x(i)t , λ

(i)
t+1

´
Pn

i=1 p
³
yt+1|x(i)t , λ

(i)
t+1

´
This mixture distribution can again be exactly sampled. Updating the auxiliary variables

is straightforward since

p
¡
λt+1|xt+1, yt+1

¢
∝ p (yt+1|xt+1, λt+1) p (λt+1)

is a known distribution for all of the mixture models under consideration.

3 Illustrative Examples

In this section, we provide the details of our sequential parameter learning and state filtering

algorithms for the two models that we consider.

3.1 T-distributed errors

The first example assumes that the error distribution in both the observation and state

equation are t−distributed with ν and νx degrees of freedom. We write the model in terms
of the scale mixture representation:

yt+1 = xt+1 + σ
p
λtεt

xt+1 = αx + βxxt + σx
√
ωt+1ε

x
t+1

16



where the auxiliary variables are independent and λt+1 ∼ IG (ν/2, ν/2) and ωt+1 ∼
IG (νx/2, νx/2) . Conditional on λt+1 and ωt+1, the model is conditionally Gaussian.

Masreliez and Martin (1977) develop approximate robust state filters for models with

t−distributed errors in either the state or observation equation, but not both. West (1981)
and Gordon and Smith (1993) analyze the pure filtering problem. Storvik (2002) uses

importance sampling to analyze sequential parameter learning and state filtering using im-

portance sampling assuming the observation errors, but not state errors, are t−distributed.
To our knowledge, this algorithm provides the first algorithm for parameter and state

learning with t-errors in both equations.

Applying the general algorithm in Section 2.2.1, the distributions p (yt+1|θ, λt+1, ωt+1, xt)
and p (xt+1|θ, λt+1, ωt+1, xt) are required to implement our algorithm. The first distribution,
p (yt+1|θ, λt+1, ωt+1, xt), defines the weights which are given by

w
³
(xt, θ)

(i)
´
∝ 1rh

(σ2)(i) λ
(i)
t+1

i
+ (σ2x)

(i)

exp

⎛⎜⎝−1
2

³
yt+1 − α

(i)
x − β

(i)
x x

(i)
t

´2
(σ2)(i) λ

(i)
t+1 + (σ

2
x)
(i)

⎞⎟⎠ .
The updated state distribution is

p (xt+1|θ, λt+1, ωt+1, xt) ∝ p (yt+1|λt+1, xt+1, θ) p (xt+1|ωt+1, xt, θ) ∼ N
¡
μt+1, σ

2
t+1

¢
,

where
μt+1
σ2t+1

=
yt+1

σ2λt+1
+

αx + βxxt
σ2xωt+1

and
1

σ2t+1
=

1

σ2λt+1
+

1

σ2xωt+1
.

For the parameter posteriors and sufficient statistics, we re-write the state equation as

xt+1 = Z 0tβ + σx
√
ωt+1�t+1

where Zt = (1, xt)
0 and β = (αx, βx)

0. Given this parameterization, the sufficient sta-

tistic structure implies that p (σ2|st+1) ∼ IG (at+1, At+1), p
¡
σ2x|st+1

¢
∼ IG (bt+1, Bt+1),

and p (β|σ2x, st+1) ∼ N
¡
ct+1, σ

2
xC

−1
t+1

¢
. The hyperparameters are given by at =

1
2
+ at−1,

17



bt =
1
2
+ bt−1, and

At+1 =
(yt+1 − xt+1)

2

λt+1
+At

Bt+1 = Bt + c0tCtct +
x2t+1
ωt+1

− c0t+1Ct+1ct+1

ct+1 = C−1t+1

µ
Ctct +

Z 0t+1xt+1
ωt+1

¶
Ct+1 = Ct +

Zt+1Z
0
t+1

ωt+1
,

which defines the vector of sufficient statistics, st+1 = (At+1, Bt+1, ct+1, Ct+1), for sequential

parameter learning.

The t-distributed error model requires the specification of the degrees of freedom para-

meter in the t-distributions. Here, we leave (ν, νx) as known parameters. It is not possible

to add this parameter in the state vector, but one could compute their posterior distribution

by discretizing the support.

3.2 SV errors

Consider next the log-stochastic volatility model, first analyzed in Jacquier, Polson, and

Rossi (1994) and subsequently by many others:

yt = exp
³xt
2

´
εt

xt = αx + βxxt−1 + σvvt

where the errors are independent standard normal random variables. To estimate the

model, we use the transformation approach of Kim, Shephard, and Chib (1998) and the

10-component mixture approximation developed in Omori, Chib and Shephard (2006).

The Kim, Shephard, and Chib (1998) transformation analyzes the logarithm of squared

returns, yBt = ln y
2
t and the K = 10-component normal mixture approximation we have a

state space model of the form

yBt = xt + �t

xt = αx + βxxt−1 + σvvt

18



where �t is a log (χ21) which is approximated by a discrete mixture of normals with fixed

weights,
PK

j=1 pjZj where Zj ∼ N(μj, σ
2
j ). The indicator variable It tracks the mixture

components, with, for example, It = j indicating a current state in mixture component j.

Our state filtering and sequential algorithm will track particles and sufficient statistics³
x
(i)
t , θ(i), s

(i)
t

´
. Here st are the usual sufficient statistics for estimating the parameters

θ = (α, β, σv). The sufficient statistics are conditionally on the indicator variables, and are

of the same form as a standard AR(1) model, as the error distribution is known.

To implement the algorithm, first note that we can calculate the following conditional

densities

p(yBt+1|xt, θ) =
KX
j=1

pjN(α+ βxt, σ
2
j + σ2v)

That is the predictive density of the next observation given the current state is a mixture

of normals. We use this to define weights w(It+1, xt, θ) as

w (It+1, xt, θ) ∝
1q

σ2It+1 + σ2v

exp

Ã
−1
2

¡
y∗t+1 − μIt+1 − αx − βxxt

¢2
σ2It+1 + σ2v

!
.

and we let wB (It+1, xt, θ) denote the weights normalized to sum to one.

Notice that p (xt, θ, It+1|yt) = p (xt, θ|yt) p(It+1) as the mixture indicator are indepen-
dent. Hence the next filtering distribution is given by

p(xt+1|yt+1) =
Z
xt,θ,It+1

w(It+1, xt, θ)p
¡
xt+1|(It+1, xt, θ)(i), yBt+1

¢
Now we can compute the updated filtering distribution of the next log-volatility state and

component indicator as follows

p
¡
xt+1, It+1 = j|xt, θ, yBt+1

¢
∝ p

¡
yBt+1|xt+1, It+1 = j, θ

¢
p (xt+1, It+1 = j|xt, θ)

Therefore

p
¡
xt+1, It+1 = j|xt, θ, yBt+1

¢
∝ p

¡
yBt+1|xt+1, It+1 = j, θ

¢
p (xt+1, It+1 = j|xt, θ) p(It+1 = j)

Again by Bayes rule we can write this proportional to

p
¡
xt+1|It+1 = j, θ, yBt+1

¢
p
¡
yBt+1|xt, θ

¢
p(It+1 = j)
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Using the definition of the predictive in terms of the weight function and the fact that

p(It+1 = j) = pj we obtain a density proportional to

NX
i=1

wB
j

³
x
(i)
t , θ(i), I

(i)
t+1

´
p
³
xt+1|I(i)t+1, x

(i)
t , θ(i), yBt+1

´
Hence the next particle filtering distribution pN

¡
xt+1| (yB)t+1

¢
is a mixture of normals

which can be sampled from directly.

The density is given by the Kalman filter recursion and is a conditional normal

p
¡
xt+1|(It+1, xt, θ)(i), yBt+1

¢
∼ N

¡
x̂t+1,It+1, ŝ

2
t+1,It+1

¢
where

x̂t+1,j =
σ2v

σ2v + v2j

¡
yBt+1 −mj

¢
+

v2j
σ2v + v2j

(α+ βxt)

ŝ−2t+1,j = σ−2v + v−2j

Hence the next filtering distribution for x(i)t+1 is easy to sample from. The update sufficient

statistics s(i)t+1. Then sample new θ|s(i)t+1 draw.
Since the algorithm is slightly different from the ones above, we provide the details.

The algorithm requires the following steps:

1. Draw I
(i)
t+1 ∼ p(It+1|xt, θ) = p(It+1) = pj

2. Re-sample triples (I(i)t+1, x
(i)
t , θ(i)) with weights wB (It+1, xt, θ)

3. Draw x
(i)
t+1 ∼ p

¡
xt+1|(It+1, xt, θ)(i), yBt+1

¢
4. Update sufficient statistics s(i)t+1 = S

³
s
(i)
t , I

(i)
t+1, x

(i)
t+1, yt+1

´
5. Draw θ(i) ∼ p

³
θ|s(i)t+1

´
Our approach uses be exact sampling from the particle approximation distribution.

Other authors have done sequential and parameter learning but have approximate algo-

rithms that also have difficulty in learning σv. Johannes, Polson and Stroud (2005) propose

an alternative approach to the exact sampling scheme used here based on interacting par-

ticle systems using importance sampling. They also analyze the nonlinear model without

using the mixture of errors transformation.
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3.3 Numerical results

3.3.1 T-errors model: Simulated data

We simulate T = 300 observation from the t−distributed model with ν = νx = 5 and

assuming α = 0, β = 0.9, σ =
√
0.1 ≈ 0.316, and σx =

√
0.04 = 0.2. These parameters

generate a quite challenging inference problem because the state variables are quite volatile

relative to the variance of the observations, and a volatility state variable is more difficult

to estimate. We use the following priors hyperparameters: αx|σ2x ∼ N (0, 0.1σ2x) , βx|σ2x ∼
N (0.9, 2σ2x), σ2x ∼ IG (10, 0.36), and σ2 ∼ IG (10, 0.9). The algorithm was run with

N = 5000 particles.

The results from a representative simulation are provided in Figures 1 to 3. Figure 1

shows the simulate sample path of yt (top panel), the simulated sample path of xt (bottom

panel, thick line), and the 5%, 50%, and 95% posterior quantiles (bottom panel, thin lines).

The true values are always within the posterior confidence bands. Interestingly, despite the

fat-tails for the observation and state transition shocks, the algorithm does a good job of

learning the state variables, although of course, the accuracy depends on the parameters.

Figures 2 and 3 summarize the parameter learning. For each parameter, Figure 2

provides 5, 50, and 95% posterior quantiles at each time point, as well as the true val-

ues (horizontal line). From this, we see that although the priors for each parameter are

relatively loose, the algorithm is able to accurately learn all of the parameters. Due to

the t-error specification, large observations do not have a major impact on the parameter

estimates, consistent with bounded influence functions for models with t−errors.
Figure 3 provides summaries of the posterior distribution at time t = 300 via a his-

togram, a smoothed histogram, and the true parameter value (solid vertical line) for each

of the parameters. Although some of the parameters are slightly biased, this is due to

well known finite sample biases of likelihood based estimators. The posterior means are

consistent MLE estimators computed using the true simulated state variables, indicating

any biases are due to finite sample concerns.

3.3.2 T-errors: real data

We consider a real data example using daily Nasdaq 100 stock index returns from 1999

to August 2006 for a total of T = 1953 observations. The priors are given by αx|σ2x ∼
N (0, 0.1σ2x), βx|σ2x ∼ N (0.7, 2σ2x), σ2x ∼ IG (20, 0.154), and σ2 ∼ IG (5, 10). Again, the
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algorithm was run with N = 5000 particles. The results are in Figures (4) to (6).

The results provide a number of interesting findings. First, Figure (4) indicates that

there is little evidence for a time-varying mean for Nasdaq 100 stock returns. This is not

surprising because stock returns, and Nasdaq returns in particular, are quite noisy and past

evidence indicates that it is difficult to identify mean predictability over short frequencies

such as daily. Predictability, if it is present, is commonly seen over longer horizons such

as quarterly or annually. The filtered quantiles in the bottom panel of Figure (4) indicate

that there could be predictability, as the (5, 95)% bands are roughly -0.5% and 0.5%, but

there is too much uncertainty to identify it.

Second, one source of the uncertainty, especially in the early parts of the sample, is the

uncertainty over the parameters, which is shown in Figure (5). For each of the parameters,

the priors are relatively loose. This generates substantial uncertainty for the early portion

of the sample, and contributes to the highly uncertain filtered state distribution.

Third, a closer examination of Figure (5) shows that posterior for σ seems to be varying

over time, as it increase in the early portion of the sample and decreases in the latter portion.

This is capturing time-varying volatility as volatility declined in equity markets since the

early part of 2003. This can be seen from the data in the upper panel of Figure (4) and

will be clear in the stochastic volatility example below. It is important to note that this

is not due to outliers, since we allow for fat-tailed t-errors in both the observation and

state equation. This provides a useful diagnostic for slow time-variation: the fact that the

posterior for σ appears to be varying over time indicates that the model is misspecified

and a more general specification with stochastic volatility is warranted. Finally, Figure

(6) shows the posterior distribution at time T , and shows that the posteriors are slightly

non-normal, consistent with the findings in Jacquier, Polson, and Rossi (1994).

3.3.3 Simulated data: stochastic volatility model

We simulate T = 300 observations from the stochastic volatility model assuming α =

−0.0084, β = 0.98, σx =
√
0.04 = 0.2. We use the following priors hyperparameters

αx|σ2x ∼ N (0, σ2x/30), βx|σ2x ∼ N (0.95, 0.1σ2x), and σ2x ∼ IG (8, 0.35) . The algorithm was

run using N = 5000 particles.

The results from a representative simulation are provided in Figures (7) to (9). The

results are largely consistent with those given previously for the AR(1) with t−errors. The
true values are always within the posterior confidence bands, and the algorithms are able to
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learn the true parameter values. Of note is that despite the near-unit behavior of stochastic

volatility, we are able to accurate estimate the persistence parameter.

3.3.4 Real data

We consider a real data example using daily Nasdaq 100 stock index returns from 1999 to

August 2006. The priors used are given by αx|σ2x ∼ N (0, 0.1σ2x), βx|σ2x ∼ N (0.7, σ2x/4),
and σ2x ∼ IG (30, 0.725) . The algorithm was run using N = 5000 particles. The results are

given in Figures (10) to (12)

The previous results, in Figure (5), indicated the estimates of σ varied over time in the

t-errors model. This is more easily seen in the bottom panel of Figure (10), which displays

the posterior quantiles of daily volatility, exp (xt/2). Daily volatility was high and volatile

in the 2000-2002 period, volatility declined almost monotonically in 2003-2006. This slow

time-variation is exactly what the stochastic volatility models aims to capture.

Figure (11) shows the posterior quantiles over time, and provides some evidence of

time-variation. In the early portion of the sample, volatility was higher than the latter

portion. This feature is captured in the top panel of (11) by time-variation in the posterior

for αx, which controls the mean of log-volatility. The posterior means for α are much

higher in 1999-2000, than in the latter years, although there is greater uncertainty in the

early portion of the sample. It is interesting to note that the posteriors for β and σx vary

less over time. Figure (12) displays the posterior at time T . Given the large sample, there

is relatively little evidence for non-normality in the posteriors.

4 Conclusions

In this paper, we provide an exact sampling algorithm for performing sequential parameter

learning and state filtering for nonlinear, non-Gaussian state space models. The implication

of this is that we do not resort to importance sampling, and thus avoid the well known

degeneracies associated with sequential importance sampling methods. Formally, the only

assumption we require is that the parameter posterior admits a sufficient statistic structure.

We analyze the class of linear non-Gaussian models in detail, and exact state filtering is a

special case of our algorithm. Thus, we provide an exact sampling alternative to algorithms

such as the auxiliary particle filter of Pitt and Shephard (1999) and mixture Kalman filter

of Chen and Liu (2000) We provide both simulation and real data examples to document
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the efficacy of the approach.

We are currently working on two extensions. First, in Johannes and Polson (2006),

we examine sequential parameter learning and state filtering algorithms for multivariate

Gaussian models, deriving the exact distributions required to implement the algorithms.

Second, in Johannes, Polson, and Yae (2006), we consider the problem of robust filtering.

Here, we adapt our algorithms to handle sequential parameter and state filtering via “ro-

bust” non-differentiable criterion functions such as least absolute deviations and quantiles.

Our algorithm compare favorably with those in the existing literature.
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Figure 1: The top panel plots the observed time series, yt+1, simulated from the t-

distributed AR(1) model. The second panel plots the true simulated xt series (thick line)

as well as the (5, 50, 95) posterior quantiles of p (xt|yt).
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Figure 2: This figure displays sequential summarizes of the parameter posterior, p (θ|yt).
Each panel plots the (5, 50, 95) posterior quantiles for the given parameter and also provides

the true parameters used in simulation denoted by the horizontal line.
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Figure 3: This figure summarizes the posterior distribution of the parameters at time

T = 300. Each panel provides a histogram of the posterior, a smoothed estimate of the

posterio, and the true parameter value that is denoted by a solid vertical line.
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Figure 4: The top panel plots the observed time series, yt+1, simulated from an autoregres-

sive model with t−errors. The second panel plots the true simulated xt series (thick line)

as well as the (5, 50, 95) posterior quantiles of p (xt|yt).
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Figure 5: This figure displays sequential summarizes of the parameter posterior, p (θ|yt).
Each panel plots the (5, 50, 95) posterior quantiles for the given parameter.
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Figure 6: This figure summarizes the posterior distribution of the parameters at time

T = 1963. Each panel provides a histogram of the posterior, a smoothed estimate of the

posterior, and the posterior mean is indicated by a solid vertical line.
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Figure 7: The top panel plots the observed time series, yt+1, simulated from the stochastic

volatility model. The second panel plots the true simulated xt series (thick line) as well as

the (5, 50, 95) posterior quantiles of p (xt|yt).
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Figure 8: This figure displays sequential summarizes of the parameter posterior, p (θ|yt).
Each panel plots the (5, 50, 95) posterior quantiles for the given parameter and also provides

the true parameters used in simulation denoted by the horizontal line.
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Figure 9: This figure summarizes the posterior distribution of the parameters at time

T = 300. Each panel provides a histogram of the posterior, a smoothed estimate of the

posterio, and the true parameter value that is denoted by a solid vertical line.
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Figure 10: The top panel plots the observed time series, yt+1, of Nasdaq 100 stock returns.

The second panel plots the true simulated xt series (thick line) as well as the (5, 50, 95)

posterior quantiles of p (xt|yt).
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Figure 11: This figure displays sequential summarizes of the parameter posterior, p (θ|yt).
Each panel plots the (5, 50, 95) posterior quantiles for the given parameter.
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Figure 12: This figure summarizes the posterior distribution of the parameters at time

T = 1963. Each panel provides a histogram of the posterior, a smoothed estimate of the

posterior, and the posterior mean is indicated by a solid vertical line.
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