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Abstract

In asset pricing models, the uncertainty surrounding firm fundamentals plays a

central role, driving expected returns, volatility, and valuation ratios. In this paper,

we extract estimates of the uncertainty embedded in earnings announcements using

option prices. To do this, we take seriously the fact that the timing of earnings

announcements, although not the response of equity prices, is known in advance.

We develop a no-arbitrage option pricing model incorporating jumps on earnings

announcement dates. We estimate the uncertainty in a simple extension of the Black-

Scholes model and in a more complicated stochastic volatility model. The uncertainty

is large, has important pricing implications and interesting time-variation. Adding

jumps on earnings announcement dates drastically reduces the model pricing errors.

Not surprisingly, the estimates of the earnings uncertainty increase in periods of

market stress, such as 2000 and 2001.
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1 Introduction

In asset pricing models, the uncertainty surrounding firm fundamentals plays a central role,

driving expected returns, volatility, and valuation ratios. Characterizing and quantifying

this uncertainty, however, is more difficult as it is not directly observed. For example, while

current earnings are known, the uncertainty surrounding future earnings is not observed. In

this paper, we develop reduced-form models that use option prices to extract information

about the uncertainty embedded in the information released in earnings announcements.

On an earnings announcement date, firms release the prior quarter’s firm financials

(income statements, balance sheet, and cash flows), as well as “forward-looking statements,”

guidance based on the firm’s current expectations of future business conditions and firm

performance. Intuitively, investors revise their beliefs after this information is released and

the uncertainty regarding firm performance is reduced, at least temporarily. To analyze the

level and dynamics of this uncertainty around earnings dates, we consider option prices,

the natural vehicle to learn about uncertainty or volatility.

To get a sense of the magnitudes of the uncertainty, consider the following example for

Intel Corporation. On July 15, 1997, Intel released earnings after the close of the mar-

ket. The Black-Scholes implied volatility of the July at-the-money call option was 71.15

percent prior to the announcement. For a comparison, the implied volatility of the Au-

gust at-the-money call option was 45.19 percent. The day after the announcement, the

implied volatility of the same July call fell drastically to 42.96 percent. Clearly, the high

implied volatility before and the drastic decline in implied volatility after the earnings

announcement provides information regarding the uncertainty embedded in the informa-

tion released in the earnings announcement. This pattern holds more generally for other

earnings announcement dates and for other firms.

On the theoretical side, the goal of this paper is to develop tractable reduced form

models incorporating jumps on earnings announcement dates and to use these models to

quantify the uncertainty surrounding earnings announcements. The key to our approach

is that, unlike traditional option pricing models, we take seriously the timing of earnings

announcements. Earnings announcements are events whose timing is known in advance.

We therefore model equity prices as a process with randomly sized jumps at the time of the

earnings release. To price the options in a no-arbitrage setting, we construct an equivalent

martingale measure. Ignoring technical conditions, jumps at deterministic times add only
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one additional constraint: that the expected jump size in the stock price at a deterministic

time must be zero. This intuitively implies that there can be no expected capital gains

over an instant.

A simple extension of the Black-Scholes model incorporating deterministic jumps pro-

vides the essence of our approach. In addition to the usual Brownian motion component,

assume there is a single jump at time τj, the time of an earnings release. The size of the

jump, Zj, is log-normally distributed with a volatility of σ
Q
j where Q is an equivalent mar-

tingale measure. If there is an option maturing at time T > τj, then the moment before an

earnings announcement, the Black-Scholes implied volatility is given by σ2τj− = σ2 +
(σQj )

2

T−τj ,

where σ is the diffusive volatility. After the announcement, the implied volatility falls to

σ2τj = σ2. This generates the effect mentioned in the example above and moreover, it pro-

vides a means to estimate σQj , the uncertainty embedded in earnings. In the Intel example

above, the estimate of σQj based on the changes in implied volatility is 7.2 percent.

To quantify the uncertainty embedded in earnings announcements, we use a sample of

20 low-dividend firms with the most actively traded options from 1996 to 2002. Based on

the extension of the Black-Scholes model described above, we first develop two different

estimators of σQj . The first uses only ex-ante information and relies on the term structure

of option implied volatility. The intuition behind the estimator is that more of the to-

tal volatility of the shorter-to-maturity option is driven by the earnings jump. Since this

estimate can be obtained prior to the announcement, it provides an ex-ante view of in-

vestor’s expectations of the uncertainty present in the earnings announcement. The second

estimator, the time series estimator, uses changes in implied volatility before and after an

announcement.

The results indicate that option prices are very informative about the uncertainty em-

bedded in earnings announcements. Across the sample of firms, the mean estimate of σQj is

10.4 percent for the term structure estimator and 8.5 percent for the time series estimator.

The jump sizes vary both by firm and across time. For some firms and earnings announce-

ment dates, estimates of σQj exceed 15 percent. It is important to recognize that σ
Q
j is a

risk-neutral parameter, and due to risk premiums, it is not necessarily the volatility of the

jumps under the objective measure. However, these large jump sizes are not out of line

with casual observations: equity prices often react violently to earnings announced above

or below expectations.
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We can also use the estimates and the underlying equity returns to investigate risk

premiums, the abnormality of returns around earnings announcement dates, specification,

and the informational content of earnings jump volatility. Based on the observed returns

after earnings, we cannot reject that jumps sizes are mean-zero, which implies there is no

evidence for a mean jump risk premium. We do, however, find some evidence of a volatility

risk premium: based on the ex-ante estimates of σQj , the volatility of jumps sizes under Q
is greater than the observed volatility under P: σQj > σPj . This is consistent with evidence

from index options and should not be surprisingly, given that it is not possible to hedge

continuously distributed jumps with a finite number of instruments. The estimates of σQj
based on the time series of implied volatility are lower which implies that the risk premium,

if present, is smaller. We find that returns, scaled by option implied volatility, appear to

be normally distributed, which is consistent with our assumption of normally distributed

jumps. This implies that returns after an earnings announcement, while often extremely

large, are in no way ‘abnormal,’ at least in the statistical sense. We also find that jump

volatility under Q is informative about return volatility under P: firms with high option
implied σQj tend to have high observed variability of returns on earnings announcement

dates. Finally, the estimates of jump volatility tend to increase in 2000 and 2001, consistent

with prior research indicating there was an increased uncertainty regarding earnings in this

period.

Next, to quantify the mispricing in models without jumps on earnings dates, we consider

stochastic volatility models with and without jumps on earnings announcement dates. We

estimate the models using multiple option maturities, sampled daily, from 1996 to 2002.

Jumps on earnings dates primarily affect the expected volatility of stock returns, and we

therefore focus our empirical work on the term structure and time series of at-the-money

option prices. Due to the extreme computational burdens of estimating a model using daily

option prices over a long sample, we estimate the stochastic volatility model for five of the

twenty firms in our sample. The firms include the three most actively traded firms, and

one firm with both low and high earnings jump volatility.

In the pure stochastic volatility model, we find that there are systematic pricing errors

before earnings announcements and that there are predictable movements in implied spot

variance, Vt, around earnings dates. The pure stochastic volatility model cannot simul-

taneously price short dated options (which require a very high variance state) and longer

maturity options (which do not require a high variance state). We find the extension with
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jumps on earnings dates provides a substantial improvement in model performance. Around

earnings dates, the pricing errors in the extended model are roughly half of those in a pure

stochastic volatility model. Over the whole sample and for all maturities, the pricing errors

fall substantially, especially for short dated options. To frame this result, Bakshi and Cao

(2004) find no pricing improvement for at-the-money options when adding three additional

factors (jumps in returns, jumps in volatility or stochastic interest rates). The stochastic

volatility model, in an attempt to fit option prices around earnings announcements and

the rest of the year, fits both periods poorly. In the model with earnings jumps, the jump

component captures the movements around earnings announcements, freeing the stochastic

volatility components to fit option prices during the rest of the year much better.

The paper is outlined as follows. Section 2 reviews an extensive literature that ana-

lyzes issues related to deterministic jumps and asset prices. Section 3 introduces a general

deterministic jump model for option pricing and a simple extension of Black-Scholes incor-

porating earnings announcements, discusses the implications of earnings announcements

and derives near-closed form option prices for a model incorporating earnings announce-

ments. Section 4 investigates the implications and Section 5 concludes.

2 Related Literature

Before describing our modelling approach, it is important to recognize that there are a

number of papers that address issues related to earnings announcements and asset prices.

In this section, we briefly review some of the major contributions.

A number of papers use time series data to analyze how scheduled announcements effect

the level and volatility of asset prices. For individual firms, Ball and Brown (1968), Foster

(1977), Morse (1981), Kim and Verrecchia (1991), Patell and Wolfson (1984), Penman

(1984) and Ball and Kothari (1991) analyze the response of equity prices to earnings or

dividend announcements, focusing on the speed and efficiency with which new information

is incorporated into prices. Patell and Wolfson (1984) is of particular interest. They study

the response of individual equity prices to earnings announcements using transaction data

and find that most of the price response occurs in the first few minutes after the release.

This is important because we later argue that earnings announcements can be reasonably

modeled by a discontinuous component in the price process.
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In a time series model with state-dependent jumps, Maheu and McCurdy (2003) find

that many of the jumps they statistically identify occurred on earnings announcement

dates. For example, they report that 23% of the jumps for Intel Corporation occurred on

earnings dates. They introduce a model with randomly timed jumps and assume the jump

intensity increases on earnings dates. In the general model developed below, the variance

of jump sizes on earnings dates can change across earnings dates, and this implies that

their estimates of the impact of earnings announcements (based on a model with constant

variances) is a lower bound.

In this paper, we are primarily interested in the implications of earnings announcements

on option prices. Patell andWolfson (1979, 1981) provide early descriptive work on the time

series behavior of implied volatility around earnings announcements. They find that Black-

Scholes implied volatility increases before and decreases after earnings announcements.

Other papers that apply the Patell and Wolfson’s approach to different equity markets

include Donders and Vorst (1996), Donders, Kouwenberg, and Vorst (2000), and Isakov

and Pérignon (2001). Whaley and Cheung (1982) argue that the informational content of

earnings announcements is rapidly incorporated into option prices.

There are also a number of papers that analyze the impact of scheduled announcements

on non-equity options. Ederington and Lee (1996) analyze the response of options on

Treasury, Eurodollar, and foreign exchange futures to a number of different macroeconomic

announcements using an approach similar to Patell and Wolfson (1979, 1981). They find

that implied volatility increases on days without announcements and decreases after a

wide range of macroeconomic announcements. Bailey (1988) analyzes the response of S&P

500, gold, Treasury bond, and foreign exchange futures prices to weekly money supply

announcements and finds evidence that the announcements are important. Beber and

Brandt (2004) find that the risk-neutral skewness and kurtosis embedded in Treasury bond

futures options change around scheduled macroeconomic announcements, in addition to

documenting that implied volatility decreases after the announcements.

Our paper is closely related, at least on an intuitive level, to a growing literature using

accounting variable-based asset pricing models. The original models in Ohlson (1995) and

Feltham and Ohlson (1999) assume that the current equity prices were a linear function of

accounting variables such as abnormal current income. Ang and Liu (1999) extend these

models to general discrete-time affine processes, while Pastor and Veronesi (2003) build

a continuous-time model assuming geometric (as opposed to arithmetic) growth in the
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accounting variables. In Pastor and Veronesi (2003), investors learn about mean profitabil-

ity over time and the uncertainty regarding their forecasts is priced. If bσt is the current
uncertainty, then

log (Mt/Bt) = α0Xt + βbσ2t
where Mt is the market value of equity, Bt is the book value of equity and Xt includes

constants, accounting variables and forecasts. In Pastor and Veronesi (2003), bσt decreases
deterministically, but in a more general model it would be random and it is not unreasonable

to assume that most of the updating regarding bσt occurs on earnings announcement dates.
This implies that bσt, and in turn prices, jump on earnings dates and then there is a
relatively close relationship between Pastor and Veronesi (2003) and our model. Pastor

and Veronesi (2003) proxy uncertainty regarding profitability using firm age. Our empirical

work below extracts a market based estimate of the uncertainty at earnings announcements,

thus providing an alternative source of information about firm fundamental uncertainty.

3 Earnings announcements and option pricing models

Existing option pricing models assume that stochastic volatility and randomly timed jump

components drive equity returns. On (Ω,F ,P) , these models assume that the asset price,
St, and its stochastic variance, Vt, jointly solve:

d log (St) =

µ
rt + µt −

1

2
Vt

¶
dt+

p
VtdW

s
t + d

Ã
NtX
j=1

Zs
j

!
(1)

dVt = κv (θv − Vt) dt+ σv
p
VtdW

v
t + d

Ã
NtX
j=1

Zv
j

!
(2)

where Wt = (W
s
t ,W

v
t ) is two-dimensional Brownian motion, Nt is a counting process with

stochastic intensity λt, τj are the jump times, µt is the equity risk premium, Zs
j ∼ Πs

are the jumps in returns, Zv
j ∼ Πv are the jumps in volatility, and rt is the spot interest

rate.1 Duffie, Pan and Singleton (1999) develop the general affine class of models. Most

applications of these models focus on equity indices or options on equity indices (see, e.g.,

Andersen, Benzoni, and Lund (2001), Bates (2000), Pan (2002), Eraker, Johannes, and

1We do not consider Levy driven models, although it is clear that it is possible to incorporate deter-
ministic jumps into this class. The only complication occurs in time-changed models. In these models, we
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Polson (2003), or Eraker (2004)). To our knowledge, the only formal study that considers

options on individual equities is Bakshi and Cao (2004).

The response of equity prices to earnings announcements is different from the unpre-

dictable events in the model above because the timing of the information release is known in

advance, although the response of the underlying price to the event is not. Thus we assume

that equity prices have a deterministically timed jump occurring at the earnings release.

With discretely recorded prices, it is impossible to say with certainty if a given movement

is a jump, however, we feel this assumption is warranted for three reasons. First, it is

consistent with the recent literature. Existing work either explicitly assumes movements

generated by announcements are jumps (Piazzesi (2004) and Beber and Brandt (2004))

or finds statistical evidence that announcements can be identified as jumps in the context

of a jump-diffusion model (Johannes (2004) and Barndorff-Nielson and Shephard (2004)).

Second, since the early 1990s, almost all of the earnings announcements are released after

the close of the equity and options market. These announcements generate a visible discon-

tinuity in trading time: the market open the following morning is often drastically different

than the market close before the announcement. Third, even if earnings were announced

during trading hours, prices react very rapidly. Patell and Wolfson (1984) find that for

earnings announced during trading hours in the late 1970s, the bulk of the response occurs

in the first few minutes. Even if the effect lingered up to an hour, for the sake of argument,

from the perspective of pricing options expiring in weeks or months this is still a very short

time period and modeling these movements as jumps seems a reasonable approximation.

Our assumption of a jump is in contrast to Patell and Wolfson (1979, 1981)) who assume

that diffusive volatility is higher throughout the day of the announcement.

To formally model deterministically timed events, we assume there is a deterministic

counting process, Nd
t , counting the number of predictable events that occur up to time

t: Nd
t =

P
j 1[τj≤t] where {τj}j≥1 are increasing predictable stopping times. Intuitively,

a predictable stopping time is a phenomenon that “cannot take us by surprise: we are

can alter the activity rate by assuming that

Tt =

Z t

0

Asds+
PNd

t
j=1Zj

where As is a square-root diffusion process. The characteristic function of T is available in closed form
and the characteristic function of the asset prices is available by recursively solving ordinary differential
equations. We thank Peter Carr and Liuren Wu for helpful discussions related to this.
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forewarned, by a succession of precursory signs, of the exact time the phenomenon will

occur” (Dellacherie and Meyer (1978), p. 128). An inaccessible or random stopping time is

just the opposite: there are no precursory signs and thus the arrival is a complete surprise.

Unlike accessible stopping times, inaccessible stopping times and their associated point

processes have a continuous compensator and admit an intensity (a process λt is a stochastic

intensity of Nt if for a suitable regular function c, E0
hR t
0
csdNs

i
= E0

hR t
0
csλsds

i
andR t

0
λsds <∞).
The stochastic volatility model that we consider is given by

dSt = St [rt + ηsVt] dt+ St
p
VtdW

s
t + d

⎛⎝ Nd
tX

j=1

Sτj−
£
eZj − 1

¤⎞⎠ (3)

dVt = κv (θv − Vt) dt+ σv
p
VtdW

v
t ,

where Zτj |Fτj− ∼ π
¡
Zτj , τj−

¢
, cov (W s

t ,W
v
t ) = ρt, and Nd

t counts the number of earn-

ings announcements.2 Throughout, we assume the interest rate is constant, assume that

the Feller condition holds (θvκv > σ2v/2), and ignore dividends for notational simplicity.

Between jump times, the stock price and volatility diffuse, that is, they have continuous

sample paths with Brownian shocks. At a jump time, the stock price jumps by a random

size: ∆Sτj , Sτj −Sτj− = Sτj−
¡
eZj − 1

¢
. The jump sizes Zj can be most easily interpreted

as the jump sizes to log-returns: log
¡
Sτj/Sτj−

¢
= Zj.

Our model does not include randomly timed jumps in prices or in volatility for a num-

ber of reasons. First, we are primarily interested in the impact of earnings announcements

on option prices and, as we show below, the first-order effects of deterministically timed

jumps are on the term-structure of at-the-money implied volatility. These options are not

particularly sensitive to randomly timed jumps as randomly timed jumps in returns primar-

ily impact short dated out-of-the-money options and jumps in volatility have little effect

on the cross-section of option prices (see Broadie, Chernov, and Johannes (2004)). Bakshi

and Cao (2004) find similar evidence with individual equity options. They find that neither

jumps in returns nor jumps in volatility have any impact on pricing at-the-money options,

across the term structure. Thus, we focus on at-the-money options and ignore randomly

timed jumps. Second, at-the-money options are less subject to microstructure effects as

2We do not consider other predictable events such as mid-quarter earnings updates or stock splits,
although these do have implications for option prices.
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they tend to trade more heavily than out-of-the-money options for a given maturity. All

option prices contain non-trivial bid-ask spreads, but the bid-ask spreads of out-of-the-

money options are an order of magnitude higher than the spreads of at-the-money options.

Third, as we discuss below, estimation of models with deterministic jumps requires daily

data on multiple option prices over reasonably long time spans. This is extremely com-

putationally burdensome and economizing on parameters, by excluding randomly timed

jumps, is important.

Finally, there is little evidence for extreme non-normalities in the unconditional dis-

tribution of returns based on historical time series of equity returns. Unlike equity index

returns which have a very high kurtosis and skewness (for the S&P 500 index, around 50

and -3), Appendix A shows that the individual equities that we consider have no noticeable

negative skewness and only a modest amount of kurtosis (with the exception of Apple).

These levels of kurtosis can be generated by a stochastic volatility model. The explanation

for the lack of non-normalities is intuitive: with annualized volatility between 50 and 75

percent, it is easy to generate relatively large movements without randomly timed jumps.

Moreover, Bakshi, Kapadia, and Madan (2003) document that individual equities have

very little risk-neutral skewness, which shows that jumps in returns play a less prominent

role for individual equities vis-a-vis the indices.

To price options, we construct a measure, Q, under which the discounted gains are
martingales, which implies the absence of arbitrage. The pricing approach is based on

Piazzesi (2000). The martingale restriction requires the usual assumption that the drift

of St under Q is equal to Strt (ignoring, for the moment, dividends for simplicity). This

assumption ensures that between deterministic jump times, the discounted gains process is

a Q−martingale. At a jump time, interest rate accruals do not matter,3 and thus for prices
to be a martingale, we require that EQ £Sτj |Fτj−

¤
= Sτj− which is that the expected jump

size in the asset price is zero (EQ £∆Sτj |Fτj−
¤
= 0). Given the jump specification above,

this requires that EQ £eZj |Fτj−
¤
= 1 which implies that at a deterministic time, there can

be no expected capital gains.

3If βt = exp
³R t

0
rsds

´
, then by the definition of the integral, βt = βt− even if interest rates are a

discountinuous function of time. This implies that EQ
h
Sτj
βτj
|Fτdj −

i
=

Sτj−

βτj−
is equivalent to EQ

£
Sτj |Fτj−

¤
=

Sτj−.
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If we define dQ
dP = ξT , the density process, ξt, solves

dξt = −ϕtξtdWt + ξt−J
ξ
t dN

d
t ,

or

ξt = ξ0 exp

µ
−1
2

Z t

0

ϕs · ϕsds−
Z t

0

ϕsdWs

¶YNd
t

j=1
Xξ

τj
,

where ξ0 = 1, ϕt = (ϕs
t , ϕ

v
t ) are the prices of W

s
t and W v

t risk, ∆ξτj = ξτj − ξτj− =

ξτj−J
ξ
τj
, and we define ξτj = ξτj−X

ξ
τj
as the jump in the pricing density. To ensure that

ξt is a P−martingale, ϕ and Xξ must satisfy mild regularity conditions. For the diffusive

components, we assume essentially affine risk risk premiums of the form ϕs
t = ηsVt and

ϕv
t =

−1√
1−ρ2

³
ρηs
√
Vt +

µQt −µPt
σv
√
Vt

´
where µQt = κQ

¡
θQ − Vt

¢
and µPt = κ (θ − Vt). A sufficient

condition for this to be valid is that the origin is not attainable under either P or Q (see,
Cheridito, Filipovic, and Kimmel (2004)). Thus we do not require that the risk neutral

and objective measure drifts share common parameters.

For the jump component, we require that Xξ
τj
> 0 (to guarantee that ξt > 0) and that

EP
£
ξτj |Fτj−

¤
= ξτj− or E

P
h
Xξ

τj
|Fτj−

i
= 1 (which guarantees that ξt is a P−martingale at

jump times). If we assume the jump sizes in the density process are equal to the ratio of

jump size densities,

Xξ
τj
=

πQ
¡
Zτj , τj−

¢
πP
¡
Zτj , τj−

¢ ,
then by construction EP

h
Xξ

τj
|Fτj−

i
= 1. These intuitive conditions are extremely mild,

only requiring that the jump densities have common support, since πP and πQ are both

positive.

The change of measure for jump sizes occurring at deterministic times is extremely

flexible. Unlike diffusion models where only the drift can change (subject to regularity

conditions), in a jump model there are virtually no constraints other than common support.

This implies that, for example, certain state variables could appear under one measure that

are not under the other measure or the functional form of the distribution could change.

We assume that the jump sizes are state independent and normally distributed under Q :
Zj ∼ πQ = N

³
−1
2

¡
σQj
¢2
,
¡
σQj
¢2´
. This flexibility has the cost that it does not require

us to make assumptions about πP and therefore breaks the close relationship (common

in diffusion models) between the parameters indexing the stochastic differential equations

under each measure and risk premiums.
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Under Q,

dSt = Strtdt+ St
p
VtdW

s
t (Q) + d

⎛⎝ Nd
tX

j=1

Sτj−
£
eZj − 1

¤⎞⎠
dVt = κQv

¡
θQv − Vt

¢
dt+ σv

p
VtdW

v
t (Q)

and it is clear that under the assumptions given above, discounted gains are a martingale

for t ∈ [0, T ]. For pricing at-the-money options, the total risk neutral variance of equity
returns is important and it is given by the quadratic variation (QV ): for a partition {tj}
of [0, T ],

QV (T ) = lim
k∆nk→0

nX
j=1

¯̄̄̄
log

µ
Stj
Stj−1

¶¯̄̄̄2
=

Z T

0

Vsds+

Nd
TX

j=1

Z2j .

The expected total variability is

EQ
0

⎡⎣Z T

0

Vsds+

Nd
TX

j=1

Z2j

⎤⎦ = θQ +
V0 − θQ

κQ

³
eκ

QT − 1
´
+

Nd
TX

j=1

¡
σQj
¢2
+

µ
1

2

¡
σQj
¢2¶2

. (4)

From this, it is clear that jumps on earnings announcement dates allow for a very rich term

structure of expected volatility. In contrast to a pure stochastic volatility which has either

an upward or downward sloping term structure, deterministic jumps can generate a wider

range of shapes, in particular, a hump-shaped term structure.

The equity price model generates an incomplete market, due to the earnings announce-

ment jumps. The incompleteness arises due to the inability to hedge the continuously

distributed jumps. In general, to perfectly hedge jumps, one requires as many hedging

instruments as the cardinality of the jump size distribution. With normally distributed

jumps, this requires an uncountably infinite number of hedging instruments. Due to the

incompleteness, the measure Q is not unique. In order to identify a measure consistent

with the absence of arbitrage, we index the measure by the risk-neutral parameters of

the process and then use option prices to estimate the parameters. This is the common

approach in models with jumps.
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3.1 Pricing Options

To price options, we need to evaluate the conditional transform of log (ST ). By the affine

structure of the problem, we have that for a complex valued c,

ψ (c, St, Vt, t, T ) = EQ
t [exp (−r (T − t)) exp (c · log (ST ))]

= exp (α (c, t, T ) + β (c, t, T )Vt + c · log (St))

where β (c, t, T ) and α (c, t, T ) are given by:

βv (c, t, T ) =
c (1− c)

£
1− eγv(T−t)

¤
2γv −

¡
αv − κQv

¢
[1− eγv(T−t)]

α (c, t, T ) = α∗ (c, t, T )−
Nd
TX

j=Nd
t +1

c

2

¡
σQj
¢2
+

c2

2

¡
σQj
¢2

where

α∗ (c, t, T ) = rτ (c− 1) + −κ
Q
v θ

Q
v

σ2v

∙¡
αv − κQv

¢
τ + 2 ln

µ
1− αv − κQv

2γv
(1− eγvτ )

¶¸
,

τ = T − t, γv =
£¡
σvρc− κQv

¢
+ c (1− c)σ2v

¤1/2
, and αv = γv + σvρc.

The transform of log(St) with deterministic jumps has a particularly simple structure

under our assumptions. To see this, note that

log (ST ) = log (St) +

Z T

t

µ
r − 1

2
Vs

¶
ds+

Z T

t

p
VtdW

s
t +

Nd
TX

j=Nd
t +1

Zj

= log
³eST´+ Nd

TX
j=Nd

t +1

Zj

where log
³eST´ is the traditional affine component. If we assume that the deterministic

jumps are conditionally independent of the affine state variables, then the transform of

log (ST ) is just the product of the traditional affine transform and the transform of the
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deterministic jumps:

EQ
t [exp (−r (T − t)) exp (c · log (ST ))]

=EQ
t

h
exp (−r (T − t)) exp

³
c · log

³eST´´iEQ
t

⎡⎣exp
⎛⎝c

Nd
TX

j=Nd
t +1

Zj

⎞⎠⎤⎦
=exp [α∗ (t) + β (t) · Vt + c · log (St)] exp

¡
αd (t)

¢
where EQ

t

h
exp

³
c
PNd

T

j=Nd
t +1

Zj

´i
= exp

¡
αd (t)

¢
for some state-independent function αd ,

α∗ (t) = α∗ (c, t, T ), and β (t) = β (c, t, T ). This implies that only the constant term in the

exponential is adjusted. Thus, option pricing with earnings announcements requires only

minor modifications of existing approaches.

This pricing model has an additional implication of note. Since only the total number

of jumps over the life of the contract matter, the exact timing of the jumps does not,

provided that the distribution of jump sizes does not change. It is not hard to show that

if, for example, there is a probability p that they announce on a given date and (1− p)

that they announce the following day, that the transform is unchanged provided the jump

distribution does not change.

3.2 Black-Scholes with deterministic jumps

To gain intuition on the model, consider a simple modification of the Black-Scholes model

incorporating deterministically timed jumps:

ST = S0 exp

⎡⎣µr − 1
2
σ2
¶
T + σWT (Q) +

Nd
TX

j=1

Zj

⎤⎦ (5)

where Zj = −12
¡
σQj
¢2
+ σQj ε and ε ∼ N (0, 1). Under these assumptions, discounted

prices are martingales. Notice that the prices are a finite, non-random mixture of normal

distributions.

The price of a European call option struck at K, expiring at T , assuming a constant

interest rate is given by:

BS
¡
x, σ2T , r, T,K

¢
= EQ £e−rT (ST −K)+ |S0 = x

¤
14



where BS is the usual Black-Scholes pricing function,

BS
¡
x, σ2T , r, T,K

¢
= xΦ (z)−Ke−rTΦ

³
z − σT

√
T
´

(6)

where

z =
log (x/K) + rT + σ2TT/2

σT
√
T

,

and σ2T is the annualized total volatility over the life of the option, σ
2
T = σ2+ 1

T

PNd
T

j=1

¡
σQj
¢2
.

By inspection, equation (6) implies that the Black-Scholes implied volatility is σ2T . This

extension of Black-Scholes, despite its simplicity, provides a number of interesting time

series and option pricing implications that differ from traditional models and also provides

the intuition for estimators of σQj .

Deterministic jumps introduce a strong, rational predictability in implied volatility. To

see this, assume that there is a single announcement at time, τ, t < τ < T . The Black-

Scholes implied volatility is given by σ2t = σ2 +
(σQj )

2

T−t . From this, we can deduce three

implications. First, the moment before an earnings release, annualized implied volatility

is σ2τ− = σ2 +
(σQj )

2

T−τ and after the announcement it is σ2τ = σ2. This implies there is a

discontinuous decrease in implied volatility immediately following the earnings release. In

Section 4.1 we use this implication to estimate σQj based on the changes in implied volatility

before and after announcements. Second, if we analyze the behavior of implied volatility

as a function of maturity, (T − t), we see that volatility drastically increases leading into

an announcement: it increases at rate (T − t)−1 as the maturity decreases. In fact, the

implied volatility just before an announcement will “blow-up” if the maturity is just after

the earnings announcement. Third, there are also term structure implications. Holding

the number of jumps constant, Black-Scholes implied volatility decreases as the maturity

of the option increases. Thus longer dated options will have lower Black-Scholes implied

volatilities than shorter dated options.

To see these effects, first consider the increase before and decrease after the earnings

announcement. To get a general sense of the effect, Figure 1 displays Black-Scholes implied

volatility extracted from at-the-money options on Intel Corporation from 1996 through

2002. The circles indicate dates on which earnings were announced. From this figure, it is

clear that implied volatility dramatically increases prior to and falls drastically immediately

following the release of quarterly earnings. Again, the magnitude of the increase and

decrease depends on the maturity of the option relative to the earnings date. Patell and
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Figure 1: Black-Scholes implied for the nearest maturity at-the-money call option for Intel

Corporation from January 1996 to December 2002. The circles represent days on which

earnings announcements were released.

Wolfson (1979, 1981) first hypothesized this pattern and found evidence in support of its

presence in the data.

To see the term structure implications, Figure 2 plots the term structure of Black-Scholes

implied volatility assuming σ = 30%, σQj = 10%, and that a single earnings announcement

occurs in one week. The figure plots σ2t = σ2 +
(σQj )

2

T−t as a function of T − t, and shows a

very strong declining term structure of volatility prior to an announcement. The rapidly

decreasing term structure before an announcement is a very strong testable implication

and it will also provide a method to estimate σQj (see Section 4.1).

At this point, it is important to compare our model to the model in Patell and Wolfson

(1979, 1981). Their argument relies on an observation in Merton (1973) that the Black-
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Figure 2: This figure shows the effect of a deterministic jump on Black-Scholes implied

volatility. The figure plots σBS where
¡
σBST

¢2
= σ2 +

(σQj )
2

T−t for σ = 30%, σQj = 10%,

t = 1/52 and for maturities from two weeks to six months.

Scholes model can handle deterministically changing diffusive volatility. Instead of assum-

ing volatility is constant, they instead assume that volatility, σ (t) , is a non-stochastic func-

tion of time. The Black-Scholes implied volatility at time zero of an option expiring at time

T is
¡
σBST

¢2
= 1

T

R T
0
σ2 (s) ds. Patell and Wolfson essentially decompose volatility into two

components, assuming σ2 (s) = σ2+σ2E1[τE≤s≤τE+1], which implies that
¡
σBST

¢2
= σ2+ 1

T
σ2E.

Clearly this delivers the result that annualized volatility increases prior to and decreases

after an earnings release and that changes in implied volatility of the same contract before

and after the announcement are informative about σE.

Despite the fact that Patell and Wolfson’s model generates similar implications in a

simple extension of the Black-Scholes model, there are crucial differences. Patell and Wolf-

son model asset prices as continuous functions of time with increased volatility around

earnings announcements, whereas in our model, there is a discontinuity. Since earnings

announcements are released after the market’s close, it is clear that these movements will

often lead to a jump in trading time. It also implies that Patell and Wolfson’s model is a
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complete market, where options can be perfectly hedged by trading in only the underlying

equity and a money market account. These implications are clearly counterfactual given

the large differences observed between market close and open prices subsequent to earn-

ings announcements. Moreover, Patell and Wolfson’s (1979, 1981) model appears to be in

contrast to the findings in Patell and Wolfson (1984), which documents the reaction of the

stock prices to earnings is extremely rapid.

Unlike Patell andWolfson’s model, it is straightforward to incorporate stochastic volatil-

ity into our model. An extension of Patell and Wolfson incorporating stochastic volatility

requires deterministic timed jumps in stochastic volatility with deterministic sizes, but it is

very difficult to price options in this model as the characteristic function must be computed

recursively, as opposed to our model which possesses a closed form characteristic function.

Finally, Patell and Wolfson’s model does not allow for risk premiums associated with the

earnings volatility, as it is a diffusive component. Our jump based model allows for flexible

risk premium specifications, as the absence of arbitrage places few constraints on the jump

distributions.

Next, consider the distributional features of returns under the objective measure. As-

suming mean zero, normally distributed deterministically timed jumps, the distribution of

the log-returns conditional on the parameters is normal,

log

µ
ST
S0

¶
|σ2,

©
σ2j
ªNd

T

j=1
∼ N

⎛⎝µT, σ2T +

Nd
TX

j=1

σ2j

⎞⎠ ,
as a sum of normal random variables is normal. Clearly, deterministic jumps generate

predictable heteroscedasticity. Also, since the earnings driven jump-volatility can vary

over time
¡
σ2j 6= σ2i

¢
, this implies that, in the words of Piazzesi (2002), that time matters.

This time-inhomogeneity contrasts with typical models which imply that the distribution

of returns, conditional on current Vt is always the same shape.

Third, unlike models with jumps based on compound Poisson processes, the determinis-

tic jump component does not necessarily generate conditional, distributional asymmetries

or fat tails. For example, in Merton’s (1976) model, the distribution of returns is a discrete

mixture of normals, where the mixing weights are determined by the Poisson probabilities.

Naturally, if the earning’s jump volatility parameter were unknown or if the jump sizes

were non-normal, then the distributions would generally be non-normal. This has strong

implications for the findings in Beber and Brandt (2003).
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Finally, as we show in Section 4.1, it is possible to estimate, ex-ante, σQj from option

prices. This provides an ex-ante view of the uncertainty embedded in the announcement. In

most studies of earnings announcements, or more generally macroeconomic announcements,

high frequency data is used to analyze the response of prices to news. “News” is typically

measured as standardized deviations from forecasts. This, while informative, is an ex post

analysis and does not give a sense of what investors expect. It also requires assumptions on

the forecast variance (typically assumed to be constant across news releases) and assumes

the coefficients measuring the responses are constant across time.

3.3 Discussion

3.3.1 Extensions

It is straightforward to extend our model in a number of interesting directions. In this

section, we briefly consider a few examples to show the flexibility of our modelling approach.

The most obvious way to generalize the model is with more flexible jump distribu-

tions. The normal distribution used in the previous section does not generate any condi-

tional skewness or kurtosis. Discrete mixture distributions are the easiest way to introduce

asymmetries and fat tails. To this end, consider a simple example with a mixture of two

distributions where the jump size is given by

Zj = 1jZ
u
j + (1− 1j)Zd

j

where 1j is a Bernoulli random variable which equals one with probability p
Q
j and zero with

probability
¡
1− pQj

¢
.When 1j = 1, interpreted as “good news” the random jump size is Zu

j ,

and Zd
j is the random jump size in the other state. Although the jump size distribution and

Bernoulli probabilities could depend on j, we omit this subscript for notational simplicity.

For pricing purposes, we only require that the Laplace transform of the total jump can

be easily computed either explicitly or numerically. The Laplace transform of a Bernoulli

mixture is the probability weighted sum of the transforms of the underlying distributions,

ϕZj(c) = pQ · ϕZuj
(c) + (1− pQ) · ϕZdj

(c),

where ϕz(t) is the Laplace Transform of a random variable z, a for simplicity, we consider

a real-valued c. A particularly convenient choice is a combination of exponential distribu-

tions which is parsimonious and delivers a closed form Laplace transform. For a positive

19



exponential distribution,

ϕZ(t) =
1

1− cβQu

where βQu > 0 is the mean of the jump size. A negative exponential jump has the transform

ϕZ(−c) = 1

1+cβQd
where −βQd < 0 is the mean of the negative exponential. Under Q, the

expected jump in the stock price must equal 1, EQ £eZj |Fτj−
¤
= 1, which is equivalent to

ϕZ(1) = 1 :

ϕZ(1) = pQ · 1

1− βQu
+ (1− pQ) · 1

1 + βQd
= 1.

Since there are three free parameters,
¡
pQ, βQd , β

Q
d

¢
, this equation holds if, for example,

pQ =
βQd (1− βQu )

βQd + βQu
.

This binomial example is a special case of a more general multinomial distribution which

allows for mixture of N distributions. More general mixtures could incorporate a chance

that there is no jump as well.

The second extension that we consider incorporates jumps in square-root state variables

at deterministic times. Consider the following variant of a model proposed by Duffie, Pan

and Singleton (2000) and Pan (2002):

dSt = St [rt − δt] dt+ St
p
VtdW

s
t + St−

¡
eZt − 1

¢
dNd

t

dVt = κv (θt − Vt) dt+ σv
p
VtdW

v
t + Zv

t dN
d
t

dθt = κθ (θθ − θt) dt+ σθ
p
θtdW

θ
t + Zθ

t dN
d
t ,

where the long-run mean of stochastic volatility is now a square-root state variable. In

a traditional affine framework, the jump distribution must be state independent and the

jumps in Vt and θt have to be positive to insure the existence of a solution to the SDE.

Since the jump times are unknown, even small negative jumps cannot be allowed because

the jump could occur when Vt or θt are arbitrarily close to zero and the distribution of

sizes is state independent. In a deterministic jump model, the jump distribution can be

state dependent, depending on Vτj− or θτj−, which allows for negative and positive jumps.

For example, provided that Vτj , θτj > 0, all jump distributions are admissible. Since the

distribution can vary over time, there could be periods in which the jumps are only positive
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or only negative. Bakshi and Cao (2004) argue that there might be negative jumps in Vt.

State-dependent jumps in volatility complicates option pricing only slightly as the loadings

in the transform must be computing recursively as the jump distribution is not independent

of the state variables.

This model is a special case of a more general model with regime-switches triggered

on deterministic jump dates. Unlike traditional regime-switching models which commonly

assume state-independent transition probabilities and jump sizes, a deterministically timed

regime-switching model is far more flexible. This type of a specification, however, would

likely be more useful in a term structure or foreign exchange setting.

3.3.2 Pricing and hedging with deterministic jumps

The model above has a number of interesting implications for pricing, hedging and risk

premiums. Although we do not pursue them directly in this paper,

In asset pricing models, it is common to assume that the investors know the parameter

values. One justification for this is that the investors have observed prices over a long

time span and based on this data, they obtain accurate estimates of the parameters and

therefore one can safely ignore estimation risk. However, in the setting of deterministic

jumps, each earnings announcement has its own jump distribution and there is no reason

to believe that the distribution or the parameters indexing the distribution are constant

over time. If this is the case, it raises an interesting issue: how would investors learn

about the parameters of the jump distribution? Option prices are informative regarding

the risk-neutral jump parameters, but they do not provide information on objective measure

parameters. Potential sources of information about these parameters are time series models

of firm fundamentals and analyst forecasts.

Given that the usual justifications for known parameters do not hold for earnings an-

nouncements, how should investors price equities and options? Since there is only one

earnings announcements to learn about the parameters indexing the jump distribution,

there is no dynamic learning about the jump parameters over time. Thus, a Bayesian

approach does not apply and its seems natural to price the stock and the options in a

“robust” manner, following Andersen, Hansen, and Sargent (2003). In this case, investors

are worried about worst-case scenarios and there are two dimensions along which investors

can be robust: robust against parameter (σQj ) uncertainty and robust against uncertainty
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in the distribution of the jump sizes. Johannes and Williams (2004) provide results along

these dimensions.

Earnings announcements and deterministic jumps provide an interesting laboratory to

study the hedging of jumps. In diffusive models, options can be perfectly hedged with

continuous trading in a small number of securities. In jump models with randomly timed

arrivals, hedging of jumps requires hedging both the timing of the jumps and their sizes.

In a deterministic jump model, the timing is not random and the focus is on hedging the

discontinuity in the sample path. As in traditional jump-diffusion models (e.g., Merton

(1976)), the jump distribution is continuous which implies that the jump sizes cannot

be hedged with a finite number of instruments, despite the fact that the jump times are

known. However, it is possible to derive hedge portfolios under common metrics (minimize

variance, expected loss, etc.) and it is likely that deterministically timed jumps can be

hedged reasonably well using both the underlying and a single other option contract.

4 Empirical Evidence

To analyze the effect of earnings announcements on options, we obtained closing prices on

individual equity options from OptionMetrics for the period from the beginning of 1996 to

the end of 2002. OptionMetrics reports prices for equity options traded on the Chicago

Board of Options Exchange. A number of other papers have used this data source, see,

for example, Carr and Wu (2004). A disadvantage of this data is that it is sampled only

daily. High frequency, intradaily data would be preferred as it would allow one to analyze,

for example, how quickly option prices adjust to the information embedded in earnings

announcements. Unfortunately, since the close of the Berkeley Options Database in 1996,

the CBOE time and sales data is not available and we have to settle for daily data.

The OptionMetrics data consists of closing prices for options and then converts these

prices using a binomial tree to correct for early exercise and dividend payments into implied

volatilities. We consider only call options because calls on individual equities are more

heavily traded than puts and they minimize the American exercise feature. Moreover, we

use the adjusted implied volatilities to convert the American prices to European prices

and then analyze the European prices and/or their implied volatilities. Broadie, Chernov,

and Johannes (2004) provide evidence that this provides an accurate correction for the
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American feature in models with jumps and stochastic volatility.

Out of the universe of firms, we use the following criterion to select 20 firms for analysis.

For the period from 1996 to 2002, we found the 50 firms with the highest dollar volume

which traded in each year. Next, we filtered out firms with an average dividend rate of

more than 0.35 percent. The focus on low dividend stocks provides a number of benefits: it

minimizes the American feature, it avoids problems associated with pricing options on high

dividend stocks, and low-dividend stocks will likely have high earnings uncertainty as they

are “growth” stocks. Unlike equity indices whose dividend payments are usually modelled

as continuous. for individual equities, dividends result in a jump in the stock price. For

these remaining firms, we computed the average dollar volume of these remaining firms

and took the twenty-highest remaining firms.4

The selection criterion resulted in the following firms, with their ticker symbols in

parentheses: Apple Computer Inc. (AAPL), Adobe Systems Inc. (ADBE), Altera Corp.

(ALTR), Applied Materials Inc. (AMAT), Amgen Inc. (AMGN), Cisco Systems Inc.

(CSCO), Dell Computer Corp. (DELL), E.M.C. Corp. (EMC), Intel Corp. (INTC),

KLA Tencor Corp. (KLAC), Microsoft Corp. (MSFT), Micron Technology Inc. (MU),

Maxim Integrated Products Inc. (MXIM), Novellus Systems Inc. (NVLS), Oracle Corp.

(ORCL), PMC Sierra Inc (PMCS), Peoplesoft Inc (PSFT), Qualcomm Inc. (QCOM),

Sun Microsystems (SUNW), and Xilinx (XLNX). With the exception of AMGN which is

a pharmaceutical company, all of the firms are in technology related industries. Apple,

Dell, and Sun are computer makers; Adobe, Microsoft, Oracle and PeopleSoft are software

companies; and Altera, Applied Materials, Intel, KLA Tencor, Micron, Maxim, Novellus,

PMC Sierra, and Xilinx are semiconductor companies. The fact that the high volume,

low-dividend stocks are technology stocks is not surprising.

We obtained earnings dates from Compustat and the exact timing of the release from

First Call. The earnings date is defined as the last closing date before earnings are an-

nounced. If earnings are announced after hours or before the open of the following day, the

earnings date is defined as the close of the previous day. There were only five announce-

ments in our sample that occurred during the market hours. Most of the announcements

were after the market close instead of before the market open on the following day.

4One of the firms in the top 20, AOL, was discarded. AOL had major merger and acquisition activity
over the sample which has a prominent effect on implied volatilities, see Subramanian (2004). To avoid
jointly modeling mergers and earnings announcements, we discarded AOL from the sample.
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The data that we have provides the actual date of the release. For most of the firms,

the dates occur in a very predictable pattern. For example, Intel announces earnings in

the second week following the end of the quarter. Based on our data, it is not possible to

generically confirm that the actual earnings dates were the exact expected date. However,

there are three factors that lead us to believe this is not an issue. First, Bagnoli, Kross,

and Watts (2002) find that from 1995 to 1998, there was an increase in the number of firms

announcing on time and that large firms with active analyst coverage tend to miss less

than smaller firms. For example, over all firms in 1998, more than 80 percent of the firms

released earnings on the expected date. Second, for each firm, we searched in Factiva for

each earnings announcement to find evidence of missed dates and did not find any evidence

of reported missed earnings dates for our firms. Given our short sample and the large size

of the firms in our sample, this is not a surprise. Third, as mentioned above, the exact

timing does not matter if there is uncertainty over the date, but not the distribution of the

jump sizes.

4.1 How important are earnings?

4.1.1 Estimates from a Black-Scholes analysis

Before analyzing a formal stochastic volatility model, we use the extension of the Black-

Scholes model incorporating deterministic jumps to obtain estimates of σQj . We use two

different approaches to estimate σQj : one based solely on ex-ante information in the term

structure of implied volatility and the other based on the time series of implied volatilities

around earnings announcement dates. These estimates are important for their simplicity:

they do not require complicated estimation and can be obtained without large historical

databases.

The term structure method uses the information in the implied volatility of two differ-

ent maturities that both expire after a quarterly earnings announcement, but before the

following quarter’s announcement. With a single earnings announcement prior to maturity,

the Black-Scholes implied volatility of an option with Ti days to maturity (measured in frac-

tions of years) is
¡
σBSTi

¢2
= σ2+ 1

Ti

¡
σQ
¢2
, and for T1 < T2, we have that

¡
σBST1

¢2
>
¡
σBST2

¢2
.5

This decreasing term structure implication was displayed in Figure 2. Under this condition,
5This is also robust to jumps in returns, provided the jumps in returns are i.i.d. To see this, note

that in Merton’s (1976) model, Black-Scholes implied volatility of an at-the-money option is constant and
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we can solve for σ and σQ.We denote this term structure estimator as σQterm and it is given

by ¡
σQterm

¢2
=

¡
σBST1

¢2 − ¡σBST2

¢2
1
T1
− 1

T2

.

We also report
q
T−11

¡
σQterm

¢2
/
¡
σBST1

¢2
as a measure of the proportion of total volatility

due to the earnings release.

This estimator requires the implied volatility from two maturities prior to the earnings

announcement. To obtain this, we select the two nearest-to-the-money call options for

each of the three nearest expiration cycles. We then select the first two maturity cycles,

discarding a maturity cycle that expires in less than five days. The liquidity of very short

time-to-maturity options is low and the bid-ask spreads are relatively large, so we exclude

those contracts. Contracts for which OptionMetrics has a zero implied volatility value or

zero trading volume are also naturally excluded. For these maturity cycles, we take the two

call options which are closest to maturity and average the two implied volatilities to obtain

a composite implied volatility for each maturity. As noted in Bakshi, Kapadia, and Madan

(2003), individual firms have very flat implied volatility curves so this has just guarantees

that we have an implied volatility of the at-the-money if the current stock price is between

the two closest strikes.

The time series estimator of σQ uses changes in implied volatility around the earnings

announcement dates. Define σBSt,Ti
as the Black-Scholes implied volatility on date t of an

option expiring in Ti days. If there is an earnings announcement after the close on date t (or

before the open on date t+ 1), then the implied volatility j−days after the announcement
is
¡
σBSt+j,Ti−j

¢2
= σ2. The changes provide an estimator of the earnings jump variance based

on the time series: ¡
σQtime

¢2
= Ti

³¡
σBSt,Ti

¢2 − ¡σBSt+1,Ti−1
¢2´

,

where σQtime denotes the estimator based on the time series changes. We report estimation

results for j = 1, but we have also computed it for j = 2 and 5 and the results are similar.

We also report the proportional of total volatility based on this estimate. Patell and

Wolfson (1981) and Ederington and Lee (1996) use a related statistic to measure the drop

approximately equal to

σ2 + λ
¡
µ2J + σ2J

¢
+
1

Ti

¡
σQ
¢2

which is the total volatility.
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in implied volatility that occurs after the announcement.6 We use the filtering procedure

to generate option observations described in the previous paragraph.

The following example illustrates the estimators. On July 15, 1997 Intel released earn-

ings after the market closed. The first three options expired 0.0198, 0.0992, and 0.2778 years

(roughly 5, 25 and 70 business days) and the Black-Scholes implied volatilities were 71.15%,

45.19%, and 41.40%. In the late 1990s, options typically traded the first two months (serial

months) and then the next maturity was the quarterly contract. In this example, there was

a July, August and then October expiration. The term structure estimator is σQterm = 8.6%.

The implied volatility of the short option falls to 42.96% the day after the announcement

and the time series estimator is therefore σQtime = 7.2%. This example is very common with

both estimators telling a similar story, even though the term structure estimator only uses

ex-ante information while the time series estimator uses ex-ante and ex-post.

Both of the measures are imperfect if the simple extension of the Black-Scholes model

is not a reasonable approximation. Even ignoring earnings announcements, it is clear that

individual equities have time-varying and stochastic volatility. If volatility is very volatile,

stochastic volatility creates obvious problems for the previous estimators. For the term

structure estimators, stochastic volatility would generally result in an upward or downward

sloping term structure depending on Vt and θv. This implies that different maturities

have different Black-Scholes implied volatilities, irrespective of earnings announcements.

Similarly, for the time series estimators, there are periods of time when volatility increases

due to a large Brownian shock, and the estimate of
¡
σQtime

¢2
will be negative. If, however,

the effect of earnings announcements is very large, then the earnings effect swamps the

potential effect of stochastic volatility.

For both metrics, about 1 out of 9 earnings announcements resulted in a negative

estimate. In these cases, we zeroed out the estimator and for each company, we report the

number of times this occurs. We have identified two issues which result in the inability to

use the simple extension of Black-Scholes to estimate σQ: data problems (option expiration

very close to the earnings announcement date) and other microstructure effects such as stock

splits, mergers, and acquisitions. More than half of the zeroed out options occur because

6Patell and Wolfson (1981) also develop a time-series estimator to track the increase in implied volatility
prior to the announcement, which, when propertly scaled, could be used to deliver another estimate of
σQ. We do not use this approach as it is requires an assumption that diffusive volatility is constant over
relatively long time spans, in their work, 20 business days, and the moneyness of the options do not change.
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the short dated option gets filtered out as option expiration is very close to an earnings

release. To see what happens, consider the following example, Intel around the July 13, 1999

earnings announcement. The shortest maturity option expired on July 16, so it was filtered

out. The next two maturities were one month and three months with implied volatilities

of 48.09% and 48.28%. Since
¡
σBST1

¢2 ≯ ¡σBST2

¢2
, it is not possible to construct a positive

estimate from the term structure method. The slight increase in implied volatility could

be caused by stochastic volatility or other microstructure effects. An upward sloping term

structure, especially at these relatively long maturities is not surprising and is consistent

with a stochastic volatility model. The implied volatility of the second option fell to 43.92

the day after the announcement, resulting in a time series estimate of σQtime = 6.4% which

shows that the longer dated option still contains information about the volatility of the

earnings jump.

Many of the companies (e.g., Apple, EMC, Intel, Novellus, and Sun) announce earnings

in the second or third week after the end of the quarter which means that the nearest

maturity option is very often filtered out and the nearest maturity option has more than

three weeks to maturity. This results in options with relatively long maturities being used to

estimate the earnings jump, and the situation of the previous paragraph occurs. If the true

model is a stochastic volatility model, both the time series and term structure estimators

work well if short-dated options are available. If one relies on longer dated options, the

Black-Scholes based estimators can give poor estimates if Vt is drastically higher or lower

than θ. It is important to note it is rarely the case (about 1 in 20 earnings dates) that we

cannot estimate volatility if the short-dated option is available. The fact that it is possible

to construct reasonable estimates in most cases points to the fact that the earnings effect

is so large that is dwarfs any stochastic volatility effects.

There are two other causes of the inability to estimate σQ in the simple Black-Scholes

model. First, many of the firms in the sample had stock splits which resulted in spikes

in implied volatility for options expiring after the split. This is especially true in 1998,

1999, and 2000. For example, AMAT, INTC, and MSFT split 4 times, CSCO, ORCL, and

SUNW split 5 times, and DELL split 6 times over the sample. Implied volatility increases

after a stock split, as documented in Sheikh (1989), and this is related to a curious finding

in Ohlson and Penman (1985), who find that that after a stock split, the volatility of stock

returns is higher than before the stock split. Based on Sheikh (1989), it appears that the

option market correctly incorporates the fact that the underlying stock volatility increases

27



after the stock split, although it is difficult to motivate why this increase would occur in

the first place.

Second, many of the firms were involved in mergers and acquisitions. As shown in

Jayaraman, Mandelker, and Shastri (1991) and Subramanian (2004), pre-announced merg-

ers and acquisition, and the risk they might be canceled, generate predictable behavior in

implied volatility, with implied volatility falling after the merger. In our setting, this can

result in longer dated options having a higher Black-Scholes implied volatility than shorter

dated options that do not span the merger date.

Given these caveats, Tables 1 and Table 2 summarize the earnings jump volatility

estimates for the 20 firms in our sample using the term structure and time series methods,

respectively. For each firm, there were 28 earnings dates and we report the number of

dates on which we could not estimate σQ and summary statistics of the estimates for each

company over time (mean, median, quantiles, and fraction of total volatility explained).

There are a number of notable results.

First, the estimates are quite large, both statistically and economically. For both ap-

proaches, the estimates are on the order of 10 percent. The 75 percent quantile implies

that the expected volatility can be enormous: an estimate of 15 percent implies that an

expected 3 standard deviation confidence band is ±45 percent! Of course, this is a risk
neutral parameter which could contain risk premiums and thus we may not see moves of

this size in the actual time series of returns. The large estimates of earnings jump volatility

can easily explain the spikes in Figure 2. Consider the following example. Assume the

annualized diffusive volatility is 60 percent, which implies the daily volatility is about 3.75

percent. If the jump is 15 percent and there is an option expiring in five days, this implies

that the total volatility over the life of the option is about 33.8 percent, or 6.77 percent per

day. On an annualized basis, this implies that implied volatility of the short-dated option

will be about 107 percent and will fall to 60 percent following the announcement.

Second, the two estimators deliver remarkably similar results, despite the fact that the

term structure estimator uses only ex-ante information, while the time series estimators

uses ex-ante and ex-post. Across firms, the correlation between the mean estimates is 83.53

percent and the correlation between the pooled observations is 71.87 percent. The high

correlations indicate that both of the methods are capturing the same common effect. The

term structure estimators are slightly higher on average and this is likely due to a term

structure effect, which we can control for in a more sophisticated model with stochastic
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Term # Zero Mean Median Std. Error 25% 75% Av. Fraction

AAPL 3 10.44 10.02 0.75 7.70 12.73 48.92

ADBE 1 13.29 11.74 1.05 9.47 15.81 62.81

ALTR 4 11.73 10.38 1.15 8.55 13.26 54.38

AMAT 4 10.48 11.06 0.96 7.42 13.43 50.83

AMGN 1 6.91 6.38 0.46 5.27 8.29 50.33

CSCO 1 9.45 7.89 0.84 6.71 12.85 66.51

DELL 5 8.07 7.90 0.64 6.27 9.93 49.87

EMC 9 11.19 9.93 1.39 7.27 12.33 54.06

INTC 1 8.26 7.03 0.72 5.92 9.36 52.59

KLAC 6 9.63 8.77 1.12 6.43 11.49 46.71

MSFT 1 6.49 6.48 0.69 3.69 8.54 47.38

MU 3 13.13 11.44 1.32 7.53 16.66 59.05

MXIM 3 9.21 9.07 0.86 7.21 10.97 52.37

NVLS 6 11.22 10.61 1.27 8.04 14.71 56.97

ORCL 2 12.03 9.72 1.27 7.15 17.69 60.32

PMCS 0 12.85 13.78 1.17 8.29 15.89 48.99

PSFT 4 14.28 12.24 1.09 10.94 18.47 58.24

QCOM 2 8.95 9.51 0.75 6.61 11.65 49.01

SUNW 7 9.35 8.75 1.09 5.20 13.47 46.54

XLNX 1 11.28 11.29 1.00 7.63 15.05 51.12

Average 3.20 10.41 9.70 0.23 7.16 13.13 53.35

Table 1: Estimates of the jump volatility generated by earnings announcements using the

term structure approach. The columns provide (from left to right), the mean estimates

volatility across earnings dates, the median estimate, the standard error of the mean, the

25 percentile, the 75 percentile, and the average fraction of total volatility.
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TS # Zero Mean Median Std. Error 25% 75% Av. Fraction

AAPL 3 8.57 8.44 0.79 6.17 10.73 40.51

ADBE 3 11.07 9.93 0.86 8.81 12.90 52.46

ALTR 2 8.64 9.14 0.82 5.33 11.08 41.14

AMAT 2 10.49 11.02 0.80 8.32 12.96 50.19

AMGN 3 6.68 6.22 0.58 4.84 8.04 49.16

CSCO 1 7.98 7.85 0.63 5.60 9.12 57.40

DELL 2 7.82 7.95 0.46 6.09 9.38 47.86

EMC 3 8.04 7.47 1.07 4.94 9.14 42.67

INTC 4 6.95 6.48 0.58 5.09 8.24 45.23

KLAC 9 7.54 7.61 0.78 4.54 9.24 38.58

MSFT 2 6.83 5.88 0.56 4.79 8.44 48.17

MU 7 10.32 8.86 1.33 7.30 12.49 44.88

MXIM 5 6.86 6.01 0.78 4.87 7.84 40.12

NVLS 8 7.21 6.97 0.94 4.32 8.99 36.78

ORCL 5 10.13 9.44 0.77 7.89 12.75 53.04

PMCS 3 8.97 8.76 0.86 5.15 11.78 36.75

PSFT 4 11.44 11.14 0.92 8.67 14.14 48.09

QCOM 2 8.99 8.81 0.80 6.21 12.06 45.77

SUNW 6 7.98 7.33 0.69 5.70 10.59 43.09

XLNX 5 8.48 9.16 0.77 5.36 10.84 39.62

Average 3.95 8.55 8.22 0.18 6.00 10.54 45.08

Table 2: Estimates of the volatility of the jump generated by earnings announcements

based on the time series of implied volatilities. The columns provide (from left to right),

the mean volatility across time, the median volatility, the standard error of the mean, the

25 percentile, the 75 percentile, and the average fraction of total volatility.
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volatility.

4.1.2 Time-variation, specification, and risk premiums

Given the estimates of σQj , we can investigate a number of implications regarding jumps on

earnings dates. First, we note that there is an interesting variation in the jump volatilities

across time. Table 3 provides a year-by-year summary of the estimates using the term

structure method for each firm in our sample. Across firms, we find that the expected,

ex-ante uncertainty associated with earnings announcements was highest in 2000 and 2001

and was somewhat lower in 1996, 1997, 1998, 1999, and 2002. The magnitude of the effect

is substantial: 2000 and 2001 are about 40 percent higher than the other years.

This result is related to the findings in Pastor and Veronesi (2004). They argue that

the uncertainty regarding firm profitability was much higher during 2000 than in other

periods and argue that this can rationalize observed valuations. In a time series analysis

of the NASDAQ Composite index, they find that the implied uncertainty is an order of

magnitude higher in 1999, 2000, and 2001 (see, e.g., ψ = 1 or ψ = 2 in their Figure 7). We

also find that uncertainty over fundamentals, as measured by the implied jump variance,

was higher during these years, although the magnitude was smaller than the magnitude

found in Pastor and Veronesi (2004).

In order to investigate risk premiums, consider the return movements the day after

the earnings announcement. If returns, for example, tend to be positive the day after the

announcement, this would be evidence consistent with a positive risk premium for earning

jump risk. Table 4 shows that the observed returns can be quite large as measured by

the minimum and maximum and are very volatile (the column ‘Pvol’ gives the realized

volatility). The column labeled ‘t−test’ indicates that there is little evidence, however, for
any predictable component, in the sense that one cannot reject the hypothesis that the

mean return the day after the announcement is zero. There are two firms (MU and PMCS)

for which there is some evidence of a non-zero response, but it is only marginally significant

(just under the 5 percent level) and they are of different signs.7

Next, to analyze the evidence for a jump volatility risk premium, we can compare the

observed variability of returns under P with the ex-ante expected volatility of returns under
7Since we have at most 28 earnings announcements, we use critical values from the exact, finite-sample

t-distribution to measure statistical significance.
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Year 1996 1997 1998 1999 2000 2001 2002

AAPL 9.50 10.59 10.65 8.70 13.99 10.49 8.80

ADBE 15.37 10.98 13.47 12.47 15.89 15.41 10.52

ALTR 11.02 8.24 8.25 14.29 17.28 13.29 11.26

AMAT 14.27 10.52 8.87 9.80 13.15 10.34 7.49

AMGN 7.68 4.71 5.66 7.44 9.69 6.58 6.07

CSCO 7.12 9.91 5.26 5.49 10.44 12.37 14.63

DELL 8.27 9.21 7.64 8.55 10.11 5.48 5.44

EMC 8.18 22.55 8.54 7.40 9.37 13.76 11.20

INTC 8.84 6.87 5.23 5.85 10.41 11.00 9.03

KLAC 7.87 4.28 6.29 7.12 13.38 13.08 13.92

MSFT 4.49 7.09 5.01 5.77 10.93 7.99 6.75

MU 9.46 10.35 11.16 11.74 24.99 10.91 15.41

MXIM 11.97 4.31 6.89 9.72 9.89 10.67 9.37

NVLS 7.14 7.63 9.00 7.00 17.01 14.34 11.33

ORCL 6.21 7.28 11.59 13.01 14.88 17.33 11.28

PMCS 12.16 14.16 9.65 8.33 12.42 21.35 11.52

PSFT 16.17 13.38 7.94 12.90 15.40 18.82 16.45

QCOM 6.15 8.28 6.85 8.77 14.96 9.49 9.77

SUNW 6.33 7.56 6.01 8.10 12.79 14.40 11.84

XLNX 7.47 11.52 9.53 11.53 13.39 13.34 11.22

Pooled Av 8.97 9.42 8.25 9.22 13.46 12.76 10.66

Pooled Std 0.47 0.54 0.48 0.45 0.73 0.57 0.63

Table 3: Estimates of the volatility of the jump generated by earnings announcements

based on the term structure across time for each firm. Each year, we average the earnings

announcement jump size for each firm.
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Q. To do this, we compute the expected volatility under Q (denoted as ‘Qvol’), realized

volatility under P (‘Pvol’), and also scaled standard deviations. This latter measure is
motivated as follows. If we let rτj+1 = log

¡
Sτj+1/Sτj

¢
be the return on the day after the

announcement, then define

Jτj+1 =
rτj+1q¡

σQj
¢2
+ σ2/252

.

Under the null of no risk earnings jump volatility risk premium (σQj = σPj ) and assuming

that diffusive volatility volatility is constant over the course of the day, then Jτj+1 should

be normally distributed with unit variance. The column titled ‘Std’ gives the standard

deviation of Jτj+1 for each firm and, in general, it is less that 1. Similarly, the ratio of

realized volatility to expected volatility (the ratio of column 5 to 4) is, in every case but

one, less than 1 (the two results are slightly different due to Jensen’s inequality). This

would occur if σQj > σPj , which is a form of a jump volatility risk premium. On average,

the ratio of Pvol to Qvol is 0.74 while the average scaled ratio is 0.82, so that the volatility

under Q is about 20 to 30 percent higher than under P. It is important to note that this
effect is reduced, and largely eliminated, if we use the time series estimator. However, we

are interested in the ex-ante expected volatility from options and the time series estimators

uses ex-post information.

To place some economic significance on the risk premium, if we have an underlying

stock with σ = 0.30 and if we assume that σQj = 1.25σ
P
j and that σ

P
j = 8 percent, then the

value of a one month and two week option is $5.86 and $4.95 with the risk premium and

$5.34 and $4.32 without the risk premium, respectively. This is economically significant

and could be motivated as compensation to the option writers for their inability to hedge

the earnings announcement jump. As a comparison, consider the risk premiums embedded

in S&P 500 options. For example, typical estimates of the objective measure mean
¡
µP
¢
and

volatility
¡
σP
¢
of jump sizes are around −2 to -4 percent and 3 to 4 percent (see, Andersen,

Benzoni, and Lund (2001) or Eraker, Johannes, and Polson (2003)), based on the time

series of returns. Broadie, Chernov and Johannes (2004) estimate that µQ ≈ −5 percent
and σQ ≈ 9 percent. Viewed in this light, the risk premiums associated with σQj do not

appear to be particularly large. This may be due to the fact that there is no timing risk in

earnings announcements and because of this, it is easier to hedge options around earnings

announcement dates.

The previous results indicated that it appears that σQj > σPj . Another related issue
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Min Max Std QVol PVol Skew Kurt. t-test K-S J-B

AAPL -18.84 21.27 90.55 11.12 9.37 -0.13 2.92 -0.02 0.13 0.42

ADBE -14.29 14.01 59.75 13.85 7.58 -0.63 2.84 1.60 0.24 1.70

ALTR -22.47 12.97 68.96 12.51 8.06 -0.75 4.17 -0.43 0.11 0.85

AMAT -9.78 14.42 75.26 11.35 6.44 -0.56 3.55 0.90 0.16 0.77

AMGN -14.40 12.29 72.55 7.47 5.92 -0.68 2.55 1.08 0.19 1.85

CSCO -14.05 21.82 67.18 10.00 7.00 0.23 2.72 1.17 0.17 3.08

DELL -21.00 10.98 89.91 8.78 7.90 0.33 1.84 -0.09 0.19 0.93

EMC -5.41 9.61 49.26 11.83 4.65 -0.16 2.48 0.53 0.18 1.70

INTC -19.89 18.33 78.03 08.75 7.13 -0.25 3.17 0.50 0.15 2.64

KLAC -11.66 14.18 63.95 10.74 6.76 0.24 3.11 1.70 0.25 0.28

MSFT -7.09 17.87 90.81 6.99 5.92 -0.72 3.28 0.47 0.15 1.99

MU -26.19 13.15 59.89 13.86 9.09 -0.11 2.15 -2.55∗ 0.21 0.74

MXIM -30.31 10.60 74.38 10.07 7.81 -1.15 5.00 -1.02 0.19 37.92†
NVLS -9.95 13.55 61.77 12.26 6.70 0.30 2.97 0.09 0.11 1.03

ORCL -34.46 27.07 142.25 12.67 11.58 -2.56 11.32 -0.19 0.17 5.30

PMCS -25.90 21.13 98.74 13.86 10.93 -0.94 4.56 2.18∗ 0.35† 4.78

PSFT -26.53 22.92 107.47 15.02 12.59 -1.60 6.69 -0.50 0.11 0.64

QCOM -17.34 32.72 132.91 9.80 10.13 1.05 5.11 1.31 0.19 3.50

SUNW -31.09 7.13 78.66 10.17 8.51 -0.66 2.37 -1.14 0.20 24.18†
XLNX -13.67 12.77 68.50 12.10 7.37 -0.09 2.08 -1.60 0.17 1.50

Table 4: Summary statistics (minimum, maximum, standard deviation, skewness, and

kurtosis) of returns on the day after an earnings announcement. The first two columns are

raw statistics, and the other columns are for returns scaled by ex-ante predicted volatility.

The minimum, maximum, and volatilities are in percentage values. The last three columns

provide a standard t-test for a zero mean, the Kolmogorov-Smirnov test for normality, and

the Jarque-Bera test for normality, respectively. ‘∗’ indicates significance at the 5 percent

level and ‘†’ indicates significance at the 1 percent level. For the t−test, we use the exact
t-distribution to obtain critical values.
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is whether there is any predictive content to the information contained in options. For

example, if σQj is larger than usual, does this imply that we should expect a large movement

in the actual returns? It is difficult to analyze this in a time series context because σPj can

change from announcement to announcement and it is not possible to estimate σPj based

on the single observation occurring after the earnings announcement. Since this cannot

be done in a time series analysis, we consider a cross-sectional analysis. If there is a

predictive component in the options, we should see that firms with higher σQj ’s have higher

realized volatilities on earnings dates. The across-firm correlation between the average σQj
and the subsequent realized volatility (the correlation of columns labeled Qvol and Pvol)

is 0.5386 which is strongly statistically different from zero, despite the very low number

of observations (20). This provides evidence that the options data is informative about

realized movements.

Finally, we can use the predicted jump volatilities and the realized returns to analyze

the jump specification. As mentioned above, Jτj+1 should be normally distributed if the

jump distribution specification is correct. Table 4 provides evidence consistent with this

assumption. Although the first two columns indicate, not surprisingly, that earnings an-

nouncements result in very large movements, there is little evidence of non-normalities. As

indicated by the skewness and excess kurtosis, there appears only modest distributional

abnormalities. As formal tests of non-normalities, we consider the Kolmogorov-Smirnov

and Jarque-Bera tests. The Kolmogorov-Smirnov test uses the distance between the em-

pirical distribution function and a normal distribution function, and the Jarque-Bera test

combines the information in the skewness and kurtosis statistics. The tests find little evi-

dence for non-normalities. The Kolmogorov-Smirnov and Jarque-Bera tests find significant

departures from normality for one and three firms, respectively, but interestingly, there

is no overlap in terms of the firms they identify. This is likely due to the small samples

of earnings dates for which we have option data available. This evidence is reassuring

regarding the jump specification as there is no statistical evidence that the jumps come

from a non-normal distribution. Thus, the assumption that Zj = −12
¡
σQj
¢2
+σQj ε does not

generate any strong misspecification.
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4.2 Stochastic volatility with deterministic jumps

The results in the previous section assumed that diffusive volatility was constant. In order

to develop a better benchmark and to account for time-varying volatility, we consider

the stochastic volatility model developed in Section 3.2 and estimate versions with and

without deterministically timed jumps. In the models without jumps, we are interested in

characterizing the misspecification around earnings dates. Specifically, the intuition from

the previous section suggests that we expect to find that the SV model misprices short-

maturity options around earnings and that Vt contains strong predictable behavior around

earnings releases. In the models with jumps, we are interested in the magnitude of the

implied jump volatilities in comparison to those based on the Black-Scholes model.

We use the entire time series of at-the-money call options from 1996 through 2002 to

estimate the model. Unlike Bakshi and Cao (2004), who use a single option contract on

each day, we use multiple maturities and the closest to-the-money call option for each

maturity. In a stochastic volatility model, a short maturity at-the-money option provides

information on Vt and the longer dated options provide information on the risk neutral

parameters. This procedure imposes that the model parameters are constant from 1996

to 2002, in contrast to the usual calibration approach which re-estimates parameters every

time period (daily, weekly, etc.). We estimate the parameters and volatility by minimizing

scaled option pricing errors.8 Ideally, one would estimate the model using, in addition

to option prices, the time series of returns. Existing approaches include EMM (Chernov

and Ghysels (2000)), implied-state GMM (Pan (2002)), or MCMC (Eraker (2004) and

Polson and Stroud (2002)). This approach is in principle statistically efficient, however the

computational demands of iteratively pricing options for each simulated latent volatility

path and parameter vector lead to implementations with short data samples and few options

contracts (typically two at most).

To describe our approach, let C
¡
St, Vt,Θ

Q, σQτn, τn,Kn

¢
denote the model implied price

of a call option struck at Kn and maturing in τn days, where ΘQ =
¡
κQ, θQ, σv, ρ

¢
and

8We initially tried to follow Bates (2000) and impose time series consistency on the volatility process,
by including a term in the likelihood incorporporating the transition density of variance increments. This
additional term penalizes the estimates if the volatility process is not consistent with its square-root
dynamics. However, it was not possible to obtain reliable estimates due to the computational burdens
involved in the optimization problem.

36



σQτn =
©
σQj : t < j < t+ τn

ª
. We maximize the objective function

log
£
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¡
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¢¤
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¡
σ2ε
¢
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TX
t=1
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n=1

"
CMar (t, τn,Kn)− C

¡
St, Vt,Θ

Q, σQτn , τn,Kn

¢
σεSt

#2
where CMar (t, τn,Kn) is the market price of an option at time t, struck atKn, and maturing

at time τn. Since we use a long time series of option prices, normalizing by the stock price

is important to impose stationarity. Without this constraint, the objective function would

be concentrated on option values during periods when the stock price is relatively high.

Our objective function does weigh longer-dated options more than short-dated options,

as longer dated options are more expensive. If this has an effect on our results, it tends to

reduce the importance of earnings announcement jumps as the objective function is tilted

toward longer-dated options. Alternatives would include minimizing implied volatility de-

viations or percentage pricing errors. We experimented with percentage pricing errors and

found the differences were generally small.

Finally, we originally tried to estimate ρ, however, it is not possible to identify this

parameter based on at-the-money options as it does not have a significant impact on option

prices.9 It can be identified primarily from out-of-the-money options and from the joint

time series of returns and volatility increments. We imposed the constraint that ρ = 0

throughout.

We require daily data, in order to track the performance of the models around earnings

announcement dates. This, along with the fact that we impose that the parameters are

constant through the sample, makes the optimization problem extremely computationally

burdensome. In the general model, optimization occurs over more than 1500 variance

states, 28 earnings jump volatilities and four static parameters. We start the optimization

from numerous different starting values on multiple machines and randomly perturb the

9To see this, consider two option maturities, one and three months, and assume κv = 1, θ = 0.302,
σv = 0.20, and V0 = 0.302. This implies that the current and long run mean of volatility is 30%. The price
of a one month, at-the-money option if ρ = −0.50, 0, or +0.50 is 3.320, 3.321, and 3.323, respectively, and
the Black-Scholes implied volatilities are 29.95, 29.96 and 29.97. For the three month option, the prices
and implied volatilities are 5.563, 5.567, and 5.574 and 29.86, 29.88, and 29.92. Clearly, the effect is very
small and, moreover, in an estimation procedure in which other parameters and volatility is estimated it
is not identified based on at-the-money options.
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variance and parameters in order to ensure that the algorithm efficiently searches. Due to

the extreme computational burdens, we only consider five companies, Apple, Amgen, Cisco,

Intel and Microsoft. The three largest and most actively traded companies are Cisco, Intel

and Microsoft and then we chose one company with small average jump sizes (Amgen) and

one with large average jump sizes (Apple).

4.3 Estimation Results

Estimation results for the five companies are in Tables 5, 6, and 7. Table 5 provides para-

meter estimates and likelihood function values for the pure square-root model (SV) and a

version including deterministic jumps on earnings dates (SVDJ). We include standard errors

based on the normal likelihood function to provide information on the local identification

of each of the parameters. Although not reported, a likelihood ratio test overwhelmingly

rejects the restrictions that the jump volatilities are zero.

All of the parameter estimates are plausible, although even with a relatively long time

series, it is difficult to identify some of the parameters. For both models, the estimates of κQv
are similar and in the range of two to three. These values are low relative to values obtained

for index options, which implies that individual stock volatility is more persistent, although

this could be strongly influenced by the sample period (our sample does not include, for

example, the Crash of 1987). The estimates of θQv imply plausible values for the long-run

mean of volatility. The third column reports
p
θQv which is the long run mean in volatility

units (along with standard errors computed by the delta method) and the results imply

long-run volatility in the range of 30 to 50 percent. In all cases, the long run volatility

falls when earnings announcements are taken into account and the decrease is larger for

firms with relatively large earnings jump volatilities. The standard errors imply that the

objective function is very informative about these risk-neutral drift parameters.

In contrast to the risk-neutral drift parameters, σv is not well-identified with its standard

error an order of magnitude larger than the estimate. This should not be surprising as we

only use at-the-money options and do not consider the time series of volatilities. At-the-

money option prices are driven primarily by expected future volatility and from (4) it is

clear that this parameter does not affect expected future volatility. This parameter can

most easily be identified by the time series of implied volatilities and, to a certain extent,

from out-of-the-money options as this parameter contributes to the conditional kurtosis of
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κQv θQv
√
θv σv σe σQE L(Θ, Vt)/NT

SV 2.3210 0.2721 0.5216 0.1132 0.0042 – 4.0537

AAPL 0.0347 0.0269 0.0258 2.1892 0.0027 –

SVDJ 1.6556 0.2460 0.4960 0.0774 0.0034 0.0811 4.2635

0.0444 0.0289 0.0291 2.5406 0.0027 0.0024

SV 2.0113 0.1314 0.3625 0.0314 0.0030 – 4.3841

AMGN 0.0301 0.0190 0.0262 4.8507 0.0018 –

SVDJ 2.0662 0.1300 0.3606 0.1031 0.0029 0.0426 4.4239

0.0311 0.0100 0.0139 0.8347 0.0019 0.0088

SV 2.6838 0.2151 0.4638 0.1156 0.0034 – 4.2625

CSCO 0.0333 0.0169 0.0182 1.6569 0.0021 –

SVDJ 2.7869 0.2038 0.4514 0.1042 0.0028 0.0723 4.4721

0.0305 0.0113 0.0125 1.3579 0.0020 0.0034

SV 2.6267 0.1252 0.3538 0.0953 0.0028 – 4.4551

INTC 0.0286 0.0141 0.0199 1.5873 0.0013 –

SVDJ 2.1404 0.1042 0.3228 0.1325 0.0023 0.0565 4.6655

0.0281 0.0131 0.0202 0.9143 0.0013 0.0017

SV 3.0981 0.1282 0.3580 0.0260 0.0022 – 4.7072

MSFT 0.0335 0.0054 0.0075 2.8651 0.0012 –

SVDJ 2.8748 0.1246 0.3530 0.0264 0.0020 0.0328 4.7944

0.0346 0.0053 0.0075 2.6023 0.0013 0.0025

Table 5: Parameter estimates and standard errors for Apple, Amgen, Cisco, Intel and

Microsoft. For each firm and model, the first row contains the parameter estimate and the

second row the estimated standard error. The standard errors for σε are multiplied by 100.
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returns. A priori, it is not clear if σv would increase or decrease with deterministic jumps.

On the one hand, one would think that Vt would become less volatile, which would imply

that it would fall, however, since the volatility of variance increments is σv
√
Vt, and Vt falls

in the deterministic jump model, the effect is unclear.

The sixth column of Table 5 provides the average estimate of σQj , denoted σQE, for each

firm with the average standard error reported below. To frame the results, recall that

the average jump volatility for Apple, Amgen, Cisco, Intel and Microsoft based on the

time series estimator was 8.57, 6.68, 7.98, 6.95, and 6.83, respectively, whereas the full

estimation resulted in 8.11, 4.26, 7.23, 5.65, and 3.28 percent for the same firms. The

results are similar, although the jump sizes based on the full estimation are lower. The two

estimators are highly correlated, for example, for Intel, the correlation between the two

estimates is over 70 percent.

There are three reasons why the estimates of σQj differ. First, in the Black-Scholes model,

a number of earnings dates resulted in zero jump volatility estimates. In the stochastic

volatility model, this does not happen for any of the earnings dates, although some are

relatively small. Thus, a direct comparison based on average estimates of σQj is not strictly

valid. Second, the time series and term structure estimators of the previous section use

one and two options, respectively, whereas the full estimation results use information in all

options that are effected by earnings announcement jumps. This means that on each day

at least three options are effected and an earnings announcement will have a significant

impact on options for at least a month prior to the announcement. Third, the stochastic

volatility model imposes that the parameters in the model are constant through time,

whereas the term structure and time series estimators allow expected volatility to differ at

each announcement. Due to this, the estimates based on the extension of the Black-Scholes

model are less constrained and are less subject to potential misspecification.

Next, Table 6 provides the pricing errors in the two models in the days surrounding an

earnings announcement. For each model, we report pricing errors for short maturity options

(5 to 15 days), medium maturity options (15 to 35 days), and for long term options (more

than 35 days). The columns indicate the days relative to the earnings announcement. For

example, ‘0’ is the day of the announcement (which is released after the close on that day)

and ‘-2’ is two days prior to the announcement. For a number of days and firms, there are

fewer than five total option prices available in the short maturity category for any earnings

announcements and we denote these days by a ‘–’. This lack of data is due to the timing of
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the earnings announcements and the expiration calender. It is common for the short-dated

option on Microsoft to expire in the week prior to them releasing earnings. Cisco is the

only company that has options available over the entire window as they typically release

earnings late in the cycle.

For all of the firms, there a major pricing difference between the SV and SVDJ models,

especially for short-dated options. In the week leading up to the earnings announcement,

the reduction in pricing errors is on the order of 50 percent. The effect is largest for Cisco

and Intel and smallest for Amgen and Microsoft, which have relatively small jump sizes.

As an example, the mean-absolute pricing errors for Cisco fall in the three days leading up

to the earnings announcement fall from 0.3328, 0.2680 and 0.4142 to 0.1041, 0.0898, and

0.1705 in the SVDJ model. For most firms and days, there is also a noticeable improvement

in the pricing of the long-dated options also.

The SV model cannot fit the short, medium and long dated options with only Vt, and

so it generally underprices the short dated options and overprices the long-dated options.

To price the short dated options around earnings dates, the SV model requires a very high

Vt, but this results in a drastic overpricing of the longer maturities. The SV model cannot

simultaneously fit both of these features. By introducing jumps on earnings announcements,

the SVDJ model allows σQj to capture the behavior of the short-dated options and then Vt

can jointly fit the other options with greater accuracy. The SV and SVDJ models perform

similarly for the day after the announcement, although again there is a modest improvement

in the SVDJ model.

Table 7 provides overall mean absolute pricing errors for the entire sample.10 There is

clearly a substantial pricing improvement for all of the firms and for all of the maturities,

with the exception of Amgen. Amgen is a low volatility, low earnings uncertainty firm, so

this should not be surprising. For the other firms, the pricing improvement, especially in

short-dated options, is large. This is somewhat surprising given that earnings announce-

ments occur only four times per year. The rather large improvements occur because in the

SVDJ model, spot Vt and the parameters are not forced to fit both earnings announce-

ment effects and the rest of the year. Although earnings announcements affect primarily

options for about 2 weeks per cycle, they substantially reduce overall pricing. This pricing

reduction is in contrast to Bakshi and Cao (2004) who find that jumps in returns, jumps in

volatility, and stochastic interest rates have no noticeable pricing impact on at-the-money

10We also computed root-mean-squared errors which result in similar conclusions.
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-5 -4 -3 -2 -1 0 +1

Short SV 0.2040 0.2570 0.2236 0.3705 – – –

SVDJ 0.1229 0.1520 0.1538 0.2111 – – –

AAPL Med SV 0.0943 0.0701 0.0827 0.0959 0.1157 0.1245 0.0850

SVDJ 0.1109 0.0856 0.1083 0.1106 0.1069 0.1224 0.0989

Long SV 0.1263 0.1272 0.1160 0.1415 0.0925 0.0878 0.0600

SVDJ 0.0868 0.0890 0.0674 0.0993 0.0766 0.0809 0.0668

Short SV 0.2547 0.2196 0.2308 0.2165 – – –

SVDJ 0.1842 0.1123 0.1895 0.0755 – – –

AMGN Med SV 0.1319 0.1246 0.1601 0.1658 0.1607 0.1590 0.1267

SVDJ 0.1205 0.1083 0.1345 0.1471 0.1449 0.1556 0.1141

Long SV 0.1009 0.0927 0.1172 0.1001 0.1070 0.1054 0.0867

SVDJ 0.0945 0.0892 0.1167 0.1029 0.1137 0.1097 0.1262

Short SV 0.2621 0.2955 0.3328 0.2680 0.4142 0.3827 0.1227

SVDJ 0.1065 0.1072 0.1041 0.0898 0.1705 0.1956 0.1236

CSCO Med SV 0.0919 0.1006 0.1000 0.0919 0.0641 0.0597 0.0509

SVDJ 0.0787 0.0788 0.0713 0.0736 0.0518 0.0692 0.0935

Long SV 0.0975 0.1125 0.1067 0.1117 0.1812 0.1754 0.0824

SVDJ 0.0645 0.0663 0.0510 0.0542 0.0759 0.0883 0.1574

Short SV 0.3746 0.4022 0.4012 0.5994 0.7515 – –

SVDJ 0.1539 0.1866 0.1818 0.2839 0.4308 – –

INTC Med SV 0.0785 0.0894 0.0885 0.1115 0.1217 0.1407 0.0972

SVDJ 0.0724 0.0733 0.0852 0.1029 0.1218 0.1190 0.1099

Long SV 0.1715 0.1822 0.1808 0.2251 0.2326 0.1361 0.0734

SVDJ 0.0811 0.1019 0.0992 0.1427 0.1442 0.1000 0.0791

Short SV 0.2260 0.2700 0.4724 – – – –

SVDJ 0.1886 0.1654 0.3018 – – – –

MSFT Med SV 0.1094 0.1374 0.1238 0.1682 0.2014 0.2179 0.1618

SVDJ 0.1089 0.1277 0.1136 0.1522 0.1671 0.1989 0.1720

Long SV 0.1362 0.1586 0.1525 0.1361 0.1624 0.1369 0.1121

SVDJ 0.0890 0.1201 0.1142 0.1172 0.1480 0.1271 0.1155

Table 6: Absolute pricing errors around earnings announcements. The columns are indexed

relative to the earnings date (e.g., −2 indicates two days prior to an earnings announce-
ment). The maturities are short (5 to 15 days to maturity), medium (16 to 35 days), and

long (more than 35 days).
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Maturity 5 < τ < 15 16 < τ < 35 τ > 35

MAE MAE MAE

AAPL SV 0.1610 0.1063 0.0920

SVDJ 0.1235 0.0925 0.0754

AMGN SV 0.1683 0.1378 0.1191

SVDJ 0.1609 0.1330 0.1178

CSCO SV 0.1795 0.1310 0.1093

SVDJ 0.1343 0.1105 0.0947

INTC SV 0.2847 0.1962 0.1298

SVDJ 0.1688 0.1093 0.0917

MSFT SV 0.1932 0.1418 0.1294

SVDJ 0.1762 0.1388 0.1189

Table 7: Overall mean absolute pricing errors broken down by firm and maturity.

options across the maturity spectrum.

Although common in the literature, we do not perform an out-of-sample pricing exercise.

Since the jump distribution can change across earnings dates, this would imply that to price

options out-of-sample, we would have to calibrate both Vt and σQj in the SVDJ model and

just Vt in the SV model. It is clear that the SVDJ model would perform better as it has the

same number of fixed parameters as the SV model. As noted in Bates (2002), these tests,

in general, tend not to be useful for analyzing model specification: “Perhaps the one test

that does not appear to be especially informative is short-horizon “out-of-sample” option

pricing tests... (p. 396. Bates (2003)”

Finally, Figure 3 displays the median behavior of the implied variance state around

earnings announcements for each firm and then the grand, pooled mean. It displays
p
Vt+j−√

Vt where Vt is the spot variance two days prior to the announcement and the volatilities

are measured in annualized units. The figure shows that in the SV model, spot volatility

decreases substantially after the announcement. There is also there is a modest decrease in

volatilities for the SVDJ model. It is important to recall that the Vt’s are estimated jointly

from all of the option maturities, not just the short-dated option. The modest decrease
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Figure 3: Changes in implied Vt around earnings dates.

in the SVDJ has a number of potential causes. First, as implied spot variance tends to

be higher than its long-run mean just before the announcement, the decrease could due

to mean-reversion (we do not model the objective measure parameter so it is difficult to

test this). It could also be due to model misspecification in the form of an incorrect jump

distribution (which results in a decrease in variance after the announcement) or omitted

negative jumps in variance. Bakshi and Cao (2004) argue that there may be negatively

sized jumps in Vt. Finally, the objective function tend to place more weight on longer

maturity options (as these are more expensive) and there are often substantive changes in

option composition right around the the earnings date. This could generate the effect by

removing short dated options and adding long dated options.
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5 Conclusions and extensions

In this paper, we develop models incorporating earnings announcements for pricing options

and for learning about the uncertainty embedded in individual firms earnings announce-

ment. We take seriously the timing of earnings announcements and develop a model and

pricing approach incorporating jumps on earnings announcement dates. Jumps on earn-

ings announcement dates are straightforward to incorporate into standard option pricing

models. Based on these models, we introduce estimators of the uncertainty surrounding

earnings announcements and discuss the general properties of models with deterministically

timed jumps.

Empirically, based on a sample of 20 low-dividend firms, we find that earnings announce-

ments are important components of option prices, we investigate risk premiums, and we

analyze the underlying assumptions of the model. To quantify the impact on option prices,

we calibrate a stochastic volatility model and find that accounting for jumps on earnings

announcement dates is extremely important for pricing options. Models without jumps

on earnings announcement dates have large and systematic pricing errors around earnings

dates. A stochastic volatility model incorporating earnings jumps drastically lowers the

pricing errors and reduces misspecification in the volatility process.

In the future, we plan to extend the analysis in a number of directions. First, we

would like to incorporate additional predictable events such as stock splits and mid-quarter

earnings updates into equity option pricing models. Anecdotally, both of these events

appear to be significant, although not nearly as strong as quarterly announcements. In

some cases, a firm will issue a warning before the formal earnings announcement date

stating that earnings are going to be drastically higher or lower than expected. Second, we

plan to extend the analysis to a broad panel of equities. There are two potential problems

with this approach: high-dividend stocks tend to have relatively lower volume (both in

the stock and the options), so it is more difficult to obtain good implied volatility data

across the maturity spectrum and high-dividend stocks have less uncertainty embedded

in earnings. Third, in order to better identify the parameters, it would be interesting to

consider a likelihood penalty in the objective function and to add longer dated options. This

would allow us to better identify σv and estimate the objective measure drift parameters.

Fourth, we are interested in analyzing the predictive information embedded in our ex-

ante estimates of σQ. Given the time variation that we document in this parameter, it
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is interesting to see what information this parameter contains. For example, we find it is

correlation with future volatility, but is this parameter more informative than the disper-

sion in analysts forecasts? Does it provide information about future returns? Fifth, there

are a large number of papers study the response of fixed income securities or exchange

rates to macroeconomic announcements using high frequency data (see, e.g., Ederington

and Lee (1993), Fleming and Remolona (1999, 2000), Bollerslev and Andersen (1998),

Balduzzi, Elton, and Green (2001), and Andersen, Bollerslev, Diebold, and Vega (2004)).

Ederington and Lee (1996) analyze the response of options on Treasury, Eurodollar, and

Deutschemark futures to a number of different macroeconomic announcements and find

that the implied volatility of these contracts increasing into and decreases after an an-

nouncement. Balachandran, Dubinsky, and Johannes (2004), using a simple extension of

Black’s model to incorporate deterministic jumps, provide estimates of σQj based on options

on the note-future contract. In the context of affine term structure models, Chernov and

Johannes (2004) analyze the effect of deterministic jumps on the time series of Treasury

and swap rates. They find that deterministic jumps are more important than randomly

timed jumps, and, moreover, that once deterministic jumps are taken into account, there

is little evidence for stochastic volatility in Treasury or swap yield changes.

Sixth, many studies analyze the response of “news” on asset prices, for recent examples,

see Balduzzi, Elton, and Green (2001), Beber and Brandt (2003) and Andersen, Bollerslev,

Diebold, Vega (2003,2004). These papers define the news of an announcement of type

k at time t as St,k = (At,k −Et,k) /σk where At,k is the value of the announcement k

at time t, Et,k is the mean or median forecast for the announcement at time t, and σk

is empirical standard deviation of At,k − Et,k. As our models clearly show, there is no

reason that news will have a homogeneous impact on prices throughout time and this

implies that the potential volatility of news is time-varying and not equal to the historical

standard deviation of At,k − Et,k. Since most of these studies analyze very liquid markets

with actively traded options, it would be straightforward to obtain an ex-ante measure of

the uncertainty embedded using the term structure approach we developed in Section 4.1.

These estimators have the advantage that they are ex-ante and based on the expectations of

investors and not analysts. Finally, as mentioned in Section 3.2.2, deterministically timed

jumps provide an interesting setting to study hedging and robust pricing.
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Appendix A

We only considered pure stochastic volatility models and did not consider models with

randomly timed jumps in returns. Prima facie evidence for jumps in returns is often

an asymmetry or excess kurtosis in the distribution of equity returns. For example, it is

common for broad equity indices such as the S&P 500 to have significant negative skewness

and positive kurtosis, indicative of rare jumps that are very negative. Table 6 provides the

distributional properties of returns for the stocks that we consider.

Table 8 indicates that there are not strong unconditional non-normalities in the stocks

that we consider, with the possible exception of Apple. This should not be surprising.

The average daily volatility across firms is about four percent, which implies that a three

standard deviation confidence band is ±12 percent. Since volatility is also stochastic,

suppose that volatility is high, say, eight percent per day. In this case, the confidence band

is ±24 percent which just about covers the average minimum and maximum moves for the
stocks. This is in strong contrast to equity indices which has relatively low daily volatility

(for the S&P 500, less than one percent) but has very large relative moves relative to this

volatility historically (Crash of 1987). This is consistent with the observation in Bakshi,

Kapadia, and Madan (2003) that implied volatility for individual equities are very flat,

relative to those for aggregate indices.
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Appendix B

The discounted log stock transform below is the key piece in transform based option

pricing methods. In a two-factor stock price model in an affine setting we know the form

includes two loading functions for each of the factors.

ψ(c, St, Vt, t, T, r) = exp (−r(T − t) + α(c, t, T ) + β(c, t, T )Vt + c · logSt)

where c is complex-valued. Duffie, Pan, Singleton (2000) and Pan (2001) price call options

by breaking up the claims into two components, the all or nothing option minus the binary

option. Pan (2001) describes methods of bounding the truncation and sampling errors

involved with numerical inversion of transform intergrals for these claims. Instead we follow

Carr-Madan (1999) and Lee (2003) and compute the Fourier transform of the call option

which reduces the problem to one numerical inversion and improves the characteristics of

the integrand thus reducing sources for error and computational demands.

We briefly describe Carr-Madan’s results. Let C(k) be the call option with a log strike

k. We introduce the dampened call price, c(k) with a dampening coefficient α > 0 which

forces the square integrability of the call price transform. We also require E[Sα+1] < ∞
which can be verified with the log stock price transform, we find α = 2 performs well. If

we let the dampened call price be given by c(k) ≡ exp(αk)C(k), the Fourier transform of

c(k) is defined by

ψc(v) =

Z ∞

−∞
exp (iαv) c(k)dk (7)

The Fourier transform of c(k) is given by

ψc(v) =
ψ(v − i(α+ 1), St, Vt, t, T, r)

α2 + α− v2 + i(2α+ 1)v
(8)

where some of the arguments are suppressed on the left hand side for notational simplicity.

To invert the dampened call price to get the call price, we use the inversion formula.

C(k) =
exp(−αk)

π

Z ∞

0

Re[exp(−iαk)ψc(v)]dv. (9)

Obviously in practice we must truncate this indefinite intregral and the log stock price

transform can be used again to find an appropriate upper limit. Carr and Madan (1999)

show the following the inequalities.
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|ψc(v)|2 ≤
E[Sα+1]

(α2 + α− v2)2 + (2α+ 1)2v2
≤ A

v4
(10)

and

|ψc(v)| ≤
√
A

v2
. (11)

The integral tail can be bounded by the right hand side which is

Z ∞

a

|ψc(v)|dv <
√
A

a
. (12)

If we set A = E[Sα+1] the upper limit a can be selected for a general ε truncation bound.

a >
exp(−αk)

√
A

πε
(13)

Once an upper limit is selected, any numerical integration method can be used. We use

an adaptive quadrature algorithm that uses Simpson’s Rule with one step of Richardson

extrapolation and the intregal grid is iteratively changed until the value converges where

the improvements are less than a specified value, which controls the error. We find that

this provides accurate prices and is computationally attractive.
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Minimum (%) Maximum (%) Std Dev (%) Skewness Kurtosis

AAPL -73.12 28.69 65.60 -2.8285 60.7688

ADBE -35.32 21.49 66.40 -0.5902 9.9567

ALTR -31.56 22.46 77.38 -0.0918 5.0666

AMAT -15.10 22.82 66.86 0.2684 4.1175

AMGN -14.40 12.95 46.82 0.0574 4.8421

CSCO -14.54 21.82 57.32 0.1332 5.9096

DELL -21.00 16.37 58.19 -0.2223 4.8211

EMC -32.95 22.20 66.43 -0.3543 7.5851

INTC -24.89 18.33 52.96 -0.3844 7.4161

KLAC -18.62 22.39 76.87 0.2470 4.0450

MSFT -16.96 17.87 41.07 -0.1065 7.0007

MU -26.19 21.72 75.61 0.0101 4.4972

MXIM -30.31 20.89 69.32 0.0983 4.9814

NVLS -35.05 28.77 77.93 0.2181 6.1082

ORCL -34.46 27.07 65.44 -0.1845 9.1158

PMCS -25.90 29.61 93.89 0.2260 4.9687

PSFT -39.56 22.92 77.96 -0.2770 8.2753

QCOM -18.45 32.72 70.14 0.3664 6.4615

SUNW -31.09 26.03 65.34 -0.1299 6.5136

XLNX -23.69 16.61 74.37 -0.1188 4.1875

Pooled -28.16 22.69 67.30 -0.1832 8.8319

Table 8: Summary statistics for the underlying returns for the firms in our sample for

the period 1996 to 2002. The standard deviations are annualized and in percentages.

The skewness and kurtosis statistics are raw statistics, and not excess skewness or excess

kurtosis. The pooled numbers are the averages of the statistics across firms.
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