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Several researchers have proposed models of buyer behavior in noncontractual settings that assume that
customers are “alive” for some period of time and then become permanently inactive. The best-known
such model is the Pareto/NBD, which assumes that customer attrition (dropout or “death”) can occur at any
point in calendar time. A recent alternative model, the BG/NBD, assumes that customer attrition follows a
Bernoulli “coin-flipping” process that occurs in “transaction time” (i.e., after every purchase occasion). Although
the modification results in a model that is much easier to implement, it means that heavy buyers have more
opportunities to “die.”

In this paper, we develop a model with a discrete-time dropout process tied to calendar time. Specifically, we
assume that every customer periodically “flips a coin” to determine whether she “drops out” or continues as a
customer. For the component of purchasing while alive, we maintain the assumptions of the Pareto/NBD and
BG/NBD models. This periodic death opportunity (PDO) model allows us to take a closer look at how assump-
tions about customer death influence model fit and various metrics typically used by managers to characterize
a cohort of customers. When the time period after which each customer makes her dropout decision (which we
call period length) is very small, we show analytically that the PDO model reduces to the Pareto/NBD. When the
period length is longer than the calibration period, the dropout process is “shut off,” and the PDO model col-
lapses to the negative binomial distribution (NBD) model. By systematically varying the period length between
these limits, we can explore the full spectrum of models between the “continuous-time-death” Pareto/NBD and
the naive “no-death” NBD.

In covering this spectrum, the PDO model performs at least as well as either of these models; our empirical
analysis demonstrates the superior performance of the PDO model on two data sets. We also show that the
different models provide significantly different estimates of both purchasing-related and death-related metrics
for both data sets, and these differences can be quite dramatic for the death-related metrics. As more researchers
and managers make managerial judgments that directly relate to the death process, we assert that the model
employed to generate these metrics should be chosen carefully.
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Introduction

Applications of the model (e.g., Fader et al. 2005b,

As marketing researchers become more sophisticated
in building models of customer behavior, they begin
to scrutinize, test, and improve upon underlying
assumptions of their models that were originally
taken for granted. Within the domain of noncon-
tractual customer-firm relationships, the assumptions
made about the timing and nature of customer
“death” (i.e., unobserved and unobservable dropout)
are ripe for such improvements. For years, the gold
standard for such models has been the Pareto/NBD
(Schmittlein et al. 1987), which was the first to capture
and exploit a customer death process in such a setting.

866

Reinartz and Kumar 2000, Schmittlein and Peterson
1994) have utilized the Pareto/NBD dropout process
(namely, an exponential timing process with gamma-
distributed heterogeneity across customers) without
questioning it or testing alternative mechanisms.

The first paper to raise such questions was Fader
et al. (2005a), which replaced the continuous-time
gamma-exponential process operating in “calendar
time” with a beta-geometric process operating in
“transaction time” (i.e., the customer can only die
immediately after a transaction). The resulting model,
called the BG/NBD, was viewed as a “quick and
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easy” alternative to the Pareto/NBD, because it offers
a much more straightforward parameter estimation
process with no substantial loss in the model’s fit and
forecasting capabilities. Beyond these computational
benefits and aggregate indicators of overall model
performance, however, not much attention was paid
to the death process itself.

In this paper we propose and carefully investigate
a new process for customer death in the noncontrac-
tual setting. The resulting model is a generalization
of the Pareto/NBD and offers new insights about
the death process. This new framework, called the
periodic death opportunity (PDO) model, assumes that
customers act in accordance with the discrete “coin-
flipping” story associated with the geometric process,
but these “coin flips” arise at periodic intervals in
calendar time instead of transaction time (as in the
BG/NBD model).

The differences in the assumed customer death pro-
cess associated with these “buy-till-you-die” models
of buyer behavior in noncontractual settings are illus-
trated in Figure 1. The first dimension on which they
differ is whether the customer can “die” at any point
in time (continuous) or only at discrete points in
time. A second dimension appears when death occurs
at discrete points in time: whether these points are
discrete points in calendar time or are on a differ-
ent timescale defined by the point in time at which
transactions occurred. In all cases, it is assumed that
opportunities for transactions (while alive) occur in
continuous time; this is implicit in the use of the NBD
to characterize buying behavior while alive.!

The PDO model allows us to take a closer look
at how assumptions about customer death influence
model fit as well as managerial inferences and diag-
nostics that emerge from the model. By varying the
length of the time interval after which each customer
makes her dropout decision, which we call the period
length, we effectively vary the customer dropout
dynamics. When the period length is very large, the
dropout component is “shut off,” and our model
becomes the standard “no-death” negative binomial
distribution (NBD) model (Ehrenberg 1959, Morrison
and Schmittlein 1988). At the other extreme, when the
period length tends to zero, our discrete-time dropout
process converges into the continuous-time dropout
process of the Pareto/NBD; we prove this conver-
gence analytically. For intermediate values of period

!When the opportunities for transactions occur in discrete time
(e.g., the NBD is replaced by the beta-binomial (BB) model), the
“Continuous time” row in Figure 1 collapses into the “Discrete
time” row (as time is discretized), and the distinction between
“Calendar time” and “Transaction time” disappears (because they
become one and the same timescale). Thus all three models collapse
to the BG/BB model (Fader et al. 2010) when transactions can only
occur at discrete points in time.
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Figure 1 Classifying Differences in Assumed Customer Death
Processes
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length, we can explore the full continuum of models
that lie between these two extremes.

We find in our empirical analysis that the PDO
model works better than both the NBD and the
Pareto/NBD models for intermediate values of the
period length, both in the calibration samples and
longitudinal holdout periods. Hence, the PDO model
acts as a unifying framework between the widely
used Pareto/NBD and NBD models. We also find that
the PDO model produces different estimates of some
key managerial quantities compared to the alterna-
tive models. For instance, for both the data sets that
we analyze, the PDO model predicts that the average
customer in the cohort purchases slower while alive
but lives longer, compared to the Pareto/NBD model.

We also compare the PDO model to the BG/NBD
model and find that customer-death-related infer-
ences are vastly different for the BG/NBD model.
Recent research has focused on using death estimates
obtained from buy-till-you-die models to augment
managerial decisions regarding customer retention
programs (Gopinath et al. 2009; Reinartz and Kumar
2000, 2003; Schweidel and Knox 2010; Wiibben and
Wangenheim 2008). Our results show that different
models can lead to very different conclusions about
customer death. In light of this, we assert that the
model employed to generate these metrics should be
chosen carefully, and the PDO model offers a rich
framework for this analysis.

In the next section, we formally develop the PDO
model. In §3, we carry out an empirical analysis in
which the performance of the proposed model is com-
pared to that of the Pareto/NBD, BG/NBD, and NBD
models on two data sets—one using transactions from
an online retailer of music CDs and the other using
transactions from a grocery store. In §4, we extend the
basic model to allow for heterogeneity in the period
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length parameter and estimate this new model on
both data sets. Finally, we conclude with a recap of the
model, a brief discussion of its limitations, and some
suggestions for related future research opportunities.

2. Model Development
The PDO model is based on the following six assump-
tions.

AssUMPTION 1. A customer’s relationship with a spe-
cific firm can be characterized as first being alive for some
period of time, then becoming permanently inactive (dead).

AssUMPTION 2. While alive, the number of transac-
tions made by a customer follows a Poisson process with
mean A. (This is equivalent to assuming that the inter-
purchase times are independent and identically distributed
exponential with rate A.)

AssuMPTION 3. Heterogeneity in transaction rates
across customers follows a gamma distribution with shape
parameter r and scale parameter o

ar)lrflefa)\

frlr, @)= "3

)

AsSUMPTION 4. Let the random variable Q) denote the
unobserved time at which the customer dies. We model
the death process by assuming that every T units of time
(where time starts at zero), the customer can drop out with
probability 0. (This implies that the customer can drop
out at 7,2t,..., [t/7|T in the interval (0, t], where |-|
denotes the “floor” function.) Therefore, the probability that
the customer has died by time t is

PQ<t|f,7)=1—(1—-0)Y",

and the mean lifetime of the customer is E(Q) | 0, T) =17/6.
We refer to T as the period length parameter and assume
that it is the same for all customers. (We relax this assump-
tion in §4.)

AssUMPTION 5. Heterogeneity in 0 follows a beta dis-
tribution with probability density function (pdf)

9:1—1(1 _ H)b—l
0la,b)=—7—"—. 2
f8la, )= "5 =5 @
AssUMPTION 6. The transaction rate A and the dropout
probability 0 vary independently across customers.

Note that the first three assumptions are identical
to the corresponding assumptions of the Pareto/NBD
model; the difference lies in the assumptions regard-
ing the nature of the death process.

It follows from Assumptions 4 and 5 that the mean
lifetime of a randomly chosen customer is

a+b—1)

E(Q =
(Q|a,b, ) T< 1

®)

and the probability that she died by t is

B(a,b+ [t/T])

P(Q<t|a b r)=1—
(@=tfa b, ) B(a, b)

(4)

The Pareto/NBD assumes that individual life-
times follow an exponential distribution (in place of
Assumption 4) and that heterogeneity in the under-
lying death rate follows a gamma distribution with
shape parameter s and scale parameter 8 (in place
of Assumption 5). This implies that, for a randomly
chosen customer,

E(Q]s,B)= s—il' and (5)
P(Q§t|s,,8)=l—(%>. (6)

On the face of it, these two models for the under-
lying death process seem quite different: in the PDO
model a customer can die only at fixed points in time,
whereas in the Pareto/NBD model a customer can die
at any point in time. However, one can see that as
7 (in the PDO model) becomes smaller and smaller,
the points in time when a customer can die come
closer and closer. Extending this argument, as we let
7 approach zero, the customer can die at any point of
time. The geometric “discrete” process then becomes
an exponential “continuous” process. (We could think
of the customers as continually flipping their coins to
decide whether to drop out or not.) We can begin to
see how the PDO model nests the Pareto/NBD as a
special case.

Consider a customer who made x transactions in
the interval (0, T], with the transactions occurring
at t;, t,, ..., t,; by definition, f, =0 when x = 0. We
define K; = [t,/7] and K, = |T/7]. Since t, is the time
of the last recorded transaction, the customer must
have been alive at time K;7, which implies that the
customer definitely survived the first K; opportuni-
ties to die. Because the customer was observed until
time T, K, is the total number of opportunities the
customer had to die (out of which she surely did
not die in the first K; opportunities). The meanings
of, and relationships between, K; and K, will become
clearer in the derivation below.

When K; =K,, we have

0 1 L, T

I T T T [ |
(Ky+ D7

The fact that a purchase occurred at ¢, implies the
customer must have been alive at K;7, which occurs
with probability (1— ). Since K; = K,, the customer
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must still be alive at T. Given the model assumptions,
the likelihood function for this case is

LA, 0,7|t,..., 8, T)
— )Le*/\h Ae*)‘(tzftl) - /\e*)‘(tx*tx—l)e*/\(’r*tx)(l _ O)KZ
=Xe M (1-0)<.

When K; < K,, we have

0 4 Iy a

I |
I T T T T T I

Kyt (Kj+ D7 KT

T 27 (Kz-]k Hr
As before, the fact that a purchase occurred at ¢,
implies the customer must have been alive at K.
There are, however, a number of possible explana-
tions for the lack of purchasing in the remaining inter-
val (t,, T]:

¢ The customer died at (K; 4 1)7, having made no
purchase in the interval (t,, (K; 4 1)7], with likelihood
function

)\xe—A(Kﬁ—l)Te(l _ G)Kl .

* The customer died at (K; 4 2)7, having made no
purchase in the interval (t,, (K; 42)7], with likelihood
function

)\XE_)\(KH—Z)TG(l _ 0)K1+1.

¢ The customer died at (K; +3)7, ....
* The customer died at K,7, having made no pur-
chase in the interval (t,, K,7], with likelihood function

)\xe—/\Kzre(l _ O)Kz_l.

* The customer did not die at K,7 and made
no purchase in the interval (¢, T], with likelihood
function

NMe (1 -9y,

Note that in both cases (K; =K,, K; < K;), informa-
tion on when each of the x transactions occurred is not
required; we can replace t,, ..., f,, T with (x, t,, T). In
other words, t, and x are sufficient summaries of a
customer’s transaction history. (Using direct market-
ing terminology, t, is recency and x is frequency.?)

Combining these two cases, we see that the
individual-level likelihood function is

LA, 0,7|x,t,T)
_ )\x(f”(l _ G)LT/TJ + 8LT/7J>U,«/TJ
[T/7]=te/7]

Z /\xe—/\(fo/TJH)TQ(] _ g)th/TJﬁ-J'—l. 7)
j=1

2If x =0, then f, = 0. Note that this measure of recency differs
from that normally used by the direct marketing community, who
measure recency as the time from the last observed transaction to
the end of the observation period (i.e., T —t,).

Taking the expectation of (7) over the distributions
of A and 6, (1) and (2), results in the following expres-
sion for the likelihood function for a randomly chosen
customer with purchase history (x, t,, T):

L(r,a,a,b,7|x,t,T)
1 00

=// LA, 0,7|x, t, T)f(A| 7, &) f(0]a,b)drdo
0 J0

_T(r+x)a’ |:( 1 )HXB(EI, b+ |T/7])
- T(n) a+T B(a, b)

| T/7]—|ty/7] 1 r+x
5 {<a+(th/TJ+J')T)

B(a+1,b+|t,/r]+j—1)
| B(a, b) ” ®)

+ 8\ 1/r)> 1ty /7)

The five model parameters (v, @, a, b, and 7) can be
estimated via the method of maximum likelihood in
the following manner. Suppose we have a sample of
I customers, where customer i had x; transactions in
the interval (0, T;], with the last transaction occurring
at t, . The sample log-likelihood function is given by

i
LL(r,a,a,b,7)=) In[L(r,a,a,b,7|x;,t._, T)]. (9)

i=1

We find the maximum of this function using a line
search for 7 coupled with standard optimization
methods for the other four parameters.

In Appendix A, we show that as 7 — 0, (8) becomes
the likelihood function associated with the Pareto/
NBD model. As 7 — oo, |T/7] =0 and 8 1/;).1,- =0,
in which case (8) collapses to

F(r4+x)a" (1 \™
L'(r) (a + T) ’
which is simply the timing-model analog of the basic
NBD model (Gupta and Morrison 1991). (Strictly
speaking, the PDO model collapses to the NBD when-
ever 7 >max{T;,i=1,...,1}.)

Following Schmittlein et al. (1987), three quanti-
ties of managerial interest in a customer-base analysis
exercise are as follows.

* The expected number of transactions in a time
interval of length t is given by

EX(#)|r,a,a,b,7)

_ rtB(a,b+[t/7)) +r_TL§:J],B(11+1,b+]’—1)
a  B(a,b) a5 B(a, b)

(10)

(This quantity is central to computing the expected
transaction volume for the whole customer base
over time.)
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* The probability that a customer with observed
behavior (x, t., T) is still alive at time T is given by

P(Q>T|r,a,a,b,7,x,t,T)

()"

B(a, b+ |T/7))
" B(a,b)

/L(r,a,a,b,fr|x,tx,T). (11)

* The expected number of transactions in the inter-
val (T, T +t] for a customer with observed behavior
(x,t,, T) is given by

EX(T,T+t)|r,a,a,b,7,x,t,T)

1 C(r+x+Da’ [ 1
“Lr,a,ab 7%, 1) T(r) (a—I—T)
B(a,b+|(T+1t)/7])

{ B(a,b)
+[(T“)/”’m”B(a+1,b+LT/TJ+j—1)

j=1 B(El,b)

.[(LT/TH]')T—T]}. (12)

(See Appendix B for the associated derivations.)

3. Empirical Analysis

We now examine the performance of the PDO model
using the CDNOW data set used in Fader et al.
(2005a, b) and a grocery purchase data set used
in Batislam et al. (2007) (henceforth, the Grocery
data set).

3.1. The CDNOW Data Set

This data set tracks 2,357 individuals who made their
first-ever purchases at the CDNOW website in the
first 12 weeks of 1997 and records their repeat pur-
chasing through June 1998. The first 39 weeks of
data are used for model calibration; the remaining
39 weeks of data are used as longitudinal holdout for
model validation. Fitting the Pareto/NBD model to
these data yields a log-likelihood of —9,595.0; fitting
the NBD model yields a log-likelihood of —9,763.7.
Clearly, the Pareto/NBD model does much better
than the NBD model while using only two extra
parameters (likelihood ratio test x3 = 337.4, p < 0.001).
Our focus, however, is on the performance of the PDO
model. Is its fit bounded between these Pareto/NBD
and NBD limits, or does it provide a superior fit to
the data?

Varying 7 from 0.01 weeks to 40 weeks (in incre-
ments of 0.001), we find the maximum likelihood esti-
mates of the remaining four model parameters by
maximizing the log-likelihood function given in (9).

The corresponding values of the log-likelihood func-
tion are plotted in Figure 2. This figure shows that the
log-likelihood function is discontinuous in 7 at multi-
ple values of 7.3 These discontinuities occur as a result
of the discrete nature of the floor functions in (8),
which have 7 as an argument. At certain values of 7, a
very small increase in 7 causes a large discrete change
in the values of the floor functions (i.e., for a very
small increase in 7, the value of the floor function can
decrease by one for several cohort members), which
leads to a discontinuity in the sample log-likelihood
function in (9). (More specifically, this occurs when ¢,
is a multiple of 7.) Despite the presence of disconti-
nuities in the sample log-likelihood function, the fol-
lowing patterns are clearly discernible.

When 7 is very small (7 = 0.01 weeks, LL =
—9,595.3), the fit of the PDO model is almost exactly
the same as that of the Pareto/NBD. As 7 increases
from 0.01, the log-likelihood increases from the
Pareto/NBD limit to a maximum value of —9,585.6
at 7 =3.001, then starts declining toward the much
lower value associated with the NBD.* As soon as
7 > 6 weeks, the fit of the PDO model is strictly worse
than that of the Pareto/NBD. When 7 is large (>39
weeks in this empirical setting), the PDO model yields
the same log-likelihood as that of the NBD model.

The PDO model (with 7 =3.001) provides a sig-
nificant improvement in calibration-period model fit
over the Pareto/NBD (likelihood ratio test X12 =18.8,
p <0.001). The parameter estimates of the best-fitting
PDO model and the Pareto/NBD model are reported
in Table 1.>/°

To illustrate more clearly the relationship between
the Pareto/NBD, the NBD, and the PDO models with
various values of 7, we present the parameter esti-
mates and other summary statistics for these models

®We thank Albert Bemmaor and Nicolas Glady for bringing this
point to our attention.

* We could use an adaptive line search that switches to a finer incre-
mental in the region of the maximum value of 7. For example, if
we switch to an increment of le—06 in the region of 7 =3.001,
we find that the optimal value of 7 is 3.000001 with an associated
log-likelihood of —9,585.3. (There is no change in the other param-
eter estimates to two decimal places and no change in any derived
quantities of managerial interest, such as forecasts of repeat sales.)
This implies the “truly” optimal value of 7 is 3 + €, where € — 0.
For the sake of simplicity, we stay with the nonadaptive line search
with an increment of 0.001 for the analyses presented in this paper.

® Note that the log-likelihood function for the PDO model is dis-
continuous around 7 = 3.001 (where it attains its maximum). The
standard errors that we report here are obtained by local smooth-
ing of this function in the neighborhood of 7=3.001 (Barnett 1966,
Daniels 1961). Specifically, we report the values provided by the
fmincon function in Matlab, which uses quadratic local smoothing.
Other methods, such as bootstrap or jackknife, may also be used to
obtain standard errors.

¢ The NBD parameter estimates are 7 =0.38 and & = 12.07.
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Note. The right-hand plot presents a “zoomed-in” view for small values of 7.

in Table 2. Note how the parameters of the PDO model
tend toward those of the Pareto/NBD model as 7 — 0
(a — s, bt — B). This is in accordance with the pattern
predicted theoretically in Appendix A.

Beyond the raw parameter estimates, we also see an
interesting range of values for two summary statistics
of the underlying behavioral characteristics—namely,
the mean transaction rate and the median lifetime.

Table1  Parameter Estimates and Standard Errors for the PDO and
Pareto/NBD Models for the CONOW Data Set
PDO Pareto/NBD
Estimate Std. error Estimate Std. error
r 0.52 0.008 0.55 0.026
a 10.40 0.008 10.58 0.632
a 0.43 0.015
b 2.61 0.002
T 3.001 0.002
S 0.61 0.025
B 11.67 0.307
LL —9,585.6 —9,595.0
Table 2 Estimation Results for the CONOW Data Set for the
Pareto/NBD Model (7 = 0), the NBD Model (1 — o), and the
PDO Model (for Various Values of 7)
Transaction Death
T r @ al b LL E(A) Median(Q)
(0) 055 1058 0.61 11.67 —9,595.0 0.052 25.0
0.010 055 1058 0.61 1,167.41 —-9,595.3 0.052 25.0
0.100 055 1057 060 11529 -9,595.5 0.052 25.0
1.001 0.54 10.50 0.56 1090 -9,589.7 0.051 26.5
2.001 052 10.16 0.53 520 -9,588.3 0.051 26.5
3.001 052 1040 043 2.61 -9,585.6 0.050 27.8
4.001 050 1045 042 2.02 —9,594.3 0.048 29.8
5.001 048 11.26 0.46 2.03 -9,599.2 0.043 30.8
10.001 045 1049 0.26 0.62 —9,620.0 0.043 45.0
20.001 040 11.18 0.63 151 —9,703.5 0.036 53.8
(0) 039 1207 — — —9,763.7 0.032 —

s and B in the case of the Pareto/NBD model (7 =0).

Plot of the PDO Model Log-Likelihood for the CDNOW Data Set as a Function of the Period Length Parameter 7

-9,585
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-9,605

Log-likelihood

-9,615

-9,625 T T T T 1

First, comparing the two extreme models, we expect
that under the Pareto/NBD, we would have shorter
lifetimes and therefore higher average transaction
rates when compared with the NBD. Pursuing this
logic further, it follows that increases in 7 would be
associated with declining average transaction rates
and increasing median lifetimes. What is not known,
however, is how quickly these statistics will change
with 7 and whether the rates of change are similar or
different when we compare them. The data in Table 2
confirm the expected directional changes for these
two statistics as a function of 7, but they also reveal
some differences. As 7 rises from 0 (i.e., Pareto/NBD
model) to 3.001, the mean transaction rate falls by
about 5%, but the median lifetime rises by about 10%.
These differences are not dramatic, but they suggest
that the estimated death rates, rather than the mean
transaction rates, are more sensitive to changes in 7.

Because the reduction in transaction rate is smaller
than the increase in lifetime, the best-fitting PDO
model generates a slightly higher estimate of total
repeat sales over time than that produced by the
Pareto/NBD model. But is this good or bad? As 7
rises from 0 (i.e., Pareto/NBD model) to 3.001, the
mean transaction rate falls by about 5%, but the
median lifetime rises by about 10%. To examine this
we create total repeat sales forecasts for each of the
specifications reported in Table 2. In Table 3 we report
the mean absolute percentage error (MAPE) numbers
for both cumulative total repeat sales and weekly total
repeat sales over weeks 40-78.

Looking at the cumulative MAPE numbers, we see
that all of the PDO models with a finite period length
forecast the cumulative sales trajectory extremely
well; it is hard to discern meaningful differences in
a plot of these curves. In contrast, when we look at
errors on an incremental (week-by-week) basis, there
are greater deviations (as would be expected). Over-
all, however, there is strong empirical support for
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Table 3 Measures of Model Forecasting Performance for the Figure 3 Plot of the PDO Model Log-Likelihood for the Grocery Data
Pareto/NBD Model (7 = 0), the NBD Model (1 — o) Set as a Function of the Period Length Parameter 7
and the PDO Model (for Various Values of r)
~67,700 -
MAPE (Weeks 40-78) 67800
i 0, 0,
T Cumulative (%) Weekly (%) 6790
(0) 1.35 20.89 e i
0.010 1.35 20.89 = ~68000
0.100 1.34 20.53 é 68,100 -
1.001 1.14 20.13 2
2.001 1.09 19.81 = 68,200
3.001 0.85 19.06
4.001 0.85 19.06 ~68.300 7
5.001 0.88 19.33 68400 . . . . .
10.001 0.70 19.18 0 2 4 6 3 10
20.001 0.92 19.25 T
(0) 10.37 36.22

the performance of the PDO model (particularly with
7=3.001) as a worthy alternative to the Pareto/NBD.

Do these results prove that customers are actually
“flipping their coins” every three weeks? Of course
not; however, they do suggest that there is room for
improvement in modeling the death process beyond
the starting point established by the Pareto/NBD, and
they provide some reasonable evidence to support the
general idea of the discrete-time “story” being told
here. The consistency of these results and their superi-
ority to a very strong benchmark (represented by the
Pareto/NBD) are hard to deny.

3.2. The Grocery Data Set
Batislam et al. (2007) used a data set covering 5,479
individuals at a Turkish grocery store who made their
first-ever purchases between August 2001 and Octo-
ber 2001, recording their repeat purchasing through
April 2003. For every individual, we have data on the
recency and frequency of repeat purchasing and the
length of time for which this individual was observed.
To make our study consistent with that of Batislam
et al. (2007), we use the first 78 weeks for calibra-
tion and the last 13 weeks as longitudinal holdout for
model validation.

Fitting the Pareto/NBD model to these data yields
a log-likelihood of —67,925.8, and fitting the NBD
model yields —71,000.5. Fitting the PDO models by
varying 7 from 0.01 weeks to 80 weeks, we confirm
the pattern we observed for the CDNOW data set—
when 7 is very small (i.e., 7=0.01 weeks), the fit of
the PDO model is identical to that of the Pareto/NBD;
when 7 is large (>78 weeks in this empirical setting),
the PDO model yields the same log-likelihood as that
of the NBD model. The values of the log-likelihood
function as 7 varies from 0.01 to 10 weeks are plotted
in Figure 3. (This is the equivalent of the “zoomed-
in” right-hand plot in Figure 2.) Note that, as in the

case of the CDNOW data set, the log-likelihood func-
tion for the Grocery data set is discontinuous at mul-
tiple values of 7. The maximum log-likelihood value
is achieved when 7 =1.001 and is —67,757.3. Com-
pared with the Pareto/NBD model, this is a highly
significant improvement in model fit at the cost of
just one additional parameter (likelihood ratio test
X} =337, p <0.001). In Table 4, we present the param-
eter estimates of the best-fitting PDO model and the
Pareto/NBD model.”

As expected, we also observe exactly the same pat-
terns as in Table 2 for the parameter estimates, mean
underlying transaction rates, and median lifetimes for
the different PDO models as 7 varies, and we observe
the same qualitative relationships between these mod-
els and the Pareto/NBD model. For instance, for the
best-fitting PDO model, the mean underlying trans-
action rate is 0.11 per week and the median life-
time is 45.2 weeks; for the Pareto/NBD model, the
mean underlying transaction rate is the same (0.11 per
week) and the median lifetime is smaller (41.8 weeks).
Furthermore, for the 13-week holdout period also, we
observe similar patterns as in Table 3. For the PDO
(7 =1.001) model, the cumulative MAPE is 0.9% and
the weekly MAPE is 3.6%; for the Pareto/NBD model,
the cumulative MAPE is 0.5% and the weekly MAPE
is 3.7%.

To summarize, the best-fitting PDO model per-
forms significantly better than the Pareto/NBD model
in terms of in-sample fit for the Grocery data set,
and we observe similar relationships between the
Pareto/NBD, NBD, and various PDO models in this
data set as we did in the CDNOW data set.

3.3. Comparison with the BG/NBD Model

A natural question that arises is, what about the orig-
inal BG/NBD model (with “coin flips” tied to trans-
actions instead of occurring periodically in calendar

7 The NBD parameter estimates are 7 =0.31 and & = 4.86.
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Table 4 Parameter Estimates and Standard Errors for the PDO and
Pareto/NBD Models for the Grocery Data Set
PDO Pareto/NBD
Estimate Std. error Estimate Std. error
r 0.46 0.001 0.48 0.001
@ 4.38 0.019 4.38 0.014
a 0.62 0.004
b 22.19 0.011
T 1.001 0.000
S 0.57 0.002
B 17.64 0.031
LL —67,757.3 —67,925.8

time)? The answer is quite interesting. In terms of in-
sample fit, the BG/NBD performs at least as well as
all of the PDO models for the CDNOW data set; its
log-likelihood value of —9,582.4, as reported in Fader
et al. (2005a), is slightly better than that of the PDO
model with 7=3.001 (and therefore substantially bet-
ter than that of the regular Pareto/NBD). However,
for the Grocery data set, the BG/NBD model (LL =
—68,007.0) significantly underperforms both the PDO
model and the Pareto/NBD model® In terms of
out-of-sample performance on the summary statistics
shown in Table 3, the BG/NBD consistently performs
slightly worse than the PDO model—for the CDNOW
data set, the BG/NBD model’s cumulative MAPE
is 2.6% and weekly MAPE is 19.4% (both slightly
worse), and for the Grocery data set, the BG/NBD
model’s cumulative MAPE is 8.8% (much worse) and
weekly MAPE is 4.0% (slightly worse). Overall, these
fit statistics offer mixed evidence about the superi-
ority of the PDO model vis-a-vis the BG/NBD, and
none of it is particularly dramatic.

Further insight into the three models can be ob-
tained by comparing interferences we may draw
concerning underlying buyer behavior. In particu-
lar, we compare the estimates for the mean transac-
tion rate and the median lifetime with uncertainty
in the maximume-likelihood (ML) estimates taken into
account.’

Figure 4 plots the estimates for the mean transac-
tion rate with uncertainty in the ML estimates taken
into account. For both data sets, there are notable dif-
ferences in the mean purchasing rates; a randomly

8 The BG/NBD model parameter estimates, along with the standard
errors in parentheses, are 7 =0.24 (0.013), @ =4.41 (0.366), 4 =0.79
(0.189), and b=2.43 (0.695) for the CDNOW data set; and 7 =0.28
(0.004), & = 2.34 (0.008), i = 0.40 (0.022), and b =2.09 (0.178) for
the Grocery data set.

°To account for uncertainty in the estimates, we take 1,000 draws
of the relevant parameters from a multivariate normal distribution,
where the means are the ML estimates of the relevant parameters
and the covariance matrix is given by the inverse of the Hessian
(to account for the correlations between parameter estimates).
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Figure 4 Expected (Latent) Transaction Rate for a Randomly Chosen
Customer for the CONOW and Grocery Data Sets, Accounting
for Uncertainty in the ML Estimates, for the Best-Fitting PDO,
Pareto/NBD and BG/NBD Models
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chosen customer purchases slower (while alive)
under the PDO model compared to the Pareto/NBD
model and purchases slower (while alive) under the
Pareto/NBD model compared to the BG/NBD model.
(We note that the estimates for these quantities are
sharper for the Grocery data set than the CDNOW
data set because in the former we have data for
almost twice the number of individuals compared
with the latter.)

Noting that the BG/NBD model probability of
a randomly chosen customer having died by t is
given by

a t
PQ<t)=1- (a_+t> 21—"1<r,b; a+b; a_—l—t>' (13)
where ,F () is the Gaussian hypergeometric function,
we can compute the median lifetime for all three mod-
els with uncertainty in the ML estimates taken into
account—see Figure 5 for the associated plots.

In both empirical settings, there is a slight (but sys-
tematic) difference in the median lifetimes as implied
by the PDO and Pareto/NBD models, with the PDO
model predicting that a randomly chosen customer in
the cohort lives longer; however, the results for the
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Figure 5 Median (Latent) Lifetime for a Randomly Chosen Customer for the CDONOW and Grocery Data Sets, Accounting for Uncertainty in the
ML Estimates, for the Best-Fitting PDO, Pareto/NBD, and BG/NBD Models
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BG/NBD model cast a dubious light on its validity—
even when its overall fit is superior. Specifically, we
note that, for both data sets, the median lifetimes as
implied by the BG/NBD are so vastly different than
those of the two former models that they cannot be
plotted on the same scale.

Compared with the Pareto/NBD model, the PDO
model predicts (in these empirical settings) that a ran-
domly chosen customer in the cohort lives longer but
purchases slower while alive. Under the BG/NBD
model, a randomly chosen customer not only lives
much longer but also purchases at a slightly higher
rate. How do we reconcile this with the finding
that the BG/NBD underestimates cumulative repeat
sales when compared to the Pareto/NBD model
(Batislam et al. 2007, Fader et al. 2005a)? In con-
trast to the cumulative death probability for the PDO
and Pareto/NBD models, (4) and (6), respectively, the
cumulative death probability for the BG/NBD model,

(13), is a function of the parameters of the distribution
that characterizes heterogeneity in buying rate while
alive. This follows from the fact that death can only
follow a purchase. Although the mean of the gamma
heterogeneity distribution is highest for the BG/NBD
model for both data sets, it is also the most hetero-
geneous (as indicated by the coefficient of variation,
which equals 1/4/7). This pool of customers with a
very low buying rate means that their opportunities
for death occur very infrequently, which results in
very long (unobserved) lifetimes.

These questionable results for the BG/NBD high-
light the practical implications of the death process
associated with the class of buy-till-you-die mod-
els; assessing measures of model fit is not suffi-
cient to judge the suitability of a model for infer-
ential purposes. As more researchers and managers
make managerial judgments that directly relate to
the death process (Gopinath et al. 2009; Reinartz
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and Kumar 2000, 2003; Schweidel and Knox 2010;
Wiibben and Wangenheim 2008), the theoretical ben-
efits of the PDO framework become much more tan-
gible. The BG/NBD has no direct connection to the
Pareto/NBD, and there is no way to equate the
parameters across these different specifications. These
conceptual benefits help demonstrate the value of
the PDO framework, especially for researchers with a
focal interest in the nature of the death process.

4. Heterogeneity in 7

In the previous sections, we have treated the param-
eter 7 as homogeneous for all customers; in reality,
however, the nature of the period length is likely to
vary across them. In this section, we allow for het-
erogeneity in 7. Specifically, we assume that 7 varies
across customers according to a gamma distribution
with pdf

memflepr

() (14)

f (7|m, p)=
(Using other heterogeneity distributions, such as a
log-normal distribution or a normal distribution trun-
cated below at zero, yields similar results.)

Under this specification, the individual-level pro-
cess is the same as before, and the likelihood function
for a randomly chosen customer is obtained by taking
the expectation of (8) over the distribution of 7, ie.,
evaluating the integral

/OOL(;', a,a,b,7)f(7|m, p)dr.
0

As this does not have an algebraic solution, we turn to
Markov chain Monte Carlo (MCMC) methods for esti-
mating this heterogeneous PDO (henceforth HPDO)
model; see Appendix C for details.

We estimate the HPDO model on both data sets.
Our inferences are based on 50,000 iterations, fol-
lowing a burn-in of 20,000 iterations. The resulting

Figure 6
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Table 5 Parameter Estimates for the HPDO Model for the CONOW and
Grocery Data Sets
CDNOW Grocery
Posterior Posterior
mean 95% interval mean 95% interval
r 0.41 [0.408,0.413] 0.35 [0.349,0.351]
@ 11.74 [11.647,11.833] 4.55 [4.529,4.571]
a 0.20 [0.194,0.206] 0.54 [0.535, 0.545]
b 2.75 [2.648,2.852] 10.54 [10.354,10.726]
m 1.47 [1.463,1.478] 1.42 [1.416,1.424]
p 0.12 [0.118,0.123] 0.21 [0.207,0.214]

parameter estimates after the Markov chains con-
verge are presented in Table 5. (The associated log-
marginal density numbers, calculated using the har-
monic mean of the likelihoods across iterations (see
Newton and Raftery 1994), are —8,577.1 and —63,746.2
for the CDNOW and Grocery data sets, respectively.)

Figure 6 shows the distribution of 7 for both
data sets. Clearly, there is significant heterogeneity in
7 in both data sets. Note that the expected value of
7 is larger for the CDNOW data set compared with
the Grocery data set; this is in line with the value of
7 for the best-fitting PDO model (i.e., without hetero-
geneity in 7) being larger for the CDNOW data set
compared to the Grocery data set. However, although
the HPDO model offers new insights into the dropout
process and a large improvement in in-sample fit,
it performs slightly worse in terms of out-of-sample
predictions than the PDO models without heterogene-
ity in 7. For the CDNOW data set, for weeks 40-78,
the cumulative MAPE is 1.92% and the weekly MAPE
is 20.55%. For the Grocery data set, for weeks 78-91,
the cumulative MAPE is 1.5% and the weekly MAPE
is 8.1%. Furthermore, using simulated data for vari-
ous “HPDO worlds,” we found that the HPDO model
is unable to do a satisfactory job of recovering the
true individual-level period lengths, which we con-
jecture is because the individual-level likelihood func-
tion has floor functions that make it discontinuous
in 7. Similar simulations for the basic PDO model

Histogram of Posterior Draws of r Across Customers from One Iteration After Convergence for the CONOW Data Set (Left) and the
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covering a wide variety of purchasing characteristics
in the cohorts show that, in contrast to the HPDO
model, it is able to recover its original parameters
with good accuracy in spite of the discontinuity issues
that we discussed in §3. (In the case of the basic
PDO model, we are able to conduct a line search
to find the optimal value of 7 for the cohort.) For
these reasons, the simpler PDO model may be the pre-
ferred alternative. Nevertheless, we believe that the
HPDO model is a worthwhile extension to consider
and might offer value to future researchers, particu-
larly if they want to test hypotheses about how the
nature of the dropout process varies across customers
(perhaps related to customer characteristics or contex-
tual factors).

5. Discussion and Conclusions
We have proposed the PDO model as a new way
to better understand and capture the death process
associated with buy-till-you-die type models that are
frequently used to model customer buying behav-
ior in noncontractual settings. We demonstrated (both
analytically and empirically) that the PDO model
nests both the Pareto/NBD and the traditional no-
death NBD as special cases, and we found strong evi-
dence that customers behave as if their death pro-
cess is somewhere in between these two extremes.
Because the PDO model has a more flexible death
process, it widens the scope of what we can infer
about the nature of the customer dropout process
when compared to the Pareto/NBD model. Because
the purchase process is estimated jointly with the
death process, we can also expect to see differences
in inferences for the quantities related to the purchase
process. In accordance with these insights, we found
that the PDO model can indeed offer different esti-
mates for some important characteristics of purchase
and death dynamics in a cohort—for instance, for
both the data sets that we analyzed, we found that the
average customer lives longer but purchases slower
in the PDO model than in the Pareto/NBD model.
Although this paper questions (and improves upon)
one aspect of the original Pareto/NBD paradigm, it
does not necessarily mean that the Pareto/NBD itself
is obsolete and should be avoided. We continue to
encourage using the Pareto/NBD model when the
manager’s primary goal is forecasting purchases, as
opposed to a principal focus on the death process,
per se. Although in our data sets the best-fitting
PDO models (and the HPDO model) offer consistent
and significant improvements in the calibration sam-
ple, the improvements in predictions for the holdout
period are not especially dramatic. On the other hand,
when inferences about customer dropout are central
to the manager’s goals, the PDO framework deserves
her attention.

This paper has focused on the underlying struc-
ture of the death process in the buy-till-you-die mod-
els of buyer behavior in noncontractual settings, as
illustrated in Figure 1. All the models assume that
an individual customer’s unobserved (and unobserv-
able) lifetime is characterized by a memoryless pro-
cess (i.e., an exponential or geometric distribution)
and that buying behavior while alive can be character-
ized by the Poisson distribution coupled with gamma
heterogeneity (i.e., the NBD). Staying within the buy-
till-you-die paradigm, there are obvious extensions.
We can replace the memoryless lifetime distribution
(associated with any of the three cells in Figure 1)
with one that exhibits some form of duration depen-
dence. For instance, if we find that the Pareto/NBD
is underpredicting repeat sales or overpredicting the
number of zero repeat buyers, or both, we could
replace the exponential lifetime distribution with a
Weibull (or some other distribution with a more flex-
ible hazard function that has the ability to “slow
down” the death process). We can also relax the
assumption of a memoryless interpurchase distri-
bution associated with the NBD. For example, the
NBD can be replaced by the CNBD (Chatfield and
Goodhardt 1973, Schmittlein and Morrison 1983), as
in Platzer’s (2008) CBG/CNBD-k model and the work
of Schweidel and Knox (2010).

The emergence of simulation-based estimation
methods for the Pareto/NBD model (Abe 2009, Ma
and Liu 2007, Singh et al. 2009) means that it is now
much easier for the researcher to tinker with the basic
“building blocks” of the model, i.e., the ability to uti-
lize other probability distributions instead of those
used by the early researchers in this area. Although
this kind of flexibility seems like a welcome addi-
tion to the modeler’s toolkit, it may create an overly
complex model that lacks a meaningful “as-if” story.
We feel that a more reflective approach to extend-
ing the model, such as stepping back and questioning
the implicit assumption that “death can occur at any
time,” may result in better performance (particularly
in a holdout period) as well as improved diagnostics
(such as the nature of the death process).

A logical extension of our hierarchical Bayesian
estimation procedure for the HPDO model would be
the use of covariates to help explain how the death
process varies across customers. Several researchers
have explored such extensions to the Pareto/NBD
model using time-invariant covariates (e.g., Abe 2009,
Fader and Hardie 2007) and time-varying covariates
(e.g., Schweidel and Knox 2010). This could help man-
agers manage customer attrition in an effective man-
ner. These issues, however, go beyond the PDO model
proposed here (and may not offer substantial ben-
efits to justify their additional complexity). Before
rushing ahead with these potential improvements, we
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encourage researchers to contemplate the basic PDO
model and take advantage of its desirable theoretical
properties.
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Appendix A. The Pareto/NBD as a Limiting Case
In this section we show that the PDO model likelihood func-
tion approaches that of the Pareto/NBD model as 7 — 0.

The individual-level likelihood function for the Pareto/
NBD model is (Fader and Hardie 2005):

L, p|x, t,T)= Axi'uef(/\ﬂt)tx + LH((H;L)T_
A A+

Assuming heterogeneity in A and u is distributed gamma
with parameters (r, a) and (s, B8), respectively, it follows that
the likelihood function for a randomly chosen customer is
found by solving

L(r,a,s,B|x,t,T)

Rt
o Jo \A+pu
x+1
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Our proof is based on showing that
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is identical to (A1) (i.e., lim,_(L(r, @, a,b, 7)=L(r, «, 5, B)).
This proof will make use of the following results:
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(We note that (A2) is a standard result, (A3) results from
the application of L’'Hopital’s rule, and (A4) follows from
Abramowitz and Stegun 1972, Equation 6.1.46.)

Noting that
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we can rewrite the individual-level likelihood function (7) as

L(A,0,7|x,t,T)
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Let 6 = ur, which implies df = rdu. (When 6 =0, u =0;
similarly, when § =1, u=1/7.) Also leta=sand b=/7. It
follows that PDO likelihood function for a randomly chosen
customer, L(r, a, a,b, 7), can be written as

L(r,a,s,8,7) = fol/TwaHL(/\,,M,T|x,tx,T)f(A|r,a)

o .1 L(s+B/7)
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(Note that the only difference between sf, and s is t, ver-
sus T.)

We now take the limit of (A5) as 7 — 0. Noting that
8\1/z)>t,yr) = 1 @8 T— 0, we have
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o l/7 Axe—)\[tx/fjr S S (1— Lte/7]4+B/T—1
limsf, = hm/ / Tw (- p)

o o e — (1—pr)
I'(s+B/7)
T A ednds
fimeotfr [ e ATt (1 ) /AT
= m
./ / T*)O{ (1 M,T)
I(s+pB/7) }
Alr, @) pdpd)
T (@) )f( |7, )b du
= Xo~Mx B8 s e—rBth)
/ / Atp I'(s) f(A|V,a)de,\

s poo Xy (Wt
= [ T fOI@f s Baudr (A8
It follows that

timoty= [ T2 0wl Byduar. (A9)

70
Substituting (A7)—(A9) in (A6) and simplifying gives us
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which is exactly the integral for the Pareto/NBD likelihood
function, (Al). Q.E.D.

This proof establishes the equivalence between the like-
lihoods of observing the same data under the PDO model
when 7 — 0 and the Pareto/NBD. We use this fact some-
what liberally to “prove” that the two models are equivalent
under this special condition (7 — 0). (Using a similar pro-
cedure and the same substitutions, it is easy to show that
all the expressions for the PDO model—e.g., (10)—(12)—are
identical to those of the Pareto/NBD as 7 — 0.)

Appendix B. Derivations of Key Results

Derivation of (10). Let the random variable X(f) denote
the number of transactions occurring in the interval (0, t].
Conditional on A, it follows from the assumption of Poisson
purchasing that E[X(t)] is simply At if the customer is active
at t, A7 if the customer dies at 7, 2A7 if the customer dies
at 27, 3A7 if the customer dies at 37, ..., and |t/7]|AT if the
customer dies at [f/7|7. Multiplying these quantities by the
probability that the customer dies at 7,27, ..., gives us

Lt/7]
O+ ar Y 0(1— 0yt
j=1

E(X(t)| A, 0, 7) = At(1 —

Taking the expectation of this over the distributions of A
and 0, (1) and (2), gives us the expression in (10).

Derivation of (11). The probability that a customer with
purchase history (x,t,, T) is alive at time T is simply the
probability that she was alive at K,7. Referring back to our
derivation of the individual-level likelihood function, (7),
the application of the Bayes’ theorem gives us

)\xe—AT(l _ H)LT/TJ

p(Q>T|A,0,T,x,tx,T)=m'
s Y, [t 24

(B1)

(We note that if |t /7| = |T/7] (e, K| =
AG T, X, t,T)=1)
By Bayes’ theorem, the joint posterior distribution of A
and 0 is given by
f(r,0|r,a,a,b,7,x,t,T)
L0, 7 x, b, T)f(A]r,a)f(0]a,b)
a L(r,a,a,b,7|x,t,T) ’

K,), P(Q>T |

(B2)

Taking the expectation of (B1l) over this joint posterior dis-
tribution gives us (11).

Derivation of (12). Let the random variable X(T, T + t)
denote the number of purchases made in the interval
(T, T +t]. We are interested in computing the conditional
expectation E(X(T, T +t) | x, t,, T), the expected number of
purchases in the interval (T, T +t] for a customer with pur-
chase history (x, t,, T).

Let us assume the customer is alive at T (i.e.,, Q > T).
Conditional on A, it follows from the assumption of Pois-
son purchasing that the expected number of purchases in
(T, T +t] is simply At if the customer is active at T + ¢,
A T/7] + 1) — T] if the customer dies at (|T/7] + 1)1,
AL T/7]+2)r — T] if the customer dies at (|T/7]+2)7, ...,
and A(| (T +t)/7]7—T) if the customer dies at [(T +1t)/7]7.
Multiplying these quantities by the probability that the cus-
tomer dies at (|[T/7]| +1), (|[T/7]+2), ..., gives us

E(X(T, T+1t)|A,60,7,Q>T)
— AH(1 — g)LTH/ LT/

L(T+t)/7]-LT/7]
+ X
j=1
Taking the expectation of the product of (B1) and (B3)
over the joint posterior distribution of A and 6, (B2), gives
us (12).

Appendix C. MCMC Procedure for the

HPDO Model

Customer i with period length 7; makes her dropout deci-
sion at 7;,27;, 37;,.... Whether the customer dropped out
or not and, if so, when she dropped out, is unobserved. To
aid with the model estimation, we generate these unobserv-
ables using data augmentation (Tanner and Wong 1987).
Specifically, we use the indicator variable Z; (with the real-
ization z;) to denote whether the customer died between
t,, and T;: if the customer is still alive at T;, Z; = 1; if the
customer died at i;7;, where ; € {(t, /7] +1,..., [ T;/7]},
Z;=0.

Recalling the logic of the derivation of (7), the likelihood
function of customer i is given by Aj'e~%Ti(1 — 9;)lT/7l if
Z;=1,and A}'e~"¥i79,(1—6,)¥~! if Z; =0 (and the customer
died at i;7;). Therefore,

A(LT/7] +j)r—Tlo(1—0y~'. (B3)

L(/\i/ 01’/ T |xi/ tx,-/ Ti/Zi/ ll/z)

— )\';fie*)LiIZiTiJf(l*Zz)‘/’iTi]0517‘21')(1 6,1z Ti/mil+(1-2)(Wi=D]

The parameters of the heterogeneity distributions for A,
0, and 7 specified earlier act as priors for A;, 6;, and 7,
respectively. Hence, A; ~ gamma(r, ), 6; ~ beta(a, b), and
7; ~ gamma(m, p). We derive expressions for the conditional
densities of the relevant individual-level parameters in the
following manner.
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* The conditional posterior distribution of A; is propor-
tional to L(A;, 6;, 7; | x;, t,, T, z;, ;) x f(A; | r, @), which in
turn is proportional to A] "~ e~Ale+zT+1-=)4i7] Therefore,

/\i | r, o, T, X, Ti/ Zi, llli
~gamma(r+x; — 1, a+z,T,+ (1 —z);7;). (Cl)

e The conditional posterior distribution of 6; is propor-
tional to L(A;, 0;, 7; | x;, b, T;, z;, ;) x f(0; | a,b), which
in turn is proportional to 6; (1 — 6,)b~1+=ilT/ml+A=z)Wi-),
Therefore,

01’ | a, b/ Tis Ti/ Ziy ‘/Ji
~beta(a+1—-z;, b+z|T/m]+(1-2z)(; —1)). (C2)
¢ The conditional posterior distribution of 7; is propor-
tional to L(A;, 0;, 7; | x;, t,., T}, z;, ;) x f(7; | m, p), which
gives us
f(Ti | m,p, T, Ti/Zi/ l/’:)

x 7—{”’*1e*[PTiJr)\i(ZiThL(l*Zi)‘l’iTi)](1 — 8, LTi/mil+(A=zi) (i =1) (C3)

We can sample from this distribution using Metropolis-

Hastings methods.
® Recalling (B1),

%,
B+ 81171ty 171 B

P(Z;=1]A;, 0;, 7it,,, T)) = (C4)

where
By =e M1 —0)"/,  and
LTi/7i) =Lty /7i)

2= Z

j=1

©

e~ Millky /Tl 0,(1—6)) U /7il+j =1

Note that if |T;/7;] = [f,,/7;], customer i is definitely alive
at T; because she did not get a chance to flip her death
coin after her last purchase (which occurred at ¢, ); as such,
P(Z;=1|)=1

e If Z; =0, then we also generate an integer i; €
{lt,,/7:]+1, ..., [T;/7;]}, where t,, < ;7; < T, is the point in
time at which customer i died. Assuming a (discrete) uni-
form prior on ¢;,

P(¥;=¢;| A, 0;, 73, by T) E_AiWiTioi(l - 91‘)%_1- (C5)

The joint conditional posterior distributions of the
population-level parameters are given by

fra N« { M r, a)}f<r>f<a>, (o)
i=1
faoioa| Mool @me, @

1
Flm, 7)o { MG im, p)}f(m)f(p), ()
i=1

where N, 0, and 7 denote the current vectors of the
individual-level parameters. We use fully diffuse hyperpri-
ors for v, a, a, b, m, and p. (Although these parameters are
only allowed to take on positive values, in our case this is

not a problem because the two data sets we use have a large
number of individuals in them; i.e., while sampling from
the posterior distribution, the data likelihood strongly dom-
inates the prior specification.) Metropolis-Hastings methods
are used to sample the pairs (v, @), (4, b), and (m, p).

The resulting MCMC procedure used in the estimation is
as follows:

1. Set initial values for r, «, a,b, m, and p, as well as for
Ai, 6;, 7,2z, and ¢;, Vi=1,..., 1
2. Iterate until convergence:

(a) For each customer i, sample A;, 6;, and 7; using (C1),
(C2), and (C3), respectively.

(b) For each customer i, generate z; using (C4). If z; =0,
generate ; using (C5). (This is the data augmenta-
tion step.)

(c) Sample the pairs (r, ), (a,b), and (m, p) using (C6),
(C7), and (C8), respectively.
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