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Abstract

In the classic certainty multiperiod, multigood demand problem, suppose

preferences for current and past period consumption are separable from con-

sumption in future periods. Then optimal demands can be determined from

the standard two stage budgeting process, where optimal current period de-

mands depend only on current and past prices and current period expenditure.

Unfortunately this simplification does not significantly reduce the informa-

tional requirements for the decision maker since in general the expenditure is

a function of future prices. Recent behavioral evidence strongly suggests that

frequently individuals significantly simplify or "narrow bracket" intertempo-

ral choice problems. We derive necessary and suffi cient conditions such that

the current period’s expenditure and hence optimal current demands are in-

dependent of future prices. Since this preference property is a special case

of separability, it is referred to as myopic separability. One well known spe-

cial case of myopic separability is log additive (or equivalently Cobb-Douglas)

utility. However, this form of utility is overly restrictive, especially given the

general aversion of Fisher (1930), Hicks (1965) and Lucas (1978) to requiring

preferences to be additively separable. Myopic separability requires neither

additive separability nor logarithmic period utility. As an application, we

derive simple restrictions on equilibrium interest rates which are necessary

and suffi cient for utility to take the myopic separable form. These condi-

tions are arguably less restrictive than those implied by additively separable

preferences.
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separability, equilibrium interest rates
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1 Introduction

Consider a multiperiod, multigood setting in which a well-behaved utility function

is maximized subject to a standard intertemporal budget constraint. In order to

derive an optimal consumption plan, the consumer needs to know all past, current

and future prices. It is natural to ask when these informational requirements can be

reduced. Similar questions have been raised in the extensive literature on separable

preferences. In his classic paper, Leontief (1947) asks when the complex single pe-

riod problem of choosing over a large number of commodities can be replaced by the

"man-in-the-street" approach of first allocating resources among general categories

such as food and clothing and then making within category choices between specific

goods such as bread and apples.

This two stage budgeting process was further developed by Strotz (1957), (1959)

and Gorman (1959) and it was shown that if preferences are separable then it is

possible to choose among commodities in a separable group based on within group

prices and the expenditure on the group.1 Unfortunately this intuitive simplifica-

tion does not in general result in a reduction in informational requirements for the

consumer since to determine the expenditure on a group of goods she needs to know

the full set of commodity prices and not just the prices of the goods within the

group (see Blackorby, Primont and Russell 2006, p. 6). For example, if food goods

form a separable group from all other commodities, although this ensures that the

marginal rate of substitution between any pair of food goods is independent of the

quantity of non-food items, it does not ensure that the demand for food items does

not depend on the price of non-food goods. In this vein Pollak (1971) observes

It would be nicer if the demand for Swiss cheese depended only on

food prices and income, but this is not what separability implies. (Pollak

1971 pp. 246-247)

In a similar spirit for the intertemporal case, Kurz (1987) defines an optimal

consumption plan in a given time period as being myopic if and only if that pe-

riod’s demand function depends only on exogenous variables in the current and past

periods and not in future periods.2

∗We thank Herakles Polemarchakis and Faruk Gul for their insightful comments and suggestions.

Selden and Wei thank the Sol Snider Research Center —Wharton for support.
1Throughout this paper when we say "separable", we will mean "weakly separable" as defined in

Goldman and Uzawa (1964). For a thorough discussion of the extensive theoretical and empirical

literature associated with separability, see Deaton and Muellbauer (1980), Blundell (1998) and

Blackorby, Primont and Russell (1998).
2It should be stressed that over the years the term myopia has been used in a number of

different ways. The notion of a myopic plan as defined by Kurz and employed throughout this
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In this paper, we derive the necessary and suffi cient condition such that the

current period’s expenditure and hence optimal current demands are independent

of future prices. We also characterize when demand is myopic in each time period

and a subset of periods. Since these preference properties are a special case of

separability, we refer to them as myopic separability.

In recent years “a mass of evidence and the ineluctable logic in a complicated

world”(Rabin and Weizsacker 2009, p. 1508) strongly suggest that individuals “nar-

row bracket”decisions by choosing to disregard potentially relevant decisions and

information.3 Specifically in the context of this paper, Read, Lowenstein and Rabin

(1999, p. 174) argue that the most common occurrences of narrow bracketing take

place in intertemporal settings. These authors also observe that generally narrow

bracketing will be suboptimal relative to “broad bracketing”where the full com-

plex decision problem is addressed. Laibson (1999) raises the need for developing

a formal model of narrow bracketing. When will narrow bracketing actually be

optimal? In the specific context of multiperiod, multigood demand, myopic sepa-

rability is both necessary and suffi cient for narrow bracketing to be optimal for the

consumer.

One well known special case of myopic separability is log additive (or equivalently

Cobb-Douglas) utility.4 However this form of utility is overly restrictive, especially

given the aversion of Fisher (1930), Hicks (1965) and Lucas (1978), among others, to

requiring preferences to be additively separable. More recently Prelec and Loewen-

stein (1991) provide a very strong case against intertemporal additive separability

based on extensive laboratory and empirical studies. Myopic separability does not

paper differs from its use in the changing tastes literature. In Strotz (1956), for example, a myopic

plan is used interchangeably with a naive plan where a consumer bases her plan for current and

future consumption on current multiperiod preferences ignoring the fact that her preferences in

the next period for the then remaining consumption vector may differ. Still another use of myopia

was introduced by Brown and Lewis who refer to preferences as being myopic when “present

consumption is preferred to future consumption and the taste for future consumption diminishes

as the time of consumption recedes into the future”(Brown and Lewis 1981, p. 360).
3Although a number of examples of narrow bracketing are couched in certainty settings, it

has been most widely discussed in the context decision making under uncertainty (see Rabin and

Weizsacker 2009 and the reference cited therein). It is closely related to the discussion of framing in

the classic paper of Kahneman and Tversky (1979) on prospect theory. Thaler (1999) introduced

the concepts of narrow and broad bracketing in the context of mental accounting.
4In a multiperiod uncertainty setting, if intertemporal preferences are represented by log additive

Expected Utility, then the consumer’s multiperiod investment plan is myopic (see, for example,

Rubinstein 1974). In the finance literature, an alternative notion of myopic investment plans is

also considered where investors are assumed to maximize Expected Utility of terminal wealth. See,

for example, Mossin (1968) and Hakansson (1971). In this paper however, we focus only on the

certainty case.
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require additive separability, homotheticity or logarithmic period utility. Examples

of these more general forms are provided.

As an application, we consider both representative agent and heterogeneous agent

exchange equilibrium interest rate settings. Restrictions on interest rates which are

necessary and suffi cient for utility to take the myopic separable form are derived.

And they are compared to the conditions required by other preference restrictions.

Interestingly, some may view the implications of myopic separability to be consid-

erably less restrictive than those associated with the commonly assumed additively

separable form of utility. This result provides an equilibrium justification support-

ing the general aversion to additively separable utility cited above.

In the next section, two simple examples are presented contrasting cases where

preferences do and do not exhibit myopic separability. In Section 3, we derive

our primary preference results. Section 4 considers the application to equilibrium

interest rates. The Appendix provides an alternative proof of our primary preference

result.

2 Motivating Examples

In this section, we assume that preferences over commodities take the standard

separable form. In the first of two examples, we illustrate the following two stage

budgeting results for separable preferences: (i) the demand for goods in a separable

group can be expressed as a function of the prices of goods in that group and the

expenditure on the group and (ii) the expenditure on the group depends on the

prices of goods outside the group. In the second example where preferences are

also separable, we find that the expenditure on the group is independent of prices

of goods outside the group and hence the demand for goods in the group depend

only on prices in the group and total income. For this second case, the two stage

budgeting process is not only economically intuitive but also significantly reduces

the informational requirements on the consumer.

Assume preferences over N commodities c =def (c1, ..., cN) are represented by a

utility function U(c), where c ∈Ω and Ω is a convex subset of the positive orthant.

Consider a partition {N s,N c} of the set of commodities {1, ..., N}, where N s is the

partition of the separable group and N c is the complement group of goods. Let

Ωs and Ωc be a corresponding decomposition of Ω (i.e., Ωs × Ωc = Ω) and let the

elements of Ωs and Ωc be c(s) ∈ Ωs and c(c) ∈ Ωc, respectively. Then following

Russell (1975), N s is separable from N c if and only if

{c(s)
∣∣ c(s) ∈ Ωs and U

(
c(s), c(c)

)
> U

(
c(s), c(c)

)
} (1)

is invariant with respect to c(c). This intuitive definition results in the utility form
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below following Leontief (1947) and Sono (1961)5

U(c1, ..., cN) = f
(
U (2)

(
c(s)
)
, c(c)

)
, (2)

where f and U (2) are strictly increasing, quasiconcave functions. This can be

illustrated by the following variation of Example 2.2 in Blackorby, Primont and

Russell (1998).6

Example 1 Consider the following optimization problem

max
c1,c2,c3,c4

U (c1, c2, c3, c4) = c1c2c3+(c1c2)
1
4 c

1
2
4 S.T. p1c1+p2c2+p3c3+p4c4 = I. (3)

It is clear that c(s) = (c1, c2) is separable in the above utility function. Following

the two stage budgeting process, first solve

P1 : max
c1,c2

U (2) (c1, c2) = c1c2 S.T. p1c1 + p2c2 = I2 (4)

and then solve

P2 : max
I2,c3,c4

U (c1 (I2, p1, p2) , c2 (I2, p1, p2) , c3, c4) = c1c2c3 + (c1c2)
1
4 c

1
2
4 (5)

S.T. p3c3 + p4c4 + I2 = I. (6)

Solving P1 yields

c1 =
I2

2p1
and c2 =

I2
2p2

. (7)

Therefore, P2 can be rewritten as

P2 : max
I2,c3,c4

U (c1 (I2, p1, p2) , c2 (I2, p1, p2) , c3, c4) =
I22

4p1p2
c3 +

(
I22

4p1p2

) 1
4

c
1
2
4 (8)

S.T. p3c3 + p4c4 + I2 = I. (9)

The first order condition results in

2I22
4p1p2

c
1
2
4(

I22
4p1p2

) 1
4

=
p3
p4
⇒ c4 =

2p23
p24

(
p1p2
I22

) 3
2

, (10)

implying that

c3 =
I − I2
p3

− 2p3
p4

(
p1p2
I22

) 3
2

. (11)

5The notion of separable utility was introduced independently by Sono (1961), where the focus

was more on characterizing the substitution and income effects of different functional forms.
6We vary the coeffi cients in Example 2.2 in order to make it analytically solvable, but this does

not change the conclusion we draw. The subscripts are also relabeled to be consistent with the

discussion in our paper.
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The first order condition for maximizing U with respect to c3 and I2 gives

I2c3
2p1p2

+
I
− 1
2

2

2

(
1

4p1p2

) 1
4
c
1
2
4

I22
4p1p2

=
1

p3
. (12)

Substituting eqns. (10) and (11) into (12) yields

2p23 (p1p2)
3
2

p4I42
− 2I

I2
+ 3 = 0. (13)

It is clear that I2 depends on p3 and p4. Since optimal c1 and c2 depend on I2, this

implies that they depend on prices for commodities outside the c(s) group.

It is natural to wonder whether there exist any case such that I2 is independent

of p3 and p4. Actually, this can be realized by modifying the utility parameters in

the above example.

Example 2 Consider the following optimization problem

max
c1,c2,c3,c4

U (c1, c2, c3, c4) = c1c2c3+
√
c1c2c4 S.T. p1c1+p2c2+p3c3+p4c4 = I. (14)

It is clear that c(s) = (c1, c2) is separable in the above utility function. Following

the two stage budgeting process, first solve

P1 : max
c1,c2

U (2) (c1, c2) = c1c2 S.T. p1c1 + p2c2 = I2 (15)

and then solve

P2 : max
I2,c3,c4

U (c1 (I2, p1, p2) , c2 (I2, p1, p2) , c3, c4) = c1c2c3 +
√
c1c2c4 (16)

S.T. p3c3 + p4c4 + I2 = I. (17)

Solving P1 yields the same c1 and c2 demand functions as in Example 1

c1 =
I2

2p1
and c2 =

I2
2p2

. (18)

Therefore, P2 can be rewritten as

P2 : max
I2,c3,c4

U (c1 (I2, p1, p2) , c2 (I2, p1, p2) , c3, c4) =
I22

4p1p2
c3 +

√
I22

4p1p2
c4 (19)

S.T. p3c3 + p4c4 + I2 = I. (20)

The first order condition results in

2I22
4p1p2

c
1
2
4√

I22
4p1p2

=
p3
p4
⇒ c4 =

p23
p24

p1p2
I22

, (21)
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implying that

c3 =
I − I2
p3

− p3
p4

p1p2
I22

. (22)

The first order condition for maximizing U with respect to c3 and I2 gives

I2c3
2p1p2

+
√

1
4p1p2

c4

I22
4p1p2

=
1

p3
. (23)

Substituting eqns. (21) and (22) into (23) yields

2 (I − I2)
I2

= 1⇒ I2 =
2I

3
, (24)

which unlike the prior example is independent of p3 and p4. Therefore, the optimal

demands are given by

c1 =
I

3p1
and c2 =

I

3p2
, (25)

c3 =
I

3p3
− 9p3

4p4

p1p2
I2

(26)

and

c4 =
9p23
4p24

p1p2
I2

. (27)

It is clear from (25) that the goods in c(s) depend only on the prices of goods in that

group and total income.

Remark 1 The utility (14) is of particular interest, since it is neither additively
separable nor homothetic but still results in the demand for c1 and c2 being indepen-

dent of p3 and p4.

The comparison between these two examples motivates the question of what

general form of utility is necessary and suffi cient for the optimal demand for goods

in a separable group to depend only on the prices within the group and total income.

Although in general this question can be addressed in both static and intertemporal

settings, the latter seems to offer an especially compelling application.7 If one can

determine current period demands based on past and current prices but not future

prices, the informational requirements for the consumer are significantly reduced.

For this reason, we will address the question for intertemporal demands in the next

section.
7The question of investigating the implications of different forms of separable utility in intertem-

poral settings has been examined in the literature (see, for example, Gorman 1982 where the focus

is on simplifying optimal demand in uncertain, dynamic settings and Blundell 1998).
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3 Myopic Separability: Necessary and Suffi cient

Conditions

Assume a T period, multigood consumption setting. In each period, one or more

goods are consumed. The quantity (purchase) and price of good i in period t are

denoted by cti and pti, respectively.8 The corresponding consumption and price

vectors in period t are denoted by ct and pt. Assume a well-behaved T period

utility function U(c1, ..cT ) which is maximized subject to the budget constraint

T∑
t=1

pt · ct = I, (28)

where I is period one income or wealth. The price and consumption vectors are

elements of the positive orthant.

Let the set U denote the collection of real-valued functions defined on (a subset
of) the positive orthant of a Euclidean space, which are C3, strictly increasing in

each of their arguments and strictly quasiconcave. Throughout this paper, it will

be assumed that the T period utility function U(c1, ..cT ) ∈ U . (As can be easily

verified, these assumptions are satisfied by each of the utility functions employed in

each of the examples in this paper.) Unless otherwise stated, we will always assume

that U is defined on the whole positive orthant. It should be stressed that our setting

is static even though the consumer confronts a multiperiod decision problem, since

we only consider her optimal consumption plan as set at the beginning of the initial

time period t = 1.

Following Kurz (1987), myopic demand is defined as follows.

Definition 1 Optimal demand in period t, ct, is said to be myopic if and only

if it depends on past and current prices {p1,p2, ...,pt} but not on future prices
{pt+1, ...,pT}.

Definition 1 implies that ct is myopic if and only if for any k ∈ {1, 2, ..., T − t}

∂ct
∂pt+k,i

= 0 ∀i, (29)

where i is the index of good i in period t+ k. However in contrast to a distribution

economy corresponding to (28), in an exchange economy since

I =

T∑
t=1

pt · ct (30)

8If there is only one good in a period, the subscript i will be ignored.
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where ct denotes the vector of period t endowments, all prices enter into optimal

demands through income. We next introduce an alternative definition of myopia so

as to make it independent of the form of the economy. It follows from the classic

Slutsky demand equation in a distribution economy (see, for example, Mas-Colell,

Whinston and Green 1995, p. 71) that

∂ct
∂pt+k,i

=

(
∂ct

∂pt+k,i

)
U=const

− ct+k,i
∂ct
∂I

∀i. (31)

Combining the above with eqn. (29) we obtain the following which, although equiv-

alent to Definition 1 in a distribution economy, will prove more convenient when

discussing the implication of our form of utility for an exchange economy equilib-

rium in Section 4.

Definition 2 Optimal demand in period t, ct, is said to be myopic if and only if
∀k ∈ {1, 2, ..., T − t}. (

∂ct
∂pt+k,i

)
U=const

= ct+k,i
∂ct
∂I

∀i, (32)

where i is the index of good i in period t+ k.

The representation of preferences generally associated with myopic demand is log

additive (or equivalently Cobb-Douglas) utility. However, since these preferences

are (ordinally) additively separable and homothetic, it is natural to wonder whether

these properties are necessary to generate myopic demand.9 The fact that ho-

motheticity is not required is easily demonstrated by the following non-homothetic

utility which generates myopic demands

U (c1, c2, c3) = − exp (−c1) + ln c2 + ln c3. (33)

The question of whether additive separability is required is more involved since none

of the widely used non-additively separable utility functions, of which are we aware

(except Example 2 above), results in myopic consumption plans. We return to this

issue below.

In this paper we seek to fully characterize the class of preferences which imply

and are implied by myopic demand in a multigood, multiperiod setting. We begin by

establishing the necessary and suffi cient condition for the period one consumption

vector to be myopic.10 This condition is then applied recursively in Result 1 to

9Homothetic preferences are characterized as being representable by a homogeneous function.

Moreover these preferences give rise to linear Engel curves. See, for example, Chipman (1974).
10For the following Proposition, since the distribution of goods within periods does not matter,

we use ci instead of cti in order to simplify the notation in the proof.
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characterize the form of utility associated with the consumption vector being myopic

in several (or all) periods. Since the form of utility (35) below generating myopic

demands is a special case of the separable form (2), it will be referred to in the

rest of the paper as myopic separable utility or corresponding to myopic separable

preferences.

Proposition 1 Assume that in the first period, there are m goods, where the quan-

tities are denoted by c1, c2, ..., cm. In periods 2 to T there are n goods, where the

quantities are denoted by cm+1, cm+2, ..., cm+n and the distribution of goods across

periods is arbitrary. The utility function U (c1, ..., cm+n) is maximized subject to

m+n∑
i=1

pici = I. (34)

The optimal period one consumption vector (c1, ..., cm) is myopic if and only if

U (c1, ..., cm+n) takes the form11

U (c1, ..., cm+n) = f (h1, h2, ..., hn) , (35)

where

hi = g (c1, ..., cm) cm+i (i = 1, 2, ..., n) (36)

f, g, hi ∈ U and hi > 0 (i = 1, 2, ..., n).12

Proof. It should be noted that although a T period setting is assumed in Proposition
1, since we are only interested in when the period one consumption vector is myopic,

we can combine all of the future periods into one group and the problem effectively

becomes a two period problem. First prove suffi ciency. Introduce the following

notation

fi =
∂f

∂hi
and gj =

∂g (c1, ..., cm)

∂cj
, (37)

where i ∈ {1, 2, ..., n} and j ∈ {1, 2, ...,m}. The first order conditions are
fig (c1, ..., cm)

fjg (c1, ..., cm)
=
fi
fj

=
pm+i
pm+j

i, j ∈ {1, 2, ..., n} , (38)

11Given the interest in utility functions with translated origins such as members of the Modified

Bergson family and habit formation models (see, for example, Pollak 1970), it is natural to ask

whether any of these utilities can exhibit myopic demand. It is clear from the general form (35)

that this is not possible where the origins for cm+1, ..., cm+n are translated.
12In order to simplify the statement of this result, we follow the convention throughout the paper

of assuming without loss of generality that hi > 0. However it should be noted that for the proof

of suffi ciency, f, hi ∈ U and hi > 0 cannot guarantee that U ∈ U , which is always assumed in this
paper, since the strict quasiconcavity of f and hi cannot ensure the strict quasiconcavity of U .

For necessity if U ∈ U and hi > 0, we prove that this implies f, hi ∈ U . It should be emphasized
that when hi < 0, one can always reverse the sign of hi and the signs of the arguments in f such

that the form of U remains the same and f, hi ∈ U where hi > 0.
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gi
∑n

k=1 fkcm+k
gj
∑n

k=1 fkcm+k
=
gi
gj

=
pi
pj

i, j ∈ {1, 2, ...,m} , (39)

and
gi
∑n

k=1 fkcm+k
fjg (c1, ..., cm)

=
pi
pm+j

i ∈ {1, 2, ...,m} , j ∈ {1, 2, ..., n} . (40)

Combining (38) and (40), we have

n∑
k=1

fkpm+jcm+k = fj

n∑
k=1

pm+kcm+k =
pifjg (c1, ..., cm)

gi
, (41)

which is equivalent to

n∑
k=1

pm+kcm+k =
pig (c1, ..., cm)

gi
. (42)

Substitution of the above equation into the budget constraint, yields

m∑
i=1

pici +
pjg (c1, ..., cm)

gj
= I (43)

for ∀j ∈ {1, 2, ...,m}. Choosing for example j = 1 in (43) and i = 1 in (39), we get

the following system of m equations in the m variables c1, ..., cm:

m∑
i=1

pici +
p1g (c1, ..., cm)

g1
− I = 0, (44)

p1g2 − p2g1 = 0,
...

p1gm − pmg1 = 0.

This system is functionally independent and can generate a unique solution. In fact,

solving the system (44) is equivalent to solving the system of first order conditions

associated with the following constrained optimization problem

max
c1,c2,...,cm+1

g (c1, ..., cm) cm+1 S.T.

m+1∑
i=1

pici = I. (45)

The first order condition of the above optimization problem is given by

gicm+1 = µpi (i = 1, 2, ...,m) and g = µpm+1, (46)

where µ is the Lagrange multiplier. If
(
c∗1, ..., c

∗
m+1, µ

∗) is a solution to the above
equation system, since

gi =
µ∗

c∗m+1
pi (i = 1, 2, ...,m) (47)

11



and
p1g (c∗1, ..., c

∗
m)

g1 (c∗1, ..., c
∗
m)

=
p1µ

∗pm+1c
∗
m+1

p1µ∗
= pm+1c

∗
m+1, (48)

(c∗1, ..., c
∗
m) is a solution to the equation system (44). If (c∗1, ..., c

∗
m) is a solution to

the equation system (44), then set

µ∗ =
g (c∗1, ..., c

∗
m)

pm+1
and c∗m+1 =

µ∗p1
g1 (c∗1, ..., c

∗
m)
. (49)

Since

gic
∗
m+1 =

µ∗p1gi (c
∗
1, ..., c

∗
m)

g1 (c∗1, ..., c
∗
m)

= µ∗pi (i = 1, 2, ...,m) (50)

and

pm+1c
∗
m+1 =

g (c∗1, ..., c
∗
m) p1

g1 (c∗1, ..., c
∗
m)

, (51)(
c∗1, ..., c

∗
m+1, µ

∗) is a solution to the equation system (46). Since h1 = g (c1, ..., cm) cm+1

is strictly quasiconcave, the equation system (46) has a unique solution. Therefore,

there is a unique solution to the equation system (44). Since the equation system

(44) is independent of pm+1, ..., pm+n, the optimal period one consumption vector

(c1, ..., cm) is myopic.

Next prove necessity.13 Suppose that there were n copies of all m goods con-

sumed in period one, which are denoted by (c11, ..., c
1
m) , ..., (cn1 , ..., c

n
m). Create the

following queue of all goods

c11, ..., c
1
m, cm+1, c

2
1, ..., c

2
m, cm+2, ..., c

n
1 , ..., c

n
m, cm+n (52)

and relabel them as (x1, x2, ..., xN) and the corresponding prices as (p1, p2, ..., pN),

where N = n × (m+ 1). Denote N = {1, 2, ..., N} and let {N1,N2, ...,Nn} be a
partition of N , where N1 consists the first m + 1 elements in N , N2 consists the
second m+ 1 elements in N and so on. If (c1, ..., cm) is myopic, then for all i ∈ Ns,
k /∈ Ns (s ∈ {1, 2, ..., n}), one must have

∂xi
∂pk

= 0, (53)

implying that
∂

∂xk

(
∂U/∂xi
∂U/∂xj

)
= 0 (54)

for all i, j ∈ Ns, k /∈ Ns (s ∈ {1, 2, ..., n}). Therefore, the utility function U

is separable with respect to a partition {N1,N2, ...,Nn}. It follows from Pearce

(1961) and Theorem 2 in Goldman and Uzawa (1964) that the utility function must

take the form

U = f
(
u1
(
x(1)
)
, u2
(
x(2)
)
, ..., un

(
x(n)

))
, (55)

13We thank Faruk Gul for his very helpful suggestions in simplifying the necessity part of this

proof.
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where f is a function of n variables and, for each i ∈ {1, 2, ..., n}, ui
(
x(i)
)
is a

function of the subvector x(i) =
(
x(i−1)×(m+1)+1, ..., xi×(m+1)

)
alone, or equivalently,

U = f
(
u1
(
c11, ..., c

1
m, cm+1

)
, u2
(
c21, ..., c

2
m, cm+2

)
, ..., un (cn1 , ..., c

n
m, cm+n)

)
. (56)

Since for all i ∈ {1, 2, ..., n}, (ci1, ..., c
i
m) does not depend on the price of cm+i, it can

be easily verified that

ui = gi
(
ci1, ..., c

i
m

)
cm+i, (57)

where gi is a function of m variables. Since all the replica goods are perfect

substitutes and always have the same prices, for any i 6= j ∈ {1, 2, ..., n} and
s, t ∈ {1, 2, ...,m}, it follows from the first order condition that

∂gi (c1, ..., cm) /∂cs
∂gi (c1, ..., cm) /∂ct

=
∂gj (c1, ..., cm) /∂cs
∂gj (c1, ..., cm) /∂ct

=
ps
pt
, (58)

implying that gi = gj = g. Therefore, the utility function must take the form

U (c1, ..., cm+n) = f (g (c1, ..., cm) cm+1, g (c1, ..., cm) cm+2, ..., g (c1, ..., cm) cm+n) .

(59)

Finally, we show that f, g, hi ∈ U . Since hi > 0, from the first order condition,

it can be easily verified that U being strictly increasing is equivalent to f , g and hi
being strictly increasing. Next we argue that hi is strictly quasiconcave. Without

loss of generality, we only need to prove that h1 is strictly quasiconcave. Set di−1 =

cm+i/cm+1 (i = 2, ..., n). For any m+1c
′ =
(
c′1, c

′
2, ..., c

′
m+1

)
, m+1c′′ =

(
c′′1, c

′′
2, ..., c

′′
m+1

)
and 0 < α < 1, we want to show that

h1
(
α (m+1c

′) + (1− α)m+1 c
′′) > min (h1 (m+1c

′) , h1 (m+1c
′′)) . (60)

For any i ∈ {2, ..., n}, choose c′m+i and c′′m+i such that

di−1 = d′i−1 = d′′i−1. (61)

Since U can be viewed as a function of (h1, d1, ..., dn) and U (h1, d1, ..., dn) is strictly

quasiconcave,

U (αc′ + (1− α) c′′) > min (U (c′) , U (c′′)) , (62)

where c′ =
(
c′1, c

′
2, ..., c

′
m+n

)
and c′′ =

(
c′′1, c

′′
2, ..., c

′′
m+n

)
. Noticing that

U (αc′ + (1− α) c′′) = U (αh1 (m+1c
′) + (1− α)h1 (m+1c

′′) , d1, ..., dn−1) , (63)

and

U (c′) = U (h1 (m+1c
′) , d1, ..., dn−1) and U (c′′) = U (h1 (m+1c

′′) , d1, ..., dn−1) (64)

and U (h1, d1, ..., dn) is strictly increasing in h1, we must have

h1
(
α (m+1c

′) + (1− α)m+1 c
′′) > min (h1 (m+1c

′) , h1 (m+1c
′′)) , (65)

implying that h1 is strictly quasiconcave. One can prove f, g ∈ U similarly.
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Remark 2 The proof of the necessity part of this Proposition builds on results from
the literature on separable utility functions (see, for example, Goldman and Uzawa

1964). This proof is a simpler a-posteriori verification of the utility formula (35)

obtained using a more complicated (but a more direct) argument in Appendix A.

Remark 3 It is clear that in the utility form (35), (c1, ..., cm) is separable. There-

fore, the Slutsky component restriction for separability given in Goldman and Uzawa

(1964) holds, i.e., ∀i, j ∈ {1, 2, ...,m} and k ∈ {m+ 1, ...,m+ n}14(
∂ci
∂pk

)
U=const(

∂cj
∂pk

)
U=const

=
∂ci
∂I

∂ck
∂I

∂cj
∂I

∂ck
∂I

=
∂ci
∂I
∂cj
∂I

. (66)

For our case, it is easy to see that the above equation holds since it follows from

Definition 2 that (
∂ci
∂pk

)
U=const(

∂cj
∂pk

)
U=const

=
ck

∂ci
∂I

ck
∂cj
∂I

=
∂ci
∂I
∂cj
∂I

. (67)

Remark 4 Returning to the "narrow bracketing" issue introduced in Section 1,

Laibson (1999) points out in commenting on Read, Loewenstein, and Rabin (1999)

An individual may overlook complementarities / substitutabilities

among different types of consumption. An individual may subdivide

his budget into multiple nonfungible accounts. Both of these distortions

enable decision-makers to take complex integrated problems and turn

them into relatively simple separable problems. (Laibson 1999, p. 201)

The point of distorting preferences is closely related to separability. If preferences

are separable in (c1, c2) for example, then the choice of (c1, c2) will not be affected by

the consumption of other goods and hence the complementarities / substitutabilities

between (c1, c2) and other goods can be ignored. Since myopic separability guaran-

tees separability, this distortion is also satisfied by myopic separable preferences. For

the distortion of the budget constraint, Laibson (1999) gives the following example

I may decide that I will spend no more than $15 on entertainment

this month. Hence, a decision to see the new Star Wars movie this

weekend, may imply that I “won’t be able” to go to a concert next

weekend. Strict budgets create artificial tradeoffs that can potentially

lower welfare, but strict budgets also simplify decision problems and

facilitate self-regulation. (Laibson 1999, p. 201)

14Since here i and j come from the same partition, κst defined in Goldman and Uzawa (1964)

in the numerator and denominator of (66) cancel out.
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If preferences exhibit myopic separability in (c1, c2), where (c1, c2) denotes the choice

of this month’s entertainment activities, then the portion of the total income spent

on current entertainment will be fixed at $15 and independent of the prices in other

segments such as food, clothing, etc. Myopic separability guarantees that the choice

made from "distorting" the budget constraint to allocate a fixed portion of income

to a certain segment independent of the prices in other segments is actually optimal

and not suboptimal.

There are two points that should be emphasized. First relating to whether

additive separability of U is necessary for myopic behavior, it is clear from eqn. (35)

that this is not the case.15 However, the separable form (2) is required. In fact, this

was already illustrated in Example 2, where letting U (2) (c1, c2) = g (c1, c2) = c1c2,

it is clear that the Example 2 utility is separable. Additionally defining f (x, y) =

x+
√
y in Proposition 1, one immediately obtains the utility function in Example 2,

which makes it clear why c1 and c2 are independent of p3 and p4. In contrast, the

Example 1 utility, although separable with U (2) (c1, c2) = c1c2, does not satisfy the

requirement in Proposition 1. Second, it should additionally be emphasized that

one can also apply Proposition 1 to the case when the demand in period t is allowed

to be a function of prices in periods 1 to t+ 1 but independent of subsequent prices.

To do this, one only needs to combine periods 1 to t + 1 to form a new group and

then apply Proposition 1.

As summarized next, if there is only one good in certain periods, then the utility

function given in Proposition 1 can take simpler forms.

Remark 5 For simplicity, assume that there are two periods and at most two goods
in each period. Then the following summarizes the forms of utility implied by

Proposition 1.

i Suppose there is only one good in periods one and two. Optimal period one demand
c1 is myopic if and only if U (c1, c2) takes the form

U (c1, c2) = f(g (c1) c2), (68)

which is ordinally equivalent to

U (c1, c2) = w (c1) + ln c2, (69)

where f, g (c1) c2, w ∈ U and g (c1) > 0.

15It should be noted that in the special case of two periods with one good per period, (ordinal)

additive separability is necessary for demand to be myopic —see eqn. (69) below.
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ii Suppose there are two goods in period one and one good in period two. Optimal

period one demands c11 and c12 are myopic if and only if U (c11, c12, c2) takes

the form

U (c11, c12, c2) = f(g (c11, c12) c2), (70)

which is ordinally equivalent to

U (c11, c12, c2) = w (c11, c12) + ln c2, (71)

where f, g (c11, c12) c2, w ∈ U and g (c11, c12) > 0.

iii Suppose there is one good in period one and two goods in period two. Optimal

period one demand c1 is myopic if and only if U (c1, c21, c22) takes the form

U (c1, c21, c22) = f(h1, h2) = f(g (c1) c21, g (c1) c22), (72)

where f, hi ∈ U and hi > 0 (i = 1, 2).

The following Examples illustrate cases (ii) and (iii) above, respectively.

Example 3 Assume a two period setting, where c11 and c12 are the quantities of
the period one goods and c2 is the quantity of the period two good. The consumer’s

utility takes the following special myopic separable form of eqn. (71)

U (c11, c12, c2) = −c
−δ
11

δ
− c−δ12

δ
+ ln c2, (73)

which is maximized subject to

p11c11 + p12c12 + p2c2 = I, (74)

where δ > −1 and δ 6= 0. Combining the first order conditions with the budget

constraint yields

p11c11 + p12

(
p11
p12

) 1
1+δ

c11 + p11c
1+δ
11 = I, (75)

implying that c11 depends only on p11 and p12. Since

c12 =

(
p11
p12

) 1
1+δ

c11, (76)

c12 also depends only on p11 and p12. Hence the optimal period one consumption

vector (c11, c12) is myopic.

16



Example 4 Assume a two period setting, where c1 is the quantity of the period one
good and c21 and c22 are the quantities of the period two goods. The consumer’s

utility takes the following special myopic separable form of eqn. (72)

U (c1, c21, c22) = (c1c21)
1
4 +
√
c1c22, (77)

which is maximized subject to

p1c1 + p21c21 + p22c22 = I. (78)

Combining the first order conditions with the budget constraint yields

c1 =
I

2p1
, (79)

implying that period one optimal consumption c1 is independent of p21 and p22.

Next we derive the necessary and suffi cient condition for consumption vectors in

multiple periods, including the first, to be myopic. The key tactic is to reformulate

the problem so that Proposition 1 can be applied recursively. Therefore, we will

refer to this case as recursive myopic separable. Since the notation for the general T

period case is quite messy, without loss of generality, we state the following Result for

three periods. The argument for more general cases proceeds in a similar manner.

Result 1 Assume there are three periods. In periods one, two and three, the quan-
tities of goods are denoted by (c11, c12) , (c21, c22, c23) and (c31, c32) , respectively. The

optimal consumption vector in each period is myopic if and only if U (c11, c12, ..., c32)

takes the form

U = f (1)
(
h
(2)
1 , h

(2)
2

)
, (80)

where

h
(2)
i = g(2) (c11, c12, c21, c22, c23) g

(1) (c11, c12) c3i (i = 1, 2) , (81)

g(2) (c11, c12, c21, c22, c23) = f (2)
(
h
(1)
1 , h

(1)
2 , h

(1)
3

)
, (82)

h
(1)
i = g(1) (c11, c12) c2i (i = 1, 2, 3) ,

f (1), f (2), h
(1)
i (i = 1, 2, 3) , h

(2)
i (i = 1, 2) ∈ U and h(1)i , h

(2)
i > 0.

Proof. To apply Proposition 1, combine the first and second periods into a separable
group. Then the necessary and suffi cient condition for the optimal consumption

vector in this separable group to be myopic is that the utility function U takes the

form

U = f (1)
(
g(2) (c11, c12, c21, c22, c23) g

(1) (c11, c12) c31, g
(2) (c11, c12, c21, c22, c23) g

(1) (c11, c12) c32
)
.

(83)
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This form of utility ensures that the optimal period two demands (c21, c22, c23) are

myopic.16 For the optimal consumption vector in period one to be myopic, Proposi-

tion 1 can be applied again to g(2) (c11, c12, c21, c22, c23). The necessary and suffi cient

condition for the optimal period one consumption vector (c11, c12) to be myopic is

g(2) (c11, c12, c21, c22, c23) = f (2)
(
g(1) (c11, c12) c21, g

(1) (c11, c12) c22, g
(1) (c11, c12) c23

)
.

(84)

Since U takes the form

U = f
(
g(1) (c11, c12) c21, g

(1) (c11, c12) c22, g
(1) (c11, c12) c23, g

(1) (c11, c12) c31, g
(1) (c11, c12) c32

)
,

(85)

where f is a function determined by f (1) and f (2), it follows from Proposition 1 that

the optimal period one consumption vector (c11, c12) is myopic. In conclusion, the

optimal consumption vector in each period is myopic in this three period setting

if and only if the utility function U takes the form (83), where g(2) is defined in

(84). Without loss of generality, assume that h(1)i (i = 1, 2, 3) , h
(2)
i (i = 1, 2) > 0.

Applying the similar argument as in the proof of Proposition 1, it can be shown that

f (1), f (2), h
(1)
i (i = 1, 2, 3) , h

(2)
i (i = 1, 2) ∈ U .

If there are three periods and in each period there is only one commodity, then

using Remark 5 and applying Proposition 1 recursively (as discussed in Result 1),

optimal consumption in every period is myopic if and only if U takes the following

form up to an increasing monotone transformation

U (c1, c2, c3) = f(h1) + lnh2 = f (g (c1) c2) + ln (g (c1) c3) , (86)

where f, h1, h2 ∈ U and g > 0.17 It should be noted that if f (x) = lnx and

g (x) =
√
x, we have

U (c1, c2, c3) = ln c1 + ln c2 + ln c3, (87)

which is the well-known log additive (or ordinally equivalent Cobb-Douglas) utility.

The stronger restriction on preferences (87) guarantees that demand in each period

is not only independent of future prices (as in Definition 1), but also of past prices.

16Note that, in general, g(1) can be combined with g(2) if one only requires (c21, c22, c23) to be

myopic. However, in order to ensure the myopia of (c11, c12) as well as (c21, c22, c23), g(1) and g(2)

need to be separated.
17More generally in a four period setting (with one good per period), optimal consumption in

each period is myopic if and only if U (c1, c2, c3, c4) takes the form

U (c1, c2, c3, c4) = f (1)
(
f (2)

(
g(1) (c1) c2

)
g(1) (c1) c3

)
+ ln

(
f (2)

(
g(1) (c1) c2

)
g(1) (c1) c4

)
.
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Thus for instance, optimal c2 will depend on both p1 and p2 in general if U takes

the form of (86) but only on p2 if U is given by (87).

On the other hand, in contrast to demand being myopic in each period as in

(86), it follows from Remark 5 that optimal consumption will be myopic in period

one if and only if U takes the form

U (c1, c2, c3) = f(g (c1) c2, g (c1) c3), (88)

where in general there is no requirement for the functions f and g in (88) to be

related to f and g in (86). However, the utility functions (86) and (88) will give

the same optimal c1 if and only if g (c1) is the same. Moreover, it follows from (86)

and (88) that given period one demand is myopic, period two demand will also be

myopic if and only if the utility U is ordinally additively separable in c3.

Remark 6 Although our focus in this paper is on the consumer’s period one op-
timization and not her decisions in subsequent periods, the comparison of utilities

(86) and (88) prompts an observation on decisions over time. Whereas the assump-

tion that the consumer is myopic in every period is clearly stronger than assuming

myopia in the first period (or some subset of periods), there is a sense in which the

former assumption may be viewed as more natural. If the consumer is assumed to

be myopic just in the first period, then why when period one ends doesn’t she become

myopic in the second period — retaining the same intertemporal pattern? If that

were the case and her preferences in period one were represented by the utility form

in eqn. (88) and not (86), then her utility in period two would have to take the

form of eqn. (69), U (c2, c3) = w (c2) + ln c3. In this case the MRS (marginal rate

of substitution) between c2 and c3 would change from period one to period two and

the consumer would be inconsistent. On the other hand, if the consumer is myopic

in every period, implying that her preferences in the first period can be represented

by the utility in eqn. (86), then the same utility with the given c1 can be assumed

in the second period and her period two demands will still be myopic, i.e., indepen-

dent of the period three price. Since her MRS between c2 and c3 remains the same

when changing periods, the consumer will not revise her plan and thus is consis-

tent.18 Whereas some may find this argument for assuming the consumer is myopic

in every period to be persuasive at the individual demand and preference level, we

will see in Examples 5 and 6 below that the equilibrium implications of being myopic

in each period are considerably stronger than those associated with the assumption

of being myopic in just the first period.

18For a detailed discussion of changing tastes and consistency, see Selden and Wei (2012).
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4 Interest Rate Implications

In this section, we assume a standard exchange equilibrium interest rate setting

and investigate the following two questions. First assuming the existence of a rep-

resentative agent, what are the different equilibrium consequences of separability,

additive separability and myopic separability? Second given an economy of hetero-

geneous myopic separable consumers each of whom "narrow brackets" the period one

demand decision, thereby substantially reducing their informational requirements,

what simplification in informational requirements can be achieved for determining

equilibrium interest rates? This last question is addressed when an aggregator exists

and when it does not.

4.1 Representative Agent Economy

A standard certainty representative agent equilibrium model is assumed (see, for

example, Kocherlakota 2001).19 In period one, assume a single good, denoted by c1,

and T − 1 zero coupon bonds, where bt (t = 2, 3, ...T ) denotes the quantity of zero

coupon bonds purchased in period one and maturing at the beginning of period t

and paying one unit of ct.20 The period one price of the zero coupon bond is denoted

by qt, where subscript t indicates that the bond matures at the beginning of period

t. And as is standard, the net interest rate rt−1 during period t− 1 associated with

the zero coupon bond purchased in period one and maturing at date t is given by

qt =
1

(1 + rt−1)
t−1 . (89)

The representative agent is endowed in period one with a fixed supply c1 of

period one consumption and b2, b3, ..., bT zero coupon bonds21 and has preferences

19Since a static setting is assumed, all bond prices are observed at the beginning of the current

time period and all interest rates are current spot rates. We do not consider implied forward rates

or future spot interest rates.
20It should be noted that in order to investigate the impact of myopic separability on the term

structure, the choice of a zero coupon bond versus a standard nonzero coupon bond is not innocu-

ous. For example, consider a three period setting in which the two period bond pays a coupon

rate of ξ per cent at the end of periods one and two. Then period two consumption is given by

c2 = b2+ ξb3, which is a function of both b2 and b3. Thus, it would not be appropriate to say that

c2 is myopic if and only if it is independent of the two period bond price q3. The advantage of the

zero coupon bond assumption is that all of the information concerning the bond is incorporated

in its price and this diffi culty can be avoided.
21Here we assume that b2, b3, ..., bT 6= 0. Such an assumption is not atypical. It could for

instance be associated with the debt being issued by a government which is outside the model (see,

for example, Parlour, Stanton and Walden 2011 and the literature cited therein). Alternatively,

our assumption of nonzero supplies of bonds could be dropped if we were to allow for endowments
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over consumption streams (c1, ..., cT ) represented by U .22 The optimization problem

is given by

max
c1,b2,...,bT

U (c1, ..., cT ) S.T. c1 +
T∑
t=2

qtct = c1 +

T∑
t=2

qtbt (90)

S.T. ct = bt ∀t ∈ {2, 3, ..., T} . (91)

To examine the implications of myopic separable preferences for equilibrium

interest rates, assume the first and second time periods are combined to form a

separable group with consumption c1 and c2 (or b2). It follows from Proposition 1

that the following form of utility exhibits myopic separability23

U (c1, ..., cT ) = f (g (c1, c2) c3, g (c1, c2) c4, ..., g (c1, c2) cT ) . (92)

It would seem natural to conjecture that this myopic separable form is necessary

and suffi cient for the equilibrium period one interest rate r1 to be independent of

the supplies bt (t = 3, 4, ..., T ). Indeed it can be verified that for the utility (92),

one always has

1 + r1 =
1

q2
=
∂U/∂c1
∂U/∂c2

=
∂g (c1, c2) /∂c1
∂g (c1, c2) /∂c2

∣∣∣∣
(c1,c2)=(c1,b2)

, (93)

which is independent of bt (t = 3, 4, ..., T ). This is not surprising since following

Leontief (1947) and Sono (1961), it is straightforward to obtain the following Propo-

sition.

Proposition 2 Assume the representative agent’s optimization problem is charac-

terized by (90) and (91). The equilibrium period one interest rate r1 is independent

in the form of period two and three income (in units of consumption). This would change none

of the conclusions, only making the notation more complicated.
22It should be noted that because we do not assume additive utility, our analysis will not include

the typical period discount factors present in standard equilibrium interest rate models.
23It is clear that in the optimization problem (90) - (91), if U takes one of the myopic separable

forms of utility derived in the prior section, optimal demands will be myopic in the sense of

Definition 2. Because prices will always enter into the demand functions through total income or

wealth, i.e.,

I = c1 +

T∑
t=2

qtbt,

the endowments introduce a third term into the classic Slutsky equation typically referred to as

the endowment (income) effect (see Arrow and Hahn, 1971, p. 225 and Varian, 1992, p. 145).

However, myopic separable utility will ensure that the corresponding demand function income and

substitution effects continue to exactly offset each other.
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of the supplies bt (t = 3, 4, ..., T ) if and only if the agent’s preferences is separable in

(c1, c2)

U (c1, ..., cT ) = f
(
U (2) (c1, c2) , c3, ..., cT

)
, (94)

where where f, U (2) ∈ U and U (2) > 0.

Since separability does not imply myopic separability, r1 being independent of

bt (t = 3, 4, ..., T ) although necessary is not suffi cient for myopic separable utility.

Since the most widely assumed form of myopic separable utility the log additive

form (87) not only exhibits myopic separability but also additive separability, we

first apply a classic result of Samuelson (1947) to the current representative agent

equilibrium setting to derive the restrictions on equilibrium interest rates that are

equivalent to preferences being additively separable.

Proposition 3 Assume the representative agent’s optimization problem is charac-

terized by (90) and (91). For all t ∈ {1, 2, ..., T − 1} and T > 2, rt is independent of

bond supplies other than bt+1 if and only if the agent’s preferences can be represented

by an ordinally additively separable utility,

U (c1, ..., cT ) =
T∑
t=1

ut (ct) , (95)

where ut ∈ U .

Proof. Observing that in a representative agent exchange economy

1

(1 + rt−1)t−1
= qt =

∂U/∂ct
∂U/∂c1

∀t ∈ {2, 3, ..., T} , (96)

the proof of this Proposition directly follows from Samuelson (1947) pp. 176-183.24

24It should be noted that in addition to

∂qt

∂bi
= 0 (∀t, i ∈ {2, 3, ..., T} , i 6= t) ,

implied in our Proposition 3, Samuelson also gives the following in his eqns. (33) (Samuelson 1947,

p. 179)
∂

∂c1

(
qt
q2

)
= 0 (∀t ∈ {3, 4, ..., T})

for the necessary and suffi cient condition such that preferences can be represented by an additively

separable utility function. As Samuelson states, his condition implies integrability and if this is

postulated as a precondition then eqns. (33) cease to all be independent and can be reduced in

number. Since we have assumed the existence of U , it is not necessary to include the above set

of equations in Proposition 3. To be more explicit, we can show that this set of equations can be
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Whereas preferences being separable in (c1, c2) guarantees that r1 depends only

on b2, additive separability ensures that this same result holds for every period. As

can be seen from Example 6 below, myopic separability in each period differs from

additive separability in allowing the equilibrium interest rates rt (t = 2, 3, ..., T − 1)

to depend on the supply of bonds in all prior periods and not just bt+1. Therefore

the equilibrium interest rate restrictions implied by additive separability are clearly

stronger which is fully consistent with the preference based reservations of Fisher

(1930), Hicks (1965) and Lucas (1978) referenced above in Section 1.

We next characterize the equilibrium interest rate implications which are both

necessary and suffi cient for preferences to be representable by the myopic separable

utility (35) in Proposition 1.

Proposition 4 Assume the representative agent’s optimization problem is charac-

terized by (90) and (91). The equilibrium interest rates exhibit the property that

for any t ∈ {1, 2, ..., T − 1} , the present value
∑T

i=t+1
bi

(1+ri−1)i−1
is independent of bj

(j ∈ {t+ 1, t+ 2, ..., T}) if and only if preferences are representable by the myopic
separable utility (35) corresponding to optimal period t consumption ct being myopic.

Proof. Without loss of generality, we only need to prove the Proposition for optimal
period two consumption. First prove suffi ciency. It follows from Proposition 1 that

period two consumption c2 is myopic if and only if

U (c1, ..., cT ) = f (g (c1, c2) c3, g (c1, c2) c4, ..., g (c1, c2) cT ) . (97)

In equilibrium, the first order conditions are

gfj

g1
∑T−2

i=1 fibi+2
=

1

(1 + rj+1)j+1
, (98)

directly derived from ∂qt
∂bi

= 0. Noticing that

q2 =
∂U
∂c2
∂U
∂c1

and q3 =
∂U
∂c3
∂U
∂c1

,

one can obtain
∂q2
∂c3

= 0⇔ ∂2U

∂c2∂c3

∂U

∂c1
− ∂2U

∂c1∂c3

∂U

∂c2
= 0

and
∂q3
∂c2

= 0⇔ ∂2U

∂c2∂c3

∂U

∂c1
− ∂2U

∂c1∂c2

∂U

∂c3
= 0,

implying that

∂2U

∂c1∂c3

∂U

∂c2
− ∂2U

∂c1∂c2

∂U

∂c3
= 0⇔ ∂

∂c1

(
∂U
∂c3
∂U
∂c2

)
=

∂

∂c1

(
q3
q2

)
= 0.
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implying that
T∑
i=3

bi
(1 + ri−1)i−1

=
T−2∑
i=1

bi+2
(1 + ri+1)i+1

=
g
∑T−2

i=1 fibi+2

g1
∑T−2

i=1 fibi+2
=

g

g1

∣∣∣∣
(c1,c2)=(c1,b2)

(99)

and hence
∑T

i=3
bi

(1+ri−1)i−1
is independent of bj (j ∈ {3, 4, ..., T}). Next prove ne-

cessity. If
∑T

i=3
bi

(1+ri−1)i−1
is independent of bj (j ∈ {3, 4, ..., T}), then we have

∂

∂cj

∑T
i=3 ciUi
U1

= 0 ∀j ∈ {3, ..., T} , (100)

implying that

U (c1, ..., cT ) = f (g (c1, c2) c3, g (c1, c2) c4, ..., g (c1, c2) cT ) . (101)

Remark 7 This Theorem can also be viewed as giving the necessary and suffi cient

equilibrium condition for the choice of "narrow bracketing" the first t periods to be

optimal.

Remark 8 To compare the result in Proposition 4 with the additively separable case,
assume the representative agent’s utility takes the additively separable CES form

U (c1, ..., cT ) = −
T∑
i=1

c−δi
δ

(δ > −1) . (102)

Then it can be easily verified that
T∑
i=2

bi
(1 + ri−1)i−1

= c1+δ1

T∑
i=2

b
−δ
i , (103)

implying that ∀j ∈ {2, 3, ..., T}

∂
(∑T

i=2
bi

(1+ri−1)i−1

)
∂bj

T 0⇔ δ S 0. (104)

Therefore, additive separability cannot ensure that
∑T

i=2
bi

(1+ri−1)i−1
is independent of

bj. The δ = 0 case corresponds to the log additive utility, which exhibits myopic

separability.

The intuition for why Proposition 4 works is that for myopic separable preferences

the set of equilibrium interest rates adjusts so as to keep the present value constant.

It should be noted that if preferences take the form associated with consumption be-

ing myopic in each period, then we can apply Proposition 4 recursively and conclude

that for all t ∈ {1, 2, ..., T − 1}, rt is independent of bj+1 (j ∈ {t+ 1, t+ 2, ..., T})
and

∑T
i=t+1

bi
(1+ri−1)i−1

is independent of bj (j ∈ {t+ 1, t+ 2, ..., T}), where the latter
is not only necessary but also suffi cient.
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Remark 9 The Proposition 4 conclusion that the present value of future bond sup-
plies is independent of changes in the supply of bonds in each period may strike

the reader as being reminiscent of the irrelevance of government financial policy in

the macroeconomics literature (e.g., Wallace 1981, Bryant 1983 and Stiglitz 1984).

There it is assumed in an intertemporal setting that a government exists which both

collects taxes and issues debt of differing maturities. If for a given supply of bonds

a general equilibrium exists, then modifying the supply of bonds will not affect the

equilibrium value of real variables such as consumption although equilibrium interest

rates may change. (There is a clear analogy of this result to the famous Modigliani

and Miller capital structure irrelevance in corporate finance.) However it should

be stressed that the source of "independence" in our setting comes from the form of

utility since the government sector in our model is not closed as we do not allow for

taxes.

We conclude this subsection with two Examples and a Remark. They illustrate

in a four period setting the Proposition 4 implications on equilibrium interest rates

of preferences taking the different forms associated with (c1, c2) being myopic versus

(c1, c2) , c3 and c4 being myopic and the implications of log additive utility.

Example 5 Assume the representative agent’s optimization problem is character-

ized by (90) and (91), where there are four periods and utility takes the form

U (c1, c2, c3, c4) = ((ln c1 + ln c2) c3)
1
4 +

√
(ln c1 + ln c2) c4, (105)

where c1, c2 > 1 and c3, c4 > 0 are assumed to ensure U ∈ U . It follows from

Proposition 1 that the optimal consumption vector (c1, c2) is myopic. Using the

representative agent’s first order conditions paralleling eqn. (93), straightforward

computation results in the following characterization of equilibrium interest rates

1

1 + r1
=
c1

b2
, (106)

1

(1 + r2)
2 =

c1
(
ln c1 + ln b2

) ((
ln c1 + ln b2

)
b3
)− 3

4

b3
((

ln c1 + ln b2
)
b3
)− 3

4 + 2b4
((

ln c1 + ln b2
)
b4
)− 1

2

(107)

and

1

(1 + r3)
3 =

2c1
(
ln c1 + ln b2

) ((
ln c1 + ln b2

)
b4
)− 1

2

b3
((

ln c1 + ln b2
)
b3
)− 3

4 + 2b4
((

ln c1 + ln b2
)
b4
)− 1

2

. (108)

First we can see that r1 is independent of
(
b3, b4

)
, but r2 and r3 depend on all of the

bond supplies. Moreover, using (107) and (108) it follows that the present value of

period 3 and period 4 bond supplies

b3
(1 + r2)2

+
b4

(1 + r3)3
= c1

(
ln c1 + ln b2

)
(109)
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is independent of b3 and b4.

Example 6 Assume the representative agent’s optimization problem is character-

ized by (90) and (91), where there are four periods and utility takes the form25

U (c1, c2, c3, c4) =
√

ln (c1c2) c1c3 + ln (ln (c1c2)) + ln c1 + ln c4, (110)

where c1, c2 > 1 and c3, c4 > 0 are assumed to ensure U ∈ U . It follows from

Proposition 1 and Result 1 that optimal consumption in each period is myopic. Using

the representative agent’s first order conditions paralleling eqn. (93), straightforward

computation results in the following characterization of equilibrium interest rates

1

1 + r1
=

c1

b2
(
1 + ln

(
c1b2

)) , (111)

1

(1 + r2)2
=

(
c1 ln

(
c1b2

))2
(
1 + ln

(
c1b2

))(
c1b3 ln

(
c1b2

)
+ 2
√
c1b3 ln

(
c1b2

)) (112)

and
1

(1 + r3)3
=

2c1 ln
(
c1b2

)
b4
(
1 + ln

(
c1b2

))(
2 +

√
c1b3 ln

(
c1b2

)) . (113)

It is clear that r1 is independent of
(
b3, b4

)
, r2 is independent of b4 and r3 depends

on all bond supplies. Moreover using (111)-(113), it follows that

i
b2

1 + r1
+

b3
(1 + r2)2

+
b4

(1 + r3)3
= c1, (114)

where the present value is independent of b2, b3 and b4;

ii
b3

(1 + r2)2
+

b4
(1 + r3)3

=
c1 ln

(
c1b2

)
1 + ln

(
c1b2

) , (115)

where the present value is independent of b3 and b4; and

25The utility (110) can be obtained from the general four good myopic separable utility in

footnote 17 by assuming

f (1) (x) =
√
x, f (2) (x) = lnx and g(1) (x) = x.

It should be noted that if the coeffi cients in (110) are varied arbitrarily, the resulting utility will

not be a special case of the general form and will not result in myopic demand behavior.
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iii
b4

(1 + r3)3
=

2c1 ln
(
c1b2

)
(
1 + ln

(
c1b2

))(
2 +

√
c1b3 ln

(
c1b2

)) , (116)

where the present value is independent of b4.

Remark 10 It is interesting to contrast the equilibrium in Example 6 with that

resulting from utility taking the log additive form

U (c1, c2, c3, c4) = ln c1 + ln c2 + ln c3 + ln c4, (117)

where utility exhibits not only additive separability but also myopic separability in

each period. In this case, it can be verified that

1

1 + r1
=
c1

b2
,

1

(1 + r2)2
=
c1

b3
and

1

(1 + r3)3
=
c1

b4
, (118)

implying that
b2

1 + r1
+

b3
(1 + r2)2

+
b4

(1 + r3)3
= 3c1, (119)

b3
(1 + r2)2

+
b4

(1 + r3)3
= 2c1 (120)

and
b4

(1 + r3)3
= c1. (121)

It can be seen that a change in the endowment bt+1 exactly cancels out the interest

rate change (1 + rt)
t and the present value is always a function of only c1. Whereas

myopia in each period ensures that each present value sum is independent of changes

in the respective endowment, additive separability ensures that a change in bt+1 only

affects rt and hence implies that the changes in the endowment must be canceled out

exactly by the interest rate change.

In summary, in a representative agent economy, if the utility function is separable

in (c1, c2), then the equilibrium period one interest rate r1 is independent of the

supplies bt (t = 3, 4, ..., T ) and hence the informational requirement is substantially

reduced. If we further assume that the utility function is additively separable,

then ∀t ∈ {1, 2, ..., T − 1}, rt is independent of bond supplies other than bt+1. If

we further assume that the utility function is myopic separable in (c1, c2), then

∀j ∈ {3, ..., T},
∑T

i=3
bi

(1+ri−1)i−1
is independent of bj.
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4.2 Heterogeneous Agent Economy

In a heterogeneous economy, suppose there are N (i = 1, 2, ..., N) agents and each

agent i considers the following optimization problem

max
c
(i)
1 ,b

(i)
2 ,...,b

(i)
T

U (i)
(
c
(i)
1 , ..., c

(i)
T

)
S.T. c

(i)
1 +

T∑
t=2

qtc
(i)
t = c

(i)
1 +

T∑
t=2

qtb
(i)

t (122)

S.T. c
(i)
t = b

(i)
t ∀t ∈ {2, 3, ..., T} , (123)

where c(i)1 denotes consumption in period 1 and b(i)t (t = 2, 3, ...T ) the quantity of

zero coupon bonds purchased in period one and maturing at the beginning of period

t and paying one unit of c(i)t . Denote

I(i) = c
(i)
1 +

T∑
t=2

qtb
(i)

t . (124)

As discussed in the prior subsection, separability can substantially reduce the

informational requirement in the equilibrium interest rate analysis. Unfortunately,

Propositions 2 and 3 cannot be applied to the heterogeneous economy in general

even if we assume an aggregator exists. For instance, there is no assurance that

the aggregator’s utility will be (additively) separable if each agent’s preferences are

(additively) separable.26 One known case where the separability of individual agent

preferences is inherited by an aggregator is the exact linear aggregation discussed

by Gorman (1953, 1961) with the additively separable agent utility. For such ex-

act aggregation, the aggregate demand can be written as a function of prices and

aggregate income alone, independent of the income distribution.27 Gorman shows

that the necessary and suffi cient condition for the exact linear aggregation is that

the Engel curves of all the agents are straight lines and have a common slope. For

homothetic preferences, since Engel curves always start from the origin, Gorman’s

necessary and suffi cient condition implies that all agents have the same preferences,

which is too restrictive. For the quasihomothetic case where agent i’s preferences

are representable by

U (i)
(
c
(i)
1 , ..., c

(i)
T

)
= −

T∑
j=1

(
c
(i)
j − ai

)−δ
δ

(δ > −1) , (125)

26See Kubler, Selden andWei (2013) for a two agent case in which each agent has constant relative

risk aversion (CRRA) Expected Utility preferences which are additively separable across contingent

claims. Preferences are characterized by different risk aversion parameters and endowments are

assumed to be identical for each agent. In this case an aggregator exists and it is possible to derive

the explicit form of the aggregator’s utility. However, it fails to be additively separable.
27For a nice recent summary, see Cherchye et. al. (2011).

28



once δ is the same for all the agents, Gorman’s exact linear aggregation condition

will be satisfied even if ai are different across the heterogeneous agents. In this

case, the aggregator’s utility function is given by

U (c1, ..., cT ) = −
T∑
j=1

(
cj −

∑N
i=1 ai

)−δ
δ

(δ > −1) , (126)

which is still additively separable and hence Propositions 2 and 3 can be applied.

The requirement of the linear Engel curve with the same slope for each agent is

clearly extremely restrictive. However, it can easily be seen that myopic separability

can be preserved if an aggregator exists. In other words if each agent’s preferences

are myopic separable in (c1, c2) and the aggregator exists, then since the aggregate

demand (c1, c2) is still myopic Propositions 2 and 4 hold. This is because if a utility

function is myopic separable in (c1, c2), it is also separable in (c1, c2) which implies

that r1 is independent of
(
b3, ..., bT

)
. Moreover as we will show in the following

Proposition, for the myopic separable agents, the conclusion that r1 is independent

of
(
b3, ..., bT

)
does not require the assumption of the existence of an aggregator.

Proposition 5 Assume a N-agent heterogeneous economy with agent i′s optimiza-
tion problem characterized by (122) and (123). If each agent’s utility function is

myopic separable in (c1, c2), i.e., ∀i ∈ {1, 2, ..., N}

U (i)
(
c
(i)
1 , ..., c

(i)
T

)
= f (i)

(
g(i) (c1, c2) c3, g

(i) (c1, c2) c4, ..., g
(i) (c1, c2) cT

)
, (127)

and the endowments are collinear,28 then the equilibrium interest rate r1 is indepen-

dent of bt (t = 3, 4, ..., T ).

Proof. Assume each agent’s utility function is myopic separable in (c1, c2), then we

have

c
(i)
1 = c

(i)
1

(
q2, I

(i)
)
and c

(i)
2 = c

(i)
2

(
q2, I

(i)
)
, (128)

implying that the aggregate demand is given by

c1 =
N∑
i=1

c
(i)
1

(
q2, I

(i)
)
and c2 =

N∑
i=1

c
(i)
2

(
q2, I

(i)
)
. (129)

If the endowments are collinear, then

I(i) = ωiI, (130)

28It should be noted that the assumption of the price independent income distribution is made in

several general equilibrium analyses (see, for example, Mas-Colell 1991, p. 280). Unlike Chipman

(1974), we do not assume homothetic preferences here and hence the aggregator may not exist.
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where

I(i) = c1 +

T∑
t=2

qtbt. (131)

Eqn. (129) can be rewritten as

c1 =

N∑
i=1

c
(i)
1 (q2, ωiI) and c2 =

N∑
i=1

c
(i)
2 (q2, ωiI) . (132)

In equilibrium, we have c1 = c1 and c2 = b2, implying that

c1 =
N∑
i=1

c
(i)
1 (q2, ωiI) and b2 =

N∑
i=1

c
(i)
2 (q2, ωiI) . (133)

Since we have two independent equations for two variables (q2, I), r1 = 1
q2
is a

function of
(
c1, b2,ω

)
, which is independent of bt (t = 3, 4, ..., T ).

Appendix

A Alternative Proof: Necessity Part of Proposi-

tion 1

Introduce the following notation

Ui =
∂U

∂ci
and Uij =

∂2U

∂ci∂cj
i, j ∈ {1, 2, ...,m+ n} . (134)

The first order conditions give

piU1 − p1Ui = 0 (i = 2, 3, ...,m+ n) . (135)

Since the optimal (c1, ..., cm) depends only on (p1, ..., pm), differentiating both sides

of the ith first order condition with respect to pk (k ∈ {m+ 1,m+ 2, ...,m+ n}) we
have

m+n∑
j=m+1

(p1Uij − piU1j)
∂cj
∂pk

= δikU1, (136)

where δik is the Kronecker δ. Differentiation of the left hand side of the budget

constraint with respect to pk, yields

m+n∑
j=m+1

pj
∂cj
∂pk

= −ck. (137)
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We have a system of n + 1 linear equations with n unknowns ∂cj
∂pk

(j = m + 1,m +

2, ...,m + n).29 There exists at least one nonzero (non-trivial) solution for this

equation system if and only if the augmented coeffi cient matrix of this system is

singular, i.e.,

detM = 0, (138)

where

M =



p1Um+1,m+1 − pm+1U1,m+1, · · · , p1Um+1,m+n, − pm+1U1,m+n, 0
...

...
...

...

p1Uk,m+1 − pkU1,m+1, · · · , p1Uk,m+n − pkU1,m+n, U1
...

...
...

...

p1Um+n,m+1 − pm+nU1,m+1, · · · , p1Um+n,m+n − pm+nU1,m+n, 0

pm+1, · · · , pm+n, −ck


.

(139)

Define

H =



p1Um+1,m+1 − pm+1U1,m+1, · · · , p1Um+1,m+n, − pm+1U1,m+n,
...

...
...

p1Uk,m+1 − pkU1,m+1, · · · , p1Uk,m+n − pkU1,m+n,
...

...
...

p1Um+n,m+1 − pm+nU1,m+1, · · · , p1Um+n,m+n − pm+nU1,m+n,


. (140)

Using the Laplace Expansion to expand the determinant in eqn. (138) by the last

column (and the cofactor of U1 by the last row), yields

(−1)k−m+n+1 U1

m+n∑
j=m+1

(−1)n+j−m pjHj−m,k−m − ck detH = 0, (141)

where Hj−m,k−m is the j−m, k−m minor of H. Substituting eqn. (135) into (141),

we have

p1

m+n∑
j=m+1

(−1)k+j UjHj−m,k−m = −ck detH. (142)

Assume first that H is non-singular and notice that

(−1)k+j Hj−m,k−m

detH
(143)

is the (j −m, k −m) component of
(
HT
)−1
. Denoting

∇U = (Um+1, Um+2, ..., Um+n) and c = (cm+1, cm+2, ..., cm+n) , (144)

29The n + 1 equations include eqns. (136) (one equation for each i ∈ {m+ 1, ...,m+ n}) and
eqn. (137).

31



it follows from eqn. (142) that

p1
(
HT
)−1

(∇U) = −c⇔ p1∇U = −HTc, (145)

or equivalently
m+n∑
j=m+1

(p1Uji − pjU1i) cj = −p1Ui (i = m+ 1,m+ 2, ...,m+ n) . (146)

The determinant detH is proportional to the bordered Hessian of U when considered

as a function of the last n variables. The strict quasiconcavity of U implies by

Theorem VI of Bernstein and Toupin (1962) that detH 6= 0 on a dense set, so that

(146) holds on a dense set. By continuity (146) holds everywhere. Notice that for

any i ∈ {m+ 1,m+ 2, ...,m+ n},

∂

∂ci

∑m+n
j=m+1 cjUj

U1
=

(
Ui +

∑m+n
j=m+1 cjUij

)
U1 − U1i

∑m+n
j=m+1 cjUj

(U1)
2 . (147)

It follows from eqn. (146) and the first order conditions that
m+n∑
j=m+1

(UijU1 − UjU1i) cj = −UiU1 (i = m+ 1,m+ 2, ...,m+ n) . (148)

Substituting eqn. (148) into (147), it follows that

∂

∂ci

∑m+n
j=m+1 cjUj

U1
= 0. (149)

Therefore, we have ∑m+n
j=m+1 cjUj

U1
= w(1) (c1, ...cm) , (150)

where w(1) (c1, ...cm) is an arbitrary positive function. Similarly, it can be proved

that for ∀i ∈ {1, 2, ...,m} ∑m+n
j=m+1 cjUj

Ui
= w(i) (c1, ...cm) , (151)

for certain positive functions w(i) (c1, ...cm). By Frobenius integrability conditions

w(i) ∂w
(j)

∂ci
= w(j) ∂w

(i)

∂cj
for i, j ∈ {1, 2, ...,m}. Integrating the above over-determined

system yields

U (c1, ..., cm+n) = f (g (c1, ..., cm) cm+1, g (c1, ..., cm) cm+2, ..., g (c1, ..., cm) cm+n) ,

(152)

and g can be obtained from the following integrable system of equations
g

gi
= w(i) (c1, ...cm) (i ∈ {1, 2, ...,m}) . (153)

Finally, f, g, hi = g (c1, ..., cm) cm+i ∈ U is verified as in the proof of Proposition 1
in the main text.
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