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Abstract

Price momentum strategies have historically generated high positive returns with little
systematic risk. However, these strategies also experience infrequent but severe losses.
During 13 of the 978 months in our 1929-2010 sample, losses to a US-equity momentum
strategy exceed 20 percent per month. We demonstrate that a hidden Markov model in
which the market moves between latent “turbulent” and “calm” states in a systematic
stochastic manner captures these high-loss episodes. The turbulent state is infrequent
in our sample: the probability that the hidden state is turbulent is greater than one-
half in only 20% of the months. Yet in each of the 13 severe loss months, the ex-ante
probability that the hidden state is turbulent exceeds 70 percent. This strong fore-
castability accentuates the price momentum puzzle; a conditional momentum strategy
that moves to the risk-free asset when the ex-ante probability of the turbulent state
is high exhibits dramatically better performance than the unconditional momentum
strategy.
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1 Introduction

Relative strength strategies, also known as price momentum strategies, have been and con-

tinue to be popular among traders. Quantitative strategies used by active money managers

often rely on some form of momentum.1 Even those who use fundamental analysis appear

to incorporate momentum into their trading decisions.2

Price momentum in stocks can be described as the tendency of those stocks with the

highest (lowest) past return to subsequently outperform (underperform) the broader market.

Price momentum strategies exploit this pattern by taking a long position in past winners

and an equal short position in past losers. These strategies produce high abnormal returns

on average, but also generate infrequent and large losses.

Over our sample period of July 1929 through December 2010, our baseline momentum

strategy produces monthly excess returns with a mean of 1.12%, a standard deviation of 8%,

and with little systematic risk as measured by the standard CAPM or the Fama and French

(1993) three factor model: the estimated CAPM α of the strategy is 1.44%/month, and the

Fama and French (1993) three factor α is 1.70%/month.3 The maximum attainable sample

monthly Sharpe Ratio increases from 0.15 for a portfolio of the three Fama and French (1993)

factors to 0.28 when the three factors are augmented with the momentum strategy.

However, the momentum strategy returns have an empirical distribution that is both

highly left skewed and significantly leptokurtic. There are thirteen months with losses ex-

ceeding 20%. In its worst month the strategy experiences a loss of 79%. Were momentum

returns generated from an i.i.d. normal distribution with mean and variance equal to their

sample counterparts, the probability of realizing a loss of more than 20% in thirteen or more

months would be 0.04%, and the probability of incurring a loss of 79% or worse would be

9.95×10−24.

1See Swaminathan (2010), who further estimates that about one-sixth of the assets under management
by active portfolio managers in the U.S. large cap space is managed using quantitative strategies.

2Jegadeesh and Titman (1993) motivate their study of price momentum by noting that: “. . . a majority
of the mutual funds examined by Grinblatt and Titman (1989; 1993) show a tendency to buy stocks that
have increased in price over the previous quarter.”

3The baseline 12-2 momentum strategy, described in more detail below, is based on a sort of individual
stocks into decile portfolios based on the stocks’ cumulative monthly returns from month t−12 through
month t−2 (i.e., skipping one month prior to portfolio formation). The strategy takes a long position in the
value-weighted portfolio of the firms in the top decile, and a short position in value-weighted portfolio of the
bottom decile stocks. The strategy is rebalanced monthly.
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The pronounced leptokurtosis of the empirical distribution of momentum strategy returns

suggests that these returns may be drawn from a mixture of distributions. We therefore

develop a two state Hidden Markov Model (HMM) – a variant of the regime switching

model of Hamilton (1989) – in which the hidden state can be “calm”or “turbulent.” The

states are persistent: successive months are more likely to be in the same state. Also, as we

shall show momentarily, the joint distribution of the momentum and market returns differs

significantly across the two states, facilitating our estimation of the HMM parameters.

The HMM model we propose is generally consistent with historical momentum crashes

in our sample. When returns are generated by our hidden regime switching model, the

probability of realizing a loss of more than 20% in 13 or more months in a sample of 978

months increases from 0.04% to 90%. The probability of incurring a loss of more than 79%

increases from 9.95× 10−24 to 0.02%. This result, and others we detail below, suggests that

our parsimonious 2-state model comes close to capturing the time variation in momentum

strategy returns.4

The time variation in joint distribution of momentum and market returns has been dis-

cussed in the literature from a number of perspectives: Kothari and Shanken (1992) and

Grundy and Martin (2001) observe that the market beta of momentum strategy returns

is a function of past market returns. Rouwenhorst (1998) uncovers a nonlinearity in the

momentum-market return relationship using methods suggested by Henriksson and Merton

(1981). Boguth, Carlson, Fisher, and Simutin (2011) evaluate potential biases in estimating

the momentum strategy alpha that may arise due to this nonlinearity. Daniel and Moskowitz

(2011) observe that momentum strategies incur severe losses when the stock market recovers

sharply following severe declines, and note the relationship between this nonlinearity and

past market returns and volatility.

These empirical findings suggest that the sensitivity of momentum returns to stock mar-

ket excess return – that is the beta of momentum returns – depends both on past realizations

of market excess returns, and on the contemporaneous market excess return and its volatility.

Typically, severe market declines and sharp recoveries occur during volatile market condi-

tions, and high volatility periods tend to cluster. That suggests that the joint distribution of

4Based on one million simulations, in each of which 978 monthly returns are generated using estimated
model parameters.
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momentum and stock market returns depend on whether the market is volatile or calm. This

leads us to use a HMM to describe the joint behavior of momentum and market returns. In

our HMM specification, the joint distribution of momentum return and stock market return

depends on the hidden state. This parsimonious HMM specification performs better than

the other specifications we consider in predicting when large losses are more likely.

Most applications of the HMM in the empirical macro finance literature estimate changes

in the hidden regimes using changes in the in expected values of the random variables. In

contrast, we estimate the hidden state using second moments. Whereas reliable estimates of

means require observations spanning a long period of time, variances and covariances can be

estimated relatively precisely using more frequently sampled observations. We are therefore

able to estimate the underlying parameters of the HMM relatively precisely even though our

sample has only a few turbulent episodes each spanning relatively short time periods.

While we estimate the states using second moments, our estimation method uncovers

differences in both the first moment and in third and fourth moments across the two states.

Specifically, we find that in the turbulent state the momentum strategy returns have a lower

mean, are more negatively skewed and exhibit increased kurtosis.

Finally, note that the quasi maximum likelihood estimation procedure we develop here

provides consistent estimates of model parameters and their associated standard errors even

though returns, by assumption, are non-normally distributed.5

While our use of the hidden Markov specification to capture sudden changes in the

kurtosis of returns is novel, it has been widely used to model jumps and clustering of volatility

in financial time series. For example, Calvet and Fisher (2008) find that their Markov-

switching multifractal model (MSM), which is a generalization of the two state HMM we

use, performs better than other models along several dimensions.6 Our modeling approach

allows for stochastic jumps in volatility, the importance of which has been emphasized by

Todorov and Tauchen (2011), Andersen, Bondarenko, and Gonzalez-Perez (2011) and others.

The approach we take in identifying time periods when the hidden state is more likely to

be turbulent is related to the approach of Bollerslev and Todorov (2011), who assume that

5See Appendix A.
6MSM is convenient for extending the number of volatility regimes with relatively few parameters. Since

we only have a few turbulent episodes in our sample, the two state HMM that requires fewer parameters is
preferable.
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during time periods when more frequent medium sized jumps are more likely, less frequent

large jumps are also more likely. Based on that assumption, for which they find support

in the data, they are able to identify time periods with higher tail risk. Our approach is

similar: We assume that tail risk as well as return volatilities and covariances jump in the

unobserved turbulent state, and identify time periods when the hidden underlying state is

more likely to be turbulent based on jumps in realized volatility. We find that the data

support our assumptions.

Consistent with the extant findings in the literature, we find that when the hidden state

is “turbulent”, momentum strategy returns have both a strongly negative beta and the

characteristics of a written call on the stock market index. These two features in particular

allow us to accurately assess the hidden state.

Our estimation reveals that the distribution from which returns are drawn is more volatile

when the market is in the unobserved “turbulent” state. We find that all the thirteen months

with losses exceeding 20% occur during one of the 158 months when the probability of the

market being in the turbulent state exceeds 70%. The probability of observing a loss of

20% or more in at least thirteen of 158 turbulent months is 94% and the large momentum

strategy losses become less black swan-like.7

We see this graphically in Figure 1, which plots the ex-ante estimated probability that

the hidden state is turbulent. Overlaid on this, we have placed a red dot for each of the 13

months in our sample in which the realized loss to the momentum strategy exceeded 20%.

Notice that the estimated probability that the state is turbulent exceeds 70% during each of

these 13 months.

As noted earlier, our HMM estimation procedure relies on the estimation of second mo-

ments, and in particular on the estimate of the covariance of the market return and the

momentum strategy return. Daniel and Moskowitz (2011) observe that realized momentum

strategy returns are considerably lower when the stock market recovers sharply following

severe drawdowns (See Table 1). There are two reasons for this: first, firms which experi-

ence a high/low return at over a period when the realized market return is negative is more

likely, from a Bayesian perspective, to be low/high beta. Second, following a prolonged bear

7These probabilities are based on one million simulations, in each of which 158 monthly returns are
generated using the sample moments of the 158 months in our sample which have a predicted turbulent
state probability exceeding 70%.
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Figure 1: Estimated Turbulent-State Probability and Momentum Crashes

The solid line represents the HMM estimate of the ex-ante probability of hidden state being
turbulent. The red dots indicate months in which the baseline momentum strategy lost of
more than 20%.

market, the average firm’s leverage increase, but the leverage of stocks in the lowest past

returns decile increase even more, especially during turbulent times, with the result the beta

of the momentum portfolio that shorts those stocks becomes significantly negative. Con-

sequently, when the market recovers sharply, the momentum strategy incurs severe losses.

Since momentum portfolios are formed by sorting stocks based on their returns over several

months in the past, momentum portfolio betas become most negative (and hence most risky)

some time after the hidden state becomes turbulent. Since the hidden states are persistent,

our ex-ante estimate of the state probability also forecasts the future state.

We compare the performance of the HMM to other models. A GARCH model of time

varying volatility is not as successful as the hidden regime switching models in identifying

time periods when large losses are more likely to occur. Our findings are consistent with

Ang and Timmerman (2011) who argue in favor of using regime switching models to capture

abrupt changes in the statistical properties of financial market variables.
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Table 1: Negative Outliers

This table below lists the momentum “crash” months – defined as momentum strategy losses
of more than 20%/month. Rmom

t (%) and RM
t (%) are the realized momentum-strategy and

market returns in the specified month.
∑24

n=1 R
M
t−n(%) is the cumulative market return over

preceding 2 years, and int. is the time (in months) since the preceding crash month.

Month Rmom
t (%) RM

t (%)
∑24

n=1R
M
t−n(%) int.

1931/06 -30.09 13.72 -60.50
1932/07 -60.11 33.72 -123.58 13
1932/08 -78.96 36.75 -93.63 1
1932/11 -22.80 -5.59 -52.23 3
1933/04 -42.33 38.27 -63.68 5
1933/05 -28.39 21.15 -15.48 1
1938/06 -33.14 23.61 -24.49 61
1939/09 -43.94 15.95 -12.40 15
2001/01 -42.10 3.41 3.28 736
2002/11 -20.42 6.01 -46.33 22
2009/03 -39.32 8.76 -60.92 76
2009/04 -45.89 11.04 -53.03 1
2009/08 -24.80 3.18 -28.89 4

We find that the monthly Sharpe Ratio of momentum returns in months with a predicted

probability of being in the turbulent state exceeding 50% is -0.03. When those months are

avoided the monthly Sharpe Ratio becomes 0.30, more than double the unconditional Sharpe

Ratio. Momentum becomes more of an anomaly,8 especially since the HMM based out of

sample forecasts are about as good or better.

The rest of the paper is organized as follows. We provide a brief review of related literature

in Section 2. We develop the econometric specifications of the HMM for characterizing

momentum returns in Section 3. We discuss the empirical findings in Section 4 and examine

alternative specifications in Section 5. We conclude in Section 6.

2 Related Literature

Levy (1967) was among the first academic articles to document the profitability of stock price

8As Hansen and Jagannathan (1991) observe, the high Sharpe Ratio portfolios pose a challenge to stan-
dard asset pricing models.
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momentum strategies. However, Jensen (1967) raised several issues with the methodology

employed by Levy (1967). Perhaps as a consequence, momentum received little attention

in the academic literature until Jegadeesh and Titman (1993), whose long-short portfolio

approach has proven rigorous and replicable. A number of studies have subsequently con-

firmed the Jegadeesh and Titman (1993) findings using data from markets in a number of

countries (Rouwenhorst, 1998), and in a number of asset classes (Asness, Moskowitz, and

Pedersen, 2008). As Fama and French (2008) observe, the “abnormal returns” associated

with momentum are “pervasive”.

Korajczyk and Sadka (2004) show that historical momentum profits remain positive

after accounting for transaction costs. Chabot, Ghysels, and Jagannathan (2009) find that

momentum strategies earned anomalous returns even during the Victorian era with very

similar statistical properties, except for the January reversal, presumably because capital

gains were not taxed in that period. Interestingly, they also find that momentum returns

exhibited negative episodes once every 1.4 years with an average duration of 3.8 months per

episode.

The additional literature on momentum strategies is vast, and can be grouped into

three categories: (a) documentation of the momentum phenomenon across countries and

asset classes (b) characterization of the statistical properties of momentum returns, both in

the time-series and cross-section and (c) theoretical explanations for the momentum phe-

nomenon. We make a contribution to (b). In what follows we provide review of only a few

relevant articles that characterize the statistical properties of momentum returns, and refer

the interested reader to the comprehensive survey of the momentum literature by Jegadeesh

and Titman (2005).

Our work is directly related to several other papers in the literature. First, a number of

authors, going back to Jegadeesh and Titman (1993), have noted that momentum strategies

can experience severe losses over extended periods. In particular, Griffin, Ji, and Martin

(2003) document that there are often periods of several months when momentum returns

are negative.

In addition, a large number of papers have explored the time-varying nature of the risk

of momentum strategies. Kothari and Shanken (1992) note that, for portfolios formed on

the basis of past returns, the betas will be a function of past market returns. Using this
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intuition, Grundy and Martin (2001) show that the market beta of momentum strategy

returns become negative when the stock market has performed poorly in the past. Rouwen-

horst (1998) documents that momentum returns are nonlinearly related to contemporaneous

market returns – specifically that the up market beta is less than their down market beta.9

Daniel and Moskowitz (2011) find that this non-linearity is present only following market

losses. Building on Cooper, Gutierrez, and Hameed (2004), who show that the expected

returns associated with momentum profits depends on the state of the stock market, Daniel

and Moskowitz (2011) also show that, after controlling for the dynamic risk of momentum

strategies, average momentum returns are significantly lower following market losses and

when measures of market volatility is high. They find evidence of these features not only

in US equities, but also internationally, and in momentum strategies applied to commodity,

currency, and country equity markets. Finally, they show that the factors combine to result

in large momentum strategy losses in periods when the market recovers sharply following

steep losses.10

3 Data and Econometric Specifications

3.1 Data

Price momentum strategies using stocks have been be constructed using variety of metrics.

For this study we utilize the (12-2) momentum strategy decile portfolio returns available at

Ken French’s Data Library.11 These portfolios are formed at the beginning of month t by

9To our knowledge, Chan (1988) and DeBondt and Thaler (1987) first document that the market beta
of a long-short winner-minus-loser portfolio is non-linearly related to the market return, though DeBondt
and Thaler (1987) do their analysis on the returns of longer-term winners and losers as opposed to the
shorter-term winners and losers we examine here. Rouwenhorst (1998) demonstrates the same non-linearity
is present for long-short momentum portfolios in non-US markets. Finally Boguth, Carlson, Fisher, and
Simutin (2011), building on the results of Jagannathan and Korajczyk (1986) and Glosten and Jagannathan
(1994), note that the interpretation of the measures of abnormal performance in Chan (1988), Grundy and
Martin (2001) and Rouwenhorst (1998) is problematic.

10Ambasta and Ben Dor (2010) observe a similar pattern for Barclays Alternative Replicator return that
mimics the return on a broad hedge fund index. They find that when the hedge fund index recovers
sharply from severe losses the replicator substantially underperforms the index. Also, Elavia and Kim
(2011) emphasize the need for modeling changing risk for understanding the recent weak performance of
quantitative equity investment managers who had over two decades of good performance.

11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html The specific momentum
decile portfolios we use are those designated by “10 Portfolios Prior 12 2.” Data for the CRSP value-
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Table 2: Sample Moments of Momentum and Market Excess Returns

This table presents estimates of the first four moments of the monthly return distribution
for ‘mom’, the zero-investment momentum portfolio used in the study, and for the CRSP
value weighted stock portfolio net of the risk-free rate, RM (= rM−rf ). The sample period
is 1929:07-2010:12.

Mean Std.Dev Skewness Kurtosis
Rmom 1.12% 8.03% -2.47 21.03
RM 0.57% 5.50% 0.18 10.48

ranking each stock based its cumulative return over the 11 month period from month t−12

through month t−2.12 The decile portfolio returns are the market-capitalization weighted

portfolio of the stocks in that past return decile. Most of our analysis will concentrate on

the zero-investment portfolio which is long the top past-return decile, and short the bottom

decile. The long-short returns are defined as the difference between the top and bottom

decile returns.

3.2 Characteristics of Momentum Returns

3.2.1 Descriptive Statistics

Table 2 presents estimates of the moments of the monthly momentum strategy returns,

and of the CRSP value-weighted portfolio return, net of the risk-free rate. The monthly

momentum strategy returns average 1.12% per month over this 978 month period, with a

monthly Sharpe Ratio of 0.14. In contrast, the realized Sharpe ratio of the market over this

period is only 0.10. Moreover, the alpha of momentum strategy is 1.70% per month with

respect to the Fama and French (1993) three factor model. When the three Fama and French

factors are combined with the momentum portfolio, the maximum achievable Sharpe Ratio

rises to 0.28. Note that this is also considerably higher than the maximum Sharpe Ratio

achievable with only three Fama French factors, 0.15.

While the momentum strategy has a higher in-sample Sharpe Ratio than the stock index

weighted market return and the risk-free rate is also taken from this data library.
12Skipping one month after the return measurement period is done both to be consistent with the momen-

tum literature, and so as to minimize market microstructure effects and to avoid the short-horizon reversal
effects documented in Jegadeesh (1990) and Lehmann (1990).
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portfolio, Table 2 shows that it exhibits strong excessive kurtosis and negative skewness. The

excess kurtosis is also evident from the infrequent but very large losses to the momentum

strategy during the 978 months in the sample period. Given the low unconditional volatility

of the momentum strategy, if returns were normal the probability of observing a month with

a loss exceeding 42% in a sample of 978 months would be one in 25,000, and the probability

of seeing five or more months with losses exceeding 42% would be almost zero. Yet the

lowest five monthly returns in the sample are: -79%, -60%, -46%, -44%, and -42%, a rare

black swan like occurrence from the perspective of someone who believes that the time series

of monthly momentum returns are generated from an i.i.d. normal distribution.

When returns are simulated using our estimated HMM, the kurtosis is 8.64 for momen-

tum return and 6.11 for market excess return. Simulated momentum returns exhibit some

negative skewness, though not as much as in the sample data. Under the HMM model, large

losses to momentum strategy become more likely: The probability of losses exceeding 42%

in five or more months increases to 1.5% from almost zero; and the probability of losses

exceeding 20% in thirteen or more months increases to 90% from 0.04%.13

In Section 3.3 we describe a hidden Markov model, based on the framework of Hamil-

ton (1989), which we use to capture the behavior of momentum returns. Specifically, we

model momentum returns with a mixture of normal distributions where the parameters of

the normal distributions depend on the hidden state and contemporaneous market return

in possibly nonlinear ways to accommodate the negative skewness of momentum strategy

returns. Even though the distribution of returns – conditional on the hidden state and the

contemporaneous market return – is normal, this model is able to capture the unconditional

skewness and kurtosis of the momentum returns to some extent, and the probability of large

losses become much more likely.

In what follows we first describe some of the salient characteristics of the joint distribution

of momentum strategy and market returns documented in the literature. These features

suggest that the beta of momentum strategy returns differs across turbulent and calm market

conditions providing a rationale for hidden Markov model specification we use.

13Based on 1,000,000 simulations , in each of which 978 months returns are generated using estimated
model parameters.
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3.2.2 Momentum Beta and the Formation Period Market Return

Grundy and Martin (2001), building on the observation of Kothari and Shanken (1992),

argue that the momentum portfolio beta will be a function of the market excess return over

the measurement period.14

The intuition for the Kothari and Shanken (1992) result is as follows: if the market excess

return is negative over the measurement period then, from a Bayesian perspective, the firms

which earned the most negative return – i.e. the past losers which moved down with the

market – are likely to have a higher beta than the past winners. Because the momentum

portfolio is long past winners and short past losers, the intuition of Kothari and Shanken

(1992) and Grundy and Martin (2001) suggests that the momentum portfolio beta should

be negative following bear markets – when the market excess return was negative over the

measurement period – and positive following bull markets.

We define the down market indicator IDt as having the value of one when the sum of the

market excess returns RM
t in the formation period was negative,15 i.e. when:

IDt ≡


1 if

t−2∑
s=t−12

RM
s < 0

0 otherwise

(1)

This suggests the following specification for the joint distribution of momentum and market

excess returns:

Rmom
t = α +

(
β0 + βDIDt

)
RM
t + εt. (2)

Estimation of this specification over our full sample yields:

α β0 βD

estimate 1.19 0.12 −1.27
t-stat 5.88 1.35 −8.37

14See pp. 195-198 of Kothari and Shanken (1992).
15We follow Grundy and Martin (2001) and use the arithmetic sum of the market excess returns during

the formation period instead of the compounded total return during the formation period.
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where the t-stats are computed using standard errors that allow for conditional heteroskedas-

ticity. Consistent with the findings in the literature noted above, βD is economically and

statistically significant, and abnormal return (intercept), controlling for the dynamic market

risk, is still significantly positive.

3.2.3 Momentum Beta and Contemporaneous Market Returns

As pointed out in Section 2, a number of authors have observed the nonlinear nature of

the relationship between the returns on past-return sorted portfolios and contemporaneous

market returns.16 In the language of Henriksson and Merton (1981), momentum’s up-beta is

different from its down-beta. We capture this option-like feature of the momentum portfolio

with the following specification:

Rmom
t = α +

(
β0 + βU · IUt

)
RM
t + εt, (3)

where IUt is an indicator variable which is 1 when the contemporaneous market return is

positive, and is zero otherwise:

IUt ≡

 1 if RM
t > 0

0 otherwise
(4)

Estimation of this specification over our full sample yields:

α β0 βU

estimate 3.27 −0.07 −0.93

t-stat 6.29 −0.64 −3.35

Notice that the estimated up-beta of our momentum portfolio is lower than the down-beta by

0.93, and is again strongly statistically significant. Also, here it is important to note that the

estimated α is no longer a valid measure of abnormal performance, since the contemporaneous

up-market indicator uses ex-post information.17

16See, in particular, footnote 9.
17See Jagannathan and Korajczyk (1986) and, more recently, Boguth, Carlson, Fisher, and Simutin (2011).
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3.2.4 Dependence of Beta on Market Volatility

Boguth, Carlson, Fisher, and Simutin (2011) note the presence of a significant covariance

between momentum’s market beta and market volatility leads. Extending the approach of

Jagannathan and Wang (1996), they calibrate the magnitude of the bias arising from this

covariance.

To see whether volatility timing exists in our sample of momentum returns, we estimate

the following regression equation:

Rmom
t = α +

(
β0 + βU · IUt + βσ · σ̂M

t

)
RM
t + εt, (5)

where IUt is defined as in (4) and σ̂M
t is the sample standard deviation of daily returns for

the value weighted portfolio during the month t. Estimation of this specification over our

full sample yields:
α β0 βU βσ

estimate 3.12 0.52 −1.07 −30.17
t-stat 7.57 2.72 −4.40 −3.36

Notice that an increase in the contemporaneous volatility of market excess returns signifi-

cantly decreases the beta of momentum returns. As in the previous subsection, the estimated

α is not a valid measure of abnormal performance, since the contemporaneous up-market

indicator and the realized daily standard deviation uses ex-post information.

3.2.5 The State Dependence of Momentum’s Optionality

Daniel and Moskowitz (2011) find that momentum portfolios incur large losses when the

market recovers sharply following bear markets. For example, the worst five months with

the largest losses on the momentum portfolio we discussed have the pattern in Table 3,

consistent with the observations in Daniel and Moskowitz (2011).

Daniel and Moskowitz (2011) note that reason for this pattern is in part because the

written call-features of momentum noted in the literature is particularly strong in bear

markets. Daniel and Moskowitz (2011) therefore develop a specification in which beta of

the momentum portfolio depends both on the long-term past return of the market, and the

market’s contemporaneous return. Consistent with this, we define another indicator variable.
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Table 3: Patterns of Historical Momentum Crashes

Month Rmom
t RM

t RM(t−24, t−1)

1932/8 -78.96 36.57 -93.63
1932/7 -60.11 33.72 -123.58
2009/4 -45.89 11.04 -53.03
1939/9 -43.94 15.95 -12.40
1933/4 -42.33 38.27 -63.68

We define the bear-market indicator to be equal to 1 if the sum of the market excess returns

over the preceding L months is negative18 :

IBt ≡

 1 if RM(t−L, t−1) ≡
∑t−1

s=t−LR
M
s < 0

0 otherwise.
(6)

This motivates the following specification for the momentum return generating process.

Rmom
t = α +


β0

+βB · IBt
+βR · IBt ·IUt

RM
t + εt (7)

Following Daniel and Moskowitz (2011), we set L = 24. Estimation of this specification

yields:

α β0 βB βR

estimate 1.71 0.19 −0.96 −0.80

t-stat 8.36 2.83 −7.52 −4.19

As can seen from the above table,

• β0 = 0.19, i.e., the point estimate of the baseline beta is positive and statistically
significant, though small.

• βB = −0.96, i.e., the momentum beta is significantly negative following bear markets.

• βR = −0.80, i.e., the momentum beta is much more negative when the contemporane-
ous market recovers following a bear market.

18As before, following Grundy and Martin (2001), we use the arithmetic sum of the market excess returns
instead of the compounded total return.
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3.2.6 Summary

The sensitivity (beta) of momentum strategy return to stock market excess return depends

on: (1) the return on the market during the momentum portfolio formation period; (2)

whether the market has declined severely during the past two years; (3) the volatility of the

market; and (4) the contemporaneous return on the market. One source of these patterns

is the high leverage of past losers, particularly following large market declines. This high

leverage would mean that the returns of past losers would both have a high beta and exhibit

pronounced call option-like features during times when the stock market is depressed. The

momentum portfolio, which is short these past losers, will behave as though it is short an

out-of-the money call: it will have a large negative beta, which is even more negative when

the market recovers sharply, thus resulting in a momentum crash. Since the market is often

turbulent during such time periods, we assume that there is a single hidden state variable

that can capture all these effects, providing a rationale for the hidden Markov model of

momentum returns we describe in the next section.

3.3 A Hidden Markov Model of Momentum Strategy Returns

Let St denote the unobserved random underlying state of the economy, and st the realized

state of the economy. We assume that there are two possible states, one is Calm (C) and

the other Turbulent (T). Our specification for the momentum portfolio return generating

process is as follows:

Rmom
t = α(St) +

(
β0(St) +βU(St) · IUt

)
RM
t + σmom(St)ε

mom
t . (8)

Here εmom
t denotes the standardized momentum strategy residual return – a sequence of

independent random variables with zero mean and unit variance, and σmom(St) denotes the

standard deviation of the momentum strategy residual return. Note that the volatility of the

residual return is a function of the hidden state. The specification in (8) is the same as in

(3) except for the dependence of model parameters on the hidden state. We do not explicitly

model the dependence of the momentum beta on IDt , σ̂M
t or IBt as in the specifications in

(2), (5) and (7). Since we expect the hidden state to sufficiently summarize the relevant
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market conditions, we let the model parameters be a function of only the hidden state.19 In

addition, we allow momentum beta to depend on contemporaneous market excess return in

nonlinear ways, i.e., be a function of the up market indicator variable, IUt defined in (4), in

order to capture the option-like features of momentum returns.

We further specify that the mean and the variance of the market excess return are also

functions of the hidden state, specifically

RM
t = µ (St) + σM (St) ε

M
t , (9)

where εMt denotes the standardized unanticipated market returns – a sequence of independent

random variables with zero mean and unit variance – and σM(St) denotes the standard

deviation of the unanticipated market return.

3.4 Maximum Likelihood Estimation

We estimate the parameters of the hidden Markov model by assuming that the standardized

momentum strategy residual return and the unanticipated market return are jointly normally

distributed, even though they are not, by using the maximum likelihood method described

in Hamilton (1989). This approach is equivalent to using the GMM to estimate the model

parameters based on the information in the conditional first and second moments alone. In

Appendix A, we show that the consistency and the asymptotic normality of the estimates

obtained via maximum likelihood does not require that εMt and εmom be jointly normally

distributed.20

We begin by defining the vector of observable variables of interest at time t, Yt, as:

Yt =
(
IUt , R

mom
t , RM

t

)′
,

We let yt denote the realized value of Yt. St denotes the unobservable random state at time

t which, in our setting, is either calm or turbulent. st denotes the particular realized value

19As we will see later, letting beta depend on past market returns and volatilities does not improve the
model’s performance.

20For consistency and asymptotic normality of the estimates, what is required is that equations (8) and (9)

continue to hold with the assumption that a sequence of random vectors,
[
εMt εmom

t

]′
, satisfy three minimal

conditions: zero mean, unit variance, and independence across time.
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of the state at date t. Pr (St = st|St−1 = st−1) denotes the transition probability of moving

from state st−1 at time t − 1 to state st at time t.21 Finally, Ft−1 denotes the information

set at time t− 1, i.e., {yt−1, · · · , y1}.
The evolution of the two hidden states are determined by the transition probabilities

from one state to another. In our estimation, we set Pr (S0 = s0) to the unconditional

probabilities, corresponding to the transition probabilities.

Suppose we know the value of Pr (St−1 = st−1|Ft−1). Then, Pr (St = st|Ft−1) is given by:

Pr (St = st|Ft−1) =
∑
St−1

Pr (St = st, St−1 = st−1|Ft−1)

=
∑
St−1

Pr (St = st|St−1 = st−1,Ft−1) Pr (St−1 = st−1|Ft−1)

=
∑
St−1

Pr (St = st|St−1 = st−1) Pr (St−1 = st−1|Ft−1) , (10)

The third equality holds since the transition probabilities depend only on the hidden state.

We can compute the expression on the right side of equation (10) using the elements of the

transition probability matrix, Pr (St = st|St−1 = st−1) and Pr (St−1 = st−1|Ft−1).

Next, we can compute the joint conditional distribution of the hidden state at time t, st

and observable variables at time t, yt as follows.

Pr (yt, St = st|Ft−1) = Pr (yt|St = st,Ft−1) Pr (St = st|Ft−1) (11)

The second term of this expression, Pr (St = st|Ft−1), is given by (10). The first term is the

state dependent likelihood of yt which, under the distributional assumptions from (8) and

(9), is given by

Pr (yt|St = st,Ft−1) =
1

σmom (st)
√

2π
exp

{
−(εmom

t )2

2

}

× 1

σM (st)
√

2π
exp

{
−
(
εMt
)2

2

}
(12)

21Here, we use Pr(x) to denote the probability of the event x when x is discrete, and the probability
density of x when x is continuous.
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where

εmom
t (st) =

1

σmom (st)

(
Rmom
t − α (st)− β

(
St, I

U
t

)
RM
t

)
(13)

εMt (st) =
1

σM (st)

(
RM
t − µ (st)

)
. (14)

The likelihood of yt given Ft−1 is:

Pr (yt|Ft−1) =
∑
St

Pr (yt, St = st|Ft−1) . (15)

where the joint likelihood is be calculated using equation (11).

Finally Bayes’ rule gives the state probability at t as a function of the contemporaneous

information set:

Pr (St = st|Ft) = Pr (St = st|yt,Ft−1)

=
Pr (yt, St = st|Ft−1)

Pr (yt|Ft−1)
(16)

Using (16) to compute Pr (St = st|Ft) and the algorithm described above, we can compute

Pr (yt+1|Ft). In this way, we can generate the likelihood Pr (yt+1|Ft) for t = 0, 1, · · · , T − 1

and compute the log-likelihood L =
∑T

t=1 log (Pr (yt|Ft−1)) given specific values for the

unknown parameters that we need to estimate. Now consider the log likelihood function of

the sample given by:

L =
T∑
t=1

log (Pr (yt|Ft−1)) , (17)

which may be maximized numerically to form estimates of the parameter θ ∈ Θ, where Θ is

a compact set which contains the true parameter of θ0,

θ0 =


α (C) , β0 (C) , βU (C) , σmom (C)

α (T ) , β0 (T ) , βU (T ) , σmom (T )

µ (C) , σM (C) , µ (T ) , σM (T )

Pr (St = C|St = C) ,Pr (St = T |St = T )


.
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We estimate the model parameters by maximizing the log likelihood given by (17), i.e.,

θML = arg max
θ∈Θ
L (θ) , (18)

and use quasi maximum likelihood standard errors for inference.

4 Empirical Results

Table 4 summarizes the maximum likelihood estimates of the model parameters. The baseline

beta β0 is positive for the unobserved calm state and negative for the unobserved turbulent

state. βU , which captures the written-call like characteristic of the momentum portfolio, is

present in both states but much stronger in the turbulent state. The momentum return beta

during up-markets is -0.11(= β0
C +βUC = 0.41−0.52 = −0.11) in the calm state, significantly

smaller in magnitude than -1.54(= β0
T + βUT = −0.26 − 1.28 = −1.54)), the corresponding

value of beta in the turbulent state. While both the calm and turbulent states are persistent,

the probability of remaining in the calm state starting from the calm state is higher.

Table 4: Maximum Likelihood Estimates of HMM Parameters

This table presents the parameters of the HMM model, estimated using the momentum
strategy and the market excess returns over the full sample. QML standard errors are used
to compute t-stats. The ML estimates of α, σmom and σM are each multiplied by 100. The
maximized value of the Log-Likelihood is 3.01× 103; and the value of BIC is −5.93× 103.

Hidden State
Calm Turbulent

Parameter MLE t-stat MLE t-stat

α (×102) 2.04 6.98 4.02 3.37
β0 0.41 2.59 −0.26 −1.63
βU −0.52 −2.46 −1.28 −4.31
σmom (×102) 4.32 15.49 11.05 11.62
µ 0.98 6.24 −0.70 −1.14
σM (×102) 3.62 24.62 9.04 9.42
Pr (St=st−1|St−1 =st−1) 0.97 57.87 0.92 15.39

Table 5 provides the t-stats for the difference in parameter values across the calm and the

turbulent states. β0, the baseline beta, is much higher in the calm state. βU – the parameter
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that captures the written call feature of the momentum strategy return is accentuated in the

turbulent state, resulting in a large negative momentum strategy beta in up-markets. The

volatility of the market excess return as well as the residual return of the momentum portfolio

are significantly different across two hidden states. They are more than twice as volatile in

the turbulent state when compared to the calm state. These differences in parameter values

across the two hidden states help us infer the hidden state based on past observations on

momentum and market returns. The hidden state being persistent helps in forecasting which

state is more likely to prevail in the immediate future.

Table 5: Differences in Parameter Values Across Hidden States

MLE t-stat

α(C)− α(T ) −1.99 −1.60
β0(C)− β0(T ) 0.67 3.07
βU(C)− βU(T ) 0.76 2.01

σmom(C)− σmom(T ) −6.73 −6.95
µ(C)− µ(T ) 1.68 2.55

σM(C)− σM(T ) −5.42 −5.97

Table 6 gives the number of positive and negative momentum strategy returns exceeding a

threshold level when the predicted probability of the next month being in the turbulent state

is p or more, where p takes any of the values from 10% to 90% in steps of 10%, for various

threshold levels. Each entry represents the fraction of the months with large gains(losses)

exceeding a given threshold level during months when the underlying state is turbulent with

a probability exceeding p.

It is natural to classify months as being turbulent when the unobserved underlying

state is turbulent with a probability exceeding 50%. When we estimate the model using

the entire sample, all 13 months in which the momentum strategy losses exceed 20% oc-

cur during months in which Pr (St = T |Ft−1) > 50%.22 However, there are 11 months in

which the momentum strategy return exceeds 20%, and only 8 of those 11 months have

Pr (St = T |Ft−1) > 50%. That is, the predicted probability of the next month being in the

turbulent state is more informative about the likelihood of large losses than large gains.

22There are a total of 199 months, out of a total of 978 months in the sample, in which Pr (St = T |Ft−1) >
50%.
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Table 6: Large Momentum Strategy Losses/Gains in Turbulent/Calm Months
– In Sample

Pr (St=T |Ft−1) # Losses Captured/Total #Losses #
is more than ≤ −10% ≤ −12.5% ≤ −15% ≤ −17.5% ≤ −20% of Months

90% 19/53 16/35 14/31 10/21 7/13 87
80% 27/53 24/35 21/31 17/21 12/13 131
70% 30/53 26/35 23/31 18/21 13/13 158
60% 31/53 27/35 24/31 19/21 13/13 188
50% 32/53 27/35 24/31 19/21 13/13 199
40% 34/53 28/35 25/31 20/21 13/13 225
30% 37/53 29/35 26/31 20/21 13/13 252
20% 40/53 31/35 28/31 20/21 13/13 291
10% 43/53 33/35 30/31 21/21 13/13 342

Pr (St=T |Ft−1) # Gains captured/Total #Gains #
is more than ≥ 10% ≥ 12.5% ≥ 15% ≥ 17.5% ≥ 20% of Months

90% 21/66 12/41 6/26 4/14 3/11 87
80% 29/66 18/41 12/26 7/14 5/11 131
70% 33/66 22/41 16/26 10/14 8/11 158
60% 39/66 27/41 18/26 10/14 8/11 188
50% 40/66 28/41 18/26 10/14 8/11 199
40% 40/66 28/41 18/26 10/14 8/11 225
30% 44/66 29/41 19/26 11/14 9/11 252
20% 47/66 31/41 20/26 11/14 9/11 291
10% 50/66 31/41 20/26 11/14 9/11 342

Table 7 gives the out of sample results when we predict the probability of hidden state

being turbulent in month t+ 2 based on information available at t, i.e., Pr (St=T |Ft−2). As

can be seen, all the 13 months with losses exceeding 20% occur in one of the 252 months in

which the predicted probability of being in the turbulent state exceeds 30%, and 11 of the 13

occur in months when the probability exceeds 60%. That is, the forecastability associated

with the HMM model is persistent: we are able to predict the likelihood of extreme losses

two months ahead with some accuracy.

Next, we examine the out of sample performance of the hidden Markov model to identify

months when large losses to the momentum strategy are more likely based on ex-ante infor-
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Table 7: Large Momentum Strategy Losses/Gains in Turbulent/Calm Months
– In Sample(One Month Lag)

Pr (St=T |Ft−2) # Losses Captured/Total #Losses #
is more than ≤ −10% ≤ −12.5% ≤ −15% ≤ −17.5% ≤ −20% of Months

90% 0/53 0/35 0/31 0/21 0/13 0
80% 15/53 14/35 13/31 10/21 6/13 106
70% 20/53 18/35 16/31 12/21 8/13 143
60% 28/53 25/35 23/31 18/21 11/13 177
50% 32/53 27/35 25/31 19/21 12/13 197
40% 34/53 27/35 25/31 19/21 12/13 223
30% 37/53 29/35 27/31 21/21 13/13 252
20% 40/53 31/35 29/31 21/21 13/13 293
10% 43/53 34/35 31/31 21/21 13/13 370

Pr (St=T |Ft−2) # Gains captured/Total #Gains #
is more than ≥ 10% ≥ 12.5% ≥ 15% ≥ 17.5% ≥ 20% of Months

90% 0/66 0/41 0/26 0/14 0/11 0
80% 23/66 18/41 11/26 6/14 5/11 106
70% 28/66 21/41 13/26 8/14 6/11 143
60% 33/66 24/41 15/26 9/14 7/11 177
50% 35/66 25/41 15/26 9/14 7/11 197
40% 37/66 26/41 16/26 10/14 8/11 223
30% 40/66 26/41 16/26 10/14 8/11 252
20% 44/66 29/41 19/26 12/14 9/11 293
10% 49/66 32/41 22/26 13/14 10/11 370

mation in real time. For that purpose we use an expanding window to estimate the model

parameters and that gives us real time predicted probability of the next month being in the

turbulent state for 400 months. In particular, for each month t = T−399, · · · , T, we estimate

the model parameters using maximum likelihood using data for the months {1, · · · , t − 1}.
The first out-of-sample month is September 1977 and the last is December 2010.

From Table 8 we can see that, over the out-of-sample period, there were 5 months in

which the momentum strategy lost more than 20%. All of these large losses occurred during

the 79 months when the probability of the market being in the turbulent state exceeds 50%.

Indeed, all of these losses occurred when the turbulent state probability exceeds 90%. In
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Table 8: Large Momentum Strategy Losses/Gains in Turbulent/Calm Months
– Out of Sample

Pr (St=T |Ft−1) # Losses captured/Total #Losses #
is more than ≤ −10% ≤ −12.5% ≤ −15% ≤ −17.5% ≤ −20% of Months

90% 12/26 10/16 8/12 6/7 5/5 41
80% 13/26 11/16 8/12 6/7 5/5 53
70% 13/26 11/16 8/12 6/7 5/5 59
60% 14/26 11/16 8/12 6/7 5/5 72
50% 14/26 11/16 8/12 6/7 5/5 79
40% 14/26 11/16 8/12 6/7 5/5 86
30% 14/26 11/16 8/12 6/7 5/5 91
20% 15/26 12/16 9/12 6/7 5/5 107
10% 16/26 13/16 10/12 7/7 5/5 132

Pr (St=T |Ft−1) # Gains captured/Total #Gains #
is more than ≥ 10% ≥ 12.5% ≥ 15% ≥ 17.5% ≥ 20% of Months

90% 7/29 5/18 3/12 1/5 0/4 41
80% 8/29 6/18 4/12 2/5 1/4 53
70% 8/29 6/18 4/12 2/5 1/4 59
60% 12/29 9/18 6/12 3/5 2/4 72
50% 15/29 11/18 6/12 3/5 2/4 79
40% 16/29 12/18 7/12 3/5 2/4 86
30% 17/29 13/18 8/12 4/5 3/4 91
20% 18/29 13/18 8/12 4/5 3/4 107
10% 21/29 14/18 9/12 4/5 3/4 132

contrast, it is difficult to predict when large gains are more likely: There were 4 months

in which gains exceeded 20%, but only 2 of them occurred during months in which the

probability of being in the turbulent state exceeded 50%. Graphically, this can been seem

in both Figure 2 and Figure 3: the large losses to the momentum strategy all occur when

the turbulent state probability is high. However, gains exceeding 20% are not so strongly

associated with the turbulent state probability.

This asymmetry is probably due to the fact that momentum crashes tend to occur when

the market recovers from steep losses but there are no corresponding gains when market

continues to depreciate instead of recovering.
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Figure 2: Momentum Returns & Turbulent-State Probabilities (in-sample)
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Figure 3: Momentum Returns & Turbulent-State Probabilities (out-of-sample)

Each point in the above figures represents a momentum strategy return. The location along
the x-axis represents the estimated probability that the state is turbulent at the beginning
of the month. The location of the point along the y-axis represents the momentum strategy
return in the following month. Blue points represent realized returns > 20%, and red points
represent realized returns of < 20%. The probabilities in Figure 2 are based on in-sample
estimates, while the probabilities in Figure 3 are based on out-of-sample estimates.
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Panel A of Table 9 shows that the properties of momentum returns depend on whether

the hidden state is more likely to be turbulent or calm. Here, for each row of the Table, we

classify each month of the sample based on whether, and the beginning of each month, the

estimated turbulent state probability is above or below the stated threshold probability.

The Sharpe Ratio of momentum returns in months when the hidden state is more likely

to be calm is more than double of the Sharpe Ratio for all months in the sample. For

example, with a threshold probability of 50%, 199 months are classified turbulent and 779

months are calm. Momentum returns are on average negative though are not statistically

significantly so during turbulent months, and almost three times as volatile as calm months.

For comparison, we also report the corresponding statistics for the market excess return in

the panel B of table 9. The average returns for calm and turbulent months are not as much

different for the market, which is consistent with the observations in Breen, Glosten, and

Jagannathan (1989).

The properties of momentum and market returns during the out of sample period is

summarized in Table 10. With the threshold level of 50% for the probability for the month

being in the turbulent state, about 80% of the sample months are classified as calm and

20% of the months are classified as turbulent. The characteristics of momentum returns for

the out-of-sample months are similar to that during the in-sample results. As we increase

threshold level for the probability of the underlying state being turbulent in a given month,

the sample mean of the momentum returns during turbulent months decrease while the

sample mean of the market excess returns increase. With the threshold level of 90% for the

probability for being in the turbulent state, which classifies 10% of the 400 out-of-sample

as turbulent, the Sharpe ratio of momentum returns for turbulent months becomes -0.26.

The Sharpe Ratio of market returns during those months is 0.38, rather high. This is to be

expected since momentum crashes tend to occur when the market recovers, as observed by

Daniel and Moskowitz (2011).

In Table 11 we report the properties of momentum returns where we classify month when

the hidden state is turbulent with a probability greater than 50%. When compared to the

properties of momentum returns for the entire sample returns are less leptokurtic, and the

kurtosis for the turbulent months are more than that for calm months. The higher kurtosis

relative to normal is to be expected since we do not know what the true underlying state is;
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Table 9: Returns in Turbulent and Calm Months
Months with Pr (St=T |Ft−1) exceeding the threshold level are classified as turbulent, and
all other months are classified as calm.

Panel A: Momentum Returns
Forecasted State

Calm Turbulent

Pr (St=T |Ft−1) Mean SD SR Months Mean SD SR Months

10% 1.64 4.62 0.35 636 0.16 11.99 0.01 342
20% 1.62 4.82 0.34 687 -0.06 12.67 -0.00 291
30% 1.58 4.93 0.32 726 -0.20 13.36 -0.01 252
40% 1.58 5.05 0.31 753 -0.43 13.89 -0.03 225
50% 1.53 5.14 0.30 779 -0.47 14.54 -0.03 199
60% 1.54 5.17 0.30 790 -0.62 14.86 -0.04 188
70% 1.59 5.32 0.30 820 -1.30 15.72 -0.08 158
80% 1.54 5.91 0.26 847 -1.60 15.79 -0.10 131
90% 1.35 6.79 0.20 891 -1.27 15.79 -0.08 87

Panel B: Market Excess Returns
Forecasted State

Calm Turbulent

Pr (St=T |Ft−1) Mean SD SR Months Mean SD SR Months

10% 0.68 4.10 0.17 636 0.37 7.45 0.05 342
20% 0.61 4.25 0.14 687 0.49 7.71 0.06 291
30% 0.56 4.31 0.13 726 0.60 8.02 0.08 252
40% 0.55 4.32 0.13 753 0.64 8.33 0.08 225
50% 0.61 4.39 0.14 779 0.44 8.60 0.05 199
60% 0.55 4.40 0.13 790 0.65 8.75 0.07 188
70% 0.50 4.45 0.11 820 0.95 9.22 0.10 158
80% 0.52 4.63 0.11 847 0.94 9.38 0.10 131
90% 0.56 5.07 0.11 891 0.65 8.82 0.07 87
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Table 10: Returns in Turbulent and Calm Months (Out of Sample)
Months with Pr (St=T |Ft−1) exceeding the threshold level are counted as turbulent and
other months are counted as calm.

Panel A: Momentum Returns
Forecasted State

Calm Turbulent

Pr (St=T |Ft−1) Mean SD SR Months Mean SD SR Months

10% 1.63 5.10 0.32 268 0.40 11.14 0.04 132
20% 1.59 5.30 0.30 293 0.20 11.88 0.02 107
30% 1.54 5.37 0.29 309 0.15 12.60 0.01 91
40% 1.61 5.45 0.30 314 -0.20 12.74 -0.02 86
50% 1.72 5.49 0.31 321 -0.80 13.05 -0.06 79
60% 1.83 5.55 0.33 328 -1.53 13.31 -0.11 72
70% 1.87 5.82 0.32 341 -2.55 13.65 -0.19 59
80% 1.84 5.81 0.32 347 -2.84 14.29 -0.20 53
90% 1.82 5.93 0.31 359 -4.03 15.39 -0.26 41

Panel B: Market Excess Returns
Forecasted State

Calm Turbulent

Pr (St=T |Ft−1) Mean SD SR Months Mean SD SR Months

10% 0.70 6.79 0.10 268 0.74 6.42 0.12 132
20% 0.61 6.90 0.09 293 0.99 6.00 0.16 107
30% 0.71 7.10 0.10 309 0.73 4.96 0.15 91
40% 0.68 7.05 0.10 314 0.83 5.07 0.16 86
50% 0.66 7.00 0.09 312 0.93 5.11 0.18 79
60% 0.59 7.02 0.08 328 1.24 4.74 0.26 72
70% 0.58 6.95 0.08 341 1.50 4.71 0.32 59
80% 0.53 6.98 0.08 347 1.89 3.90 0.48 53
90% 0.61 6.88 0.09 359 1.63 4.25 0.38 41
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only that the underlying state is more likely to be calm during calm months. Hence even

when the returns conditional on knowing the hidden state is normal, returns during months

we classify as being calm or turbulent will be a mixture of two normals and exhibit excess

kurtosis.

Table 11: Summary Stats in Turbulent and Calm Months
Months with Pr (St=T |Ft−1) exceeding 50% are counted as turbulent and other months are
counted as calm.

Forecasted State Mean SD Skewness Kurtosis Months

Panel A: In Sample

Calm 1.53 5.14 -0.23 5.19 779/978
Turbulent -0.47 14.54 -1.73 8.57 199/978

All 1.12 8.03 -2.47 21.04 978/978

Panel B: Out of Sample

Calm 1.72 5.49 -0.32 5.11 321/400
Turbulent -0.01 13.05 -1.10 5.18 79/400

All 1.22 7.64 -1.53 10.94 400/400

Figure 4, plots the time series of the estimated predicted probability of the hidden state

being turbulent in a given calendar month along with an indicator as to whether it is recession

month according to NBER. As can be seen, there is not much of a relationship between

the month being in an NBER recession and the associated probability of the state being

turbulent.

We also examine the association between the probability of the state being turbulent in

a given month and likelihood of a momentum crash during that month using the following

Probit model:

Pr (Rmom
t < Threshold Loss ) = Φ (a+ bPr (St = T |Ft−1)) (19)

where Φ is the CDF of standard normal distribution and Threshold Loss is a crit-

ical level that defines a momentum crash. This specification helps us evaluate whether

Pr (St = T |Ft−1) is related to the left tail of momentum returns. We consider Threshold

Loss = −10%,−12.5%,−15%,−17.5%,−20%. Table 12 gives the estimated parameter

values and the associated t-stats for the Probit model in equation (19) for the in-sample as
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Figure 4: NBER Recessions & Probability Of The Hidden State Being Turbulent

well as the out-of-sample estimates of Pr (St = T |Ft−1). Except for the case when Thresh-

old Loss = −20% for out-of-sample, b, the coefficient on Pr (St = T |Ft−1), is positive

and statistically significant. The statistical insignificance for Threshold Loss = −20%

out-of-sample, is probably due to there being too few months with large losses during the out-

of-sample period. Interestingly, the size of b monotonically increases as we lower Threshold

Loss from −10% to −20%, indicating that the probability of more extreme losses are more

likely when Pr (St = T |Ft−1) is high.
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Table 12: Probit Model of Momentum Crashes

Threshold In Sample Out of Sample
Loss a b a b

-10% -2.11 1.40 -1.89 1.16
(-19.08) (7.41) (-13.20) (4.49)

-12.5% -2.60 1.84 -2.34 1.51
(-15.35) (7.47) (-11.44) (4.81)

-15% -2.67 1.84 -2.42 1.40
(-14.62) (7.03) (-10.89) (4.08)

-17.5% -3.24 2.33 -3.01 1.84
(-9.60) (5.45) (-7.34) (3.53)

-20% -5.04 4.13 -7.14 6.14
(-3.20) (2.29) (-1.56) (1.28)

5 Alternative Specifications

In this section we examine a few alternative specifications for the stochastic process governing

the temporal evolution of momentum returns and market excess returns. We relax the mean

equation in the regime Switching model and let the beta of the momentum return to depend

on past market conditions. We find that the more general specification is not necessarily

better in terms of identifying months when large losses are more likely. We also evaluate a

bivariate GARCH model of momentum and market excess returns.

For HMM, consider the following extended specification:

Rmom
t = α(St) +


β0(St)

+ βD(St) IDt

+ βU(St) IUt

+ βR(St) IBt IUt

RM
t + σmom(St)ε

mom
t . (20)

RM
t = µ (St) + σM (St) ε

M
t , (21)

Comparing to the equations (8) and (9), the above specification differs in that the beta of

momentum portfolios can depend on past market conditions. We consider variations of the

HMM specification by restricting the model parameters as given below:
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Main: βR = 0, βB = 0

Alt-1: No Restriction

Alt-2: βU = 0

Alt-3: βU = 0, βR = 0

Alt-4: βU = 0, βR = 0, βB = 0

Alt-1 is the most general specification. Alt-2 is similar to the specification in Daniel and

Moskowitz (2011). Alt-3 captures the effects documented in Grundy and Martin (2001).

Alt-4 corresponds to the market model. Note that Alt-2, Alt-3, Alt-4 and Main are nested

within Alt-1. For IBt as in (6), we consider L = 12, 24, 36.

We also estimate the bivariate GARCH model given below:

Rmom
t = α +

(
β0 +βU · IUt

)
RM
t + σmom,tε

mom
t . (22)

RM
t = µ+ σM,tε

M
t , (23)

where εmom
t and εMt are drawn from i.i.d standard normal distributions, and σmom,t and σM,t

evolve according to the bivariate GARCH process given below:

σ2
mom,t = σ2

mom,0 + p1σ
2
mom,t−1 + q1

(
σmom,t−1ε

mom
t−1

)2
(24)

σ2
M,t = σ2

M,0 + p2σ
2
M,t−1 + q2

(
σM,t−1ε

M
t−1

)2
(25)

Table 13 gives ML estimates of the parameters for the various specifications given in (22),

(23), (24) and (25).

Table 13: GARCH Model Parameter Estimates

Mean-Return

MLE t-stat
α 2.11 8.83
β0 0.19 2.97
βU -0.55 -5.56
µ 0.71 5.37

GARCH of MOM

MLE t-stat
σ2

mom,0 3.46 3.82
p1 0.63 11.05
q1 0.34 5.35

GARCH of MKT

MLE t-stat
σ2

M,0 0.69 2.99
p2 0.85 41.68
q2 0.13 5.98
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For the bivariate GARCH model, using the estimated parameter values, we compute

Std(Rmom
t |Ft−1), the conditional volatility of the momentum return for each month and use

it as a measure of the tail-risk of the momentum returns.
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Figure 5: Realized Momentum vs GARCH forecast of Volatility

In Figure 5 we plot the realized momentum return in a month against its standard

deviation according to the bivariate GARCH model. A comparison of Figure 5 with Figures

2 and 3 indicates that the association between momentum losses in a month and the riskiness

of the month as measured by the standard deviation of momentum return during that month

is not as strong for the bivariate GARCH model.

For comparing different models, we count the minimum number of months to be classified

as turbulent such that all months with large losses (exceeding a threshold) occur during those

turbulent months. Let it denote the predicted level of tail-risk in a month t: it ≡ Pr(St =

T |Ft−1) for HMM and it ≡ Std(Rmom
t |Ft−1) for GARCH. For each threshold level of large

loss L, we pick an i(L) such that months exceeding the threshold level of loss L occur

during months with it > i(L) that are classified as being turbulent. We then count the

number of turbulent months corresponding to each threshold loss L. We view the model
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that require classifying fewer number of months as being turbulent to capture months with

large momentum losses as better.

Table 14 reports the number of months, the negative of a measure of a model to identify

months when large losses are more likely. For extreme losses exceeding 20%, HMM spec-

ifications are much more effective than GARCH. Among HMM models, for L = 12, Alt-1

and Alt-2 require smaller number of months than the Main Model, but the differences are

small. For out-of-sample months, the Main Model classifies 40 months as turbulent months,

in contrast to 87 months classified as turbulent months with GARCH model. Also, among

various HMM specifications, the Main HMM performs as well or better.

In Section 4, we observed that the relation between the probability of large gains and the

probability of the hidden state being turbulent was weaker than the corresponding relation

for large losses. We therefore compare the sample mean of momentum returns during months

for turbulent and calm months. If an indicator for the momentum risk can detect large losses

only, the sample mean will be significantly negative for turbulent months.

The properties of momentum returns during turbulent months – i.e., months when the

probability for the hidden state being turbulent(HMM criterion) or conditional standard

deviation of momentum returns(GARCH criterion) are sufficiently high to identify all months

with losses exceeding a given threshold level – are reported in table 15. Interestingly, with

a -20% threshold loss, with HMM, less months are classified as turbulent; the sample mean

of momentum returns during turbulent months is lower ; and the sample standard deviation

of momentum returns during turbulent months is higher, when compared to the GARCH

model.

For out-of-sample months, the differences becomes more significant. With the threshold

loss of -20%, less than a half months are classified as turbulent with HMM when compared to

GARCH. The sample mean of momentum returns during the 40 turbulent months is -3.51%

per month for HMM. With the GARCH model, the average momentum return is -0.11% per

month during the 87 months classified as being turbulent. Furthermore, as we lower the level

of threshold loss from -10% to -20%, the standard deviation of momentum returns during

turbulent months increases much more for HMM when compared to GARCH.
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Table 14: Comparison of Models: Number of Turbulent Months to Capture Large
Losses

Threshold In Sample Out of Sample
Loss Model L=12 L=24 L=36 L=12 L=24 L=36

-10% Main 941 381
Alt-1 965 959 964 389 384 388
Alt-2 970 960 962 382 388 385
Alt-3 970 383
Alt-4 951 382

GARCH 942 396

-12.5% Main 570 205
Alt-1 497 495 499 201 201 204
Alt-2 506 464 484 223 199 210
Alt-3 557 250
Alt-4 601 246

GARCH 480 185

-15% Main 368 147
Alt-1 378 378 390 147 152 149
Alt-2 399 379 388 164 150 162
Alt-3 422 173
Alt-4 420 179

GARCH 480 157

-17.5% Main 292 123
Alt-1 274 276 275 125 119 122
Alt-2 286 283 281 140 122 127
Alt-3 300 145
Alt-4 323 160

GARCH 480 133

-20% Main 148 40
Alt-1 147 153 156 51 52 54
Alt-2 145 184 156 50 49 52
Alt-3 176 48
Alt-4 154 41

GARCH 236 87
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Table 15: HMM vs GARCH: Number of Turbulent Months to Capture Large
Losses (In Sample)

HMM GARCH
Threshold # of # of
Loss Months Mean Std Months Mean Std

-10% 941 1.11 8.16 942 1.08 8.16
-12.50% 570 0.97 9.89 480 0.60 10.56
-15% 368 0.19 11.64 480 0.60 10.56
-17.50% 292 -0.05 12.65 480 0.60 10.56
-20% 148 -0.92 15.26 236 -0.10 13.37

Table 16: HMM vs GARCH: Number of Turbulent Months to Capture Large
Losses (Out of Sample)

HMM GARCH
Threshold # of # of
Loss Months Mean Std Months Mean Std

-10% 381 1.25 7.78 396 1.23 7.65
-12.50% 205 0.86 9.71 185 0.43 10.12
-15% 147 0.45 10.83 157 0.58 10.57
-17.50% 123 0.42 11.34 133 0.66 11.02
-20% 40 -3.51 15.22 87 0.11 11.98

6 Conclusion

Relative strength strategies, also known as momentum strategies are widely used by active

quantitative portfolio managers and individual investors. These strategies generate large

positive returns on average with little systematic risk as measured using standard asset

pricing models and remain an anomaly.

In this paper we studied the returns on one such momentum strategy. During the 978

months covering July 1929 - December 2010 the returns on that widely studied strategy using

U.S. stocks generated an average monthly return in excess of 1.12%/month and an alpha of

1.70%/month with respect to the three Fama and French (1993) factor model. Momentum

strategy returns, when combined with the Fama and French three economy wide pervasive

factor returns, gives rise to a portfolio with a Sharpe Ratio of almost 0.28 per month.

However momentum strategies also incur infrequent but rather large losses. There were

13 months with losses exceeding 20%/month in the sample of 978 months. The probability
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of such an event occurring if momentum strategy returns were independently and normally

distributed would be 0.04%. We show that such periodic but rare large loss episodes can be

captured by a two state hidden Markov model, where one state is turbulent and the other

is calm. We find that it is possible to predict which of the two hidden state the economy

is in with some degree of confidence. All the 13 months with losses exceeding 20%/month

occur during turbulent months, i.e., months when the predicted probability of the hidden

state being turbulent exceeds 0.5. The probability of 13 months with losses exceeding 20%

increases to 60% and momentum losses are less of a Black Swan. Momentum returns averaged

-0.47%/month during turbulent months, with a Sharpe Ratio of -0.03. When such turbulent

states are avoided, the monthly Sharpe Ratio of momentum strategy returns increases to

0.30 and price momentum poses still more of a challenge to standard asset pricing models.
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A Non-normality of distributions of residuals

We estimated the parameters of the hidden Markov model by maximizing the likelihood

function assuming that the residuals in equations (8) and (9) are drawn from an i.i.d bivariate

normal distribution. In what follows we show that the consistency of the estimator does not

depend on i.i.d bivariate normality, so long as the expectation of the score function is zero

at the true parameter values, i.e.,

E [h (yt; θ)] = 0 (26)

where h (yt; θ) = ∂ log Pr(yt|Ft−1)
∂θ

.

For notational convenience, we will in general not differentiate St, the random hidden

state, from its realization, st.

We need the following assumptions for (26) to hold; it is not necessary that the residuals

in equations (8) and (9) are drawn from an i.i.d bivariate normal distribution.

E [εmom
t (St) |St, St−1,Ft−1] = 0 (27)

E
[
RM
t ε

mom
t (St) |St, St−1,Ft−1

]
= 0 (28)

E
[
IUt R

M
t ε

mom
t (St) |St, St−1,Ft−1

]
= 0 (29)

E
[
(εmom
t (St))

2 |St, St−1,Ft−1

]
= 1 (30)

E
[
εMt |St, St−1,Ft−1

]
= 0 (31)

E
[(
εMt (St)

)2 |St, St−1,Ft−1

]
= 1 (32)

E [I (St = St−1) |St−1 = C,Ft−1] = p (33)

E [I (St = St−1) |St−1 = T,Ft−1] = q (34)

where εmom
t and εMt are defined as in (13) and (14). Equations (27) - (32) will be satisfied

when (8) and (9) are conditional regressions, i.e., the residuals are orthogonal to the right

side variables. Equations (33) and (34) hold by assumption that the transition probabilities

depend only on the current state.
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From (10), (11), and (15), we can write log Pr (yt|Ft−1) as follows:

log Pr (yt|Ft−1) = log
∑
St

∑
St−1

Pr (yt|St) Pr (St|St−1) Pr (St−1|Ft−1) . (35)

In addition, from the expression of (12), the conditional log likelihood of realizations of

observable random variables, yt, is written as:

log Pr (yt|St) = − log σmom (St)−
(εmom
t (St))

2

2
− log σM (St)−

(
εMt (St)

)2

2
+ C, (36)

where C is a constant.

First, let us consider the elements of h (yt; θ) that correspond to first derivative the

conditional log likelihood function with respect to one of the following parameters:

α (St) , β
0 (St) , β

U (St) , σmom (St) , µ (St) , σM (St) .

Since

E [h (yt; θ)] = E [E [h (yt; θ) |St, St−1,Ft−1]] ,

it is sufficient to show that

E [h (yt; θ) |St, St−1,Ft−1] = 0

for equation (26) to hold. Note that Pr (St|St−1) Pr (St−1|Ft−1) in (35) becomes 1 when we

condition on the information set, {St, St−1,Ft−1}.
By differentiating the log likelihood function with respect to α (St) we get:

∂ log Pr (yt|St)
∂α (St)

= εmom
t (St)

1

σmom (St)
.
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Using (27), we get:

E
[
∂ log Pr (yt|St, St−1,Ft−1)

∂α (St)
|St, St−1,Ft−1

]
= E

[
εmom
t (St)

1

σmom (St)
|St, St−1,Ft−1

]
= 0

(37)

Differentiating the log likelihood function with respect to β0 (St) gives:

∂ log Pr (yt|St)
∂β0 (St)

= εmom
t (St)

RM
t

σmom (St)
.

Using (28) we get:

E
[
∂ log Pr (yt|St, St−1,Ft−1)

∂β0 (St)
|St, St−1,Ft−1

]
= E

[
εmom
t (St)

RM
t

σmom (St)
|St, St−1,Ft−1

]
= 0

(38)

Differentiating the log likelihood function with respect to βU (St) gives:

∂ log Pr (yt|St)
∂βU (St)

= εmom
t (St)

IUt R
M
t

σmom (St)
.

Using (29) we get:

E
[
∂ log Pr (yt|St,Ft−1)

∂β0 (St)
|St, St−1,Ft−1

]
= E

[
εmom
t (St)

IUt R
M
t

σmom (St)
|St, St−1,Ft−1

]
= 0 (39)

Differentiating the log likelihood function with respect to σmom (St) gives:

∂ log Pr (yt|St)
∂σmom (St)

= − 1

σmom (St)
+

1

σmom (St)
(εmom
t (St))

2 .

Using (30) we get:

E
[
∂ log Pr (yt|St)
∂σmom (St)

|St, St−1,Ft−1

]
= E

[
− 1

σmom (St)
+

1

σmom (St)
(εmom
t (St))

2 |St, St−1Ft−1

]
= 0

(40)
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Differentiating the log likelihood function with respect to µ (St) gives:

∂ log Pr (yt|St)
∂µ (St)

= εMt (St)

Using (31) we get:

E
[
∂ log Pr (yt|St)

∂µ (St)
|St, St−1,Ft−1

]
= E

[
εMt |St, St−1,Ft−1

]
= 0 (41)

Differentiating the log likelihood function with respect to σM (St) gives:

∂ log Pr (yt|St)
∂σM (St)

= − 1

σM (St)
+

1

σM (St)

(
εMt (St)

)2
.

Using (32) we get:

E
[
∂ log Pr (yt|St)
∂σM (St)

|St, St−1,Ft−1

]
= E

[
− 1

σM (St)
+

1

σM (St)

(
εMt
)2 |St, St−1,Ft−1

]
= 0 (42)

Thus, the condition of (26) is satisfied for α (St) , β
0 (St) , β

U (St) , σmom (St) , µ (St) , σM (St)

with the results from (37) to (42), implied by the assumptions from (27) to (32).

Next, we consider the elements of the score that correspond to differentiating the log

likelihood function with respect to the parameters p and q. Since

E [h (yt; θ)] = E [E [h (yt; θ) |St−1,Ft−1]] ,

it is sufficient to show that

E [h (yt; θ) |St−1,Ft−1] = 0

for the condition of (26) to hold. Conditional on the information set of {St−1,Ft−1}, we can

treat Pr (St−1|Ft−1) in the expression of (35) as 1.
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Consider a case that St−1 = C. Then,

log Pr (yt|St−1 = C,Ft−1) (43)

= log
∑
St

Pr (yt|St) Pr (St|St−1 = C)

= log (Pr (yt|St = C) I(St = C)p+ Pr (yt|St = T ) I(St = T ) (1− p)) .

Thus,

∂ log Pr (yt|St−1 = C,Ft−1)

∂p
(44)

=
Pr (yt|St = C) I(St = C)− Pr (yt|St = T ) I(St = T )

Pr (yt|St = C) I(St = C)p+ Pr (yt|St = T ) (1− p) I(St = T )

=
1

p
I (St = C)− 1

1− p
I (St = T )

Using (33) we get:

E
[
∂ log Pr (yt|St−1 = C,Ft−1)

∂p
|St−1 = C,Ft−1

]
=E

[
1

p
I (St = C)− 1

1− p
I (St = T ) |St−1 = C,Ft−1

]
=
p

p
− 1− p

1− p
= 0. (45)

Furthermore, since q is not related to the conditional likelihood in a case that St−1 = C,

it is trivial to show that

∂ log Pr (yt|St−1 = C,Ft−1)

∂q
=0, (46)

implying that

E
[
∂ log Pr (yt|St−1 = C,Ft−1)

∂q
|St−1 = C,Ft−1

]
=0. (47)
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Similarly, we can show the followings hold:

E
[
∂ log Pr (yt|St−1 = T,Ft−1)

∂p
|St−1 = T,Ft−1

]
=0 (48)

and

E
[
∂ log Pr (yt|St−1 = T,Ft−1)

∂q
|St−1 = T,Ft−1

]
=0 (49)

From (45), (47), (48), and (49), it follows that:

E
[
∂ log Pr (yt|Ft−1)

∂p

]
=0

and

E
[
∂ log Pr (yt|Ft−1)

∂q

]
=0

That is, the condition of (26) holds for p, q.

We have shown that the expectation of score function is zero without relying on normality.

Now we define GMM estimator using the moment condition, (26).

θGMM = arg min
θ∈Θ

g′TgT (50)

where Θ is an compact set such that θ0 ∈ Θ and gT is defined as follows:

gT =
1

T

T∑
t=1

h (yt; θ) (51)

Note that the GMM estimator defined in (50) is identical to the ML estimator defined in

(18).

For the consistency of parameter estimates, we need an additional condition that only the

true parameters satisfy the moment condition of (26). Due to the continuity and differentia-

bility of the score function, the consistency and the asymptotic normality of the estimator

defined in (50) directly follow from the general results for GMM estimators, as summarized

in the following propositions:

Proposition 1 Assume that only θ0 satisfies equations (26). As T → ∞, the estimator
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defined in (50) converges in probability to θ0.

Proposition 2 Assume that only θ0 satisfies equation (26). As T → ∞,
√
T (θGMM − θ0)

converges in distribution to N(0, V ) where V = (DS−1D′)
−1

and D is the probability limit

of ∂gT
∂θ′

and S is the asymptotic variance of 1√
T

∑T
t=1 h (yt; θ)

In the computation of V̂ =
(
D̂Ŝ−1D̂′

)−1

in section 4, we set D̂ as 1
T

times the hessian of

log-likelihood function and Ŝ as 1
T

∑T
t=1 h

(
yt; θ̂

)
h
(
yt; θ̂

)′
where h

(
yt; θ̂

)
is the numerical

derivative of log Pr (yt|Ft−1) at θ̂.
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