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Abstract

We propose an extension of standard asymmetric volatility models in the generalized

autoregressive conditional heteroskedasticity (GARCH) class that admits conditional non-

Gaussianities in a tractable fashion. Our “bad environment-good environment" (BEGE)

model utilizes two gamma-distributed shocks and generates a conditional shock distribution

with time-varying heteroskedasticity, skewness, and kurtosis. The BEGE model features

nontrivial news impact curves and closed-form solutions for higher-order moments. In an

empirical application to stock returns, the BEGE model outperforms asymmetric GARCH

and regime-switching models along several dimensions.
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1 Introduction

Since the seminal work of Engle (1982) and Bollerslev (1986) on volatility clustering,

thousands of articles have applied models in the generalized autoregressive conditional het-

eroskedasticity (GARCH) class to capture volatility clustering in economic and financial time

series data. In the basic GARCH (1,1) model, today’s conditional variance is a determin-

istic linear function of the past conditional variance and contemporaneous squared shocks

to the process describing the data. Nelson (1991) and Glosten, Jagannathan, and Runkle

(1993, GJR henceforth), motivated by empirical work on stock return data, provide impor-

tant extensions, accommodating asymmetric responses of conditional volatility to negative

versus positive shocks. Engle and Ng (1993) compare the response of conditional variance

to shocks (“news impact curves”) implied by various econometric models and find evidence

that the GJR model fits stock return data the best.

The original models in the GARCH class assumed Gaussian innovations, but nonetheless

imply non-Gaussian unconditional distributions. However, time-varying volatility models

with Gaussian innovations generally do not generate suffi cient unconditional non-Gaussianity

to match some financial asset return data (see, e.g., Poon and Granger, 2003). Additional

evidence of conditional non-Gaussianity has come from two corners. First, empirical work by

Evans and Wachtel (1993), Hamilton and Susmel (1994), Kim and White (2004), and many

others has documented conditional non-Gaussianities in economic data. Second, in finance,

a voluminous literature on the joint properties of option prices and stock returns (see, e.g.,

Broadie, Chernov, and Johannes (2009)) has also suggested the need for models with time-

varying nonlinearities. In principle, one can estimate GARCH models consistently using

quasi maximum likelihood (see Lumsdaine, 1996; Lee and Hansen, 1994), not worrying about

modeling the non-Gaussianity in the shocks. However, fitting the actual non-Gaussianities

in the data can lead to more effi cient estimates and may be important if the model is to be

used in actual applications (for example, option pricing or risk management) that require

an estimate of the conditional distribution. Several authors have introduced non-Gaussian
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shocks in GARCH frameworks (see, e.g., Bollerslev (1987) and Hsieh (1989), who used the

t-distribution, and Mittnik, Paolella and Rachev (2002), who used shocks with a distribution

in the stable Paretian class). However, extant models in this vein generally cannot fit time-

varying non-Gaussianities that are evident in the data.

We present an extension of models in the GARCH class that accommodates conditional

non-Gaussianity in a tractable fashion, offering simple closed-form expressions for conditional

moments. Our “bad environment—good environment”(BEGE) model utilizes two gamma-

distributed shocks that together imply a conditional shock distribution with time-varying

heteroskedasticity, skewness, and kurtosis. This is accomplished by allowing the shape para-

meters of the two distributions to vary through time. Hence, our model features nontrivial

news impact curves for higher-order moments. We apply the model to stock returns, show-

ing that the model outperforms extant alternatives using a variety of specification tests.

In the stock market context, one shape parameter determines the conditional distribution

of the “good environment,”with positive skewness and “good volatility”; the other shape

parameter drives the “bad environment”, with negative skewness and “bad volatility.”Of

course, conditional non-Gaussian models exist outside the GARCH class that may also fit

the data quite well. Regime-switching models, in particular, have shown promise in many

applications. We therefore also estimate several types of regime-switching models on our

stock returns data sample and show that the BEGE model significantly outperforms various

models in this class.

The remainder of the article is organized as follows. In section 2, we present the

BEGE model, describe how it nests the standard GJR—GARCH model as a special case,

and present various models in the regime-switching class. In section 3, we describe the esti-

mation methodology and the specification tests that we conduct. In section 4, we confront

several models from the above classes, including the BEGE model, with monthly U.S. stock

return data from 1929 through 2010.
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2 The BEGE—GARCH Model

Before introducing the BEGE model, we begin with a review of the seminal GJR asym-

metric GARCH model.

2.1 Traditional GJR—GARCH

Consider a time series rt+1 with conditional mean µt. The GJR model assumes that the

series follows

rt+1 = µt + ut+1,

ut+1 ∼ N (0, ht) ,

and ht = h0 + ρhht−1 + φ+u2
t Iut≥0 + φ−u2

t (1− Iut≥0) . (1)

That is, the innovation to returns, ut+1, has time-varying conditional variance, vart (rt+1) =

ht, which is assumed to be a linear function of its own lagged value and squared innovations

to returns. One key feature of this model that enables it to better fit many economic time

series is the differential response of the conditional variance of shocks following positive ver-

sus negative innovations. In stock return and economic activity data, it is typically found

that φ− > φ+, so that negative shocks result in more of an increase in variance than do

positive shocks.

2.2 BEGE GJR—GARCH

The BEGE model that we propose relaxes the assumption of Gaussianity by assum-

ing that the ut+1 innovation consists of two components. We assume that ωp,t+1, a good

environment shock, and ωn,t+1, a bad environment shock, are drawn from “demeaned”(or

“centered”) gamma distributions that have a mean equal to zero.1 The overall innovation

is a linear combination of the two component shocks, which are assumed to be conditionally

1The centered gamma distribution with shape parameter k and scale parameter θ, which we denote
Γ̃ (k, θ), has probability density function, φ (x) = 1

Γ(k)θk
(x+ kθ)

k−1
exp

(
− 1
θ (x+ kθ)

)
for x > −kθ, and

with Γ (·) representing the gamma function.
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independent. The gamma distributions are assumed to have constant scale parameters, but

we let their shape parameters vary through time. More precisely, the BEGE framework

assumes:

ut+1 = σpωp,t+1 − σnωn,t+1, where

ωp,t+1 ∼ Γ̃ (pt, 1) , and

ωn,t+1 ∼ Γ̃ (nt, 1) , and (2)

where Γ̃ (k, θ) denotes a centered gamma distribution with shape and scale parameters,

k and θ, respectively. Thus, pt (nt) is the shape parameter for the good (bad) environment

shock. Figure 1 provides a visual representation of the flexibility of the BEGE distribution.

Plotted are the 1st and 99th percentiles of two sequences of hypothetical distributions. The

blue stars illustrate a series of BEGE distributions for which pt is fixed at 1.5, but nt varies

from 0.1 to 3.0, which are the values across the horizontal axis. The lower line of blue

asterisks shows the 1st percentiles of these distributions, while the upper line of blue stars

shows the 99th percentiles. Clearly, increases in nt have an outsized effect on the lower tail,

particularly at low values of nt. The upper tail is relatively insensitive to changes in nt. The

green plus symbols show results from the complementary exercise: holding nt fixed at 1.5

and varying pt from 0.1 through 3.0. Clearly pt impacts the upper tail of the distribution

much more than it impacts the lower tail. These results highlight the potential benefits

of the BEGE distribution. As we will demonstrate, financial data provide evidence that

some shocks primarily affect the lower tail of the distribution of returns, but leave the upper

tail relatively unchanged (see section 4). This is exactly the kind of effect that BEGE is

designed to accommodate.

We model the time variation in the shape parameters in a manner that is analogous to

that for ht in the GJR specification:

pt = p0 + ρppt−1 + φ+
p u

2
t Iut≥0 + φ−p u

2
t (1− Iut≥0)

and nt = n0 + ρnnt−1 + φ+
nu

2
t Iut≥0 + φ−nu

2
t (1− Iut≥0) . (3)
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In principle, we can accommodate a vector-autoregressive structure, with feedback from nt

(pt) to pt+1 (nt+1), but propose the simpler model as our benchmark model. A key feature

of the model is that the dynamics of the shape parameters depend on the residual ut+1 and

not the separate ωp and ωn shocks. This assumption keeps the model in the GARCH class,

in which pt and nt can be computed recursively from past residuals without requiring the

filtering of the separate ω-shocks.

The overall conditional variance of ut+1 follows from the moment-generating function of

the centered gamma distribution2

ht ≡ vart (rt+1) = σ2
p pt + σ2

n nt, (4)

where, with some abuse of notation, ht now represents the conditional variance under the

BEGE model. Higher-order moments also follow in a straightforward manner from the

moment-generating function of the gamma distribution. For instance, conditional (unscaled

by a function of the conditional variance) skewness and excess kurtosis are given by

st ≡ skwt (rt+1) = 2
(
σ3
p pt − σ3

n nt
)

and kt ≡ kurt (rt+1) = 6
(
σ4
p pt + σ4

n nt
)
. (5)

The expression for skewness shows that larger values for pt generate more positive skewness,

while larger values of nt generate more negative skewness. Moments of order higher than

four are equally easy to compute using the moment generating function and are also affi ne in

pt and nt. It is this affi ne structure that makes the model both parsimonious and tractable.

The model thus allows for positive or negative skewness, and the sign of skewness may vary

through time. Excess kurtosis is always positive, but its magnitude varies as well. Note

that the key innovation of the model is to let the shape, not the scale, parameters vary

through time. Because the shape parameters determine the shape of the distribution, we

2The moment-generating function for a random variable, x, with the demeaned gamma distribution with
shape parameter, k , and scale parameter, θ, is given by

mgfx (s) ≡ E [exp (sx)] = exp (−k (ln (1− θs) + θs)) .

Successive differentiation of mgfx (s) with respect to s, and evaluation at s = 0, yields, for the first few
moments: E [x] = 0, E

[
x2
]

= θ2k,E
[
x3
]

= 2θ3k, and E
[
x4
]
− E

[
x2
]2

= 6θ4k
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parsimoniously generate time-variation in all higher order moments simultaneously.

Asymmetric volatility under the BEGE specification can be generated by either the

“good volatility”(pt) component or the “bad volatility”(nt) component, or both:

∂ht+1

∂u2
t

=

 σ2
pφ

+
p + σ2

nφ
+
n if ut ≥ 0

σ2
pφ
−
p + σ2

nφ
−
n otherwise

(6)

Similar expressions are readily calculated for unscaled conditional skewness and unscaled

conditional kurtosis under the BEGE model:

∂st+1

∂u2
t

=

 2
(
σ3
pφ

+
p − σ3

nφ
+
n

)
if ut ≥ 0

2
(
σ3
pφ
−
p − σ3

nφ
−
n

)
otherwise

(7)

and

∂kt+1

∂u2
t

=

 6
(
σ4
pφ

+
p + σ4

nφ
+
n

)
if ut ≥ 0

6
(
σ4
pφ
−
p + σ4

nφ
−
n

)
otherwise.

(8)

Of course, under the traditional Gaussian GJR—BEGE model, conditional skewness and

excess kurtosis are zero. The BEGEmodel thus allows for richer dynamics for the conditional

distribution of the data process, with tractable expressions for conditional moments.

An intuitive feature of the model arises from the fact that for a gamma-distributed

random variable, as the shape parameter goes to infinity, the distribution converges to a

Gaussian distribution. Therefore, the BEGE model can get arbitrarily close to the tradi-

tional GARCH model, even in terms of the conditional Gaussianity of the shocks. More

concretely, suppose that the two gamma shocks in the BEGE model are symmetric in their

autoregressive behavior and in their responses to the innovation, ut+1. That is, suppose,

ρh = ρp = ρn, φ
+
h = φ+

p = φ+
n , and φ

−
h = φ−p = φ−n . Substituting, we find

ht =
(
σ2
pp0 + σ2

nn0

)
+ ρh

(
σ2
ppt−1 + σ2

nnt−1

)
+φ+

h

(
σ2
p + σ2

n

)
u2
t Iut≥0 + φ−h

(
σ2
p + σ2

n

)
u2
t (1− Iut≥0)

= h0 + ρhht−1 + φ̃
+

h u
2
t Iut≥0 + φ̃

−
h u

2
t (1− Iut≥0) , (9)

with the notations φ̃
+

h and φ̃
+

h implicitly defined. Inspection confirms that this volatility
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process is isomorphic to that of traditional GJR—GARCH. Moreover, if the constants p0

and n0 are allowed to become arbitrarily large, the gamma distributions will approach their

Gaussian limits, and the BEGE—GJR—GARCH process collapses to the traditional Gaussian

GJR—GARCH specification.

Another useful special case of the model is where one of the shape parameters is kept

constant. For example, if generating negative skewness is particularly important, then one

may consider setting pt equal to a constant and only letting nt vary. We consider such a

model in our empirical application to stock returns.

Finally, we have not yet specified dynamics for µt, the conditional mean of the economic

variable. In most GARCH applications, µt is set to be a constant, and we follow this custom

for our benchmark models. However, we also consider a BEGE model where the conditional

mean is a function of pt and nt.

2.3 Regime-switching (RS) models

An alternative approach for generating conditional non-Gaussianity is the regime-switching

model introduced by Hamilton (1989) to model GDP growth dynamics. In this model, an

unobserved Markov variable causes the process to switch among two or more regimes. In the

specific two-regime model on which we focus, the process is assumed to follow

rt+1 = µ+ µ12J12,t+1 + µ21J21,t+1 + σst+1et+1, (10)

where st is a hidden Markov variable. Specifically, we assume st can take on the value of 1 or

2. The transition probabilities are defined as pij = prob (st+1 = j|st = i), and are assumed to

be constant. The innovation, et, is assumed to be a standard normal random variable. The

choice of normal shocks is standard in the literature and suffi ces for the model to generate

time-variation in higher order moments, as it is essentially a conditional mixture of normals

model (see Timmermann (2000) for details). It is conceivable, however, to entertain different

distributional assumptions, including a BEGE structure for the shock. The J variables are
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dummy variables specified as

J12,t+1 =

 1 if st = 1 and st+1 = 2

0 otherwise
(11)

and similarly for J21,t+1. Hence, they determine the mean return conditional on a transition

between regimes. These “jump”terms are inspired by Mayfield (2004) and are specifically

included for our stock return application. The conditional mean specification allows, for

instance, that in the high-variance regime, the conditional mean is potentially higher than in

the low-variance regime, because an eventual jump to the low-variance regime is expected,

and the return associated with this transition is positive. The reverse applies for the low-

variance regime.

In this model, the conditional distribution of the shock is a mixture of normals with

moments that depend on the current regime. For example, the first three uncentered

moments of the distribution conditional on being in regime st = 1 are given by

Est=1 (rt+1) = p11 (µ) + p12 (µ+ µ12) ,

Est=1

(
r2
t+1

)
= p11

(
µ2 + σ2

1

)
+ p12

(
(µ+ µ12)2 + σ2

2

)
,

Est=1

(
r3
t+1

)
= p11

(
µ3 + 3µσ2

1

)
+ p12

(
(µ+ µ12)3 + 3 (µ+ µ12)σ2

2

)
, (12)

and analytic expressions are also available for higher-order moments, centered moments,

and moments conditional on st = 2. While the mixture-of-normal distributions have a fair

amount of flexibility to match moments, it is conceivable that a two regime model fails to

generate suffi ciently extreme tail behavior. We therefore also consider a RS model with three

regimes and we consider RS models in the Multifractal class (Calvet and Fisher, 2001; 2004;

2008). In the latter model, the conditional volatility of the process has a multiplicative form

depending on k regime variables, indexed by persistence. In particular,

rt = µ+ σ
√
M1,tM2,t...Mk,tεt,

where µ and σ are constants and εt is a random variable following a standard normal
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distribution. Mi,t are random variables distributed as follows:

• With probability γi, Mi,t is drawn from distribution M,

• With probability 1−γi: Mi,t = Mi,t−1 (i.e., is equal to the value in the previous period).

γi is modeled as follows:

γi = 1− (1− γ1)b
i−1
,

where γ1 and b are constants, γ1 belongs to the interval (0,1) and b belongs to the interval

(1,∞). M is a binomial distribution taking values m0 and 2 −m0 with equal probabilities,

and m0 is a positive number between 0 and 2. Thus, the parameters of the model are µ,

σ, γ1, b, and m0. The model ranks different regimes on persistence and parsimoniously

parameterizes the increase in persistence from regime to regime.

We estimated two versions of the model: a 4 state version and a 10 state version.

Calvet and Fisher (2004) show that the model can be estimated via maximum likelihood

using standard regime-switching techniques described in Hamilton (1989) and Appendix B

of our paper.

3 Estimation and Test Statistics

This section briefly describes the estimation techniques for the models and then intro-

duces the specification tests that we use to assess model performance.

3.1 Estimation

We estimate all models using maximum likelihood (ML) and report Huber (1967)—

White (1982) standard errors. Alternative estimation methods are, of course, possible. In

particular, given that the models have closed-form expressions for conditional moments, a

moments-based estimator could also be used.
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While conditional ML estimation procedures for Gaussian GARCH and regime-switching

models are well established, evaluation of the BEGE likelihood function is slightly more in-

volved. The BEGE distribution is simply a four parameter distribution, and an analytic, if

complex, expression is available for the evaluation of its density. This analytic expression

for the BEGE density is derived in Appendix A. We use numerical integration to evaluate

the density in most of our calculations. Random variables with the BEGE density take the

form u = ωp − ωp (suppressing time subscripts) where u is the BEGE-distributed variable,

and ωp and ωp are demeaned gamma distributions. The BEGE density, fBEGE (u), can be

represented

fBEGE (u) =

∫
ωp

fBEGE (u|ωp) dfωp

=

∫
ωp

fωn (ωp − u) dfωp , (13)

where fωp and fωn are the densities of ωp and ωn, respectively. Numerical integration is

straightforward. In practice, we find that numerical evaluation of the BEGE density is faster

and more stable when we employ an alternative representation for the BEGE distribution

function:

FBEGE (u) = 1−
∫
ωp

Fωn (ωp − u) dfωp , (14)

where FBEGE (·) denotes the cumulative distribution function of BEGE. That is, we first

evaluate the integral above numerically and then use a finite difference approximation of

FBEGE to arrive at the BEGE density.3

3.2 Specification tests

While the ML estimation yields the likelihood value for all models, the standard likeli-

hood ratio test can only be used for the nested models. To assess the relative performance of

the models, we report Akaike information criterion (AIC) and Bayesian information criterion

3MATLAB routines that evaluate the BEGE density and distribution functions are available from the
authors upon request.
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(BIC) values for all models. To further parse the performance of the various models with

respect to nonlinearities, we employ a battery of additional tests.

3.2.1 Likelihood ratio tests for non-nested models

First, we consider the likelihood ratio tests of Vuong (1989), Rivers and Vuong (2002),

and Calvet and Fisher (2004). Vuong (1989), develops the test statistic:
T∑
t=1

ln(
f(rt|Rt−1, θ̂T )

g(rt|Rt−1, θ̂T )
) ≡

T∑
t=1

ât, (15)

where Rt = [rt, rt−1, ..., r0], f and g are probability densities for the models being compared,

θ̂T is a vector comprised of the estimated parameters for the models, and ât is implicitly

defined. The statistic follows N(0, Tσ2) under the null hypothesis that the models describe

the data equally well. In the basic case of i.i.d. rt, analyzed in Vuong (1989), σ2 is just the

variance of at. In the case of non-i.i.d. observations, Calvet and Fisher (2004) argue that

the distribution of the test statistic stays the same with σ2 now being the heteroskedasticity

and autocorelation- (HAC-) adjusted variance of at, for example the Newey-West (1987)

estimator.

3.2.2 Unconditional moments

It is useful to investigate to what extent the various models are able to generate the un-

conditional moments observed in the data. Because closed-form solutions for unconditional

moments are generally not available for the models that we examine, we use a Monte Carlo

methodology to implement these tests. In each Monte Carlo sample, a sequence of obser-

vations (of the same length as the historical time series) is generated by randomly drawing

error terms from the appropriate conditional distributions using the estimated parameters

for each model. Next, the values of variance, skewness, and kurtosis are computed for the

generated time series. In the case of the regime-switching models, we first draw the se-

quence of regimes randomly given the estimated initial distribution of the regimes and the

transition probability matrix. Then, conditioning on the regimes, the returns are drawn
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from the regime distributions. Repeating the procedure 10,000 times yields the null distrib-

utions of variance, skewness, and kurtosis under each model. In addition to conducting these

tests at the estimated parameters, we also account for parameter uncertainty, by drawing

100,000 different parameter sets from the estimated asymptotic parameter distribution, and

generating an artificial time series for each set.

3.2.3 Conditional distribution: quantile shifts

We also examine several conditional quantile tests to determine which models best

match the conditional distribution of returns. In particular, we condition on the return in

the previous period having been positive or negative. We consider two cases. In the first

case, positive and negative simply refer to rt−1 being greater or (weakly) less than zero,

respectively. In the second case positive and negative are defined as returns that exceed

(fall short) of the unconditional mean of the series plus (minus) one standard deviation. Our

sample is suffi ciently large to measure these conditional quantiles in the data with reasonable

accuracy, and we focus on the quantiles corresponding to the 5th, 10th, 50th, 90th, and 95th

percentiles. Specifically, we measure the quantiles based on the entire sample, the quantiles

for a restricted sample in which the previous month’s return is negative, and finally for a

restricted sample in which the previous month’s return is positive. We refer to the differences

between negative return and positive return quantiles as quantile shifts. To quantitatively

investigate how the various estimated models match the observed quantile shifts, we again

use the simulation methodology described above. The simulation procedure yields 10,000

random samples of the same length as our data sample, and for each simulated sample we

can compute the quantile shifts under the null of the various models. Finally, we calculate

the probability of observing the historical quantile shift under each model. Again, we also

conduct this exercise allowing for parameter uncertainty.
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3.2.4 Conditional distribution: Engle—Manganelli “hit”test

These tests were developed by Engle and Manganelli (2004) (EM henceforth) to test

whether estimates of conditional quantiles under a given model are consistent with the data.

EM define the variable hitprt as

hitprt+1 = I
rt+1<q̂t(pr)

− pr, (16)

where q̂t (pr) is the model-implied estimate of the conditional pr quantile (e.g. the 1st

percentile of the distribution). EM exploit that under correct model specification,

E
[
hitprt+1zt

]
= 0 (17)

for any time t measurable vector of instruments zt, with dimensionality m. For example, if

zt = 1, then this test assesses, loosely speaking, whether rt+1 falls below the prth conditional

quantile in pr percent of observations, consistent with proper specification. The test statistic,

G′T V̂
−1
T GT

p (1− p) , (18)

where GT =
T∑
t=1

(
hitprt+1zt

)
and V̂T = E

[(
hitprt+1zt

) (
hitprt+1zt

)′]
, converges to a χ2 distribution

with m degrees of freedom under certain conditions.

3.2.5 Modified Jarque-Bera tests

It would be interesting to use all observations to test how well the various models fit

the actual distribution in the data rather than focus on a number of quantiles. To this end,

we develop a specification test building on the standard Jarque-Bera (1987, JB henceforth)

test for normality. We can easily compute the cumulative distribution function of the data

under the null of our various models, yielding a set of numbers on the [0,1] interval. We

then apply the inverse normal cumulative density function to these numbers. If the model

is correctly specified, this transformation should lead to a normally distributed variable.

This is true because for a correctly specified model, the cumulative distribution function

applied to the data should be distributed as uniform on the [0,1] interval, and, by the

inverse probability integral transform, taking the inverse Gaussian distribution function of
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a uniform distributed random variable should yield a Gaussian random variable. We then

simply conduct the standard JB test on these transformed data.

3.3 Out-of-sample tests

To further assess the performance of the various models and the stability of the model

parameters, we also conducted model comparisons on an out-of-sample basis. In addition,

we explicitly examined how well the various models forecast realized variances. Hansen

and Lunde (2005) examine the ability of a large number of GARCH models to forecast

realized variances, inter alia , of IBM returns, finding that asymmetry of the conditional

distribution is essential. In our analysis, we split the sample into two equal parts (510

monthly observations each): January 1926 —June 1968 (in-sample) is the estimation sample

and July 1968-December 2010 (out-sample) is the evaluation period. We then consider

the out-of-sample performances for monthly returns in the form of likelihood values and the

Calvet —Fisher likelihood ratio tests. For variances, we first compute realized variances using

daily return observations (say at month t+1), and compute the Mean Absolute Error (MAE)

and Mean Squared Error (MSE) with respect to the conditional variance prediction of various

models at time t. In addition, we pit one model relative to another using the standard Diebold

andMariano (2002) test. Note that the Diebold andMariano test only uses the forecast errors

and ignores the underlying model structure and estimation. While we could in principle use

more complex statistics that take the model structure and estimation into account, recent

research suggests that the Diebold and Mariano test works well even in model-based out-of-

sample forecasting comparisons (see Clark and McCracken, 2011; Diebold, 2013).
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4 Empirical application: Monthly U.S. Stock returns,

1925—2010

The data we use are monthly log U.S. stock returns including dividends from 1925—2010

from the Center of Research in Securities Prices (CRSP). We first describe the parameter

estimates of various models, then present the results of several specification tests, and end

with a discussion of news impact curves.

4.1 Model estimation results

4.1.1 Overview of models

We estimate three traditional GARCH models that have been previously proposed:

1. the standard Gaussian GARCH (1,1) model, labeled “GARCH”in the table

2. the asymmetric GJR model, labeled “GJR—GARCH,”with Gaussian innovations

3. the asymmetric GJR model assuming a Student’s t-distribution for the shock, labeled

“TDIST—GJR—GARCH”

We estimate several nested versions of the BEGE—GJR—GARCH model:

1. the full-fledged BEGE-GJR model, described in section 2, “Full BEGE—GJR”

2. a restricted version that imposes that all pt and nt coeffi cients are identical (p0 = n0,

ρp = ρn, σp = σn, φ
+
p = φ+

n , φ
−
p = φ−n ). Naturally, these restrictions lead to pt = nt

for all t. Relative to a GARCH(1,1) model, this model introduces conditional non-

Gaussianity, but without admitting any non-zero conditional skewness. We estimate

symmetric-GARCH and GJR versions of this model, labeled “Symmetric BEGE”and

“Symmetric BEGE—GJR”respectively.
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3. a restricted version with identical scale parameters (σp = σn) but unrestricted processes

for the shape parameters, pt and nt, labeled “BEGE—GJR different shapes"

4. a restricted version with only identical shape parameters (p0 = n0, ρp = ρn, φ
+
p = φ+

n ,

φ−p = φ−n ) but without imposing equality of σp and σn, labeled “BEGE—GJR different

scales”

5. a restricted version where we set pt = p0. Recall that pt governs the width of the

positive tail, and nt governs the width of the negative tail. Since stock returns are

negatively skewed, fitting negative tail behavior may be more important that positive

tail behavior. A BEGE specification with pt restricted to be constant, and nt time

—varying, could therefore substantially improve parameter identification. We label this

model “BEGE-GJR (pt = p0).”

We also estimated a number of more general BEGE models, which proved not very

competitive in model specification tests and are therefore omitted from further discus-

sion. One model generalizes the feedback between [pt, nt] and its lag to a VAR(1).

Both cross-feedback coeffi cients are positive, but only the effect of pt on nt+1 is statis-

tically significant. Both the coeffi cient and its standard error are large. A likelihood

ratio tests fails to reject the "full BEGE-GJR" model. Perhaps not surprisingly, given

these results, the model is not competitive relative to the best BEGE models in terms

of AIC and BIC.

We have also estimated a BEGE model where the conditional mean of the stock return

depends on pt and nt. We find that pt is associated with lower returns and nt is

associated with higher returns, but neither coeffi cient is statistically significant. In

particular, the conditional mean specification we estimate is:

rt+1 = 0.0096
(0.0025)

− 0.9665
(0.8587)

σ2
ppt + (−0.9665

(0.8587)
+ 1.9427

(1.4333)
)σ2

nnt + ut+1,

where numbers in brackets are Huber-White standard errors and σ2
ppt and σ

2
nnt are

"good" and "bad" variances, respectively. This result is consistent with the extensive
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literature on the relationship between the conditional variance of stock returns and

its conditional mean (starting from the seminal empirical work by French, Schwert

and Stambaugh, 1987), where it has been diffi cult to identify a reliably positive and

significant relationship. Splitting the conditional variance into good and bad parts

does not resolve the issue. In terms of BIC, the BEGE model with the time-varying

conditional mean performs worse than the constant mean BEGEmodel, so we therefore

also exclude it from further testing.

Within the RS class, we consider five different models:

1. a two-regime model with the special jump dynamics described in section 2, “2-regime

with jump.”

2. a standard two-regime model with constant mean across regimes, “2-regime”

3. a standard three regime model, “3-regime.”

4. a multifractal model with 4 regimes, “MF-4 regimes”

5. a multifractal model with 10 regimes, “MF-10 regimes”

Some of the models that we estimate, particularly those with the highest numbers of

parameters, may be diffi cult to identify using data for returns alone. As a robustness check,

we also estimate the full BEGE model using time series data for the realized variance in

addition to returns. Realized monthly variances are computed for each period as the sum of

intra-period squared daily returns. We assume the following model for the realized variance,

rvart:

rvart = Et−1rvart + σvεt, (19)

where εt ∼ N(0, 1) is a Gaussian error term and Et−1rvart is the model-dependent condi-

tional variance. Under the BEGE model,

Etrvart+1 = σ2
ppt + σ2

nnt. (20)
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The total log likelihood for these estimations is the sum of the log likelihood for returns and

the log likelihood for realized variance. For the Full BEGE—GJR “2-series”model, the Huber—

White standard errors are much closer to those based solely on the Hessian, consistent with

better identification. Yet, this procedure has the disadvantage that parameter identification

is tilted towards fitting variance dynamics as opposed to more extreme tail behavior.

Given that the BEGE model is new to the econometrics literature, and we identify many

parameters from one return series, we also assess the small sample properties of our maximum

likelihood estimator. Appendix C reports the results of a small scale Monte Carlo experiment

on our MLE estimator for the BEGE model (full model, 1 time series). It shows that our

sample of 1020 observations seems suffi cient to generate unbiased parameter estimates with

modest parameter variation.

4.1.2 Selection criteria and parameter estimates

Table 1 shows likelihood values for a variety of different models and their respective AIC

and BIC criteria. The models are ranked according to their BIC criterion. As the table

indicates, the full BEGE models dominate in terms of AIC and BIC criteria, performing not

only better than the standard Gaussian GARCH models and the GJR—GARCH model with

an underlying t-distribution, but also better than the regime switching models. Among

the standard regime switching models, the two-regime model with jumps performs best,

and we restrict attention to that RS model henceforth. The multi-fractal regime switching

models perform better than the standard regime switching models however, with the 10

regime model having a slightly better performance than the 4 regime model. We continue

to show results for only that model. Within the class of BEGE models, the model with

different scales, but otherwise identical pt and nt parameters, performs best in terms of the

BIC criterion (it is a very parsimonious model), but not in terms of the AIC criterion, where

the full BEGE model performs best. The model with a time-invariant pt is in the top 3 in

terms of AIC and BIC and is only beaten by the two best BEGE models, which do feature a
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time-varying right tail. While this suggests that fitting the left tail is likely relatively more

important than fitting the right tail, it also signals that the time-varying right tail remains an

important property of the data. The traditional GARCH and GJR—GARCH models perform

the worst, but assuming a t-distribution for the shocks improves performance substantially.

We also investigate likelihood ratio tests among models within in the same class. Note that

full symmetry is rejected for both the GARCH and the BEGE models. Within the class

of the BEGE models, likelihood ratio tests reject all simpler models at the 1 percent level

compared to the full BEGE—GJR—GARCH specification. For the specification test results of

section 4.2, we focus our attention on the best performing models from each class: Gaussian

GJR—GARCH, henceforth referred to as “GJR”, GJR-GARCH with t-distributed shocks; the

two full BEGE—GJR—GARCH models (henceforth referred to simply as BEGE and BEGE,

2-series); the two-regime RS model including jumps, and the 10-state multifractal model.

Table 2 reports the parameter estimates for the GJR-GARCH model (column 1), the

BEGE model (column 2), the BEGE model with a constant right tail (column 3), and the

BEGE model estimated from 2 time series (column 4). Below every parameter estimate are

two sets of standard errors; the first line is based on the inverse on the Hessian and the

second uses the usual White (1982) standard errors. It is well-known that in well-specified

models, these standard errors should be close to one another.

Several well-known features of the data emerge upon inspection of the parameter values

in Table 2. First, under the GJR specification, the conditional variance has a relatively

high degree of persistence, with ρh estimated at 0.85. Moreover, ht responds positively to

squared innovations whether the innovations are positive or negative, as can be seen by the

positive estimates for φ+
h and φ

−
h , but the response to negative shocks is about twice as large

as that to positive shocks. The time series for raw returns and for ht are plotted in Figure

2. The large response of volatility to negative shocks is evident, for instance, following the

1987 crash.

Relative to this baseline, the parameter estimates from the BEGE model significantly
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refine our description of return dynamics. First, ρp is estimated at about 0.91 while ρn is es-

timated at 0.78, indicating that the good-environment volatility variable is significantly more

persistent than the bad-environment variable. Although these estimates are not statistically

distinct (under the inverse Hessian-based estimate of the parameter covariance matrix) for

the 1-series estimates of the model; in the 2-series estimates, the standard errors for these

parameters are significantly smaller, and ρp and ρn are statistically distinct. In terms of

responses of volatility to positive versus negative shocks, the BEGE model suggests more

intricate return dynamics. The parameter φ+
p is substantially larger than φ−p , indicating

that good volatility responds to positive shocks more than it does to negative shocks. In

contrast, φ+
n is estimated to be negative (slightly positive) under the 1-series (2-series) esti-

mation, while φ−n is strongly positive and much larger in magnitude. This indicates that bad

volatility, or the negative tail of the return distribution, substantially increases following neg-

ative shocks. This, of course, is a feature of the data that has substantial risk-management

implications but which standard Gaussian models cannot hope to match. Figure 3 shows

the time series patterns of pt and nt from the BEGE model. Using the 1987 crash as an

example again, that negative shock sharply increases the bad volatility variable, nt, but it

hardly affects pt at all. This result implies that the negative tail of the return distribution

widened following the crash, but the upper tail was less affected. The BEGE model with

constant pt also delivers an asymmetric nt-process, but less pronounced than in the full

model. Strikingly, the Hessian and Huber-White standard errors are now invariably close to

one another.

Panel A of Table 3 reports the parameter estimates from the Hamilton-type RS models.

We identify the regimes by defining them to be increasing in the innovation variances. As is

typically found, the innovation volatilities are very different across regimes. Under the two-

regime specification including jumps, the first regime registers a 3.7 percent shock volatility,

but the second regime has a 10.7 percent shock volatility. Also typical is the finding that

the low-volatility regime is more persistent than the high-volatility regime (see also Ang and
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Bekaert, 2002). In the models including jumps, note that a transition from the low-volatility

to the high-volatility regime is associated with a negative return of 10 percent, whereas a

transition from the high variance to the low variance regime entails a positive return of 5

percent. The jump terms imply that the conditional mean in the high-variance regime is

higher than in the low-variance regime. In fact, using the estimated transition probabilities,

the mean in the high-variance regime is 1.8 percent, but in the low variance regime it is just

0.9 percent. These differences can be contrasted with the overall unconditional mean of

1.10 percent as reported for the two-regime model without jumps. Figure 4 plots smoothed

estimates of the probability of being in the high-volatility regime, which are calculated in the

usual manner (see Appendix B). High-volatility regimes include the Great Depression, the

pre-war period, the first oil shock, the October 1987 crash, the period following September

11, 2001; the 1998 Russia and LTCM crises, and the recent global financial crisis. The

relatively low persistence of the high-volatility regime is readily apparent.

Panel B of Table 3 summarizes the parameter estimates for the multifractal models.

Compared to Calvet and Fisher (2004), the persistence of the regimes is relatively low (low

γ1). This is largely the consequence of us employing monthly data compared to daily data

in Calvet and Fisher (2004). Also note that, in line with the results in Calvet and Fisher

(2004), as the number of states increases, the persistence of the states decreases (lower γ1)

and becomes similar across states (b closer to 1). Econometrically, this mechanism increases

the probability of a rapid transition to and from high volatility states: at any point of time

many volatility states are likely to change their values from low to high and vice versa.

Economically this captures the arrival of unexpected and short-lived high volatility states.

The second graph in Figure 4 illustrates this phenomenon showing the conditional variance

implied by the 10 regime multi-fractal model.
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4.2 Specification test results

4.2.1 Likelihood ratio tests

In Table 4, Vuong—Fisher—Calvet likelihood ratio tests for non-nested models are re-

ported. In the table, positive (negative) entries indicate that the model listed in the row

dominates (underperforms) the model listed in the column. In every case, the BEGE models

dominate the competing GARCH and RS models. For the simple Vuong tests, rejections

are at the 1 percent level, and the 1-series BEGE model rejects the bivariate BEGE model

at the 5 percent level.4 For the Calvet—Fisher test, the 1-series BEGE model rejects the RS

model with jumps only at the 5 percent level.

4.2.2 Unconditional moments tests

Table 5 tests how well the various models are able to match the unconditional moments

of returns observed in the data (see Panel A). Focusing first on panel B, the GJR model

performs especially poorly, significantly undershooting the magnitude of unconditional skew-

ness in the data, which is negative, and also undershooting kurtosis. The multifractal model

is also rejected with respect to its fit with either moment. No rejections are found for the

RS or 1-series BEGE model, but the 2-series BEGE model is narrowly rejected for both

unconditional volatility and kurtosis. By conditioning on the obtained parameter estimates

and simulating samples of the length of our actual sample, we account for sampling uncer-

tainty, but ignore estimation error in the parameters. While it is typical in the literature to

only consider one of the two, we also checked the effect of accommodating both parameter

and sampling uncertainty. To do so, we draw 100,000 different parameter sets from the as-

ymptotic distribution generated by the estimation. For each parameter draw, we repeat the

bootstrap we did before using the same number of observations as the sample, with just one

bootstrap per parameter value. For the GARCH model, we also performed an experiment

4Of course, this test only considers the return equation, ignoring any difference in the performance of the
two models in terms of matching the realized variance series.
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with 1,000,000 draws, but the results do not change by increasing the number of draws fur-

ther. In Panel C of Table 5, we show the results of this exercise. The inference is essentially

unchanged from the inferences we drew from Panel B.

4.2.3 Quantile shifts

Tests regarding the conditional distribution of returns are presented in Tables 6 and 7.

Specifically, the tests examine how well the models can replicate shifts in the conditional

distribution of returns that occur following positive and negative return shocks. Tests of

the changes in the lower tail of the distribution coincide with value-at-risk measures, a

popular risk-management tool. In Table 6, we test how well the models fit the change in

the distribution of returns following negative and positive return realizations. In the upper

portion of the table, the column labeled “sample”reports the estimated difference in various

quantiles (down the rows) following negative versus positive return realizations. Note that

the differences are economically strong and statistically significant especially for the lower

percentiles (5th, 10th, 25th). For example, the 5th quantile is 4.25% lower after a negative

realization than it is after a positive realization. The top panel of Figure 5 graphically

depicts these quantile shifts. The blue squares plot the unconditional distribution of returns.

The green triangles plot the distribution of returns following a positive realization in the

previous period, and the red triangles plot the distribution following a negative realization.

Clearly, the lower tail of the return distribution is more sensitive to recent return realizations

(positive and negative) than are the upper tails of the distribution. Also, negative (positive)

shocks lead to a wider (narrower) probability distribution for the next period.

Returning to Table 6, the columns to the right show how well the various models match

these historical patterns. To implement the test, we draw 10,000 random samples under each

model using the parameters reported in Tables 2 and 3. Each sample has length equal to

that of our data sample, 1,020 observations. For each random sample, we calculate quantile

shifts exactly as we do for the data. Finally, we report what fraction of observed quantile
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shifts in the random samples are lower than those observed in the sample. If this fraction

is very small or very large, we conclude that the model is inconsistent with the sample data

for that quantile shift. That is, we can observe rejections at either tail of the distribution.

We denote rejections at the 1, 5, and 10 percent levels using one, two, or three asterisks.

The second column from the left reports results for a trivial model in which the condi-

tional distribution at each point is simply equal to the unconditional distribution observed

for the sample. This model is strongly rejected using tests at the tails of the distribution.

This result indicates that the observed quantile shifts in the sample are very unlikely to be

observed if the true underlying conditional distribution is constant. The remaining columns

show results for our five key models, including the best GARCH model (with t-distributed

shocks), the RS model with jumps, and the multifractal model. All of the models suffer some

rejections for quantile shifts in the lower portion of the distribution. The GJR model fares

the poorest, with strong rejections for the 5th and 10th quantiles, and two additional 10%

rejections. The multifractal and jump RS models fail to generate the shifts for the 5th and

10th quantiles, but so does the 2 series BEGE model. The p-values are larger for the BEGE

(1-series) model, but it still fails to generate the 10th quantile shift at the 5% level and the

5th and 25th quantile shifts at the 10% level.

Panel A of Table 7 repeats this exercise, but examining quantile shifts following larger

(in magnitude) return realizations. Specifically, we now examine return realizations one

(unconditional) standard deviation above and below the unconditional mean. In the data,

strong quantile shifts are evident at the lower percentiles, with the 5th (10th) quantile being

7.49% (5.04%) lower after a very negative rather than a very positive return realization. In

contrast, there is less evidence of large quantile shifts following positive realizations, as shown

in the lower portion of the table. These quantile shifts are illustrated in the lower panel of

Figure 5, where we also graph the uncoditional quantiles. It is apparent that the large

differences between quantiles after extreme negative and positive returns mostly come from

quantile shifts relative to the unconditional distribution in the negative tail. In other words,
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negative returns decrease the skewness of returns in a persistent fashion, whereas there is

not much of a change in skewness, following positive returns. This is exactly the type of

behavior the BEGE model can match in theory, as increases in pt increase and increases in

nt decrease skewness.

It is little surprise that an unconditional model fails to fit the large quantile shifts in

the left tail of the distribution. The five models that we examine again feature a number

of rejections. The T-DIST-GJR model again fares the worst missing the quantile shifts for

the four lowest quantiles (5, 10, 25 and 50), but only one of the rejections is at the 1

percent significance level (25th quantile). Perhaps surprisingly, this model also fails to fit

the 95th quantile shift. Both the multifractal and BEGE (2 series) model miss the quantile

shifts at the 5th, 10th and 25th percentile, with the test rejecting at either the 1% or 5%

level. The BEGE model (1 series) and the 2 regime RS model with jumps perform the best.

Nevertheless, for the BEGE model two rejections occur at the 5 percent level: quantile shifts

at the 25th and 50th percentiles. The 5th and 10th quantile shifts are only rejected at the 10%

level. While the fit is thus not perfect, of the few rejections we record for the BEGE model,

none is at the 1 percent level. The RS model with jumps only features one 5% rejection

(25th quantile) and thus performs slightly better than the BEGE model for this test.

In Panels B of Tables 6 and 7, we seemingly report results that look very similar to those

in Panels A. They are the outcome of the experiment described above where we account for

parameter uncertainty, by not conditioning on the estimated parameters, but rather drawing

them from the estimated asymptotic distribution. The results are similar to what we observe

in Panels A, but, not surprisingly, the power to reject is somewhat lower. We will focus

the discussion on the shifts from negative to positive shocks for the more extreme shifts.

The unconditional model is still largely rejected. The lower quantile shifts still cannot be

generated by a GJR or a multifractal model, with rejections largely at the 1% (5%) level

for the multifractal (GJR) model. The BEGE 2 series model is not performing that well

either though, being rejected at the 5% or 1% level for the lowest quantiles (see also above).
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This is likely due to fact that the estimation in this model assigns a relatively low weight

to the returns time series, where these extreme observations are the most pronounced. The

2 regime jump RS model features the same rejections as in Panel A. However, the BEGE

model is only rejected at the 10% level for the 25th quantile and the median. Thus, the

evidence against the full BEGE model remains weak, whereas we observe 1% rejections for

every other model, except the 2 regime jump model.

4.2.4 Hit tests

To further examine which model provides the most accurate description of the condi-

tional distribution of returns, we turn to the tests of Engle and Manganelli (EM). In doing so,

we will focus on the lower portion of the distribution, specifically the 1st and 5th percentiles,

which have implications as value-at-risk metrics. Figure 6 plots various conditional quantiles

for the T-DIST-GJR model, the multifractal RS model, and the one-series BEGE models

(the two-series version looks very similar). Both the GJR and RS models are symmetric

and generate symmetric tail behavior, with the peaks and troughs being more extreme for

the T-DIST-GJR model. Some non-Gaussian features of the BEGE distribution are readily

evident. For instance, the lower quantiles of the distribution have larger magnitudes than

do the corresponding upper quantiles. This is equivalent to negative conditional (quantile)

skewness.

Armed with the conditional quantiles implied by each model, we proceed to implement

the EM tests. For each quantile and model tested, we begin by defining the sequence of

hits, hitprt+1, as described in section 3. We select a small set of instruments for the test.

Specifically, we choose

zt = [1, hitprt , rt] (21)

so that we are testing that the mean rate of exceedences of the quantile in question is

accurate (e.g., the 1st quantile should be exceeded in 99 percent of observations), as well as

orthogonality of hitprt+1to hit
pr
t and rt. The latter two instruments are intuitive, as one would
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surely prefer a model for which hits are not autocorrelated and also for which hits are not

forecastable by lagged returns. We test for orthogonality of the instruments individually.

To do so, we calculate the statistic,

G′T V̂
−1
T GT

p (1− p)
d−→ χ2

1 (22)

where GT =
T∑
t=1

(
hitprt+1zt

)
and V̂T = E

[(
hitprt+1zt

) (
hitprt+1zt

)′]
. We compare this statistic

to critical values of the standard χ2
1 distribution. In doing so, we ignore that our test is

conducted on an in-sample basis, which, as EM point out, alters the sampling distribution of

the test statistic. Our tests are thus informal. We use a measure of the covariance matrix,

V̂T , that is constant across models so that results across models are more comparable.5

The top panel of Table 8 shows results for the 1st quantile of the return distribution.

The GJR model fails every test, including that based on zt = 1. That is, we can reject

that the GJR model-implied 1st percentile is exceeded 99 percent of the time. We also

reject that GJR hit errors are orthogonal to lagged values of hitpt or lagged returns. The

other models perform somewhat better. We do not reject those models for zt = 1, but we

reject for the other instruments, at either the 1% or 5% level, except for the BEGE (1 series)

model; the BEGE (1 series) model only produces rejections at the 10 percent level. Results

for the 5th percentile hit-ratio tests, shown in the lower panel of Table 8, are broadly similar,

but now some models are even rejected using the zt = 1 instrument. In contrast, the BEGE

models are rejected only for zt = rt (at the 5% level). The joint tests of orthogonality to

the instruments provided rejections at the 1 percent level for all of the models for both the

1st and 5th percentile hit ratio tests. In sum, the EM tests appear to be challenging for all of

the models. However, individually, the BEGE model performs fairly well, and quite a bit

better than the competing models that we tested.

5In the results reported, we used an estimate of V̂T that is based on the BEGE 1-series models. For
robustness, we tried using V̂T estimates from all of the models, which yielded similar results.
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4.2.5 Modified Jarque-Bera test

In Table 9, we report the results of the modified Jarque-Bera specification test, which

uses all observations to test the fit of the conditional distribution with the data. We show

the asymptotic p-values for the test for our 7 models. The test rejects the GJR-GARCH and

multifractal models at the 1% level, with the p-value for the T-DIST-GJR-GARCH model

also being close to 1%. This is largely because these models place too many observations in

the left tail compared to the normal distribution. This is barely surprising as these models

display zero skewness. The regime switching model and the BEGE (2 series) model are

rejected at the 10% level. We find no evidence against the 1 series BEGE model.

4.2.6 Out-of-sample performance

Tables 10 and 11 show that the BEGE models outperform other model classes out-of-

sample. We conduct tests for both returns and variances time series. For returns, the 1 time

series BEGE model is the best, while for the variances the 2 time series BEGE model is

the best. This is intuitive as the 2 time series BEGE model is estimated using the realized

variance time series and thus incorporates variance behavior better. Table 10, Panel A, shows

that for returns, the T-DIST-GJR-GARCH model is the third best and in Panel B it also

generates the third lowest MAEs and MSEs with respect to predicting realized variances.

Table 11 shows that the BEGE’s outperformance is mostly statistically significant. Fo-

cusing on returns first, the BEGE (1 series) model is significantly better than all non-BEGE

models at the 1% or 5% levels, and it also is better than the 2 series BEGE model. For

variances, the BEGE (1 series) model is still significantly better than the other models in all

cases but one (multifractal model for MSE), but the rejections are often less strong. How-

ever, here the BEGE (2 series) model significantly outperforms the BEGE (1 series) model

in terms of MAE, but not in terms of MSE.
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4.3 Impact curves

In Figure 7, we report conditional moment impact curves for the GARCH models as

inspired by Engle and Ng (1993). That is, the curve describes the relationship between ht

and the past shock, ut−1, holding constant (at unconditional means) all information at time

(t − 2). The analytic expressions describing the impact of a squared shock represent the

derivatives of the conditional variance function with respect to the squared shock and were

presented in section 2. For all the panels shown, shocks are represented on the horizontal

axes, ranging from minus to positive 20 percentage points, representing the range of return

shocks present in the data. On the vertical axes are the responses of various conditional

moments to the shocks under the model listed. For instance, the upper-left panel shows the

response of conditional variance under the GJR model.

As expected, negative shocks are associated with a larger increase in conditional variance

than are positive shocks of the same magnitude. The effect is more pronounced under the

BEGEmodel, shown to the right, which suggests that conditional variance is little affected by

positive shocks. The second row of panels plot the responses of conditional scaled skewness

to return innovations. For the GJR, the effect is identically zero, an artifact of the assumed

conditional Gaussianity. The BEGEmodel, in contrast, suggests an increase in (the generally

negative) conditional scaled skewness of returns, which is much stronger, following a positive

shock. Only at very large positive shocks does the skewness become positive. The third row

shows the responses of conditional scaled kurtosis. Again for the standard GJR model, these

are zero, by definition, whereas the BEGE model suggests that conditional scaled kurtosis

is generally decreasing the larger the shock is in magnitude, regardless of sign.

It is also instructive to examine the responses of unscaled skewness and kurtosis, to

help discern the effects on the third and fourth moments from effects on volatility. These

results are shown in the bottom two panels of the figure. For unscaled skewness, the BEGE

model generates sharp drops for negative shocks (as the negatively skewed component of the

BEGE distribution becomes more important) but increases in skewness for positive shocks,
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although these are less steep. Therefore, the reason that scaled skewness actually increases

with negative shocks is that volatility (cubed) goes up by even more than the third moment

decreases when negative shocks occur. For unscaled kurtosis, we obtain a flat pattern for

positive shocks, and a rather sharp increase for negative shocks. Since actual kurtosis falls

with both positive and negative shocks, it must be that volatility effects dominate. All in all,

the BEGE model suggests a rich pattern of news impact curves for higher-order moments,

which conditional Gaussian models cannot match. The quantile test results in the previous

section show that these patterns are necessary to help explain conditional quantile shifts in

the data. We suspect that such patterns may also be important for explaining option price

dynamics.

5 Conclusion

We have introduced an extension of standard asymmetric volatility models in the GARCH

class that admits conditional non-Gaussianities in a tractable fashion. Our bad environment—

good environment (BEGE) model features two gamma-distributed shocks that imply a con-

ditional shock distribution with time-varying heteroskedasticity, skewness and kurtosis. Our

model features nontrivial news impact curves for higher-order moments. In an empirical

application to monthly U.S. stock returns, the model outperforms standard asymmetric

GARCH and regime-switching models along several dimensions.

In this application, we have embedded the BEGE structure in a GARCH framework,

which provides for easy estimation since the factors driving conditional volatility and the

conditional distribution of returns are essentially observable conditional on the model pa-

rameters and the sequence of returns. We believe a number of interesting applications, for

example, to risk management, are therefore possible and very tractable. Useful applications

in macroeconomics are conceivable as well. While in financial returns the BEGE framework

helps fit asymmetries on the downside, for inflation data, the ability of the model to generate
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positive conditional skewness could help model inflation scares —periods in which very high

inflation becomes more probable.

Of course, the BEGE model is relatively parsimonious, and may miss some important

features of economic data. For instance, volatility shocks that are imperfectly correlated

with returns help models fit option prices. The option pricing literature therefore typically

relies on stochastic volatility models rather than GARCH-type models. It is feasible to create

a version of the BEGE framework where the BEGE factors have independent shocks. An

additional advantage of the BEGE framework in this regard is tractability, in that risk-

neutral moments, have closed form solutions in a BEGE framework with independent latent

factors.
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Appendices

A Evaluating the BEGE density

Random variables with the BEGE density take the form x = ωp − ωn, where x is
the BEGE-distributed variable, and ωp and ωn are demeaned gamma distributions with
parameter vectors (shape and scale) of

(
kωp , θωp

)
and (kωn , θωn), respectively. We seek an

expression for the density of x, fBEGE (x). To begin, using Bayes’s rule,

fBEGE (x) =

∫
ωp

fx (x|ωp) f (ωp) dωp

=

∫
ωp

fωn (ωp − x) f (ωp) dωp

Now, let us specialize to the demeaned gamma distribution for ωp and ωn:

fωp (ωp) =

(
ωp − ωp

)kωp−1

exp
(
−
(
ωp − ωp

)
/θωp

)
Γ
(
kωp
)
θ
kωp
ωp

for ωp > ωp

fωn (ωn) =

(
ωn − ωn

)kωn−1
exp

(
−
(
ωn − ωn

)
/θωn

)
Γ (kωn) θkωnωn

for ωn > ωn

where ωp = −kωpθωp and ωn = −kωnθωn . The upper limit of integration in the expression for
fBEGE (x) is infinity. The lower limit for ωp must satisfy both ωp > ωp and (ωp − x) > ωn

or ωp > x+ ωn. Define ωp as max
(
ωp, x+ ωn

)
, then,

fBEGE (x) =

∞∫
ωp=ωp

fωp (ωp) fωn (ωp − x) dωp

= A1A2A3

∞∫
ωp=ωp

(
ωp − ωp

)kωp−1 (
ωp − x− ωn

)kωn−1
exp

(
−ωpθ̃

)
dωp

where A1 = 1

Γ(kωp)θ
kωp
ωp

1

Γ(kωn )θ
kωn
ωn

, A2 = exp
(
ωp/θωp + ωn/θωn

)
, A3 = exp (x/θωn) and θ̃ =(

1/θωp + 1/θωn
)
. There are known solutions for integrals of the form

Wk,m (z) =
exp (−z/2) zk

Γ
(

1
2
− k +m

) ∫ ∞
t=0

t(−k−1/2+m)

(
1 +

t

z

)(k−1/2+m)

exp (−t) dt
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whereWk,m (z) is the Whittaker W function. To use this result, we use a change of variables,
defining,ω̃p = ωpθ̃ − ωpθ̃. Then, ωp = 1

θ̃
ω̃p + ωp. Substituting,

fBEGE (x) = A1A2A3

∞∫
ω̃p=0

(
1

θ̃
ω̃p + ωp − ωp

)kωp−1(
1

θ̃
ω̃p + ωp − x− ωn

)kωn−1

exp
(
−ω̃p − ωpθ̃

) 1

θ̃
dω̃p

This integral simplifies for the specific cases at hand. First, if ωp = ωp. Then the integral
becomes

fBEGE (x) = A1A2A3A4 ·
∞∫

ω̃p=0

(
1

θ̃
ω̃p

)kωp−1(
1

θ̃
ω̃p + ωp − x− ωn

)kωn−1

exp (−ω̃p)
1

θ̃
dω̃p

= A1A2A3A4A5A6 ·
∞∫

ω̃p=0

ω̃p
kωp−1

 ω̃p

θ̃
(
ωp − x− ωn

) + 1

kωn−1

exp (−ω̃p) dω̃p

where A4 = exp
(
−ωpθ̃

)
, A5 =

(
1

θ̃

)kωp
, A6 =

(
ωp − x− ωn

)kωn−1

. The integral term is now

isomorphic to that in the expression forWk,m (z) above. Substitution and algebra yields the
final expression,

fBEGE (x) = A1A2A3A4A5A6A7A8Wk,m (z)

whereA7 = Γ
(

1
2
− k +m

)
, A8 (z) = exp (z/2) z−k, z =

(
ωp − x− ωn

)
θ̃,m = 1

2

(
kωn + kωp − 1

)
,

and k = 1
2

(
kωn − kωp

)
.

In the second case, ωp = x+ ωn, and similar calculations lead to

fBEGE (x) = A1A2A3A
′
4A
′
5A
′
6A
′
7A
′
8Wk′,m′ (z

′)

where A′4 = exp
(
−
(
x+ ωn

)
θ̃
)
, A′5 =

(
1

θ̃

)kωn
, A′6 =

(
x+ ωn − ωp

)kωp−1

, A′7 =

Γ
(

1
2
− k′ +m′

)
, A′8 = exp (z′/2) z′−k, z′ = −z., m′ = m, k′ = −k.
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B Regime-switching model specification and estima-
tion

We estimate three regime-switching models: benchmark models with two and three
regimes as well as a jump model. The log-likelihood function for this model is:

L({y1, y2, ..., yT}; θ) =
T∑
t=1

log f(yt|Yt−1; θ),

where Yt is the history of observations up to time t and f is the probability density function.
To evaluate the likelihood, note that:

f(yt|Yt−1; Θ) =
∑
s

p(st|Yt−1)f(yt|Yt−1, s),

where p(st|Yt−1) is the probability of the regime s at time t conditioned on the observations
up to time t and can be computed as:

p (st|Yt−1) =
∑
s′t−1

P
(
st|s′t−1

)
p
(
s′t−1|Yt−1

)
=

∑
s′t−1

P
(
st|s′t−1

) p
(
s′t−1|Yt−2

)
f
(
yt−1|Yt−2, s

′
t−1

)∑
s
′′
t−1

p
(
s′′t−1|Yt−2

)
f
(
yt−1|Yt−2, s

′′
t−1

)
Each observation is assumed to follow:

rt = µ+ σ(st)et,

where et is i.i.d. standard normal, so yt = rt. We consider the models with 2 and 3 regimes.
The parameters to estimate are the mean return (µ), the standard deviations of the regime
distributions (σi), and the transition probability matrix (P (st+1 = i|st = j)). The prior
distribution over regimes p(s0) is set equal to the unconditional probabilities.

Formally, the estimation is done by numerically maximizing the likelihood function.
In order to avoid local maxima, we use different initial parameters for the optimization
algorithm. We also check the stability of the final solution by randomly deviating from the
estimates, and verifying that the routine returns to the provisional maxima.

In the model allowing for two regimes and jumps, each observation is assumed to follow

rt = µ0 + µ12J12,t + µ21J21,t + σ(st)et,

where et is again i.i.d. standard normal and J is a dummy variable specified as

J12,t =

{
1 if st−1 = 1 and st = 2,
0 otherwise,
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and

J21,t =

{
1 if st−1 = 2 and st = 1,
0 otherwise

For the RS models including jumps, the likelihood function is more complex than in the
benchmark case:

f (yt|Yt−1, s) ∼
{
N (µ0, σ

2
i ) if st−1 = st = i

N
(
µ0 + µji, σ

2
i

)
if st−1 = j 6= i = st

This model can be recast as a regime switching model with 4 states, after which the
usual likelihood construction can proceed.

The likelihood function for the multi-fractal model can be constructed in an analogous
fashion.

C Small sample properties

Although we have over 1,000 return observations, the BEGE features two shocks, and
11 parameters. To verify that our MLE results are reliable, we conduct a small scale Monte
Carlo experiment on our MLE estimator for the BEGE model (full model, 1 time series),
following these steps:

1) We simulate 100 samples with the same number of observations (1020) as the actual
sample at the estimated parameters.

2) For each of these 100 samples, we re-estimate the parameters.

3) We examine bias and sampling variation of these estimates.

The results are as follows:

Parameter True value Mean Monte-Carlo estimates Standard error of Monte-Carlo estimates
µ 0.0100 0.0105 0.0012
p0 0.0891 0.0877 0.0136
σp 0.0072 0.0074 0.0008
ρp 0.9099 0.9052 0.0138
n0 0.2204 0.2180 0.0276
/σn 0.0282 0.0279 0.0026
ρn 0.7823 0.7799 0.0317
φ+
p 0.0964 0.0997 0.0124
φ−n 0.0128 0.0131 0.0019
φ+
n -0.0790 -0.0807 0.0119
φ−n 0.3549 0.3549 0.0448

First of all, the estimates are clearly virtually unbiased. Second, the parameter variation
is typically small. It is relatively largest for p0, n0 and φ

−
n . Yet, none of our key findings

(relative size or persistence of p and n shocks) would be over-turned in any of these alternative
estimations. We conclude that identification is not problematic in this sample.
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Table 1: Model performance comparison

Model # parameters Log-likelihood AIC BIC
BEGE, different scales 7 1716.54 -3419.08 -3384.59
Full BEGE—GJR 11 1724.26 -3426.53 -3372.32
BEGE-GJR, constant right tail 8 1711.82 -3407.64 -3368.22
TDIST—GJR—GARCH 6 1703.60 -3395.20 -3365.63
BEGE—GJR, different shapes 10 1716.67 -3413.34 -3364.07
10 states binomial multifractal 5 1697.56 -3385.12 -3360.48
4 states binomial multifractal 5 1696.83 -3383.66 -3359.02
Symmetric BEGE—GJR 6 1695.50 -3379.00 -3349.43
Symmetric BEGE 5 1690.27 -3370.55 -3345.91
Full BEGE—GJR, 2-series 11 1709.75 -3397.50 -3343.30
2-regime w/jump 8 1692.74 -3369.48 -3330.06
2-regime 6 1682.93 -3353.87 -3324.30
3-regime 12 1698.69 -3373.37 -3314.24
GARCH 4 1668.72 -3329.44 -3309.73
GJR—GARCH 5 1671.77 -3330.54 -3308.90
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Table 2: Parameter estimates for GARCH models

Model GJR BEGE BEGE, pt = p0 BEGE, 2-series
µ 0.0089 0.0100 0.0106 0.0115

(0.0013) (0.0013) (0.0011) (0.0010)
(0.0013) (0.0015) (0.0011) (0.0010)

p0/h0 0.00008 0.0890 3.0966 0.1728
(0.00003) (0.0917) (0.3407) (0.0152)
(0.00005) (0.0070) (0.2838) (0.0140)

n0 0.2204 0.1789 0.4112
(0.0839) (0.0186) (0.0410)
(0.0111) (0.0192) (0.0490)

ρh/ρp 0.8516 0.9099 0.8774
(0.0195) (0.0855) (0.0083)
(0.0313) (0.0009) (0.0037)

ρn 0.7822 0.8581 0.6879
(0.1200) (0.0074) (0.0260)
(0.0086) (0.0075) (0.0436)

σp 0.0072 0.0115 0.0101
(0.0008) (0.0009) (0.0007)
(0.0008) (0.0007) (0.0004)

σn 0.02823 0.0220 0.0224
(0.0092) (0.0019) (0.0017)
(0.0087) (0.0023) (0.0021)

φ+
h /φ

+
p 0.0800 0.0964 0.1156

(0.0283) (0.0440) (0.0081)
(0.0404) (0.0426) (0.0054)

φ−h /φ
−
p 0.1563 0.0128 -0.0116

(0.0283) (0.0125) (0.0033)
(0.0431) (0.0139) (0.0029)

φ+
n -0.0789 0.0002 0.0939

(0.0400) (0.0159) (0.0264)
(0.0524) (0.0178) (0.0385)

φ−n 0.3548 0.2439 0.4234
(0.0473) (0.0304) (0.0490)
(0.0901) (0.0246) (0.0612)

σv 0.0040
(0.0001)
(0.0001)

For the 2-series case, the monthly realized variances are computed as the sum of squared daily realized

logarithmic returns. Asymptotic standard errors are in parentheses. The first standard errors are inverse

Hessian standard errors. The second series of standard errors are of the Huber—White sandwich type.
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Table 3: Parameter estimates for regime-switching models

Panel A: Hamilton-type models
Model 2-regime 3-regime 2-regime w/jump
µ 0.0110 0.0111 0.0113

(0.0014) (0.0013) (0.0013)
µlh - - -0.1048

(0.0217)
µhl - - 0.05302

(0.0104)
σlow 0.0375 0.0303 0.0371

(0.0012) (0.0051) (0.0012)
σmiddle - 0.0474 -

(0.0091)
σhigh 0.1098 0.1237 0.1069

(0.0104) (0.0190) (0.0102)
P (st+1 = l|st = l) 0.9834 0.9678 0.9806

(0.0060) (0.0519) (0.0059)
P (st+1 = m|st = l) - 0.0322 -

(0.0170)
P (st+1 = m|st = m) - 0.9551 -

(0.0325)
P (st+1 = h|st = m) - 0.0185 -

(0.0256)
P (st+1 = m|st = h) - 0.0612 -

(0.0607)
P (st+1 = h|st = h) 0.9019 0.9300 0.8785

(0.0362) (0.0440) (0.0362)
Panel B: Calvet-Fisher-type models

Model 4 states 10 states
µ 0.0115 0.0116

(0.0013) (0.0013)
m0 1.4381 1.2767

(0.0252) (0.0317)
σ 0.0665 0.0551

(0.0046) (0.0058)
γ1 0.0114 0.0088

(0.0064) (0.0079)
b 1.8900 1.0002

(0.2654) (0.1844)

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. The asymptotic

Huber-White standard errors are in parentheses. For the Calvet-Fisher type models, µ is the unconditional mean of returns, σ is
the unconditional standard deviation of returns,

m0

2−m0
is the ratio of high to low volatility in each state, and 1−(1−γ1)b

i−1

is the probability that the state i will shift from a low volatility regime to a high volatility regime and vice versa.
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Table 4: Likelihood ratio tests for non-nested models

Vuong (1989) t-test
Model 1/Model 2 BEGE, 2 series GJR T-DIST-GJR 2 regime w/ jump Multifractal

BEGE, 1 series 2.5016** 3.0710*** 2.8489*** 3.1426*** 3.3369***

BEGE, 2 series - 2.5242** 1.2640 1.9776** 1.9646**

GJR -2.5242** - -2.3243*** -1.0577 -1.7860*

T-DIST-GJR -1.2640 2.3243*** - 1.1824 1.4209

2 regime w/jump -1.9776** 1.0577 -1.1824 - -0.5361

Fisher-Calvet (2004) t-test
Model 1/Model 2 BEGE, 2 series GJR T-DIST-GJR 2 regime w/jump Multifractal

BEGE, 1 series 2.7407*** 2.9411*** 2.8725*** 2.4281** 3.5310***

BEGE, 2 series - 2.2915** 1.0750 1.5006 2.0407**

GJR -2.2915** - -2.1604** -0.8999 -1.6211

T-DIST-GJR -1.0750 2.1604** - 1.1824 1.2454

2 regime w/jump -1.5006 0.8999 -0.8762 - -0.4306

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010.

A positive number means that the model listed in the row is better than the model listed in the column, and

a negative number means that the model listed in the row is worse than the model listed in the column. For

the BEGE models estimated from both returns and variance time series, the likelihood is computed only for

the time series of returns. The multifractal model is a 10 regime multifractal model. In the Calvet—Fisher

tests, the HAC-adjusted variance estimator is the Newey—West (1987) estimator with 12 lags. The asterisks,

*,**, and *** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.
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Table 5: Unconditional moments test

Panel A: Historical sample estimates
Standard deviation Skewness Excess kurtosis
0.0545 -0.5742 6.6134

Panel B: Not controlling for parameter uncertainty
CDF value from 10,000 samples Monte Carlo

Model Standard deviation Skewness Excess kurtosis
GJR 0.7104 0.0086** 0.9812**
T-DIST-GJR 0.9753** 0.0319* 0.9293
2 regime w/jump 0.5422 0.2903 0.6994
Multifractal 0.5934 0.0129** 0.9801**
BEGE 0.8424 0.6994 0.9481
BEGE, 2 series 0.9554* 0.5389 0.9704*

Panel C: Controlling for parameter uncertainty
CDF value from 100,000 samples Monte Carlo

Model Standard deviation Skewnesss Excess kurtosis
GJR 0.6296 0.0120** 0.9580*
T-DIST-GJR 0.8728 0.0326* 0.9101
2 regime w/jump 0.5114 0.3021 0.8368
Multifractal 0.5763 0.0208** 0.9594*
BEGE 0.6127 0.5925 0.9319
BEGE, 2 series 0.9547* 0.5193 0.9667*
The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010.

In panel B, in each Monte Carlo sample the time series of 1,020 observations (the same length as the

historical time series) is generated by randomly drawing error terms and using the estimated parameters

for each model. Next, the values of variance, skewness, and kurtosis are computed for that generated time

series. The reported cumulative distribution function (CDF) values are probabilities that the value less than

or equal to the historical value is observed under the simulated distribution. Panel C is similar to panel

B except in each Monte Carlo sample the parameters of the model are also sampled from their asymptotic

maximum likelihood distributions. The asterisks, *,**, and *** correspond to statistical significance at the

10, 5, and 1 percent levels, respectively.
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Table 6: Quantile shift test 1

Panel A: Not controlling for parameter uncertainty

CDF value from 10,000 samples Monte Carlo

Sample Unc T-DIST-GJR 2-regime w/jump Multifractal BEGE BEGE,2 series

Qn
5−Q

p
5 -0.0425 0.0002*** 0.0006*** 0.0200** 0.0012*** 0.0265* 0.0077**

Qn
10−Q

p
10 -0.0328 0.0000*** 0.0002*** 0.0001*** 0.0001*** 0.0072** 0.0026***

Qn
25−Q

p
25 -0.0092 0.0112** 0.0351* 0.0184** 0.0600 0.1472 0.1088

Qn
50−Q

p
50 -0.0049 0.0579 0.0469* 0.0540 0.0681 0.0365* 0.0364*

Qn
75−Q

p
75 0.0031 0.8116 0.5764 0.6240 0.5634 0.2961 0.3551

Qn
90−Q

p
90 0.0104 0.9958*** 0.8258 0.8350 0.8038 0.6404 0.7321

Qn
95−Q

p
95 0.0178 0.9938*** 0.8995 0.8390 0.8759 0.7970 0.8829

Panel B: Controlling for parameter uncertainty

CDF value from 100,000 samples Monte Carlo

Qn
5−Q

p
5 -0.0425 0.0002*** 0.0120** 0.0196** 0.0009*** 0.0527 0.0082**

Qn
10−Q

p
10 -0.0328 0.0000*** 0.0081** 0.0017*** 0.0001*** 0.0350* 0.0025***

Qn
25−Q

p
25 -0.0092 0.0112** 0.0474* 0.0248** 0.0478* 0.1761 0.1102

Qn
50−Q

p
50 -0.0049 0.0579 0.0585 0.0578 0.0497* 0.0535 0.0311*

Qn
75−Q

p
75 0.0031 0.8116 0.5493 0.6260 0.5740 0.2887 0.3570

Qn
90−Q

p
90 0.0104 0.9958*** 0.7978 0.8268 0.8151 0.6038 0.7400

Qn
95−Q

p
95 0.0178 0.9938*** 0.8698 0.8090 0.8830 0.7527 0.8755

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010.

Qni is the i
th percentile of the rt distribution conditioning on rt−1 < 0. Qpi is the i

th percentile of the rt
distribution conditioning on rt−1 ≥ 0. In panel A, in each Monte Carlo sample the time series of 1,020

observations (the same length as the historical time series) was generated by randomly drawing the errors

and using the optimal parameters for each model. Next, the values of Qni − Q
p
i were computed for that

generated time series. Repeating the procedure 10,000 times yielded the null distributions of Qni − Qpi
under each model. The reported cumulative distribution function (CDF) values are probabilities that the

value less or equal to the historical value is observed under the simulated distribution. Panel B is similar

to panel A except in each Monte Carlo sample the parameters of the model are also sampled from their

asymptotic maximum likelihood distributions. Unc refers to the case where the time series was formed by

randomly sampling (with replacement) historical monthly returns. The asterisks, *,**, and *** correspond

to statistical significance at the 10, 5, and 1 percent levels, respectively.
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Table 7: Quantile shift test 2

Panel A: Not controlling for parameter uncertainty

CDF value from 10,000 samples Monte Carlo

Sample Unc T-DIST-GJR 2-regime w/jump Multifractal BEGE BEGE,2 series

Qn
5−Q

p
5 -0.0749 0.0026*** 0.0320* 0.0441* 0.0057** 0.0288* 0.0103**

Qn
10−Q

p
10 -0.0504 0.0015*** 0.0148** 0.0384* 0.0044*** 0.0373* 0.0118**

Qn
25−Q

p
25 -0.0379 0.0001*** 0.0018*** 0.0057** 0.0029*** 0.0057** 0.0035***

Qn
50−Q

p
50 -0.0150 0.0133** 0.0149** 0.0340* 0.0527 0.0214** 0.0171**

Qn
75−Q

p
75 0.0062 0.7916 0.5533 0.5630 0.7364 0.4156 0.5346

Qn
90−Q

p
90 0.0138 0.9481 0.3818 0.5610 0.8090 0.6084 0.7498

Qn
95−Q

p
95 0.0279 0.9662* 0.9893** 0.6940 0.8880 0.8299 0.9130

Panel B: Controlling for parameter uncertainty

CDF value from 100,000 samples Monte Carlo

Qn
5−Q

p
5 -0.0749 0.0026*** 0.0223** 0.0364* 0.0029*** 0.0507 0.0127**

Qn
10−Q

p
10 -0.0504 0.0015*** 0.0221** 0.0434* 0.0017*** 0.0655 0.0147**

Qn
25−Q

p
25 -0.0379 0.0001*** 0.0114** 0.0071** 0.0004*** 0.0252* 0.0020***

Qn
50−Q

p
50 -0.0150 0.0133** 0.0291* 0.0390* 0.0460* 0.0352* 0.0148**

Qn
75−Q

p
75 0.0062 0.7916 0.5788 0.5794 0.7325 0.4240 0.5519

Qn
90−Q

p
90 0.0138 0.9481 0.6466 0.6103 0.8139 0.6102 0.7493

Qn
95−Q

p
95 0.0279 0.9662* 0.7954 0.7128 0.9037 0.7956 0.9110

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010.

Qni is the i
th percentile of the rt distribution conditioning on rt−1 < µ−σ, where µ and σ are unconditional

mean and standard deviation of the returns time series. Qpi is the i
th percentile of the rt distribution

conditioning on rt−1 > µ+ σ. In panel A, in each Monte Carlo sample the time series of 1,020 observations

(the same length as the historical time series) was generated by randomly drawing the errors and using

the optimal parameters for each model. Next, the values of Qni − Q
p
i were computed for that generated

time series. Repeating the procedure 10,000 times yielded the null distributions of Qni − Qpi under each

model. The reported cumulative distribution function (CDF) values are probabilities that the value less or

equal to the historical value is observed under the simulated distribution. Panel B is similar to panel A

except in each Monte Carlo sample the parameters of the model are also sampled from their asymptotic

maximum likelihood distributions. Unc distribution refers to the case where the time series was formed by

randomly sampling (with replacement) historical monthly returns. The asterisks, *,**, and *** correspond

to statistical significance at the 10, 5, and 1 percent levels, respectively.
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Table 8: Quantile hit test

1% Hit ratio test
Model/Instrument 1 hitt−1 rt−1

GJR-GARCH 8.8859*** 150.6957*** 5.6194**
T-DIST-GJR-GARCH 2.6437 11.3479*** 4.8450**
2-regime w/jump 0.0734 4.0332** 6.3024**
Multifractal 2.3444 11.0060*** 4.9447**
BEGE 0.0046 2.7828* 2.8697*
BEGE, 2 series 0.3718 5.5149** 4.7248**

5% Hit ratio test
Model/Instrument 1 hitt−1 rt−1

GJR 3.2132* 4.6906** 7.8811***
T-DIST-GJR-GARCH 8.0554*** 2.8864* 8.1539***
2-regime w/jump 3.7711* 7.6508*** 7.6541***
Multifractal 8.8529*** 6.2661** 7.9220***
BEGE 1.4281 0.6922 4.9023**
BEGE, 2 series 1.4281 0.0553 6.0696**

Each cell reports EM hit test statistic as described in the text. The asterisks, *,**,and *** correspond

to statistical significance at 10%, 5%, and 1% levels, respectively, using the χ2 distribution.
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Table 9: Modified Jarque-Bera tests

Model p-value
GJR-GARCH 0.0007***
T-DIST-GJR-GARCH 0.0011***
2 state regime w/ jump 0.0538*
Multifractal 0.0009***
BEGE 0.3756
BEGE, 2 series 0.0697*

Each cell reports the Jarque-Bera test p-value computed from the historical time series of logged

monthly dividend-adjusted stock returns from December 1925 to December 2010. The asterisks, *,**,and

*** correspond to statistical significance at the 10%, 5%, and 1% levels.
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Table 10: Out-of-sample performance

Panel A: Returns
Model Log-likelihood
BEGE 881.29
BEGE, 2 series 868.82
T-DIST-GJR-GARCH 867.93
Multifractal 864.68
2 state regime w/ jump 851.63
GJR-GARCH 847.15

Panel B: Variances
Model MAE MSE
BEGE, 2 series 0.0014 1.7053E-05
BEGE 0.0015 1.7097E-05
T-DIST-GJR-GARCH 0.0016 1.7410E-05
GJR-GARCH 0.0016 1.7697E-05
Multifractal 0.0017 1.8052E-05
2 state regime w/ jump 0.0020 2.0523E-05

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010.

The sample is split into two equal parts (510 monthly observations each): January 1926 —June 1968 (in-

sample) and July 1968-December 2010 (out—sample). The parameters are estimated over the in-sample and

the statistics above measure the fit of the various models at these parameters with respect to returns (log-

likelihood) and realized variances (MAE/MSE) in the out-sample. Historical realized variances are computed

by summing squared daily return observations. MAE (mean absolute error) and MSE (mean squared error)

are comparing the realized variances to the conditional variance prediction of the various models. All tests

are at the monthly frequency.
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Table 11: Testing out-of-sample performance

Panel A: Returns - Fisher-Calvet (2004) loglikelihood t-test
GJR T-GJR 2 regime w/ jump Multifractal BEGE

BEGE 2.1200** 2.7349*** 3.0652*** 3.3509*** -
BEGE, 2 series 1.4542 0.4496 1.8671* 1.0374 -3.2792***

Panel B: Variances - Diebold-Mariano (1995) test
MAE

GJR T-GJR 2 regime w/ jump Multifractal BEGE
BEGE -1.7808* -2.3552** -3.2050*** -2.4147** -
BEGE, 2 series -3.0400*** -3.3891*** -4.0455*** -5.1044*** -2.6300***

MSE
GJR T-GJR 2 regime w/ jump Multifractal BEGE

BEGE -2.1025** -2.0214** -2.0460** -1.2398 -
BEGE, 2 series -2.3364** -1.0140 -2.1048** -1.5619 -0.0590
The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010.

The sample is split into two equal parts (510 monthly observations each): January 1926 —June 1968 (in-

sample) and July 1968-December 2010 (out—sample). The parameters are estimated over the in-sample and

the statistics above measure the fit of the various models at these parameters with respect to returns (log-

likelihood) and realized variances (MAE/MSE) in the out-sample. Historical realized variances are computed

by summing squared daily return observations. MAE (mean absolute error) and MSE (mean squared error)

are comparing the realized variances to the conditional variance prediction of the various models. A positive

number means that the model listed in the column has a smaller statistic value (loglikelihood/MAE/MSE)

than the model listed in the row, and a negative number means that the model listed in the column has

a larger statistic value (loglikelihood/MAE/MSE) than the model listed in the row. Note that for the

loglikelihood the larger value is preferred, while for MAE (mean absolute error) and MSE (mean squared

error) smaller values are preferred. For the BEGE models estimated from both returns and variance time

series, the likelihood is computed only for the time series of returns. The statistics are computed using

the HAC-adjusted variance estimator of Newey—West (1987) with 12 lags. The asterisks, *,**, and ***

correspond to the statistical significance at 10, 5, and 1 percent levels, respectively.
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Figure 1: BEGE distribution tail properties

This plot shows the 99th percentiles and 1st percentiles for two sequences of BEGE distributions, which

take the form.

ut+1 = ωp,t+1 − ωn,t+1

ωp,t+1 ∼ Γ̃ (pt, σp)

ωn,t+1 ∼ Γ̃ (nt, σn)

where Γ̃ denotes the centered gamma distribution. Throughout, we maintain that σn = σp = 0.015.
The lines of blue asterisks show the quantiles for distributions in which pt is fixed at 1.5, but nt varies from
0.1 through 3.0. Conversely, the lines of green plus symbols show the quantiles for distributions in which pt
varies from 0.1 through 3.0 while nt is held fixed at 1.5.
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Figure 2: Results from GJR-GARCH estimation

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010.

The top panel shows the raw return series. The bottom panel shows estimates of conditional variance from

the T-DIST-GJR-GARCH model, using the optimal maximum likelihood parameters.
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Figure 3: Results from BEGE estimation

The top panel shows estimates of pt from the BEGE GJR (1-series) model, using the parameter

estimates reported in Table 2. The bottom panel shows estimates of nt.
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Figure 4: Results from regime—switching model estimation

The top panel shows the ex-post probabilities of being in regime 2 for the 2-regime RS model with

jumps using the parameter estimates reported on Table 3. The bottom panel shows the conditional variance

of returns from the 10 states binomial multifractal model.
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Figure 5: Quantile shift results

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010.

The top panel shows the values of unconditional quantiles (squares), quantiles for a restricted sample in which

the return in the previous period was positive (up triangles) and quantiles for a restricted sample in which

the return in the previous period was negative (down triangles). The bottom panel reports results further

restricting the “positive”(“negative”) subsample to those for which the previous return is one (unconditional)

standard deviation above (below) the unconditional mean return.
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Figure 6: Conditional quantile estimates

The figure reports estimates of conditional quantiles under the models specified in the panel headings.
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Figure 7: Conditional moment impact curves

The news impact curves for the T-DIST-GJR-GARCH and BEGE models. pt−1 and nt−1 are
assumed to be equal to the average values of pt and nt over the observed time series.
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