Bad Environments, Good Environments: A Non-Gaussian Asymmetric Volatility Model*

Geert Bekaert

Columbia University and the National Bureau of Economic Research

Eric Engstrom

Board of Governors of the Federal Reserve System[†]

Andrey Ermolov

Columbia University

April 10, 2014

*The authors thank seminar participants at CK GSB (Beijing), the University of Sydney, UNSW (Sydney), SAIF (Shanghai), SMU (Singapore), and Temple University for useful comments. We are especially grateful for the suggestions of two anonymous referees, and the editor, Yacine Ait-Sahalia, which greatly improved the paper. All errors are the sole responsibility of the authors.

[†]The views expressed in this document do not necessarily reflect those of the Board of Governors of the Federal Reserve System, or its staff.

This is a preprint version of the article. The final version may be found at < http://dx.doi.org/10.1016/j.jeconom.2014.06.021 >

Abstract

We propose an extension of standard asymmetric volatility models in the generalized autoregressive conditional heteroskedasticity (GARCH) class that admits conditional non-Gaussianities in a tractable fashion. Our "bad environment-good environment" (BEGE) model utilizes two gamma-distributed shocks and generates a conditional shock distribution with time-varying heteroskedasticity, skewness, and kurtosis. The BEGE model features nontrivial news impact curves and closed-form solutions for higher-order moments. In an empirical application to stock returns, the BEGE model outperforms asymmetric GARCH and regime-switching models along several dimensions.

1 Introduction

Since the seminal work of Engle (1982) and Bollerslev (1986) on volatility clustering, thousands of articles have applied models in the generalized autoregressive conditional heteroskedasticity (GARCH) class to capture volatility clustering in economic and financial time series data. In the basic GARCH (1,1) model, today's conditional variance is a deterministic linear function of the past conditional variance and contemporaneous squared shocks to the process describing the data. Nelson (1991) and Glosten, Jagannathan, and Runkle (1993, GJR henceforth), motivated by empirical work on stock return data, provide important extensions, accommodating asymmetric responses of conditional volatility to negative versus positive shocks. Engle and Ng (1993) compare the response of conditional variance to shocks ("news impact curves") implied by various econometric models and find evidence that the GJR model fits stock return data the best.

The original models in the GARCH class assumed Gaussian innovations, but nonetheless imply non-Gaussian unconditional distributions. However, time-varying volatility models with Gaussian innovations generally do not generate sufficient unconditional non-Gaussianity to match some financial asset return data (see, e.g., Poon and Granger, 2003). Additional evidence of conditional non-Gaussianity has come from two corners. First, empirical work by Evans and Wachtel (1993), Hamilton and Susmel (1994), Kim and White (2004), and many others has documented conditional non-Gaussianities in economic data. Second, in finance, a voluminous literature on the joint properties of option prices and stock returns (see, e.g., Broadie, Chernov, and Johannes (2009)) has also suggested the need for models with timevarying nonlinearities. In principle, one can estimate GARCH models consistently using quasi maximum likelihood (see Lumsdaine, 1996; Lee and Hansen, 1994), not worrying about modeling the non-Gaussianity in the shocks. However, fitting the actual non-Gaussianities in the data can lead to more efficient estimates and may be important if the model is to be used in actual applications (for example, option pricing or risk management) that require an estimate of the conditional distribution. Several authors have introduced non-Gaussian shocks in GARCH frameworks (see, e.g., Bollerslev (1987) and Hsieh (1989), who used the t-distribution, and Mittnik, Paolella and Rachev (2002), who used shocks with a distribution in the stable Paretian class). However, extant models in this vein generally cannot fit timevarying non-Gaussianities that are evident in the data.

We present an extension of models in the GARCH class that accommodates conditional non-Gaussianity in a tractable fashion, offering simple closed-form expressions for conditional moments. Our "bad environment-good environment" (BEGE) model utilizes two gammadistributed shocks that together imply a conditional shock distribution with time-varying heteroskedasticity, skewness, and kurtosis. This is accomplished by allowing the shape parameters of the two distributions to vary through time. Hence, our model features nontrivial news impact curves for higher-order moments. We apply the model to stock returns, showing that the model outperforms extant alternatives using a variety of specification tests. In the stock market context, one shape parameter determines the conditional distribution of the "good environment," with positive skewness and "good volatility"; the other shape parameter drives the "bad environment", with negative skewness and "bad volatility." Of course, conditional non-Gaussian models exist outside the GARCH class that may also fit the data quite well. Regime-switching models, in particular, have shown promise in many applications. We therefore also estimate several types of regime-switching models on our stock returns data sample and show that the BEGE model significantly outperforms various models in this class.

The remainder of the article is organized as follows. In section 2, we present the BEGE model, describe how it nests the standard GJR–GARCH model as a special case, and present various models in the regime-switching class. In section 3, we describe the estimation methodology and the specification tests that we conduct. In section 4, we confront several models from the above classes, including the BEGE model, with monthly U.S. stock return data from 1929 through 2010.

2 The BEGE–GARCH Model

Before introducing the BEGE model, we begin with a review of the seminal GJR asymmetric GARCH model.

2.1 Traditional GJR–GARCH

Consider a time series r_{t+1} with conditional mean μ_t . The GJR model assumes that the series follows

$$r_{t+1} = \mu_t + u_{t+1},$$

$$u_{t+1} \sim N(0, h_t),$$

and $h_t = h_0 + \rho_h h_{t-1} + \phi^+ u_t^2 I_{u_t \ge 0} + \phi^- u_t^2 (1 - I_{u_t \ge 0}).$ (1)

That is, the innovation to returns, u_{t+1} , has time-varying conditional variance, $var_t(r_{t+1}) = h_t$, which is assumed to be a linear function of its own lagged value and squared innovations to returns. One key feature of this model that enables it to better fit many economic time series is the differential response of the conditional variance of shocks following positive versus negative innovations. In stock return and economic activity data, it is typically found that $\phi^- > \phi^+$, so that negative shocks result in more of an increase in variance than do positive shocks.

2.2 BEGE GJR-GARCH

The BEGE model that we propose relaxes the assumption of Gaussianity by assuming that the u_{t+1} innovation consists of two components. We assume that $\omega_{p,t+1}$, a good environment shock, and $\omega_{n,t+1}$, a bad environment shock, are drawn from "demeaned" (or "centered") gamma distributions that have a mean equal to zero.¹ The overall innovation is a linear combination of the two component shocks, which are assumed to be conditionally

¹The centered gamma distribution with shape parameter k and scale parameter θ , which we denote $\widetilde{\Gamma}(k,\theta)$, has probability density function, $\phi(x) = \frac{1}{\Gamma(k)\theta^k} (x+k\theta)^{k-1} \exp\left(-\frac{1}{\theta} (x+k\theta)\right)$ for $x > -k\theta$, and with $\Gamma(\cdot)$ representing the gamma function.

independent. The gamma distributions are assumed to have constant scale parameters, but we let their shape parameters vary through time. More precisely, the BEGE framework assumes:

$$u_{t+1} = \sigma_p \omega_{p,t+1} - \sigma_n \omega_{n,t+1}, \text{ where}$$

$$\omega_{p,t+1} \sim \widetilde{\Gamma}(p_t, 1), \text{ and}$$

$$\omega_{n,t+1} \sim \widetilde{\Gamma}(n_t, 1), \text{ and} \qquad (2)$$

where $\widetilde{\Gamma}(k,\theta)$ denotes a centered gamma distribution with shape and scale parameters, k and θ , respectively. Thus, $p_t(n_t)$ is the shape parameter for the good (bad) environment shock. Figure 1 provides a visual representation of the flexibility of the BEGE distribution. Plotted are the 1st and 99th percentiles of two sequences of hypothetical distributions. The blue stars illustrate a series of BEGE distributions for which p_t is fixed at 1.5, but n_t varies from 0.1 to 3.0, which are the values across the horizontal axis. The lower line of blue asterisks shows the 1st percentiles of these distributions, while the upper line of blue stars shows the 99th percentiles. Clearly, increases in n_t have an outsized effect on the lower tail, particularly at low values of n_t . The upper tail is relatively insensitive to changes in n_t . The green plus symbols show results from the complementary exercise: holding n_t fixed at 1.5 and varying p_t from 0.1 through 3.0. Clearly p_t impacts the upper tail of the distribution much more than it impacts the lower tail. These results highlight the potential benefits of the BEGE distribution. As we will demonstrate, financial data provide evidence that some shocks primarily affect the lower tail of the distribution of returns, but leave the upper tail relatively unchanged (see section 4). This is exactly the kind of effect that BEGE is designed to accommodate.

We model the time variation in the shape parameters in a manner that is analogous to that for h_t in the GJR specification:

$$p_{t} = p_{0} + \rho_{p} p_{t-1} + \phi_{p}^{+} u_{t}^{2} I_{u_{t} \ge 0} + \phi_{p}^{-} u_{t}^{2} \left(1 - I_{u_{t} \ge 0}\right)$$

and $n_{t} = n_{0} + \rho_{n} n_{t-1} + \phi_{n}^{+} u_{t}^{2} I_{u_{t} \ge 0} + \phi_{n}^{-} u_{t}^{2} \left(1 - I_{u_{t} \ge 0}\right).$ (3)

In principle, we can accommodate a vector-autoregressive structure, with feedback from n_t (p_t) to p_{t+1} (n_{t+1}) , but propose the simpler model as our benchmark model. A key feature of the model is that the dynamics of the shape parameters depend on the residual u_{t+1} and not the separate ω_p and ω_n shocks. This assumption keeps the model in the GARCH class, in which p_t and n_t can be computed recursively from past residuals without requiring the filtering of the separate ω -shocks.

The overall conditional variance of u_{t+1} follows from the moment-generating function of the centered gamma distribution²

$$h_t \equiv var_t \left(r_{t+1} \right) = \sigma_p^2 \ p_t + \sigma_n^2 \ n_t, \tag{4}$$

where, with some abuse of notation, h_t now represents the conditional variance under the BEGE model. Higher-order moments also follow in a straightforward manner from the moment-generating function of the gamma distribution. For instance, conditional (unscaled by a function of the conditional variance) skewness and excess kurtosis are given by

$$s_t \equiv skw_t (r_{t+1}) = 2 \left(\sigma_p^3 p_t - \sigma_n^3 n_t \right)$$

and $k_t \equiv kur_t (r_{t+1}) = 6 \left(\sigma_p^4 p_t + \sigma_n^4 n_t \right).$ (5)

The expression for skewness shows that larger values for p_t generate more positive skewness, while larger values of n_t generate more negative skewness. Moments of order higher than four are equally easy to compute using the moment generating function and are also affine in p_t and n_t . It is this affine structure that makes the model both parsimonious and tractable. The model thus allows for positive or negative skewness, and the sign of skewness may vary through time. Excess kurtosis is always positive, but its magnitude varies as well. Note that the key innovation of the model is to let the shape, not the scale, parameters vary through time. Because the shape parameters determine the shape of the distribution, we

$$mgf_x(s) \equiv E\left[\exp\left(sx\right)\right] = \exp\left(-k\left(\ln\left(1-\theta s\right)+\theta s\right)\right).$$

Successive differentiation of $mgf_x(s)$ with respect to s, and evaluation at s = 0, yields, for the first few moments: $E[x] = 0, E[x^2] = \theta^2 k, E[x^3] = 2\theta^3 k$, and $E[x^4] - E[x^2]^2 = 6\theta^4 k$

²The moment-generating function for a random variable, x, with the demeaned gamma distribution with shape parameter, k, and scale parameter, θ , is given by

parsimoniously generate time-variation in all higher order moments simultaneously.

Asymmetric volatility under the BEGE specification can be generated by either the "good volatility" (p_t) component or the "bad volatility" (n_t) component, or both:

$$\frac{\partial h_{t+1}}{\partial u_t^2} = \begin{cases} \sigma_p^2 \phi_p^+ + \sigma_n^2 \phi_n^+ & \text{if } u_t \ge 0\\ \sigma_p^2 \phi_p^- + \sigma_n^2 \phi_n^- & \text{otherwise} \end{cases}$$
(6)

Similar expressions are readily calculated for unscaled conditional skewness and unscaled conditional kurtosis under the BEGE model:

$$\frac{\partial s_{t+1}}{\partial u_t^2} = \begin{cases} 2\left(\sigma_p^3 \phi_p^+ - \sigma_n^3 \phi_n^+\right) & \text{if } u_t \ge 0\\ 2\left(\sigma_p^3 \phi_p^- - \sigma_n^3 \phi_n^-\right) & \text{otherwise} \end{cases}$$
(7)

and

$$\frac{\partial k_{t+1}}{\partial u_t^2} = \begin{cases} 6 \left(\sigma_p^4 \phi_p^+ + \sigma_n^4 \phi_n^+\right) & \text{if } u_t \ge 0\\ 6 \left(\sigma_p^4 \phi_p^- + \sigma_n^4 \phi_n^-\right) & \text{otherwise.} \end{cases}$$
(8)

Of course, under the traditional Gaussian GJR–BEGE model, conditional skewness and excess kurtosis are zero. The BEGE model thus allows for richer dynamics for the conditional distribution of the data process, with tractable expressions for conditional moments.

An intuitive feature of the model arises from the fact that for a gamma-distributed random variable, as the shape parameter goes to infinity, the distribution converges to a Gaussian distribution. Therefore, the BEGE model can get arbitrarily close to the traditional GARCH model, even in terms of the conditional Gaussianity of the shocks. More concretely, suppose that the two gamma shocks in the BEGE model are symmetric in their autoregressive behavior and in their responses to the innovation, u_{t+1} . That is, suppose, $\rho_h = \rho_p = \rho_n, \phi_h^+ = \phi_p^+ = \phi_n^+$, and $\phi_h^- = \phi_p^- = \phi_n^-$. Substituting, we find

$$h_{t} = \left(\sigma_{p}^{2}p_{0} + \sigma_{n}^{2}n_{0}\right) + \rho_{h}\left(\sigma_{p}^{2}p_{t-1} + \sigma_{n}^{2}n_{t-1}\right) + \phi_{h}^{+}\left(\sigma_{p}^{2} + \sigma_{n}^{2}\right)u_{t}^{2}I_{u_{t}\geq0} + \phi_{h}^{-}\left(\sigma_{p}^{2} + \sigma_{n}^{2}\right)u_{t}^{2}\left(1 - I_{u_{t}\geq0}\right) = h_{0} + \rho_{h}h_{t-1} + \widetilde{\phi}_{h}^{+}u_{t}^{2}I_{u_{t}\geq0} + \widetilde{\phi}_{h}^{-}u_{t}^{2}\left(1 - I_{u_{t}\geq0}\right), \qquad (9)$$

with the notations $\tilde{\phi}_h^+$ and $\tilde{\phi}_h^+$ implicitly defined. Inspection confirms that this volatility

process is isomorphic to that of traditional GJR–GARCH. Moreover, if the constants p_0 and n_0 are allowed to become arbitrarily large, the gamma distributions will approach their Gaussian limits, and the BEGE–GJR–GARCH process collapses to the traditional Gaussian GJR–GARCH specification.

Another useful special case of the model is where one of the shape parameters is kept constant. For example, if generating negative skewness is particularly important, then one may consider setting p_t equal to a constant and only letting n_t vary. We consider such a model in our empirical application to stock returns.

Finally, we have not yet specified dynamics for μ_t , the conditional mean of the economic variable. In most GARCH applications, μ_t is set to be a constant, and we follow this custom for our benchmark models. However, we also consider a BEGE model where the conditional mean is a function of p_t and n_t .

2.3 Regime-switching (RS) models

An alternative approach for generating conditional non-Gaussianity is the regime-switching model introduced by Hamilton (1989) to model GDP growth dynamics. In this model, an unobserved Markov variable causes the process to switch among two or more regimes. In the specific two-regime model on which we focus, the process is assumed to follow

$$r_{t+1} = \mu + \mu_{12}J_{12,t+1} + \mu_{21}J_{21,t+1} + \sigma_{s_{t+1}}e_{t+1}, \tag{10}$$

where s_t is a hidden Markov variable. Specifically, we assume s_t can take on the value of 1 or 2. The transition probabilities are defined as $p_{ij} = prob (s_{t+1} = j | s_t = i)$, and are assumed to be constant. The innovation, e_t , is assumed to be a standard normal random variable. The choice of normal shocks is standard in the literature and suffices for the model to generate time-variation in higher order moments, as it is essentially a conditional mixture of normals model (see Timmermann (2000) for details). It is conceivable, however, to entertain different distributional assumptions, including a BEGE structure for the shock. The J variables are dummy variables specified as

$$J_{12,t+1} = \begin{cases} 1 & \text{if } s_t = 1 \text{ and } s_{t+1} = 2\\ 0 & \text{otherwise} \end{cases}$$
(11)

and similarly for $J_{21,t+1}$. Hence, they determine the mean return conditional on a transition between regimes. These "jump" terms are inspired by Mayfield (2004) and are specifically included for our stock return application. The conditional mean specification allows, for instance, that in the high-variance regime, the conditional mean is potentially higher than in the low-variance regime, because an eventual jump to the low-variance regime is expected, and the return associated with this transition is positive. The reverse applies for the lowvariance regime.

In this model, the conditional distribution of the shock is a mixture of normals with moments that depend on the current regime. For example, the first three uncentered moments of the distribution conditional on being in regime $s_t = 1$ are given by

$$E_{s_{t}=1}(r_{t+1}) = p_{11}(\mu) + p_{12}(\mu + \mu_{12}),$$

$$E_{s_{t}=1}(r_{t+1}^{2}) = p_{11}(\mu^{2} + \sigma_{1}^{2}) + p_{12}((\mu + \mu_{12})^{2} + \sigma_{2}^{2}),$$

$$E_{s_{t}=1}(r_{t+1}^{3}) = p_{11}(\mu^{3} + 3\mu\sigma_{1}^{2}) + p_{12}((\mu + \mu_{12})^{3} + 3(\mu + \mu_{12})\sigma_{2}^{2}),$$
(12)

and analytic expressions are also available for higher-order moments, centered moments, and moments conditional on $s_t = 2$. While the mixture-of-normal distributions have a fair amount of flexibility to match moments, it is conceivable that a two regime model fails to generate sufficiently extreme tail behavior. We therefore also consider a RS model with three regimes and we consider RS models in the Multifractal class (Calvet and Fisher, 2001; 2004; 2008). In the latter model, the conditional volatility of the process has a multiplicative form depending on k regime variables, indexed by persistence. In particular,

$$r_t = \mu + \sigma \sqrt{M_{1,t} M_{2,t} \dots M_{k,t}} \varepsilon_t$$

where μ and σ are constants and ε_t is a random variable following a standard normal

distribution. $M_{i,t}$ are random variables distributed as follows:

- With probability γ_i , $M_{i,t}$ is drawn from distribution M,
- With probability $1 \gamma_i$: $M_{i,t} = M_{i,t-1}$ (i.e., is equal to the value in the previous period).

 γ_i is modeled as follows:

$$\gamma_i = 1 - (1 - \gamma_1)^{b^{i-1}},$$

where γ_1 and b are constants, γ_1 belongs to the interval (0,1) and b belongs to the interval $(1,\infty)$. M is a binomial distribution taking values m_0 and $2 - m_0$ with equal probabilities, and m0 is a positive number between 0 and 2. Thus, the parameters of the model are μ , σ , γ_1 , b, and m_0 . The model ranks different regimes on persistence and parsimoniously parameterizes the increase in persistence from regime to regime.

We estimated two versions of the model: a 4 state version and a 10 state version. Calvet and Fisher (2004) show that the model can be estimated via maximum likelihood using standard regime-switching techniques described in Hamilton (1989) and Appendix B of our paper.

3 Estimation and Test Statistics

This section briefly describes the estimation techniques for the models and then introduces the specification tests that we use to assess model performance.

3.1 Estimation

We estimate all models using maximum likelihood (ML) and report Huber (1967)– White (1982) standard errors. Alternative estimation methods are, of course, possible. In particular, given that the models have closed-form expressions for conditional moments, a moments-based estimator could also be used. While conditional ML estimation procedures for Gaussian GARCH and regime-switching models are well established, evaluation of the BEGE likelihood function is slightly more involved. The BEGE distribution is simply a four parameter distribution, and an analytic, if complex, expression is available for the evaluation of its density. This analytic expression for the BEGE density is derived in Appendix A. We use numerical integration to evaluate the density in most of our calculations. Random variables with the BEGE density take the form $u = \omega_p - \omega_p$ (suppressing time subscripts) where u is the BEGE-distributed variable, and ω_p and ω_p are demeaned gamma distributions. The BEGE density, $f_{BEGE}(u)$, can be represented

$$f_{BEGE}(u) = \int_{\omega_p} f_{BEGE}(u|\omega_p) df_{\omega_p}$$
$$= \int_{\omega_p} f_{\omega_n}(\omega_p - u) df_{\omega_p}, \qquad (13)$$

where f_{ω_p} and f_{ω_n} are the densities of ω_p and ω_n , respectively. Numerical integration is straightforward. In practice, we find that numerical evaluation of the BEGE density is faster and more stable when we employ an alternative representation for the BEGE distribution function:

$$F_{BEGE}\left(u\right) = 1 - \int_{\omega_p} F_{\omega_n}\left(\omega_p - u\right) df_{\omega_p},\tag{14}$$

where $F_{BEGE}(\cdot)$ denotes the cumulative distribution function of BEGE. That is, we first evaluate the integral above numerically and then use a finite difference approximation of F_{BEGE} to arrive at the BEGE density.³

3.2 Specification tests

While the ML estimation yields the likelihood value for all models, the standard likelihood ratio test can only be used for the nested models. To assess the relative performance of the models, we report Akaike information criterion (AIC) and Bayesian information criterion

 $^{^{3}}$ MATLAB routines that evaluate the BEGE density and distribution functions are available from the authors upon request.

(BIC) values for all models. To further parse the performance of the various models with respect to nonlinearities, we employ a battery of additional tests.

3.2.1 Likelihood ratio tests for non-nested models

First, we consider the likelihood ratio tests of Vuong (1989), Rivers and Vuong (2002), and Calvet and Fisher (2004). Vuong (1989), develops the test statistic:

$$\sum_{t=1}^{T} ln(\frac{f(r_t|R_{t-1},\hat{\theta}_T)}{g(r_t|R_{t-1},\hat{\theta}_T)}) \equiv \sum_{t=1}^{T} \hat{a}_t,$$
(15)

where $R_t = [r_t, r_{t-1}, ..., r_0]$, f and g are probability densities for the models being compared, $\hat{\theta}_T$ is a vector comprised of the estimated parameters for the models, and \hat{a}_t is implicitly defined. The statistic follows $N(0, T\sigma^2)$ under the null hypothesis that the models describe the data equally well. In the basic case of i.i.d. r_t , analyzed in Vuong (1989), σ^2 is just the variance of a_t . In the case of non-i.i.d. observations, Calvet and Fisher (2004) argue that the distribution of the test statistic stays the same with σ^2 now being the heteroskedasticity and autocorelation- (HAC-) adjusted variance of a_t , for example the Newey-West (1987) estimator.

3.2.2 Unconditional moments

It is useful to investigate to what extent the various models are able to generate the unconditional moments observed in the data. Because closed-form solutions for unconditional moments are generally not available for the models that we examine, we use a Monte Carlo methodology to implement these tests. In each Monte Carlo sample, a sequence of observations (of the same length as the historical time series) is generated by randomly drawing error terms from the appropriate conditional distributions using the estimated parameters for each model. Next, the values of variance, skewness, and kurtosis are computed for the generated time series. In the case of the regime-switching models, we first draw the sequence of regimes randomly given the estimated initial distribution of the regimes and the transition probability matrix. Then, conditioning on the regimes, the returns are drawn from the regime distributions. Repeating the procedure 10,000 times yields the null distributions of variance, skewness, and kurtosis under each model. In addition to conducting these tests at the estimated parameters, we also account for parameter uncertainty, by drawing 100,000 different parameter sets from the estimated asymptotic parameter distribution, and generating an artificial time series for each set.

3.2.3 Conditional distribution: quantile shifts

We also examine several conditional quantile tests to determine which models best match the conditional distribution of returns. In particular, we condition on the return in the previous period having been positive or negative. We consider two cases. In the first case, positive and negative simply refer to r_{t-1} being greater or (weakly) less than zero, In the second case *positive* and *negative* are defined as returns that exceed respectively. (fall short) of the unconditional mean of the series plus (minus) one standard deviation. Our sample is sufficiently large to measure these conditional quantiles in the data with reasonable accuracy, and we focus on the quantiles corresponding to the 5th, 10th, 50th, 90th, and 95th percentiles. Specifically, we measure the quantiles based on the entire sample, the quantiles for a restricted sample in which the previous month's return is *negative*, and finally for a restricted sample in which the previous month's return is *positive*. We refer to the differences between negative return and positive return quantiles as quantile shifts. To quantitatively investigate how the various estimated models match the observed quantile shifts, we again use the simulation methodology described above. The simulation procedure yields 10,000 random samples of the same length as our data sample, and for each simulated sample we can compute the quantile shifts under the null of the various models. Finally, we calculate the probability of observing the historical quantile shift under each model. Again, we also conduct this exercise allowing for parameter uncertainty.

3.2.4 Conditional distribution: Engle–Manganelli "hit" test

These tests were developed by Engle and Manganelli (2004) (EM henceforth) to test whether estimates of conditional quantiles under a given model are consistent with the data. EM define the variable hit_t^{pr} as

$$hit_{t+1}^{pr} = I_{r_{t+1} < \widehat{q_t(pr)}} - pr, \tag{16}$$

where $q_t(pr)$ is the model-implied estimate of the conditional pr quantile (e.g. the 1st percentile of the distribution). EM exploit that under correct model specification,

$$E\left[hit_{t+1}^{pr}z_t\right] = 0\tag{17}$$

for any time t measurable vector of instruments z_t , with dimensionality m. For example, if $z_t = 1$, then this test assesses, loosely speaking, whether r_{t+1} falls below the pr^{th} conditional quantile in pr percent of observations, consistent with proper specification. The test statistic,

$$\frac{G'_T V_T^{-1} G_T}{p \left(1 - p\right)},$$
(18)

where $G_T = \sum_{t=1}^{T} \left(hit_{t+1}^{pr} z_t\right)$ and $\widehat{V}_T = E\left[\left(hit_{t+1}^{pr} z_t\right) \left(hit_{t+1}^{pr} z_t\right)'\right]$, converges to a χ^2 distribution with m degrees of freedom under certain conditions.

3.2.5 Modified Jarque-Bera tests

It would be interesting to use all observations to test how well the various models fit the actual distribution in the data rather than focus on a number of quantiles. To this end, we develop a specification test building on the standard Jarque-Bera (1987, JB henceforth) test for normality. We can easily compute the cumulative distribution function of the data under the null of our various models, yielding a set of numbers on the [0,1] interval. We then apply the inverse normal cumulative density function to these numbers. If the model is correctly specified, this transformation should lead to a normally distributed variable. This is true because for a correctly specified model, the cumulative distribution function applied to the data should be distributed as uniform on the [0,1] interval, and, by the inverse probability integral transform, taking the inverse Gaussian distribution function of a uniform distributed random variable should yield a Gaussian random variable. We then simply conduct the standard JB test on these transformed data.

3.3 Out-of-sample tests

To further assess the performance of the various models and the stability of the model parameters, we also conducted model comparisons on an out-of-sample basis. In addition, we explicitly examined how well the various models forecast realized variances. Hansen and Lunde (2005) examine the ability of a large number of GARCH models to forecast realized variances, inter alia, of IBM returns, finding that asymmetry of the conditional distribution is essential. In our analysis, we split the sample into two equal parts (510) monthly observations each): January 1926 – June 1968 (in-sample) is the estimation sample and July 1968-December 2010 (out-sample) is the evaluation period. We then consider the out-of-sample performances for monthly returns in the form of likelihood values and the Calvet – Fisher likelihood ratio tests. For variances, we first compute realized variances using daily return observations (say at month t+1), and compute the Mean Absolute Error (MAE) and Mean Squared Error (MSE) with respect to the conditional variance prediction of various models at time t. In addition, we pit one model relative to another using the standard Diebold and Mariano (2002) test. Note that the Diebold and Mariano test only uses the forecast errors and ignores the underlying model structure and estimation. While we could in principle use more complex statistics that take the model structure and estimation into account, recent research suggests that the Diebold and Mariano test works well even in model-based out-ofsample forecasting comparisons (see Clark and McCracken, 2011; Diebold, 2013).

4 Empirical application: Monthly U.S. Stock returns, 1925–2010

The data we use are monthly log U.S. stock returns including dividends from 1925–2010 from the Center of Research in Securities Prices (CRSP). We first describe the parameter estimates of various models, then present the results of several specification tests, and end with a discussion of news impact curves.

4.1 Model estimation results

4.1.1 Overview of models

We estimate three traditional GARCH models that have been previously proposed:

- 1. the standard Gaussian GARCH (1,1) model, labeled "GARCH" in the table
- 2. the asymmetric GJR model, labeled "GJR–GARCH," with Gaussian innovations
- 3. the asymmetric GJR model assuming a Student's t-distribution for the shock, labeled "TDIST–GJR–GARCH"

We estimate several nested versions of the BEGE–GJR–GARCH model:

- 1. the full-fledged BEGE-GJR model, described in section 2, "Full BEGE–GJR"
- 2. a restricted version that imposes that all p_t and n_t coefficients are identical ($p_0 = n_0$, $\rho_p = \rho_n, \sigma_p = \sigma_n, \phi_p^+ = \phi_n^+, \phi_p^- = \phi_n^-$). Naturally, these restrictions lead to $p_t = n_t$ for all t. Relative to a GARCH(1,1) model, this model introduces conditional non-Gaussianity, but without admitting any non-zero conditional skewness. We estimate symmetric-GARCH and GJR versions of this model, labeled "Symmetric BEGE" and "Symmetric BEGE–GJR" respectively.

- 3. a restricted version with identical scale parameters ($\sigma_p = \sigma_n$) but unrestricted processes for the shape parameters, p_t and n_t , labeled "BEGE–GJR different shapes"
- 4. a restricted version with only identical shape parameters ($p_0 = n_0$, $\rho_p = \rho_n$, $\phi_p^+ = \phi_n^+$, $\phi_p^- = \phi_n^-$) but without imposing equality of σ_p and σ_n , labeled "BEGE–GJR different scales"
- 5. a restricted version where we set $p_t = p_0$. Recall that p_t governs the width of the positive tail, and n_t governs the width of the negative tail. Since stock returns are negatively skewed, fitting negative tail behavior may be more important that positive tail behavior. A BEGE specification with p_t restricted to be constant, and n_t time –varying, could therefore substantially improve parameter identification. We label this model "BEGE-GJR ($p_t = p_0$)."

We also estimated a number of more general BEGE models, which proved not very competitive in model specification tests and are therefore omitted from further discussion. One model generalizes the feedback between $[p_t, n_t]$ and its lag to a VAR(1). Both cross-feedback coefficients are positive, but only the effect of p_t on n_{t+1} is statistically significant. Both the coefficient and its standard error are large. A likelihood ratio tests fails to reject the "full BEGE-GJR" model. Perhaps not surprisingly, given these results, the model is not competitive relative to the best BEGE models in terms of AIC and BIC.

We have also estimated a BEGE model where the conditional mean of the stock return depends on p_t and n_t . We find that p_t is associated with lower returns and n_t is associated with higher returns, but neither coefficient is statistically significant. In particular, the conditional mean specification we estimate is:

$$r_{t+1} = \underbrace{0.0096}_{(0.0025)} - \underbrace{0.96655}_{(0.8587)} \sigma_p^2 p_t + \underbrace{(-0.9665}_{(0.8587)} + \underbrace{1.9427}_{(1.4333)} \sigma_n^2 n_t + u_{t+1}$$

where numbers in brackets are Huber-White standard errors and $\sigma_p^2 p_t$ and $\sigma_n^2 n_t$ are "good" and "bad" variances, respectively. This result is consistent with the extensive literature on the relationship between the conditional variance of stock returns and its conditional mean (starting from the seminal empirical work by French, Schwert and Stambaugh, 1987), where it has been difficult to identify a reliably positive and significant relationship. Splitting the conditional variance into good and bad parts does not resolve the issue. In terms of BIC, the BEGE model with the time-varying conditional mean performs worse than the constant mean BEGE model, so we therefore also exclude it from further testing.

Within the RS class, we consider five different models:

- a two-regime model with the special jump dynamics described in section 2, "2-regime with jump."
- 2. a standard two-regime model with constant mean across regimes, "2-regime"
- 3. a standard three regime model, "3-regime."
- 4. a multifractal model with 4 regimes, "MF-4 regimes"
- 5. a multifractal model with 10 regimes, "MF-10 regimes"

Some of the models that we estimate, particularly those with the highest numbers of parameters, may be difficult to identify using data for returns alone. As a robustness check, we also estimate the full BEGE model using time series data for the realized variance in addition to returns. Realized monthly variances are computed for each period as the sum of intra-period squared daily returns. We assume the following model for the realized variance, $rvar_t$:

$$rvar_t = E_{t-1}rvar_t + \sigma_v \varepsilon_t,\tag{19}$$

where $\varepsilon_t \sim N(0, 1)$ is a Gaussian error term and $E_{t-1}rvar_t$ is the model-dependent conditional variance. Under the BEGE model,

$$E_t r var_{t+1} = \sigma_p^2 p_t + \sigma_n^2 n_t. \tag{20}$$

17

The total log likelihood for these estimations is the sum of the log likelihood for returns and the log likelihood for realized variance. For the Full BEGE–GJR "2-series" model, the Huber– White standard errors are much closer to those based solely on the Hessian, consistent with better identification. Yet, this procedure has the disadvantage that parameter identification is tilted towards fitting variance dynamics as opposed to more extreme tail behavior.

Given that the BEGE model is new to the econometrics literature, and we identify many parameters from one return series, we also assess the small sample properties of our maximum likelihood estimator. Appendix C reports the results of a small scale Monte Carlo experiment on our MLE estimator for the BEGE model (full model, 1 time series). It shows that our sample of 1020 observations seems sufficient to generate unbiased parameter estimates with modest parameter variation.

4.1.2 Selection criteria and parameter estimates

Table 1 shows likelihood values for a variety of different models and their respective AIC and BIC criteria. The models are ranked according to their BIC criterion. As the table indicates, the full BEGE models dominate in terms of AIC and BIC criteria, performing not only better than the standard Gaussian GARCH models and the GJR–GARCH model with an underlying t-distribution, but also better than the regime switching models. Among the standard regime switching models, the two-regime model with jumps performs best, and we restrict attention to that RS model henceforth. The multi-fractal regime switching models perform better than the standard regime switching models however, with the 10 regime model having a slightly better performance than the 4 regime model. We continue to show results for only that model. Within the class of BEGE models, the model with different scales, but otherwise identical p_t and n_t parameters, performs best in terms of the BIC criterion (it is a very parsimonious model), but not in terms of the AIC criterion, where the full BEGE model performs best. The model with a time-invariant p_t is in the top 3 in terms of AIC and BIC and is only beaten by the two best BEGE models, which do feature a time-varying right tail. While this suggests that fitting the left tail is likely relatively more important than fitting the right tail, it also signals that the time-varying right tail remains an important property of the data. The traditional GARCH and GJR–GARCH models perform the worst, but assuming a t-distribution for the shocks improves performance substantially. We also investigate likelihood ratio tests among models within in the same class. Note that full symmetry is rejected for both the GARCH and the BEGE models. Within the class of the BEGE models, likelihood ratio tests reject all simpler models at the 1 percent level compared to the full BEGE–GJR–GARCH specification. For the specification test results of section 4.2, we focus our attention on the best performing models from each class: Gaussian GJR–GARCH, henceforth referred to as "GJR", GJR-GARCH with *t*-distributed shocks; the two full BEGE–GJR–GARCH models (henceforth referred to simply as BEGE and BEGE, 2-series); the two-regime RS model including jumps, and the 10-state multifractal model.

Table 2 reports the parameter estimates for the GJR-GARCH model (column 1), the BEGE model (column 2), the BEGE model with a constant right tail (column 3), and the BEGE model estimated from 2 time series (column 4). Below every parameter estimate are two sets of standard errors; the first line is based on the inverse on the Hessian and the second uses the usual White (1982) standard errors. It is well-known that in well-specified models, these standard errors should be close to one another.

Several well-known features of the data emerge upon inspection of the parameter values in Table 2. First, under the GJR specification, the conditional variance has a relatively high degree of persistence, with ρ_h estimated at 0.85. Moreover, h_t responds positively to squared innovations whether the innovations are positive or negative, as can be seen by the positive estimates for ϕ_h^+ and ϕ_h^- , but the response to negative shocks is about twice as large as that to positive shocks. The time series for raw returns and for h_t are plotted in Figure 2. The large response of volatility to negative shocks is evident, for instance, following the 1987 crash.

Relative to this baseline, the parameter estimates from the BEGE model significantly

refine our description of return dynamics. First, ρ_p is estimated at about 0.91 while ρ_n is estimated at 0.78, indicating that the good-environment volatility variable is significantly more persistent than the bad-environment variable. Although these estimates are not statistically distinct (under the inverse Hessian-based estimate of the parameter covariance matrix) for the 1-series estimates of the model; in the 2-series estimates, the standard errors for these parameters are significantly smaller, and ρ_p and ρ_n are statistically distinct. In terms of responses of volatility to positive versus negative shocks, the BEGE model suggests more intricate return dynamics. The parameter ϕ_p^+ is substantially larger than ϕ_p^- , indicating that good volatility responds to positive shocks more than it does to negative shocks. In contrast, ϕ_n^+ is estimated to be negative (slightly positive) under the 1-series (2-series) estimation, while ϕ_n^- is strongly positive and much larger in magnitude. This indicates that bad volatility, or the negative tail of the return distribution, substantially increases following negative shocks. This, of course, is a feature of the data that has substantial risk-management implications but which standard Gaussian models cannot hope to match. Figure 3 shows the time series patterns of p_t and n_t from the BEGE model. Using the 1987 crash as an example again, that negative shock sharply increases the bad volatility variable, n_t , but it hardly affects p_t at all. This result implies that the negative tail of the return distribution widened following the crash, but the upper tail was less affected. The BEGE model with constant p_t also delivers an asymmetric n_t -process, but less pronounced than in the full model. Strikingly, the Hessian and Huber-White standard errors are now invariably close to one another.

Panel A of Table 3 reports the parameter estimates from the Hamilton-type RS models. We identify the regimes by defining them to be increasing in the innovation variances. As is typically found, the innovation volatilities are very different across regimes. Under the tworegime specification including jumps, the first regime registers a 3.7 percent shock volatility, but the second regime has a 10.7 percent shock volatility. Also typical is the finding that the low-volatility regime is more persistent than the high-volatility regime (see also Ang and Bekaert, 2002). In the models including jumps, note that a transition from the low-volatility to the high-volatility regime is associated with a negative return of 10 percent, whereas a transition from the high variance to the low variance regime entails a positive return of 5 The jump terms imply that the conditional mean in the high-variance regime is percent. higher than in the low-variance regime. In fact, using the estimated transition probabilities, the mean in the high-variance regime is 1.8 percent, but in the low variance regime it is just 0.9 percent. These differences can be contrasted with the overall unconditional mean of 1.10 percent as reported for the two-regime model without jumps. Figure 4 plots smoothed estimates of the probability of being in the high-volatility regime, which are calculated in the usual manner (see Appendix B). High-volatility regimes include the Great Depression, the pre-war period, the first oil shock, the October 1987 crash, the period following September 11, 2001; the 1998 Russia and LTCM crises, and the recent global financial crisis. The relatively low persistence of the high-volatility regime is readily apparent.

Panel B of Table 3 summarizes the parameter estimates for the multifractal models. Compared to Calvet and Fisher (2004), the persistence of the regimes is relatively low (low γ_1). This is largely the consequence of us employing monthly data compared to daily data in Calvet and Fisher (2004). Also note that, in line with the results in Calvet and Fisher (2004), as the number of states increases, the persistence of the states decreases (lower γ_1) and becomes similar across states (*b* closer to 1). Econometrically, this mechanism increases the probability of a rapid transition to and from high volatility states: at any point of time many volatility states are likely to change their values from low to high and vice versa. Economically this captures the arrival of unexpected and short-lived high volatility states. The second graph in Figure 4 illustrates this phenomenon showing the conditional variance implied by the 10 regime multi-fractal model.

4.2 Specification test results

4.2.1 Likelihood ratio tests

In Table 4, Vuong–Fisher–Calvet likelihood ratio tests for non-nested models are reported. In the table, positive (negative) entries indicate that the model listed in the row dominates (underperforms) the model listed in the column. In every case, the BEGE models dominate the competing GARCH and RS models. For the simple Vuong tests, rejections are at the 1 percent level, and the 1-series BEGE model rejects the bivariate BEGE model at the 5 percent level.⁴ For the Calvet–Fisher test, the 1-series BEGE model rejects the RS model with jumps only at the 5 percent level.

4.2.2 Unconditional moments tests

Table 5 tests how well the various models are able to match the unconditional moments of returns observed in the data (see Panel A). Focusing first on panel B, the GJR model performs especially poorly, significantly undershooting the magnitude of unconditional skewness in the data, which is negative, and also undershooting kurtosis. The multifractal model is also rejected with respect to its fit with either moment. No rejections are found for the RS or 1-series BEGE model, but the 2-series BEGE model is narrowly rejected for both unconditional volatility and kurtosis. By conditioning on the obtained parameter estimates and simulating samples of the length of our actual sample, we account for sampling uncertainty, but ignore estimation error in the parameters. While it is typical in the literature to only consider one of the two, we also checked the effect of accommodating both parameter and sampling uncertainty. To do so, we draw 100,000 different parameter sets from the asymptotic distribution generated by the estimation. For each parameter draw, we repeat the bootstrap we did before using the same number of observations as the sample, with just one bootstrap per parameter value. For the GARCH model, we also performed an experiment

⁴Of course, this test only considers the return equation, ignoring any difference in the performance of the two models in terms of matching the realized variance series.

with 1,000,000 draws, but the results do not change by increasing the number of draws further. In Panel C of Table 5, we show the results of this exercise. The inference is essentially unchanged from the inferences we drew from Panel B.

4.2.3 Quantile shifts

Tests regarding the conditional distribution of returns are presented in Tables 6 and 7. Specifically, the tests examine how well the models can replicate shifts in the conditional distribution of returns that occur following positive and negative return shocks. Tests of the changes in the lower tail of the distribution coincide with value-at-risk measures, a popular risk-management tool. In Table 6, we test how well the models fit the change in the distribution of returns following negative and positive return realizations. In the upper portion of the table, the column labeled "sample" reports the estimated difference in various quantiles (down the rows) following negative versus positive return realizations. Note that the differences are economically strong and statistically significant especially for the lower percentiles $(5^{th}, 10^{th}, 25^{th})$. For example, the 5^{th} quantile is 4.25% lower after a negative realization than it is after a positive realization. The top panel of Figure 5 graphically depicts these quantile shifts. The blue squares plot the unconditional distribution of returns. The green triangles plot the distribution of returns following a positive realization in the previous period, and the red triangles plot the distribution following a negative realization. Clearly, the lower tail of the return distribution is more sensitive to recent return realizations (positive and negative) than are the upper tails of the distribution. Also, negative (positive) shocks lead to a wider (narrower) probability distribution for the next period.

Returning to Table 6, the columns to the right show how well the various models match these historical patterns. To implement the test, we draw 10,000 random samples under each model using the parameters reported in Tables 2 and 3. Each sample has length equal to that of our data sample, 1,020 observations. For each random sample, we calculate quantile shifts exactly as we do for the data. Finally, we report what fraction of observed quantile shifts in the random samples are lower than those observed in the sample. If this fraction is very small or very large, we conclude that the model is inconsistent with the sample data for that quantile shift. That is, we can observe rejections at either tail of the distribution. We denote rejections at the 1, 5, and 10 percent levels using one, two, or three asterisks.

The second column from the left reports results for a trivial model in which the conditional distribution at each point is simply equal to the unconditional distribution observed for the sample. This model is strongly rejected using tests at the tails of the distribution. This result indicates that the observed quantile shifts in the sample are very unlikely to be observed if the true underlying conditional distribution is constant. The remaining columns show results for our five key models, including the best GARCH model (with *t*-distributed shocks), the RS model with jumps, and the multifractal model. All of the models suffer some rejections for quantile shifts in the lower portion of the distribution. The GJR model fares the poorest, with strong rejections for the 5th and 10th quantiles, and two additional 10% rejections. The multifractal and jump RS models fail to generate the shifts for the 5th and 10th quantiles, but so does the 2 series BEGE model. The p-values are larger for the BEGE (1-series) model, but it still fails to generate the 10th quantile shift at the 5% level and the 5th and 25th quantile shifts at the 10% level.

Panel A of Table 7 repeats this exercise, but examining quantile shifts following larger (in magnitude) return realizations. Specifically, we now examine return realizations one (unconditional) standard deviation above and below the unconditional mean. In the data, strong quantile shifts are evident at the lower percentiles, with the 5^{th} (10^{th}) quantile being 7.49% (5.04%) lower after a very negative rather than a very positive return realization. In contrast, there is less evidence of large quantile shifts following positive realizations, as shown in the lower portion of the table. These quantile shifts are illustrated in the lower panel of Figure 5, where we also graph the uncoditional quantiles. It is apparent that the large differences between quantiles after extreme negative and positive returns mostly come from quantile shifts relative to the unconditional distribution in the negative tail. In other words, negative returns decrease the skewness of returns in a persistent fashion, whereas there is not much of a change in skewness, following positive returns. This is exactly the type of behavior the BEGE model can match in theory, as increases in p_t increase and increases in n_t decrease skewness.

It is little surprise that an unconditional model fails to fit the large quantile shifts in the left tail of the distribution. The five models that we examine again feature a number of rejections. The T-DIST-GJR model again fares the worst missing the quantile shifts for the four lowest quantiles (5, 10, 25 and 50), but only one of the rejections is at the 1 percent significance level (25^{th} quantile). Perhaps surprisingly, this model also fails to fit the 95th quantile shift. Both the multifractal and BEGE (2 series) model miss the quantile shifts at the 5th, 10th and 25th percentile, with the test rejecting at either the 1% or 5% level. The BEGE model (1 series) and the 2 regime RS model with jumps perform the best. Nevertheless, for the BEGE model two rejections occur at the 5 percent level: quantile shifts at the 25th and 50th percentiles. The 5th and 10th quantile shifts are only rejected at the 10% level. While the fit is thus not perfect, of the few rejections we record for the BEGE model, none is at the 1 percent level. The RS model with jumps only features one 5% rejection (25th quantile) and thus performs slightly better than the BEGE model for this test.

In Panels B of Tables 6 and 7, we seemingly report results that look very similar to those in Panels A. They are the outcome of the experiment described above where we account for parameter uncertainty, by not conditioning on the estimated parameters, but rather drawing them from the estimated asymptotic distribution. The results are similar to what we observe in Panels A, but, not surprisingly, the power to reject is somewhat lower. We will focus the discussion on the shifts from negative to positive shocks for the more extreme shifts. The unconditional model is still largely rejected. The lower quantile shifts still cannot be generated by a GJR or a multifractal model, with rejections largely at the 1% (5%) level for the multifractal (GJR) model. The BEGE 2 series model is not performing that well either though, being rejected at the 5% or 1% level for the lowest quantiles (see also above). This is likely due to fact that the estimation in this model assigns a relatively low weight to the returns time series, where these extreme observations are the most pronounced. The 2 regime jump RS model features the same rejections as in Panel A. However, the BEGE model is only rejected at the 10% level for the 25^{th} quantile and the median. Thus, the evidence against the full BEGE model remains weak, whereas we observe 1% rejections for every other model, except the 2 regime jump model.

4.2.4 Hit tests

To further examine which model provides the most accurate description of the conditional distribution of returns, we turn to the tests of Engle and Manganelli (EM). In doing so, we will focus on the lower portion of the distribution, specifically the 1st and 5th percentiles, which have implications as value-at-risk metrics. Figure 6 plots various conditional quantiles for the T-DIST-GJR model, the multifractal RS model, and the one-series BEGE models (the two-series version looks very similar). Both the GJR and RS models are symmetric and generate symmetric tail behavior, with the peaks and troughs being more extreme for the T-DIST-GJR model. Some non-Gaussian features of the BEGE distribution are readily evident. For instance, the lower quantiles of the distribution have larger magnitudes than do the corresponding upper quantiles. This is equivalent to negative conditional (quantile) skewness.

Armed with the conditional quantiles implied by each model, we proceed to implement the EM tests. For each quantile and model tested, we begin by defining the sequence of hits, hit_{t+1}^{pr} , as described in section 3. We select a small set of instruments for the test. Specifically, we choose

$$z_t = [1, hit_t^{pr}, r_t] \tag{21}$$

so that we are testing that the mean rate of exceedences of the quantile in question is accurate (e.g., the 1st quantile should be exceeded in 99 percent of observations), as well as orthogonality of hit_{t+1}^{pr} to hit_t^{pr} and r_t . The latter two instruments are intuitive, as one would surely prefer a model for which hits are not autocorrelated and also for which hits are not forecastable by lagged returns. We test for orthogonality of the instruments individually. To do so, we calculate the statistic,

$$\frac{G_T' \widehat{V}_T^{-1} G_T}{p \left(1 - p\right)} \xrightarrow{d} \chi_1^2 \tag{22}$$

where $G_T = \sum_{t=1}^{T} (hit_{t+1}^{pr} z_t)$ and $\hat{V}_T = E \left[(hit_{t+1}^{pr} z_t) (hit_{t+1}^{pr} z_t)' \right]$. We compare this statistic to critical values of the standard χ_1^2 distribution. In doing so, we ignore that our test is conducted on an in-sample basis, which, as EM point out, alters the sampling distribution of the test statistic. Our tests are thus informal. We use a measure of the covariance matrix, \hat{V}_T , that is constant across models so that results across models are more comparable.⁵

The top panel of Table 8 shows results for the 1st quantile of the return distribution. The GJR model fails every test, including that based on $z_t = 1$. That is, we can reject that the GJR model-implied 1st percentile is exceeded 99 percent of the time. We also reject that GJR hit errors are orthogonal to lagged values of hit_t^p or lagged returns. The other models perform somewhat better. We do not reject those models for $z_t = 1$, but we reject for the other instruments, at either the 1% or 5% level, except for the BEGE (1 series) model; the BEGE (1 series) model only produces rejections at the 10 percent level. Results for the 5th percentile hit-ratio tests, shown in the lower panel of Table 8, are broadly similar, but now some models are even rejected using the $z_t = 1$ instrument. In contrast, the BEGE models are rejected only for $z_t = r_t$ (at the 5% level). The joint tests of orthogonality to the instruments provided rejections at the 1 percent level for all of the models for both the 1^{st} and 5^{th} percentile hit ratio tests. In sum, the EM tests appear to be challenging for all of the models. However, individually, the BEGE model performs fairly well, and quite a bit better than the competing models that we tested.

⁵In the results reported, we used an estimate of \hat{V}_T that is based on the BEGE 1-series models. For robustness, we tried using \hat{V}_T estimates from all of the models, which yielded similar results.

4.2.5 Modified Jarque-Bera test

In Table 9, we report the results of the modified Jarque-Bera specification test, which uses all observations to test the fit of the conditional distribution with the data. We show the asymptotic *p*-values for the test for our 7 models. The test rejects the GJR-GARCH and multifractal models at the 1% level, with the *p*-value for the T-DIST-GJR-GARCH model also being close to 1%. This is largely because these models place too many observations in the left tail compared to the normal distribution. This is barely surprising as these models display zero skewness. The regime switching model and the BEGE (2 series) model are rejected at the 10% level. We find no evidence against the 1 series BEGE model.

4.2.6 Out-of-sample performance

Tables 10 and 11 show that the BEGE models outperform other model classes out-ofsample. We conduct tests for both returns and variances time series. For returns, the 1 time series BEGE model is the best, while for the variances the 2 time series BEGE model is the best. This is intuitive as the 2 time series BEGE model is estimated using the realized variance time series and thus incorporates variance behavior better. Table 10, Panel A, shows that for returns, the T-DIST-GJR-GARCH model is the third best and in Panel B it also generates the third lowest MAEs and MSEs with respect to predicting realized variances.

Table 11 shows that the BEGE's outperformance is mostly statistically significant. Focusing on returns first, the BEGE (1 series) model is significantly better than all non-BEGE models at the 1% or 5% levels, and it also is better than the 2 series BEGE model. For variances, the BEGE (1 series) model is still significantly better than the other models in all cases but one (multifractal model for MSE), but the rejections are often less strong. However, here the BEGE (2 series) model significantly outperforms the BEGE (1 series) model in terms of MAE, but not in terms of MSE.

4.3 Impact curves

In Figure 7, we report conditional moment impact curves for the GARCH models as inspired by Engle and Ng (1993). That is, the curve describes the relationship between h_t and the past shock, u_{t-1} , holding constant (at unconditional means) all information at time (t-2). The analytic expressions describing the impact of a squared shock represent the derivatives of the conditional variance function with respect to the squared shock and were presented in section 2. For all the panels shown, shocks are represented on the horizontal axes, ranging from minus to positive 20 percentage points, representing the range of return shocks present in the data. On the vertical axes are the responses of various conditional moments to the shocks under the model listed. For instance, the upper-left panel shows the response of conditional variance under the GJR model.

As expected, negative shocks are associated with a larger increase in conditional variance than are positive shocks of the same magnitude. The effect is more pronounced under the BEGE model, shown to the right, which suggests that conditional variance is little affected by positive shocks. The second row of panels plot the responses of conditional scaled skewness to return innovations. For the GJR, the effect is identically zero, an artifact of the assumed conditional Gaussianity. The BEGE model, in contrast, suggests an increase in (the generally negative) conditional scaled skewness of returns, which is much stronger, following a positive shock. Only at very large positive shocks does the skewness become positive. The third row shows the responses of conditional scaled kurtosis. Again for the standard GJR model, these are zero, by definition, whereas the BEGE model suggests that conditional scaled kurtosis is generally decreasing the larger the shock is in magnitude, regardless of sign.

It is also instructive to examine the responses of unscaled skewness and kurtosis, to help discern the effects on the third and fourth moments from effects on volatility. These results are shown in the bottom two panels of the figure. For unscaled skewness, the BEGE model generates sharp drops for negative shocks (as the negatively skewed component of the BEGE distribution becomes more important) but increases in skewness for positive shocks, although these are less steep. Therefore, the reason that scaled skewness actually increases with negative shocks is that volatility (cubed) goes up by even more than the third moment decreases when negative shocks occur. For unscaled kurtosis, we obtain a flat pattern for positive shocks, and a rather sharp increase for negative shocks. Since actual kurtosis falls with both positive and negative shocks, it must be that volatility effects dominate. All in all, the BEGE model suggests a rich pattern of news impact curves for higher-order moments, which conditional Gaussian models cannot match. The quantile test results in the previous section show that these patterns are necessary to help explain conditional quantile shifts in the data. We suspect that such patterns may also be important for explaining option price dynamics.

5 Conclusion

We have introduced an extension of standard asymmetric volatility models in the GARCH class that admits conditional non-Gaussianities in a tractable fashion. Our bad environment–good environment (BEGE) model features two gamma-distributed shocks that imply a conditional shock distribution with time-varying heteroskedasticity, skewness and kurtosis. Our model features nontrivial news impact curves for higher-order moments. In an empirical application to monthly U.S. stock returns, the model outperforms standard asymmetric GARCH and regime-switching models along several dimensions.

In this application, we have embedded the BEGE structure in a GARCH framework, which provides for easy estimation since the factors driving conditional volatility and the conditional distribution of returns are essentially observable conditional on the model parameters and the sequence of returns. We believe a number of interesting applications, for example, to risk management, are therefore possible and very tractable. Useful applications in macroeconomics are conceivable as well. While in financial returns the BEGE framework helps fit asymmetries on the downside, for inflation data, the ability of the model to generate positive conditional skewness could help model inflation scares – periods in which very high inflation becomes more probable.

Of course, the BEGE model is relatively parsimonious, and may miss some important features of economic data. For instance, volatility shocks that are imperfectly correlated with returns help models fit option prices. The option pricing literature therefore typically relies on stochastic volatility models rather than GARCH-type models. It is feasible to create a version of the BEGE framework where the BEGE factors have independent shocks. An additional advantage of the BEGE framework in this regard is tractability, in that riskneutral moments, have closed form solutions in a BEGE framework with independent latent factors.

Appendices

A Evaluating the BEGE density

Random variables with the BEGE density take the form $x = \omega_p - \omega_n$, where x is the BEGE-distributed variable, and ω_p and ω_n are demeaned gamma distributions with parameter vectors (shape and scale) of $(k_{\omega_p}, \theta_{\omega_p})$ and $(k_{\omega_n}, \theta_{\omega_n})$, respectively. We seek an expression for the density of x, $f_{BEGE}(x)$. To begin, using Bayes's rule,

$$f_{BEGE}(x) = \int_{\omega_p} f_x(x|\omega_p) f(\omega_p) d\omega_p$$
$$= \int_{\omega_p} f_{\omega_n}(\omega_p - x) f(\omega_p) d\omega_p$$

Now, let us specialize to the demeaned gamma distribution for ω_p and ω_n :

$$f_{\omega_p}(\omega_p) = \frac{\left(\omega_p - \underline{\omega_p}\right)^{k_{\omega_p} - 1} \exp\left(-\left(\omega_p - \underline{\omega_p}\right)/\theta_{\omega_p}\right)}{\Gamma\left(k_{\omega_p}\right) \theta_{\omega_p}^{k_{\omega_p}}} \text{ for } \omega_p > \underline{\omega_p}$$
$$f_{\omega_n}(\omega_n) = \frac{\left(\omega_n - \underline{\omega_n}\right)^{k_{\omega_n} - 1} \exp\left(-\left(\omega_n - \underline{\omega_n}\right)/\theta_{\omega_n}\right)}{\Gamma\left(k_{\omega_n}\right) \theta_{\omega_n}^{k_{\omega_n}}} \text{ for } \omega_n > \underline{\omega_n}$$

where $\underline{\omega_p} = -k_{\omega_p}\theta_{\omega_p}$ and $\underline{\omega_n} = -k_{\omega_n}\theta_{\omega_n}$. The upper limit of integration in the expression for $f_{BEGE}(x)$ is infinity. The lower limit for ω_p must satisfy both $\omega_p > \underline{\omega_p}$ and $(\omega_p - x) > \underline{\omega_n}$ or $\omega_p > x + \underline{\omega_n}$. Define $\overline{\omega_p}$ as $max\left(\underline{\omega_p}, x + \underline{\omega_n}\right)$, then,

$$f_{BEGE}(x) = \int_{\omega_p = \overline{\omega_p}}^{\infty} f_{\omega_p}(\omega_p) f_{\omega_n}(\omega_p - x) d\omega_p$$

= $A_1 A_2 A_3 \int_{\omega_p = \overline{\omega_p}}^{\infty} (\omega_p - \underline{\omega_p})^{k_{\omega_p} - 1} (\omega_p - x - \underline{\omega_n})^{k_{\omega_n} - 1} \exp(-\omega_p \widetilde{\theta}) d\omega_p$

where $A_1 = \frac{1}{\Gamma(k_{\omega_p})\theta_{\omega_p}^{k_{\omega_p}}} \frac{1}{\Gamma(k_{\omega_n})\theta_{\omega_n}^{k_{\omega_n}}}$, $A_2 = \exp\left(\frac{\omega_p}{\theta_{\omega_p}} + \frac{\omega_n}{\theta_{\omega_n}}\right)$, $A_3 = \exp\left(x/\theta_{\omega_n}\right)$ and $\tilde{\theta} = (1/\theta_{\omega_p} + 1/\theta_{\omega_n})$. There are known solutions for integrals of the form

$$W_{k,m}(z) = \frac{\exp(-z/2) z^k}{\Gamma(\frac{1}{2} - k + m)} \int_{t=0}^{\infty} t^{(-k-1/2+m)} \left(1 + \frac{t}{z}\right)^{(k-1/2+m)} \exp(-t) dt$$

where $W_{k,m}(z)$ is the Whittaker W function. To use this result, we use a change of variables, defining, $\widetilde{\omega_p} = \omega_p \widetilde{\theta} - \overline{\omega_p} \widetilde{\theta}$. Then, $\omega_p = \frac{1}{\widetilde{\theta}} \widetilde{\omega_p} + \overline{\omega_p}$. Substituting,

$$f_{BEGE}(x) = A_1 A_2 A_3 \int_{\widetilde{\omega_p}=0}^{\infty} \left(\frac{1}{\widetilde{\theta}}\widetilde{\omega_p} + \overline{\omega_p} - \underline{\omega_p}\right)^{k_{\omega_p}-1} \left(\frac{1}{\widetilde{\theta}}\widetilde{\omega_p} + \overline{\omega_p} - x - \underline{\omega_n}\right)^{k_{\omega_n}-1} \exp\left(-\widetilde{\omega_p} - \overline{\omega_p}\widetilde{\theta}\right) \frac{1}{\widetilde{\theta}} d\widetilde{\omega_p}$$

This integral simplifies for the specific cases at hand. First, if $\overline{\omega_p} = \omega_p$. Then the integral becomes

$$f_{BEGE}(x) = A_1 A_2 A_3 A_4 \cdot \int_{\widetilde{\omega}_p=0}^{\infty} \left(\frac{1}{\widetilde{\theta}}\widetilde{\omega_p}\right)^{k_{\omega_p}-1} \left(\frac{1}{\widetilde{\theta}}\widetilde{\omega_p} + \underline{\omega_p} - x - \underline{\omega_n}\right)^{k_{\omega_n}-1} \exp\left(-\widetilde{\omega_p}\right) \frac{1}{\widetilde{\theta}} d\widetilde{\omega_p}$$
$$= A_1 A_2 A_3 A_4 A_5 A_6 \cdot \int_{\widetilde{\omega}_p=0}^{\infty} \widetilde{\omega_p}^{k_{\omega_p}-1} \left(\frac{\widetilde{\omega_p}}{\widetilde{\theta}\left(\underline{\omega_p} - x - \underline{\omega_n}\right)} + 1\right)^{k_{\omega_n}-1} \exp\left(-\widetilde{\omega_p}\right) d\widetilde{\omega_p}$$

where $A_4 = \exp\left(-\underline{\omega_p}\widetilde{\theta}\right), A_5 = \left(\frac{1}{\widetilde{\theta}}\right)^{k_{\omega_p}}, A_6 = \left(\underline{\omega_p} - x - \underline{\omega_n}\right)^{k_{\omega_n} - 1}$. The integral term is now isomorphic to that in the expression for $W_{k,m}(z)$ above. Substitution and algebra yields the final expression,

$$f_{BEGE}(x) = A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 W_{k,m}(z)$$

where $A_7 = \Gamma\left(\frac{1}{2} - k + m\right), A_8(z) = \exp\left(\frac{z}{2}\right) z^{-k}, z = \left(\underline{\omega_p} - x - \underline{\omega_n}\right) \widetilde{\theta}, m = \frac{1}{2} \left(k_{\omega_n} + k_{\omega_p} - 1\right),$ and $k = \frac{1}{2} (k_{\omega_n} - k_{\omega_p})$. In the second case, $\overline{\omega_p} = x + \underline{\omega_n}$, and similar calculations lead to

$$f_{BEGE}(x) = A_1 A_2 A_3 A'_4 A'_5 A'_6 A'_7 A'_8 W_{k',m'}(z')$$

where $A'_4 = \exp\left(-\left(x+\underline{\omega_n}\right)\widetilde{\theta}\right), A'_5 = \left(\frac{1}{\widetilde{\theta}}\right)^{k\omega_n}, A'_6 = \left(x+\underline{\omega_n}-\underline{\omega_p}\right)^{k\omega_p-1}, A'_7 = \Gamma\left(\frac{1}{2}-k'+m'\right), A'_8 = \exp\left(z'/2\right)z'^{-k}, z'=-z., m'=m, k'=-k.$

B Regime-switching model specification and estimation

We estimate three regime-switching models: benchmark models with two and three regimes as well as a jump model. The log-likelihood function for this model is:

$$L(\{y_1, y_2, ..., y_T\}; \theta) = \sum_{t=1}^T \log f(y_t | Y_{t-1}; \theta),$$

where Y_t is the history of observations up to time t and f is the probability density function. To evaluate the likelihood, note that:

$$f(y_t|Y_{t-1};\Theta) = \sum_{s} p(s_t|Y_{t-1})f(y_t|Y_{t-1},s),$$

where $p(s_t|Y_{t-1})$ is the probability of the regime s at time t conditioned on the observations up to time t and can be computed as:

$$p(s_{t}|Y_{t-1}) = \sum_{s'_{t-1}} P(s_{t}|s'_{t-1}) p(s'_{t-1}|Y_{t-1})$$

$$= \sum_{s'_{t-1}} P(s_{t}|s'_{t-1}) \frac{p(s'_{t-1}|Y_{t-2}) f(y_{t-1}|Y_{t-2}, s'_{t-1})}{\sum_{s''_{t-1}} p(s''_{t-1}|Y_{t-2}) f(y_{t-1}|Y_{t-2}, s''_{t-1})}$$

Each observation is assumed to follow:

$$r_t = \mu + \sigma(s_t)e_t,$$

where e_t is i.i.d. standard normal, so $y_t = r_t$. We consider the models with 2 and 3 regimes. The parameters to estimate are the mean return (μ) , the standard deviations of the regime distributions (σ_i) , and the transition probability matrix $(P(s_{t+1} = i | s_t = j))$. The prior distribution over regimes $p(s_0)$ is set equal to the unconditional probabilities.

Formally, the estimation is done by numerically maximizing the likelihood function. In order to avoid local maxima, we use different initial parameters for the optimization algorithm. We also check the stability of the final solution by randomly deviating from the estimates, and verifying that the routine returns to the provisional maxima.

In the model allowing for two regimes and jumps, each observation is assumed to follow

$$r_t = \mu_0 + \mu_{12}J_{12,t} + \mu_{21}J_{21,t} + \sigma(s_t)e_t,$$

where e_t is again i.i.d. standard normal and J is a dummy variable specified as

$$J_{12,t} = \begin{cases} 1 & \text{if } s_{t-1} = 1 \text{ and } s_t = 2, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$J_{21,t} = \begin{cases} 1 & \text{if } s_{t-1} = 2 \text{ and } s_t = 1, \\ 0 & \text{otherwise} \end{cases}$$

For the RS models including jumps, the likelihood function is more complex than in the benchmark case:

$$f(y_t|Y_{t-1}, s) \sim \begin{cases} N(\mu_0, \sigma_i^2) & \text{if } s_{t-1} = s_t = i \\ N(\mu_0 + \mu_{ji}, \sigma_i^2) & \text{if } s_{t-1} = j \neq i = s_t \end{cases}$$

This model can be recast as a regime switching model with 4 states, after which the usual likelihood construction can proceed.

The likelihood function for the multi-fractal model can be constructed in an analogous fashion.

C Small sample properties

Although we have over 1,000 return observations, the BEGE features two shocks, and 11 parameters. To verify that our MLE results are reliable, we conduct a small scale Monte Carlo experiment on our MLE estimator for the BEGE model (full model, 1 time series), following these steps:

1) We simulate 100 samples with the same number of observations (1020) as the actual sample at the estimated parameters.

- 2) For each of these 100 samples, we re-estimate the parameters.
- 3) We examine bias and sampling variation of these estimates.

Parameter	True value	Mean Monte-Carlo estimates	Standard error of Monte-Carlo estimates
μ	0.0100	0.0105	0.0012
p_0	0.0891	0.0877	0.0136
σ_p	0.0072	0.0074	0.0008
ρ_p	0.9099	0.9052	0.0138
$\dot{n_0}$	0.2204	0.2180	0.0276
q_n	0.0282	0.0279	0.0026
ρ_n	0.7823	0.7799	0.0317
ϕ_p^+	0.0964	0.0997	0.0124
ϕ_n^r	0.0128	0.0131	0.0019
ϕ_n^+	-0.0790	-0.0807	0.0119
ϕ_n^{-}	0.3549	0.3549	0.0448

The results are as follows:

First of all, the estimates are clearly virtually unbiased. Second, the parameter variation is typically small. It is relatively largest for p_0 , n_0 and ϕ_n^- . Yet, none of our key findings (relative size or persistence of p and n shocks) would be over-turned in any of these alternative estimations. We conclude that identification is not problematic in this sample.

References

- Ang, A., and G. Bekaert, 2002, "International Asset Allocation with Regime Shifts." Review of Financial Studies, 15, 4, pp. 1137-1187.
- Bollerslev, T., 1986, "Generalized Autoregressive Conditional Heteroskedasticity," Journal of Econometrics 31, pp. 307–28.
- Bollerslev, T., 1987, "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pp 542–47.
- Broadie, M., Chernov, M., and M. Johannes, 2009, "Understanding Index Option Returns," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pp 4493–4529.
- Calvet, L. and A. Fisher, 2001, "Forecasting Multifractal Volatility", Journal of Econometrics, 1, pp 27-58.
- Calvet, L. and A. Fisher, 2004, "How to Forecast Long-Run Volatility: Regime-Switching and Estimation of Multifractal Processes," Journal of Financial Econometrics, 2, pp.49–83.
- Calvet, L. and A. Fisher, 2008, "Multifrequency Jump-Diffusions", Journal of Mathematical Economics, Volume 44, pp. 207-226.
- Clark, T.E. and M. W. McCracken, 2011, "Nested Forecast Model Comparisons: A New Approach to Testing Equal Accuracy", Working paper, Federal Reserve Banks of Cleveland and St. Louis.
- Diebold, F.X., and R.S. Mariano, 1995, Comparing Predictive Accuracy", Journal of Business and Economic Statistics, 13, 253-263.
- Diebold, F. X., 2013, "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests", Working paper, University of Pennsylvania.
- Engle, R.F., 1982, "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pp 987–1007.
- Engle R.F. and S. Manganelli, 2004, "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pp 367–381.
- Engle, R.F. and V. Ng, 1993, "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pp 1749–78.
- Evans, M. and P. Wachtel, 1993, "Inflation Regimes and the Sources of Inflation Uncertainty," Journal of Money, Credit and Banking, 25, 3, pp. 475–511.
- French, K. R., G. W. Schwert, and R. F. Stambaugh, 1987, "Expected Stock Returns and Volatility", Journal of Financial Economics, 19, pp. 3-29.
- French, M. and D. Sichel, 1993, "Cyclical Patterns in the Variance of Economic Activity," Journal of Economic and Business Statistics, 11, 1, pp. 113–119.

- Glosten, L. R, Jagannathan, R. and D. Runkle, 1993, "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pp 1779–1801.
- Hamilton, J., 1989, "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pp 357–84.
- Hamilton, J. and R. Susmel, 1994, "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pp 307–333.
- Hansen, L., 1982, "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Vol. 50, No. 4, pp. 1029–1054.
- Hansen, B.E., and S. Lee, 1994, "Asymptotic Theory for the GARCH(1,1) Quasi-maximum Likelihood Estimator", Econometric Theory, Volume 10, pp. 29-52.
- Hansen, P. and A. Lunde, 2005, "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?", Journal of Applied Economics, Volume 20, pp. 873–889.
- Hsieh, D., 1989, "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," Journal of Business, Vol. 62, 3, pp.339–368.
- Huber, P., 1967, "The Behavior of Maximum Likelihood Estimates Under Nonstandard Conditions," Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 221-233.
- Jarque, C.M., and A.K. Bera, 1987, "A Test for Normality of Observations and Regression Residuals", International Statistical Review, Volume 2, pp. 163–172.
- Kim, C.J., 1994, "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pp 1–22.
- Kim, T.H. and H. White, 2004, "On more robust estimation of skewness and kurtosis,". Finance Research Letters 1, pp.56-73.
- Lumsdaine, R.L., 1996, "Consistency and Asymptotic Normality of the quasi-Maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Vol. 64(3), pp. 575-596.
- Mayfield, E.S., 2004, "Estimating the Market Risk Premium," Journal of Financial Economics 73, no. 3, pp. 465–496.
- Mittnik, S., Paotella, M.S., and S.T. Rachev, 2002, "Stationarity of Stable Power-GARCH Processes," Journal of Econometrics, Vol. 106(1), pp. 97-107.
- Nelson, D. B., 1991, "Conditional heteroskedasticity in asset returns: A new approach", Econometrica 59, pp. 347–370.
- Newey, W. and K. West, 1987, "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, Vol. 55(3), pp. 703–08.
- Poon, S.H. and C. Granger, 2003, "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pp. 478– 539.

- Rivers, D. and Q. Vuong, 2002, "Model selection tests for nonlinear dynamic models," The Econometrics Journal, Vol. 5, 1, pp. 1–39.
- Timmermann, A., 2000, "Moments of Markov switching models," Journal of Econometrics, Elsevier, vol. 96(1), pp. 75–111.
- Vuong, Q.H., 1989, "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Vol. 57, 2, pp. 307–33.
- White, H., 1982, "Maximum Likelihood Estimation of Misspecified Models," Econometrica, 50, pp. 1–26.

Model	# parameters	Log-likelihood	AIC	BIC
BEGE, different scales	7	1716.54	-3419.08	-3384.59
Full BEGE–GJR	11	1724.26	-3426.53	-3372.32
BEGE-GJR, constant right tail	8	1711.82	-3407.64	-3368.22
TDIST-GJR-GARCH	6	1703.60	-3395.20	-3365.63
BEGE–GJR, different shapes	10	1716.67	-3413.34	-3364.07
10 states binomial multifractal	5	1697.56	-3385.12	-3360.48
4 states binomial multifractal	5	1696.83	-3383.66	-3359.02
Symmetric BEGE–GJR	6	1695.50	-3379.00	-3349.43
Symmetric BEGE	5	1690.27	-3370.55	-3345.91
Full BEGE–GJR, 2-series	11	1709.75	-3397.50	-3343.30
2-regime w/jump	8	1692.74	-3369.48	-3330.06
2-regime	6	1682.93	-3353.87	-3324.30
3-regime	12	1698.69	-3373.37	-3314.24
GARCH	4	1668.72	-3329.44	-3309.73
GJR–GARCH	5	1671.77	-3330.54	-3308.90

Table 1: Model performance comparison

Model	GJR	BEGE	BEGE, $p_t = p_0$	BEGE, 2-series
μ	0.0089	0.0100	0.0106	0.0115
	(0.0013)	(0.0013)	(0.0011)	(0.0010)
	(0.0013)	(0.0015)	(0.0011)	(0.0010)
p_{0}/h_{0}	0.00008	0.0890	3.0966	0.1728
	(0.00003)	(0.0917)	(0.3407)	(0.0152)
	(0.00005)	(0.0070)	(0.2838)	(0.0140)
n_0		0.2204	0.1789	0.4112
		(0.0839)	(0.0186)	(0.0410)
		(0.0111)	(0.0192)	(0.0490)
$ ho_h/ ho_p$	0.8516	0.9099		0.8774
	(0.0195)	(0.0855)		(0.0083)
	(0.0313)	(0.0009)		(0.0037)
ρ_n		0.7822	0.8581	0.6879
		(0.1200)	(0.0074)	(0.0260)
		(0.0086)	(0.0075)	(0.0436)
σ_p		0.0072	0.0115	0.0101
		(0.0008)	(0.0009)	(0.0007)
		(0.0008)	(0.0007)	(0.0004)
σ_n		0.02823	0.0220	0.0224
		(0.0092)	(0.0019)	(0.0017)
		(0.0087)	(0.0023)	(0.0021)
ϕ_h^+/ϕ_p^+	0.0800	0.0964		0.1156
	(0.0283)	(0.0440)		(0.0081)
	(0.0404)	(0.0426)		(0.0054)
ϕ_h^-/ϕ_p^-	0.1563	0.0128		-0.0116
	(0.0283)	(0.0125)		(0.0033)
	(0.0431)	(0.0139)		(0.0029)
ϕ_n^+		-0.0789	0.0002	0.0939
		(0.0400)	(0.0159)	(0.0264)
		(0.0524)	(0.0178)	(0.0385)
ϕ_n^-		0.3548	0.2439	0.4234
		(0.0473)	(0.0304)	(0.0490)
		(0.0901)	(0.0246)	(0.0612)
σ_v				0.0040
				(0.0001)
				(0.0001)

Table 2: Parameter estimates for GARCH models

For the 2-series case, the monthly realized variances are computed as the sum of squared daily realized logarithmic returns. Asymptotic standard errors are in parentheses. The first standard errors are inverse Hessian standard errors. The second series of standard errors are of the Huber–White sandwich type.

	Panel A: Hamilton-type models				
Model	2-regime	3-regime	2-regime w/jump		
μ	0.0110	0.0111	0.0113		
	(0.0014)	(0.0013)	(0.0013)		
μ_{lh}	-	-	-0.1048		
			(0.0217)		
μ_{hl}	-	-	0.05302		
			(0.0104)		
σ_{low}	0.0375	0.0303	0.0371		
	(0.0012)	(0.0051)	(0.0012)		
σ_{middle}	-	0.0474	-		
		(0.0091)			
σ_{high}	0.1098	0.1237	0.1069		
5	(0.0104)	(0.0190)	(0.0102)		
$P(s_{t+1} = l s_t = l)$	0.9834	0.9678	0.9806		
	(0.0060)	(0.0519)	(0.0059)		
$P(s_{t+1} = m s_t = l)$	-	0.0322	-		
		(0.0170)			
$P(s_{t+1} = m s_t = m)$	-	0.9551	-		
		(0.0325)			
$P(s_{t+1} = h s_t = m)$	-	0.0185	-		
		(0.0256)			
$P(s_{t+1} = m s_t = h)$	-	0.0612	-		
		(0.0607)			
$P(s_{t+1} = h s_t = h)$	0.9019	0.9300	0.8785		
	(0.0362)	(0.0440)	(0.0362)		
F	Panel B: Ca	lvet-Fisher-	type models		
Model	4 states	10 states			
$-\mu$	0.0115	0.0116			
	(0.0013)	(0.0013)			
m_0	1.4381	1.2767			
	(0.0252)	(0.0317)			
σ	0.0665	0.0551			
	(0.0046)	(0.0058)			
γ_1	0.0114	0.0088			
	(0.0064)	(0.0079)			
b	1.8900	1.0002			
	(0.2654)	(0.1844)			

Table 3: Parameter estimates for regime-switching models

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. The asymptotic Huber-White standard errors are in parentheses. For the Calvet-Fisher type models, μ is the unconditional mean of returns, σ is the unconditional standard deviation of returns, $\frac{m_0}{2-m_0}$ is the ratio of high to low volatility in each state, and $1-(1-\gamma_1)^{b^{i-1}}$ is the probability that the state i will shift from a low volatility regime to a high volatility regime and vice versa.

Vuong (1989) t-test							
Model 1/Model 2	BEGE, 2 series	GJR	T-DIST-GJR	2 regime w/ jump	Multifractal		
BEGE, 1 series	2.5016^{**}	3.0710***	2.8489***	3.1426***	3.3369***		
BEGE, 2 series	-	2.5242^{**}	1.2640	1.9776^{**}	1.9646^{**}		
GJR	-2.5242**	-	-2.3243***	-1.0577	-1.7860*		
T-DIST-GJR	-1.2640	2.3243^{***}	-	1.1824	1.4209		
2 regime w/jump	-1.9776**	1.0577	-1.1824	-	-0.5361		
		Fisher-Calve	t (2004) <i>t</i> -test				
Model 1/Model 2	BEGE, 2 series	GJR	T-DIST-GJR	2 regime w/jump	Multifractal		
BEGE, 1 series	2.7407^{***}	2.9411***	2.8725^{***}	2.4281**	3.5310^{***}		
BEGE, 2 series	-	2.2915**	1.0750	1.5006	2.0407^{**}		
GJR	-2.2915**	-	-2.1604**	-0.8999	-1.6211		
T-DIST-GJR	-1.0750	2.1604^{**}	-	1.1824	1.2454		
$2~{\rm regime}~{\rm w/jump}$	-1.5006	0.8999	-0.8762	-	-0.4306		

Table 4: Likelihood ratio tests for non-nested models

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. A positive number means that the model listed in the row is better than the model listed in the column, and a negative number means that the model listed in the row is worse than the model listed in the column. For the BEGE models estimated from both returns and variance time series, the likelihood is computed only for the time series of returns. The multifractal model is a 10 regime multifractal model. In the Calvet–Fisher tests, the HAC-adjusted variance estimator is the Newey–West (1987) estimator with 12 lags. The asterisks, *,**, and *** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

Panel A: Historical sample estimates						
	Standard deviation	Skewness	Excess kurtosis			
	0.0545	-0.5742	6.6134			
Panel B:	Not controlling for pa	rameter unc	ertainty			
CDF v	value from 10,000 sam	ples Monte (Carlo			
Model	Standard deviation	Skewness	Excess kurtosis			
GJR	0.7104	0.0086**	0.9812**			
T-DIST-GJR	0.9753^{**}	0.0319^{*}	0.9293			
2 regime w/jump	0.5422	0.2903	0.6994			
Multifractal	0.5934	0.0129^{**}	0.9801^{**}			
BEGE	0.8424	0.6994	0.9481			
BEGE, 2 series	0.9554^{*}	0.5389	0.9704^{*}			
Panel C	C: Controlling for para	meter uncer	tainty			
CDF va	alue from 100,000 sam	ples Monte	Carlo			
Model	Standard deviation	Skewnesss	Excess kurtosis			
GJR	0.6296	0.0120**	0.9580*			
T-DIST-GJR	0.8728	0.0326^{*}	0.9101			
2 regime w/jump	0.5114	0.3021	0.8368			
Multifractal	0.5763	0.0208^{**}	0.9594^{*}			
BEGE	0.6127	0.5925	0.9319			
BEGE, 2 series	0.9547^{*}	0.5193	0.9667^{*}			

Table 5: Unconditional moments test

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. In panel B, in each Monte Carlo sample the time series of 1,020 observations (the same length as the historical time series) is generated by randomly drawing error terms and using the estimated parameters for each model. Next, the values of variance, skewness, and kurtosis are computed for that generated time series. The reported cumulative distribution function (CDF) values are probabilities that the value less than or equal to the historical value is observed under the simulated distribution. Panel C is similar to panel B except in each Monte Carlo sample the parameters of the model are also sampled from their asymptotic maximum likelihood distributions. The asterisks, *,**, and *** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

Panel A: Not controlling for parameter uncertainty									
			CDF value from 10,000 samples Monte Carlo						
	Sample	Unc	T-DIST-GJR	2-regime w/jump	Multifractal	BEGE	BEGE,2 series		
$Q_{5}^{n} - Q_{5}^{p}$	-0.0425	0.0002***	0.0006^{***}	0.0200**	0.0012^{***}	0.0265^{*}	0.0077^{**}		
$Q_{10}^n - Q_{10}^p$	-0.0328	0.0000***	0.0002^{***}	0.0001^{***}	0.0001^{***}	0.0072^{**}	0.0026^{***}		
$Q_{25}^n - Q_{25}^p$	-0.0092	0.0112**	0.0351^{*}	0.0184^{**}	0.0600	0.1472	0.1088		
$Q_{50}^n - Q_{50}^p$	-0.0049	0.0579	0.0469^{*}	0.0540	0.0681	0.0365^{*}	0.0364^{*}		
$Q_{75}^n - Q_{75}^p$	0.0031	0.8116	0.5764	0.6240	0.5634	0.2961	0.3551		
$Q_{90}^n - Q_{90}^p$	0.0104	0.9958***	0.8258	0.8350	0.8038	0.6404	0.7321		
$Q_{95}^n - Q_{95}^p$	0.0178	0.9938***	0.8995	0.8390	0.8759	0.7970	0.8829		
		Pa	anel B: Controll	ing for parameter ur	ncertainty				
			CDF	value from 100,000 s	samples Monte	Carlo			
$Q_{5}^{n} - Q_{5}^{p}$	-0.0425	0.0002***	0.0120**	0.0196^{**}	0.0009^{***}	0.0527	0.0082**		
$Q_{10}^n - Q_{10}^p$	-0.0328	0.0000***	0.0081^{**}	0.0017^{***}	0.0001^{***}	0.0350^{*}	0.0025^{***}		
$Q_{25}^n - Q_{25}^p$	-0.0092	0.0112**	0.0474^{*}	0.0248^{**}	0.0478^{*}	0.1761	0.1102		
$Q_{50}^n - Q_{50}^p$	-0.0049	0.0579	0.0585	0.0578	0.0497^{*}	0.0535	0.0311^{*}		
$Q_{75}^n - Q_{75}^p$	0.0031	0.8116	0.5493	0.6260	0.5740	0.2887	0.3570		
$Q_{90}^n - Q_{90}^p$	0.0104	0.9958***	0.7978	0.8268	0.8151	0.6038	0.7400		
$Q_{95}^n - Q_{95}^p$	0.0178	0.9938***	0.8698	0.8090	0.8830	0.7527	0.8755		

Table 6: Quantile shift test 1

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. Q_i^n is the i^{th} percentile of the r_t distribution conditioning on $r_{t-1} < 0$. Q_i^p is the i^{th} percentile of the r_t distribution conditioning on $r_{t-1} \ge 0$. In panel A, in each Monte Carlo sample the time series of 1,020 observations (the same length as the historical time series) was generated by randomly drawing the errors and using the optimal parameters for each model. Next, the values of $Q_i^n - Q_i^p$ were computed for that generated time series. Repeating the procedure 10,000 times yielded the null distributions of $Q_i^n - Q_i^p$ under each model. The reported cumulative distribution function (CDF) values are probabilities that the value less or equal to the historical value is observed under the simulated distribution. Panel B is similar to panel A except in each Monte Carlo sample the parameters of the model are also sampled from their asymptotic maximum likelihood distributions. Unc refers to the case where the time series was formed by randomly sampling (with replacement) historical monthly returns. The asterisks, *,**, and *** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

Panel A: Not controlling for parameter uncertainty										
			CDF value from 10,000 samples Monte Carlo							
	Sample	Unc	T-DIST-GJR	2-regime w/jump	Multifractal	BEGE	BEGE,2 series			
$Q_5^n - Q_5^p$	-0.0749	0.0026***	0.0320*	0.0441*	0.0057**	0.0288^{*}	0.0103**			
$Q_{10}^n - Q_{10}^p$	-0.0504	0.0015***	0.0148^{**}	0.0384^{*}	0.0044^{***}	0.0373^{*}	0.0118^{**}			
$Q_{25}^n - Q_{25}^p$	-0.0379	0.0001***	0.0018^{***}	0.0057^{**}	0.0029^{***}	0.0057^{**}	0.0035^{***}			
$Q_{50}^n - Q_{50}^p$	-0.0150	0.0133**	0.0149^{**}	0.0340^{*}	0.0527	0.0214^{**}	0.0171^{**}			
$Q_{75}^n - Q_{75}^p$	0.0062	0.7916	0.5533	0.5630	0.7364	0.4156	0.5346			
$Q_{90}^n - Q_{90}^p$	0.0138	0.9481	0.3818	0.5610	0.8090	0.6084	0.7498			
$Q_{95}^n - Q_{95}^p$	0.0279	0.9662^{*}	0.9893^{**}	0.6940	0.8880	0.8299	0.9130			
		Pa	anel B: Controll	ing for parameter ur	ncertainty					
			CDF	value from 100,000 s	samples Monte	Carlo				
$Q_5^n - Q_5^p$	-0.0749	0.0026***	0.0223**	0.0364^{*}	0.0029***	0.0507	0.0127**			
$Q_{10}^n - Q_{10}^p$	-0.0504	0.0015***	0.0221^{**}	0.0434^{*}	0.0017^{***}	0.0655	0.0147^{**}			
$Q_{25}^n - Q_{25}^p$	-0.0379	0.0001***	0.0114^{**}	0.0071^{**}	0.0004^{***}	0.0252^{*}	0.0020***			
$Q_{50}^n - Q_{50}^p$	-0.0150	0.0133**	0.0291^{*}	0.0390^{*}	0.0460^{*}	0.0352^{*}	0.0148^{**}			
$Q_{75}^n - Q_{75}^p$	0.0062	0.7916	0.5788	0.5794	0.7325	0.4240	0.5519			
$Q_{90}^n - Q_{90}^p$	0.0138	0.9481	0.6466	0.6103	0.8139	0.6102	0.7493			
$Q_{95}^n - Q_{95}^p$	0.0279	0.9662*	0.7954	0.7128	0.9037	0.7956	0.9110			

 Table 7: Quantile shift test 2

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. Q_i^n is the i^{th} percentile of the r_t distribution conditioning on $r_{t-1} < \mu - \sigma$, where μ and σ are unconditional mean and standard deviation of the returns time series. Q_i^p is the i^{th} percentile of the r_t distribution conditioning on $r_{t-1} > \mu + \sigma$. In panel A, in each Monte Carlo sample the time series of 1,020 observations (the same length as the historical time series) was generated by randomly drawing the errors and using the optimal parameters for each model. Next, the values of $Q_i^n - Q_i^p$ were computed for that generated time series. Repeating the procedure 10,000 times yielded the null distributions of $Q_i^n - Q_i^p$ under each model. The reported cumulative distribution function (CDF) values are probabilities that the value less or equal to the historical value is observed under the simulated distribution. Panel B is similar to panel A except in each Monte Carlo sample the parameters of the model are also sampled from their asymptotic maximum likelihood distributions. Unc distribution refers to the case where the time series was formed by randomly sampling (with replacement) historical monthly returns. The asterisks, *,**, and *** correspond to statistical significance at the 10, 5, and 1 percent levels, respectively.

1% Hit ratio test						
Model/Instrument	1	hit_{t-1}	r_{t-1}			
GJR-GARCH	8.8859***	150.6957***	5.6194^{**}			
T-DIST-GJR-GARCH	2.6437	11.3479^{***}	4.8450**			
2-regime w/jump	0.0734	4.0332**	6.3024^{**}			
Multifractal	2.3444	11.0060^{***}	4.9447^{**}			
BEGE	0.0046	2.7828^{*}	2.8697^{*}			
BEGE, 2 series	0.3718	5.5149^{**}	4.7248^{**}			
5% Hit ratio test						
5	% Hit ratio (test				
Model/Instrument	% Hit ratio t 1	$\frac{\text{test}}{hit_{t-1}}$	r_{t-1}			
5 Model/Instrument GJR	$ \frac{\% \text{ Hit ratio } \mathfrak{t}}{3.2132^*} $	$\frac{hit_{t-1}}{4.6906^{**}}$	r_{t-1} 7.8811***			
5' Model/Instrument GJR T-DIST-GJR-GARCH	$ \frac{\frac{1}{3.2132^{*}}}{8.0554^{***}} $	$\frac{hit_{t-1}}{4.6906^{**}}$ 2.8864*	$\frac{r_{t-1}}{7.8811^{***}}$ 8.1539^{***}			
5 Model/Instrument GJR T-DIST-GJR-GARCH 2-regime w/jump	$\frac{\frac{1}{3.2132^{*}}}{3.0554^{***}}$	$ \frac{hit_{t-1}}{4.6906^{**}} \\ 2.8864^{*} \\ 7.6508^{***} $	$\frac{r_{t-1}}{7.8811^{***}}$ 8.1539^{***} 7.6541^{***}			
5' Model/Instrument GJR T-DIST-GJR-GARCH 2-regime w/jump Multifractal	$\frac{1}{3.2132^{*}}\\8.0554^{***}\\3.7711^{*}\\8.8529^{***}$		$\begin{array}{c} r_{t-1} \\ 7.8811^{***} \\ 8.1539^{***} \\ 7.6541^{***} \\ 7.9220^{***} \end{array}$			
5 Model/Instrument GJR T-DIST-GJR-GARCH 2-regime w/jump Multifractal BEGE	$\frac{\frac{1}{3.2132^{*}}}{3.0554^{***}}$ $\frac{3.7711^{*}}{3.8529^{***}}$ 1.4281	$\begin{tabular}{c} test \\ \hline hit_{t-1} \\ \hline 4.6906^{**} \\ 2.8864^{*} \\ 7.6508^{***} \\ 6.2661^{**} \\ 0.6922 \\ \hline \end{tabular}$	$\begin{array}{r} r_{t-1} \\ 7.8811^{***} \\ 8.1539^{***} \\ 7.6541^{***} \\ 7.9220^{***} \\ 4.9023^{**} \end{array}$			

Table 8: Quantile hit test

Each cell reports EM hit test statistic as described in the text. The asterisks, *,**,and *** correspond to statistical significance at 10%, 5%, and 1% levels, respectively, using the χ^2 distribution.

Table 9: Modified Jarque-Bera tests

<i>p</i> -value
0.0007***
0.0011^{***}
0.0538^{*}
0.0009^{***}
0.3756
0.0697^{*}

Each cell reports the Jarque-Bera test p-value computed from the historical time series of logged monthly dividend-adjusted stock returns from December 1925 to December 2010. The asterisks, *,**,and *** correspond to statistical significance at the 10%, 5%, and 1% levels.

Panel A: Returns					
Model	Log-likelihood				
BEGE	881.29				
BEGE, 2 series	868.82				
T-DIST-GJR-GARCH	867.93				
Multifractal	864.68				
2 state regime w/ jump	851.63				
GJR-GARCH	847.15				
Panel E	B: Variances				
Model	MAE	MSE			
BEGE, 2 series	0.0014	1.7053E-05			
BEGE	0.0015	1.7097E-05			
T-DIST-GJR-GARCH	0.0016	1.7410E-05			
GJR-GARCH	0.0016	1.7697 E-05			
Multifractal	0.0017	1.8052 E-05			
2 state regime w/ jump	0.0020	2.0523E-05			

Table 10: Out-of-sample performance

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. The sample is split into two equal parts (510 monthly observations each): January 1926 – June 1968 (insample) and July 1968-December 2010 (out–sample). The parameters are estimated over the in-sample and the statistics above measure the fit of the various models at these parameters with respect to returns (loglikelihood) and realized variances (MAE/MSE) in the out-sample. Historical realized variances are computed by summing squared daily return observations. MAE (mean absolute error) and MSE (mean squared error) are comparing the realized variances to the conditional variance prediction of the various models. All tests are at the monthly frequency.

Panel A: Returns - Fisher-Calvet (2004) loglikelihood t -test							
	GJR	T-GJR	2 regime w/ jump	Multifractal	BEGE		
BEGE	2.1200**	2.7349^{***}	3.0652^{***}	3.3509^{***}	-		
BEGE, 2 series	1.4542	0.4496	1.8671^{*}	1.0374	-3.2792***		
	Panel B:	Variances - D	iebold-Mariano (199	05) test			
]	MAE				
	GJR	T-GJR	2 regime w/ jump	Multifractal	BEGE		
BEGE	-1.7808*	-2.3552**	-3.2050***	-2.4147**	-		
BEGE, 2 series	-3.0400***	-3.3891***	-4.0455***	-5.1044***	-2.6300***		
			MSE				
	GJR	T-GJR	2 regime w/ jump	Multifractal	BEGE		
BEGE	-2.1025**	-2.0214**	-2.0460**	-1.2398	-		
BEGE, 2 series	-2.3364^{**}	-1.0140	-2.1048**	-1.5619	-0.0590		

Table 11: Testing out-of-sample performance

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. The sample is split into two equal parts (510 monthly observations each): January 1926 – June 1968 (insample) and July 1968-December 2010 (out-sample). The parameters are estimated over the in-sample and the statistics above measure the fit of the various models at these parameters with respect to returns (loglikelihood) and realized variances (MAE/MSE) in the out-sample. Historical realized variances are computed by summing squared daily return observations. MAE (mean absolute error) and MSE (mean squared error) are comparing the realized variances to the conditional variance prediction of the various models. A positive number means that the model listed in the column has a smaller statistic value (loglikelihood/MAE/MSE) than the model listed in the row, and a negative number means that the model listed in the column has a larger statistic value (loglikelihood/MAE/MSE) than the model listed in the row. Note that for the loglikelihood the larger value is preferred, while for MAE (mean absolute error) and MSE (mean squared error) smaller values are preferred. For the BEGE models estimated from both returns and variance time series, the likelihood is computed only for the time series of returns. The statistics are computed using the HAC-adjusted variance estimator of Newey–West (1987) with 12 lags. The asterisks, *,**, and *** correspond to the statistical significance at 10, 5, and 1 percent levels, respectively.

Figure 1: BEGE distribution tail properties

This plot shows the 99th percentiles and 1st percentiles for two sequences of BEGE distributions, which take the form.

$$u_{t+1} = \omega_{p,t+1} - \omega_{n,t+1}$$

$$\omega_{p,t+1} \sim \widetilde{\Gamma} (p_t, \sigma_p)$$

$$\omega_{n,t+1} \sim \widetilde{\Gamma} (n_t, \sigma_n)$$

where $\tilde{\Gamma}$ denotes the centered gamma distribution. Throughout, we maintain that $\sigma_n = \sigma_p = 0.015$. The lines of blue asterisks show the quantiles for distributions in which p_t is fixed at 1.5, but n_t varies from 0.1 through 3.0. Conversely, the lines of green plus symbols show the quantiles for distributions in which p_t varies from 0.1 through 3.0 while n_t is held fixed at 1.5.

Figure 2: Results from GJR-GARCH estimation

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. The top panel shows the raw return series. The bottom panel shows estimates of conditional variance from the T-DIST-GJR-GARCH model, using the optimal maximum likelihood parameters.

Figure 3: Results from BEGE estimation

The top panel shows estimates of p_t from the BEGE GJR (1-series) model, using the parameter estimates reported in Table 2. The bottom panel shows estimates of n_t .

Figure 4: Results from regime-switching model estimation

The top panel shows the ex-post probabilities of being in regime 2 for the 2-regime RS model with jumps using the parameter estimates reported on Table 3. The bottom panel shows the conditional variance of returns from the 10 states binomial multifractal model.

Figure 5: Quantile shift results

The data are logged monthly dividend-adjusted stock returns from December 1925 to December 2010. The top panel shows the values of unconditional quantiles (squares), quantiles for a restricted sample in which the return in the previous period was positive (up triangles) and quantiles for a restricted sample in which the return in the previous period was negative (down triangles). The bottom panel reports results further restricting the "positive" ("negative") subsample to those for which the previous return is one (unconditional) standard deviation above (below) the unconditional mean return.

Figure 6: Conditional quantile estimates

The figure reports estimates of conditional quantiles under the models specified in the panel headings.

Figure 7: Conditional moment impact curves

The news impact curves for the T-DIST-GJR-GARCH and BEGE models. p_{t-1} and n_{t-1} are assumed to be equal to the average values of p_t and n_t over the observed time series.