
Habit Formation and Risk Preference Dependence

Larry Selden

Columbia University

University of Pennsylvania

January 15, 2014

Abstract

Reference dependent preferences have been applied in both risky and cer-

tainty settings, although little attention has been directed at the relationship

between the reference points as well as the loss aversion functions for these

models. This paper addresses this relationship for the special case where refer-

ence dependence corresponds to habit formation. Multiperiod Expected Util-

ity habit or persistence models have spawned important contributions in asset

pricing, life cycle consumption, business cycle analysis and monetary models.

Inherence in these models are two very different forms of preference dependence

on prior period consumption. First, there is the classic certainty persistence

effect of today’s consumption on tomorrow’s marginal utility of certain con-

sumption. Second, today’s consumption also affects tomorrow’s choices over

distributions of uncertain consumption —a form of risk preference dependence.

These two different reference points are confounded in the conventional models

which conceals the fact that they can affect asset demand and consumption

behavior quite differently. This paper provides a natural generalization of the

standard Expected Utility habit model that allows for a separation of certainty

persistence and risk preference dependence.

KEYWORDS. Habit formation, risk preference dependence, Expected Utility, consumption-

portfolio problem.
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1 Introduction

In recent years there has been considerable interest in the idea that an individual’s

preferences depend not just on the level of wealth or consumption, but on the differ-

ence from some reference level.1 This notion of reference dependent preferences has

its origins in the concept of loss aversion where consumers are assumed to be more

bothered by losses relative to some reference point than pleased by gains (see Rabin

2013, p. 532). Although Kahneman and Tversky originally introduced these ideas

in their uncertainty preference modeling of prospect theory (Kahneman and Tversky

1979 and Tversky and Kahneman 1992), they applied them as well in a riskless setting

(Tversky and Kahneman 1991). Their key point is that whether the loss is stochastic

or deterministic, the deviation from the reference point is critical to the consumer’s

decision rather than the absolute level of consumption or wealth. It remains an

open question what one should assume as a reference point. Tversky and Kahneman

(1991) argue that in a certainty setting it should be a status quo value, while Koszegi

and Rabin (2009) argue that for risky choices it should be endogenously determined

as a function of the decision maker’s probabilistic beliefs regarding the choice set he

will face and his planned action for each possible choice set. Interestingly, there

seems to have been almost no substantive discussion of how the reference point or the

structure of the loss aversion function might differ depending on whether the setting

is risky or certain.2

One special case which can be viewed as an antecedent to reference dependent

preferences is habit formation, where the reference point for utility in a given period

is based on consumption in prior periods. One important difference in these models

is that for standard habit formation preferences, consumption is typically required

to exceed the habit reference point whereas in the Tversky and Kahneman reference

dependent model the essence is to allow consumption to exceed or fall short of the

∗An early version of this paper was presented at the Cornell/Penn State Macroeconomics Con-

ference, October 2010. The thoughtful comments of the participants are greatfully acknowledged.

The paper has also benefited from discussions with Felix Kubler and Karl Shell and especially the

very valuable comments and suggestions of Xiao Wei. Finally the support of the Sol Snider Research

Center—Wharton is greatfully acknowledged.
1See Munro and Sugden (2003) for a theoretical discussion as well as empirical support for

reference dependent preferences and the references cited therein. Blow, Crawford and Crawford

(2013) provide an interesting revealed preference perspective on reference dependent utility models.
2One exception is the recent study of Gachter, Johnson and Herrmann (2010) in which the authors

compare loss aversion in experiments involving a riskless endowment effect and risky lottery choices.
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reference point where utility is concave for the former and convex for the latter. In

this paper, I propose a simple variant of the classic habit model in which the certainty

and uncertainty reference points are allowed to diverge and show that this distinction

can shed interesting new insights into the solution to the classic consumption-portfolio

problem.3

Habit formation (or persistence) was originally introduced as a property of cer-

tainty preferences (e.g., Duesenberry 1952, Pollak 1970 and Ryder and Heal 1973).

In their simplest form, internal habit formation4 preferences can be represented by

U(c1, c2) = u(c1) + u(c2 − αc1), (1)

where c1 and c2 denote certain period one and two consumption and α > 0 is referred

to as the persistence parameter. Increasing period one consumption is typically

assumed to decrease the marginal utility of c1 but increase the marginal utility for

period two consumption or as Schmitt-Grohe and Uribe (2008) suggest, "the more

the consumer eats today, the hungrier he wakes up tomorrow."

About twenty years after the certainty habit model eqn. (1) was introduced,

Constantinides (1990) extended it to an uncertainty setting in order to resolve the

Equity Premium Puzzle.5 Constantinides directly incorporated a continuous time

version of the certainty persistence structure (1) into an intertemporal NM (von

Neumann and Morgenstern) utility function.6 In its most basic form, this corresponds

to Expected Utility preferences over certain period one consumption and random

period two consumption c̃2 being defined by7

EW (c1, c̃2) = w(c1) + Ew(c̃2 − γc1), (2)

where W is the two-period NM index and γ > 0 is interpreted as a persistence

parameter. His motivation for using this form of utility was two fold. First, there
3It should be noted that despite the appeal of the loss aversion feature in many of the reference

dependent preference models, this property can result in indifference curve kinks (Tversky and

Kahneman 1991) and non-convexities (Munro and Sugden 2003).
4In this paper, we focus only on internal versus external habit formation (where in the latter, the

consumer’s preferences depend on the consumption of others). See Abel (1990).
5Also see Sundaresan (1989).
6In addition to distinguishing between internal and external habit formation, the literature also

considers a ratio form of utility as an alternative to the difference form of eqn. (2) (see the discussion

of different models in Chapter 2 in Mehra 2008). In this paper we focus only on the difference form.
7Although Constantinides follows the Ryder and Heal (1973) continuous time formulation of

habit formation, we simplify the analysis by restating his argument in terms of the discrete time

model of Pollak (1970).
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was a desire to relax the typical assumption of time separability of the NM utility

and to use habit formation as the means for introducing adjacent complementarity

between the periods. The NM index in (2) was specialized to a continuous time

version of the following8

W (c1, c2) = −c
−δ
1

δ
− (c2 − γc1)−δ

δ
(3)

to address the second motivation

"...to drive a wedge between the...relative risk aversion...coeffi cient and

the inverse of the intertemporal elasticity of substitution" (Constantinides

1990, p. 521).

Inherent in the certainty and uncertainty habit models, there would seem to be

two very different forms of dependence on prior period consumption. First, there is

the certainty effect of changes in today’s consumption on tomorrow’s marginal utility

of certain consumption mentioned above. Second, there is the effect of changes in to-

day’s consumption on tomorrow’s preferences over distributions of risky consumption

—a form of risk preference dependence.9 The latter effect has largely been ignored

in the literature.10 While it is well recognized that the Arrow-Pratt risk aversion

measures corresponding to eqn. (3) do depend on γ, there has been no attempt to

distinguish γ’s role as a certainty persistence preference parameter from its role as a

risk preference dependence parameter. The standard NM model forces a very strong

interdependence between these two different preference effects.

Related to this distinction, the following three questions are addressed:

Q1 Can the NM persistence utility be generalized to allow for separate certainty

persistence and risk preference dependence factors that can be varied indepen-

dently?

8The NM persistence utility (3) and other related uncertainty habit representations have been

widely employed in studying monetary policy (e.g., Fuhrer 2000), life cycle consumption (e.g., Gupta

2009), the term structure of interest rates (e.g., Buraschi and Jiltsov 2009), business cycles and other

macroeconomic applications (e.g., Schmitt-Grohe and Uribe 2008).
9These two effects will be seen to correspond to different marginal costs of period one consumption

which partially offset one another in the standard Expected Utility formulation.
10For an interesting alternative approach to modeling risk preferences changing over time, see

Dillenberger and Rozen (2012).
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Q2 How do the certainty persistence and risk preference dependence factors sepa-
rately impact (i) financial asset demands and (ii) the comparative statics of

optimal consumption?

Q3 What types of comparative static analyses can be misinterpreted because of the
confounding habit and risk preference dependence in the Expected Utility de-

fined by (3)?

To address Q1, the Expected Utility representation corresponding to (3) is gener-

alized to an OCE (ordinal certainty equivalent) representation, where certainty and

conditional risk preference can be prescribed independently (see Selden 1978 and

1979). For OCE preferences, the Expected Utility parameter γ can be decomposed

into two separate parameters —one corresponding to certainty persistence and the

other corresponding to risk preference dependence.

Q2 and Q3 are discussed in the context of the classic consumption-portfolio prob-

lem where the consumer chooses optimal period one consumption and a portfolio of

risky and risk free assets. Relative to Q2, the certainty persistence and risk preference

dependence parameters are shown to have potentially opposite effects on the demand

for a risky asset. To introduce Q3, a very simple two-period example is considered

in the next section contrasting the behavior of optimal period one consumption in a

setting where the only asset is risk free versus one where the consumer can choose

between a risky asset and a risk free asset. For the latter case where period two

consumption is risky, the Expected Utility function corresponding to (3) is assumed.

For the riskless setting, the NM index (3) is assumed as the certainty utility. For

the riskless case, when confronting changes in the asset return, habit formation is

seen to alter the conditions under which period one consumption increases or de-

creases. Paradoxically for the Expected Utility corresponding to (3), the conditions

for whether period one consumption increases or decreases when asset returns are

changed are identical whether habit formation is introduced or not. To resolve this

paradox, we introduce a new comparative static result based on a generalized linear

constraint and additively separable utility. Given this theorem, one can distinguish

the separate roles of certainty persistence and risk preference dependence for a num-

ber of comparative static changes such as a pure increase in the risky asset’s expected

return (or a mean preserving increase in risk). This separation of habit and risk

preference dependence effects can be applied to considerably more general preference

structures than (3). Certainty preferences need not take the CES (constant elastic-
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ity of substitution) form and conditional risk preferences can be extended to other

popular members of the HARA (hyperbolic absolute risk aversion) class.

The next section presents the Expected Utility comparative static paradox. Sec-

tion 3 introduces (i) the OCE generalization of the Expected Utility habit formation

model (3) and (ii) a reformulation of the classic consumption-portfolio problem as

a two stage optimization in order to more clearly distinguish the effects of certainty

persistence from risk preference dependence on the solution. In Section 4, we ana-

lyze the separate effects of certainty persistence and risk preference dependence on

the marginal costs of consumption and optimal financial asset demands in the classic

two-period complete market contingent claim-financial asset setting. In Section 5, we

prove the new comparative static result that facilitates the disentangling of the roles

of certainty persistence and risk preference dependence on the effects of increasing

expected return and risk for the risky asset. The paradox introduced in Section 2

is shown to arise due to a confounding of the roles of persistence and risk preference

dependence inherent in the standard Expected Utility habit model (3). Section 6

provides concluding comments. Proofs are provided in the Appendix.

2 Consumption-Portfolio Paradox

In this section, we provide a very simple example in which the consumption-portfolio

comparative static properties associated with the NM persistence utility (3) and the

analogous certainty persistence utility differ in a surprising way.

First assume certainty preferences are represented by the CES utility

U (c1, c2) = −c
−δ
1

δ
− c−δ2

δ
, (4)

where δ > −1. Let I, p1 and Rf > 0 denote respectively period one income or

wealth, the price of period one consumption and the risk free (gross) rate of return.

Then period two consumption is given by

c2 = (I − p1c1)Rf . (5)

Maximizing (4) with respect to c1 where c2 is given by (5) yields the following well

known necessary and suffi cient condition for optimal period one consumption to in-

crease, stay the same or decrease with Rf

∂c1

∂Rf

T 0 iff δ T 0. (6)
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If one considers exactly the same consumption-savings problem, but replaces the

CES utility (4) with the corresponding persistence utility

U(c1, c2) = −c
−δ
1

δ
− (c2 − αc2)−δ

δ
, (7)

where α > 0, one obtains the comparative static result

∂c1

∂Rf

> 0 if δ ≥ −α
Rf + α

. (8)

With the introduction of persistence, one can only obtain a suffi cient condition de-

pending on α instead of the necessary and suffi cient condition (6).

Next consider an uncertainty version of the certainty consumption-savings prob-

lem. Assume the consumer’s preferences over certain-uncertain consumption pairs

(c1, c̃2) are represented by the CES Expected Utility

EW (c1, c̃2) = −c
−δ
1

δ
− Ec̃−δ2

δ
(9)

where δ > −1. Let n and nf denote, respectively, the number of units of a risky asset

with payoff ξ̃ > 0 and the number of units of a risk free asset with payoff ξf > 0.

Let p and pf be the prices of the risky and risk free assets. Then period two random

consumption is defined by

c̃2 = ξ̃n+ ξfnf = pnR̃ + (I − p1c1 − pn)Rf , (10)

where the gross asset rates of return are defined by

R̃ =
ξ̃

p
and Rf =

ξf
pf
. (11)

The consumption-portfolio problem corresponds to maximizing (9) subject to (10)

with respect to (c1, n). As shown in Section 5.2, if one computes the change in

optimal period one consumption with respect to a pure increase in ER̃, the direct

analogue to the certainty necessary and suffi cient condition (6) is obtained

∂c1

∂ER̃
T 0 iff δ T 0. (12)

Paralleling the certainty analysis, suppose we replace the additively separable Ex-

pected Utility (9) with the NM persistence utility

EW (c1, c̃2) = −c
−δ
1

δ
− E(c̃2 − γc1)−δ

δ
, (13)
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where γ > 0. Solving the associated consumption-portfolio problem, and considering

the comparative static impact on optimal period one consumption corresponding to

a pure increase in the expected return on the risky asset yields

∂c1

∂ER̃
T 0 iff δ T 0. (14)

Comparing eqns. (14) and (12), the introduction of persistence appears to play ab-

solutely no role in the effect of an increase in ER̃ on optimal period one consump-

tion.11 This is in striking contrast to the certainty case where the introduction of

persistence weakens the necessary and suffi cient condition and alters the suffi cient

condition (6) to include a dependence on the persistence parameter α. In Section 5.3

we will consider these comparative static results in detail and show that this para-

doxical result is a direct consequence of a confounding of the certainty preferences

and conditional risk preferences inherent in the persistence NM utility (3). Properly

disentangled, certainty persistence will be seen to generate comparative statics in the

uncertain consumption-portfolio problem directly paralleling those in the certainty

case, whereas conditional risk preferences will generate a new impact not previously

recognized.

3 General Habit-RPD Setting

This section first introduces a preference model in which a certainty persistence utility

and a risk preference dependent utility can be prescribed independently. To most

clearly distinguish the separate roles of the two utilities, the standard consumption-

portfolio problem is decomposed into a two stage optimization. In the first stage, the

consumer solves a one-period portfolio allocation problem conditional on an assumed

level of period one consumption. In the second stage, optimal period one consumption

is determined by solving a simple certainty consumption-savings problem.

3.1 General Preference Setting

Let (c1, F ) be an element in the product set S =def C1 × F , where C1 = (0,∞)

is the domain for period one consumption and F is the set of c.d.f.s (cumulative

distribution functions) on C2 = (0,∞) . The c.d.f. F corresponds to random period

11An analogous conclusion will also be shown to hold in Section 5 for a mean preserving increase

in risk associated with the payoff variable ξ̃.
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Figure 1:

two consumption, c̃2. Assume that there exists a complete preordering � which

is defined on the choice space S. Let C =def C1 × C2. The relation � induces

a complete preordering � |C on certain consumption pairs (c1, c2) ∈ C, which is

representable by U : C → R. The certainty choice space corresponds to the positive
orthant in Figure 1. The certain-uncertain choice space S can be thought of as being

comprised of a set of slices or verticals

C[c1] =def {c1} × F , (15)

where the set of c.d.f.s F is defined on each vertical. Two verticals conditioned on

c1 and c′1 are portrayed in Figure 1(a). The first period consumption c1 and the two

point distribution on C[c1] with payoffs c2 and c′2 and probabilities π and 1−π can be
thought of as corresponding to the pair (c1, F ). The relation � induces conditional
risk preferences on each vertical C[c1], which are assumed to be NM representable

where for any F,G ∈ F

(c1, F (c2)) � (c1, G(c2)) iff
∫
C2

Vc1(c2)dF (c2) ≤
∫
C2

Vc1(c2)dG(c2) (16)

and Vc1 is the conditional NM index. Each Vc1 is assumed to be strictly monotonically

increasing. The set of conditional risk preferences is defined by V (c1, c2). Then

given the pair (U(c1, c2), V (c1, c2)), � is said to be OCE representable in that for any
(c1, F ), (c′1, G) ∈ S,

(c1, F ) � (c′1, G)⇔ U(c1, ĉ2(F )) ≤ U(c′1, ĉ2(G)), (17)
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where

ĉ2(F ) = V −1
c1

∫
C2

V (c1, c2)dF (c2) and ĉ2(G) = V −1
c′1

∫
C2

V (c′1, c2)dG(c2). (18)

(See Selden 1978 for the corresponding axiomatic development and representation

theorem.12) The application of OCE preferences can be illustrated using Figure 1(b).

Two discrete distributions F =< c21, c22; π21, π22 > and G =< c′21, c
′
22; π′21, π

′
22 > are

specified respectively on the verticals C[c1] and C[c′1]. Let Vc1 and Vc′1 denote the

conditional NM indices on C[c1] and C[c′1]. The indifference curves correspond to

the certainty utility U(c1, c2). Using eqn. (18) to determine the certainty equivalents

ĉ2 and ĉ′2 and then using (17), one can ascertain whether (c1, ĉ2) or (c′1, ĉ
′
2) lies on a

higher certainty indifference curve and is preferred.

The preference relation � is said to be representable by a two-period Expected
Utility function if ∀(c1, F ), (c′1, G) ∈ S,

(c1, F (c2)) � (c′1, G(c2)) iff
∫
C2

W (c1, c2)dF (c2) ≤
∫
C2

W (c′1, c2)dG(c2), (19)

where W is the two-period NM index. The key distinction between the two—period

OCE and Expected Utility representations is that for the former each Vc1 can be

prescribed independently from other members of V (c1, c2) and from the certainty

representation U . The two-period Expected Utility is a special case of OCE pref-

erences where W is affi nely equivalent to V and is a monotonic transform of the

certainty utility U .13 The dependence of conditional risk preferences on period one

consumption is characterized by the following definition.

Definition 1 OCE conditional risk preferences will be said to exhibit risk preference
independence (RPI) if and only if each Vc′1 , Vc′′1 ∈ {Vc1 |∀c1 ∈ C1} satisfies

Vc′′1 = a+ bVc′1 , (20)

where where a and b > 0 are arbitrary constants. If any pair Vc′1 , Vc′′1 ∈ {Vc1|∀c1 ∈ C1}
fails to satisfy eqn. (20), conditional preferences will be said to exhibit risk preference

dependence (RPD).

12Kreps and Porteus (1978) developed a dynamic version of essentially the same model. Also see

Epstein and Zin (1989).
13See Rossman and Selden (1978) for a formal treatment of the relation between the OCE and

two-period Expected Utility representations. Kihlstrom and Mirman (1974) were the first to stress

that multi-attribute Expected Utility preferences induce a representation of certainty preferences U

which is ordinally equivalent to the NM index W . They use this relationship to characterize the

notion of one agent being more risk averse than another.
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Since for OCE preferences U(c1, c2) and V (c1, c2) can be prescribed independently,

one can assume certainty preferences are defined by the persistence utility U(c1, c2 −
αc1) and conditional risk preferences are defined by the RPD NM index V (c2 − βc1)

where α 6= β. This OCE generalization addresses question Q1. For the two-period

Expected Utility special case, the fact that U and W must be ordinally equivalent

implies that α = β = γ and W takes the persistence form (3).

3.2 Consumption-Portfolio Problem: Two Stage Optimiza-
tion

Without loss of generality assume there is one risky and one risk free asset, where

the former has payoff ξ̃, a random variable that takes the value ξ21 with probability

π21 and ξ22 with the probability π22 = 1 − π21.14 Let ξ21 > ξ22 > 0. The risk free

asset has payoff ξf > 0. Let n and nf denote the number of units of the risky asset

and risk free asset, respectively, where positive holdings of the latter are not required.

Denote by p and pf the price of the risky and risk free asset, respectively. We follow

the conventional assumption that Eξ̃
p
>

ξf
pf
, which guarantees n > 0. To ensure that

there is no arbitrage opportunity, it is assumed that ξ21
p
>

ξf
pf
> ξ22

p
.

As is standard, the asset demand model can be embedded in a contingent claim

framework and complete markets are assumed. (For a more complete characterization

of the dual contingent claim and financial asset setting and the associated demand

properties, see Kubler, Selden and Wei 2013 and 2014.) Let c21 and c22 denote the

contingent claims for period two consumption and p21 and p22 be the corresponding

prices. I is period one income or initial wealth. The utilities U(c1, c2 − αc1) and

V (c2− βc1) are three times continuously differentiable in c1 and c2. U(·, ·) is strictly
quasiconcave and strictly increasing in each of its arguments and V (·) satisfies V ′ > 0

and V ′′ < 0. Moreover it is assumed for U and V , respectively, that c2 > αc1 and

c2 > βc1.

The general OCE optimization problem can be expressed as

max
c1,c21,c22

U
(
c1, V

−1
c1

(π21Vc1(c21) + π22Vc1(c22))
)

(21)

subject to

p1c1 + p21c21 + p22c22 ≤ I, (22)

14When there are multiple risky assets, the two stage optimization process described below can

still be followed to solve for optimal consumption and asset demands.
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where

c21 = ξ21n+ ξfnf , c22 = ξ22n+ ξfnf (23)

and

p21 =
ξfp− ξ22pf

(ξ21 − ξ22)ξf
and p22 =

ξ21pf − ξfp
(ξ21 − ξ22)ξf

. (24)

To distinguish γ’s separate roles as a persistence parameter and a risk preference

dependence parameter in the Expected Utility (2), it will prove convenient to utilize

the OCE functions U(c1, c2 − αc1) and V (c2 − βc1) to solve an equivalent two stage

problem. The first stage portfolio problem conditional on c1 is given by maximizing

the conditional Expected Utility

(co21(c1), co22(c1)) = arg max
c21,c22

π21V (c21 − βc1) + π22V (c22 − βc1) (25)

subject to

p21c21 + p22c22 ≤ I − p1c1. (26)

The second stage consumption-savings problem corresponds to15

max
c1
U(c1, ĉ

o
2(c1)− αc1), (27)

where ĉo2(c1) is defined by

V (ĉo2(c1)− βc1) = π21V (co21(c1)− βc1) + π22V (co22(c1)− βc1). (28)

For the NM persistence utility (2), the parameter γ = α = β clearly plays different

roles in each stage. The OCE generalization facilitates a very intuitive geometric

interpretation of the two disparate roles, even for the Expected Utility special case.

If the ĉ2(c1) constraint for the second stage consumption-savings optimization is

linear in c1, the analysis can be significantly simplified.16 We next show that this

will be the case if and only if the period two conditional NM index V is a member of

the HARA class.17 ,18

15It should be noted that due to the no bankruptcy restriction, we always require that c21, c22 ≥
βc1 which can impose a restriction on β given other parameters in the optimization problem.
16For an analysis of the consumption-savings problem where the ĉ2(c1) constraint need not be

linear (although certainty persistence and risk preference dependence are not considered) see Kimball

and Weil (2009).
17See Gollier (2001) for a description of the HARA family of utility functions.
18It should be noted that Proposition 1 can be applied for the case of multiple risky assets even

when markets are incomplete. The reason is that when markets are incomplete, since V takes the
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Proposition 1 Assume {� |C[c1],∀c1 ∈ C1} are NM representable where V (c1, c2)

is the NM index. Then ĉ2 is a linear function of c1 if and only if V takes the following

form

V (c1, c2) = f (c1)h (c2 − ζc1) + g (c1) , (29)

where f (·) > 0 and g (·) are arbitrary functions of c1, h (·) is a member of the HARA
class of utility functions and ζ is an arbitrary constant.

For the specific RPD form of the NM index assumed in this paper, condition (29)

of the Proposition becomes

V (c1, c2) = f (c1)V (c2 − βc1) + g (c1) . (30)

4 CES-HARA Preferences

In order to address question Q2, it will prove useful to specialize the OCE preference

formulation defined by U(c1, c2 − αc1) and V (c2 − βc1) as follows

U (c1, c2 − αc1) = −c
−δ1
1

δ1

− (c2 − αc1)−δ1

δ1

, and V (c2 − βc1) = −(c2 − βc1)−δ2

δ2

,

(31)

where δ1, δ2 > −1, α > 0 is a pure certainty persistence parameter and β > 0 is a pure

risk preference dependence parameter.19 In Subsection 4.4 below, V is allowed to take

the form of other HARA NM indices. Clearly (31) converges to the NM persistence

representation (3) if and only if δ1 = δ2 = δ and α = β = γ. It should be emphasized

that if δ1 = δ2 = δ, the NM axioms which require U and W to be equivalent up to

an increasing monotonic transform make it impossible to have an NM representation

where α 6= β.20 Thus using NM preferences, one cannot investigate the implications

HARA form, following Rubinstein (1974), the markets are effectively complete. Thus the financial

asset setting can be transformed into the contingent claim setting naturally. Since each conditional

contingent claim demand c2s (s = 1, 2, ..., S) is linear in c1, the certainty equivalent function ĉ2 is

also linear in c1.
19Unless stated otherwise, these restrictions on δ1, δ2, α and β hold throughout the paper.
20To see this, first assume W (c1, c2) = − c

−δ
1

δ −
(c2−γc1)−δ

δ and U is given by eqn. (31). If there

exists an increasing transformation T such that T ◦U =W , then any two points (c1, c2) and (c′1, c
′
2)

on the same indifference curve corresponding to U should also be on the same indifference curve

corresponding to W . Therefore, we have

c′2 =
(
c−δ1 + (c2 − γc1)−δ − c′−δ1

)−1/δ
+ γc′1 =

(
c−δ1 + (c2 − αc1)−δ − c′−δ1

)−1/δ
+ αc′1.

13



for asset demand and period one consumption of assuming just certainty persistence

where β = 0 or just risk preference dependence where α = 0.

4.1 Distinguishing the Persistence and RPD Parameters

For the certainty persistence utility U in (31) in addition to requiring c2 > αc1, the

assumption of positive marginal utility for period one consumption implies that

c2 > (α + α
1

δ1+1 )c1. (32)

Computing the reciprocal of the intertemporal elasticity of substitution η yields

1

η
=def −

d ln(U2
U1

)

d ln c2
c1

= (δ1 + 1)
c2
c1

c2
c1
− α

(
1 +

(
c2
c1
− α

)−δ1) , (33)

where U1 = ∂U(c1,c2)
∂c1

and U2 = ∂U(c1,c2)
∂c2

. Following the standard interpretation,

period one and two consumption are said to be Fisherian complements if 1/η > 1.

The following shows that the introduction of the persistence parameter α into the

CES utility increases the degree of intertemporal complementarity.

Proposition 2 For the certainty persistence utility U defined by (31),

∂ 1
η

∂α
= (1 + δ1)

c2
c1

(
1 +

(
c2
c1
− α

)−1−δ1 (
αδ1 + c2

c1
− α

))
(
c2
c1
− α

(
1 +

(
c2
c1
− α

)−δ1))2 > 0. (34)

These properties are illustrated in Figure 2(a). The two indifference curves plotted

correspond respectively to the persistence factors α = 0 and α = 0.5 and converge to

same point (c1, c2) = (0.5,∞). It is clear from Figure 2(a) that persistence increases

the curvature of the certainty indifference curves or the complementarity between c1

and c2. Condition (32) ensures that for a given α, optimal consumption pairs lie

northwest of the ray21
c2

c1

= α + α
1

δ1+1 . (35)

Since this equation holds for any c′1, the coeffi cients in front of c
′
1 should be the same, implying

α = γ.

21It should be noted that since the right hand side of eqn. (35) is increasing in α, it follows that

for any given c2
c1
, a αmax > 0 can be found from (35) such that corresponding to the c2

c1
value and

αmax, we have ∂U(c1, c2)/∂c1 = 0.
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Figure 2:

To understand the very different economic intuition associated with the RPD

utility parameter β versus the certainty persistence parameter α in (31), first consider

the following contingent claim version of the RPD utility in (31)

EV (c̃2 − βc1) = −π21 (c21 − βc1)−δ2 + π22 (c22 − βc1)−δ2

δ2

. (36)

One can view βc1 as the period two subsistence level which depends on consumption

in period one.22 An example of the associated Expected Utility indifference curves is

plotted in Figure 2(b). Computing the Arrow-Pratt relative risk aversion measure

for V (c1, c2) = V (c2 − βc1) in (31), one obtains

τR =def −
c2V22

V2

= (δ2 + 1)
c2

c2 − βc1

, (37)

where V2 = ∂V (c1,c2)
∂c2

and V22 = ∂2V (c1,c2)

∂c22
. It follows immediately for this RPD case

that ∂τR/∂c1 > 0. Hence a natural interpretation of βc1 is that the more I eat

today, the more I want to avoid risk in my consumption tomorrow and the larger

my subsistence requirement. Because β controls the impact of today’s consumption

on tomorrow’s risk aversion, it is reasonable to refer to β as the risk preference

22The subsistence interpretation was first used in the context of the certainty linear expenditure

demand system (e.g., Pollak 1970) and then by Rubinstein (1976) for NM utilities. Also see

Detemple and Zapatero (1991) and Meyer and Meyer (2005).
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dependence parameter. It should be stressed that this interpretation of β is very

different from the more I eat today the hungrier I become tomorrow associated with

the certainty persistence parameter α.

4.2 Marginal Costs of Period One Consumption

In the Expected Utility habit model (3), the requirement that period two consumption

must exceed the minimum subsistence requirement γc1 can be thought of as inducing

a cost of period one consumption in addition to p1c1.23 However for the OCE for-

mulation defined by (31), it will be shown that different costs are associated with the

certainty requirement αc1 and the RPD requirement βc1 and that an element of each

cancels out in the Expected Utility special case. One obstacle to deriving the cost

elements associated with αc1 and βc1 is that they enter into the consumption-savings

problem (27) - (28) differently. The former enters via the certainty utility U and

the latter enters via the ĉ2(c1) constraint. However it is possible to migrate the αc1

effect into the ĉ2(c1) constraint to facilitate the comparison. To see this difference,

we proceed in two steps. First, the case where β = 0 and there is only the certainty

persistence effect is considered. Then it is assumed that α = 0, and the RPD effect

is examined.

Solving the conditional portfolio problem (25) - (26) assuming the CRRA (con-

stant relative risk aversion) NM index corresponding to β = 0 in (31) yields

co21 =
I − p1c1

p21 + k
1

1+δ2 p22

and co22 =
k

1
1+δ2 (I − p1c1)

p21 + k
1

1+δ2 p22

, (38)

where

k =
π22p21

π21p22

. (39)

Computing the certainty equivalent ĉ2 = V −1EV (c̃2), the second stage consumption-

savings problem becomes

max
c1

U (c1, ĉ
o
2) = −c

−δ1
1

δ1

− (ĉo2 − αc1)−δ1

δ1

(40)

23The fact that the cost for c1 consists of two parts was first noted for the certainty case in

Spinnewyn (1979). It was also observed for the uncertainty case assuming Expected Utility habit

preferences by Detemple and Zapatero (1991), although the authors seemed unaware of Spinnewyn’s

prior contribution and used a different definition of the cost of consumption.
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subject to

ĉo2(c1) = (I − p1c1) R̂, (41)

where

R̂ =

(
π21 + k

−δ2
1+δ2 π22

)− 1
δ2

p21 + k
1

1+δ2 p22

. (42)

The problem (40) - (41) can be transformed into an equivalent problem where cer-

tainty preferences are CES and the persistence effect is transferred to the certainty

equivalent constraint by defining24

ĉnew2 =def ĉ
o
2 − αc1, (43)

where ĉnew2 is defined relative to the stage one conditionally optimal (co21, c
o
22). The

new problem becomes

max
c1,ĉnew2

U (c1, ĉ
new
2 ) = −c

−δ1
1

δ1

− (ĉnew2 )−δ1

δ1

, (44)

subject to

I =

(
p1 +

α

R̂

)
c1 +

ĉnew2

R̂
. (45)

The coeffi cients of c1 and ĉnew2 in (45) can be interpreted as the marginal costs of

consumption

q1 = p1 +
α

R̂
and q2 =

1

R̂
. (46)

The marginal cost of period one consumption q1 is the per unit price p1 plus the per

unit present value cost of ensuring that period two certainty equivalent consumption

exceeds the certainty persistence amount αc1. The marginal cost or quasi (discounted)

price of ĉnew2 is denoted by q2. Because preferences are defined in terms of the certainty

equivalent ĉnew2 , it is natural to use the certainty equivalent return R̂ as the (gross)

discount rate. Expressing the certainty equivalent in (41) in terms of ĉnew2 , it is

clear that in the c1 − ĉ2 plane the marginal cost component α

R̂
results in a downward

rotation of the constraint ĉ2 = (I − p1c1) R̂ anchored at (0, IR̂).

Next to determine the marginal cost associated with the period two RPD require-

ment βc1, assume that α = 0 in eqn. (31). Again first solving the conditional

portfolio problem yields

co21 = βc1 +
I −

(
p1 +

βpf
ξf

)
c1

p21 + k
1

1+δ2 p22

(47)

24A similar transformation was introduced for the certainty habit case by Spinnewyn (1979, 1981).
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and

co22 = βc1 +

(
I −

(
p1 +

βpf
ξf

)
c1

)
k

1
1+δ2

p21 + k
1

1+δ2 p22

. (48)

Computing ĉo2(c1), the second stage consumption-savings problem becomes

max
c1

U (c1, ĉ
o
2) = −c

−δ1
1

δ1

− (ĉo2)−δ1

δ1

(49)

subject to25

ĉo2(c1) = R̂

(
I −

(
p1 + β

(
1

Rf

− 1

R̂

))
c1

)
, (50)

where R̂ is defined by eqn. (42), Rf is the rate on a risk free portfolio comprised of

one unit each of c21 and c22 implying

Rf =
1

p21 + p22

, (51)

and R̂ > Rf .26

Once again it is possible to define the marginal costs of c1 and ĉo2, respectively,

q1 = p1 + β

(
1

Rf

− 1

R̂

)
and q2 =

1

R̂
, (52)

25It should be emphasized that R̂ appearing in the ĉ2 constraint (50) does not include the risk

preference dependence parameter β. In other words, no matter whether there is one or two fund

separation in terms of the portfolio of financial assets n and nf , R̂ is defined by (42) and is always

the certainty equivalent of the return from the risky mutual fund.
26To prove that R̂ > Rf , first note that

π21 + k
−1π22

π21 + k
−δ2
1+δ2 π22

=
p21 + p22

p21 + k
1

1+δ2 p22
,

where the right-hand side can be obtained by using the using the definition of k given by eqn. (39).

Let x denote the random variable with payoffs (1, k
−δ2
1+δ2 ) and probabilities π21 and π22. Note that

f (x) = x
1+δ2
δ2 is a convex function. Using Jensen’s inequality, we have E[f(x)] ≥ f(E[x]) implying

π21 + k
−1π22 ≥ (π21 + k

−δ2
1+δ2 π22)

1+δ2
δ2 or

π21 + k
−1π22(

π21 + k
−δ2
1+δ2 π22

) 1+δ2
δ2

≥ 1.

Solving the first equation in this footnote for 1/(p21 + p22) and multiplying that expression by the

left hand side of the second equation above, one obtains R̂ given by eqn. (42). It then follows that

R̂ ≥ 1
p21+p22

where the equality is reached when and only when δ2 →∞ or k → 1.
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and rewrite the constraint (50) as follows in terms of the quasi prices

I = q1c1 + q2ĉ
o
2. (53)

To provide intuition for why in addition to p1 there are the two components for the

RPD marginal cost β/Rf and −β/R̂, consider the following rearrangement of (50)

ĉo2(c1)− βc1

R̂
= I − p1c1 −

βc1

Rf

. (54)

The βc1
Rf
term on the right hand side corresponds to the conditional portfolio invest-

ment in a risk free portfolio funding the subsistence requirement. The βc1
R̂
on the left

hand side corresponds to the requirement in the NM index V (ĉ2−βc1) that ĉ2 > βc1,

paralleling the requirement for the certainty U that ĉ2 > αc1. In (52), these two

elements are offset. Finally, it is clear from (50) that the RPD marginal cost ele-

ment β
(

1
Rf
− 1

R̂

)
, like the certainty persistence marginal cost element α

R̂
, results in a

downward rotation in the c1 − ĉ2 plane of the constraint ĉ2 = (I − p1c1) R̂ anchored

at (0, IR̂).

Comparing the certainty persistence and RPD marginal costs of period one con-

sumption in eqns. (46) and (52), respectively, it follows that if α = β

α

R̂
T β(

1

Rf

− 1

R̂
)⇔ R̂ S 2Rf . (55)

It is interesting to note that following the above process for the OCE case where

both the certainty persistence and RPD effects are present, one obtains27

q1 = p1 +

(
β

Rf

− β − α
R̂

)
and q2 =

1

R̂
. (56)

For the Expected Utility special case where γ = α = β, the marginal cost of period

one consumption simplifies to

q1 = p1 +
γ

Rf

, (57)

where the OCE elements α/R̂ and β/R̂ cancel each other out.

The marginal costs of the consumption q1 and q2 derived in this section will play a

critical role in our application of Theorem 1 in Section 5.1 to uncertainty comparative

statics. In particular, the separate effects of alpha and beta on the form of the ĉ2(c1)

constraint strongly affect how optimal period one consumption varies with changes

in the risky asset’s expected return or risk.
27See Case 4 in Subsection 5.3.
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Figure 3:

4.3 Competing Effects of α and β on Asset Demands

Since changes in certainty persistence and risk preference dependence will be seen to

have very different effects on the consumer’s investment decisions, the focus of this

subsection is on the demand for risky and risk free assets.

First, consider the presence of just habit persistence where α 6= 0 but β = 0. It

follows from eqns. (23), (24) and (38) that the solution to the dual financial asset

conditional portfolio problem is given by

co22

co21

= k
1

1+δ2 ⇔
nof
no

=
ξ21k

1
1+δ2 − ξ22(

1− k
1

1+δ2

)
ξf

, (58)

where as noted above no > 0. The fact that the asset ratio is independent of c1 and I

implies classic one fund separation. The two stage optimization process is shown in

Figure 3. In Figure 3(a), consistent with one fund separation, the linear contingent

claim expansion path, defined by c22 = k
1

1+δ2 c21, passes through the origin below the

45◦ certainty ray. The set of feasible budget constraints is bounded by I−p1c
min
1 and

I − p1c
max
1 , where cmin

1 = 0 and cmax
1 is defined by the requirement that U satisfies the

positive marginal utility condition

ĉ2 >
(
α + α

1
1+δ1

)
c1, (59)
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(see Figure 3(b)). Because certainty persistence does not affect asset allocation, its

impact on asset demands is straightforward.

Proposition 3 Assume OCE preferences are defined by eqn. (31), where conditional
risk preferences exhibit RPI, i.e., β = 0. Then

∂n

∂α
> 0 and

∂ |nf |
∂α

> 0. (60)

This result follows directly from (i) the fact that optimal period one consumption

always decreases with α and the demands for the risky and risk free assets increase28

and (ii) the fact that the optimal composition of the asset portfolio is unaffected by

an increase in α. Hence the demand for the risky asset, which the consumer holds

long, always increases with α. Since shorting of the risk free asset is possible, the

absolute value of the risk free asset demand always increases with α.

Figure 3(b) illustrates the second stage process for finding the optimal c1. In-

tuitively in terms of the constraint (41), each ĉ2 value corresponding to a given

c1 ∈ [0, cmax
1 ) can be thought of as being obtained by finding the contingent claim (or

financial asset) optimal point in Figure 3(a) and then determining the ĉ2 value by

finding the point ĉ2 = c21 = c22 where the indifference curve tangent to the contingent

claim budget line intersects the 45◦ ray.

Next, consider the presence of just risk preference dependence where β 6= 0 and

α = 0. It follows from the contingent claim demands (47) and (48) that

co22 − βc1

co21 − βc1

= k
1

1+δ2 ⇔
nof − βc1/ξf

no
=

ξ21k
1

1+δ2 − ξ22(
1− k

1
1+δ2

)
ξf

. (61)

The consumer invests pfβc1/ξf in a risk free subsistence fund
29 and the remainder

of her income I − p1c1 − pfβc1/ξf in a risky fund, which has exactly the same
nf
n

asset mix (58) as when OCE preferences are characterized by α 6= 0 and β = 0. The

consumer’s total risk free investment pofn
o
f consists of two parts, the holdings pfβc1/ξf

and the fixed percentage of the risky fund determined by k
1

1+δ2 .

This optimization process is illustrated in Figure 4(a). The investment in c21

28Given that U(c1, ĉnew2 ) defined by (44) is additively separable, it follows that period one con-

sumption is a normal good, implying that ∂c1/∂q1 < 0. Noticing that ∂q1/∂α > 0, we always have

∂c1/∂α < 0.
29Note that the subsistence fund needs to deliver βc1 in terms of period two consumption, which

is accomplished by investing nfξf = βc1. To do so, the consumer needs to purchase nf = βc1/ξf
units of the risk free asset.
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Figure 4:

and c22 consists two parts c2i = c
(1)
2i + c

(2)
2i (i = 1, 2). The first part corresponds

to the risk free subsistence fund c(1)
21 = c

(1)
22 = βc1 defined along the 45◦ ray. The

second part corresponds to the ray c(2)
22 = k

1
1+δ2 c

(2)
21 , which has the same slope as

in Figure 3(a). The key difference is that in Figure 4(a), the ray starts from the

point (c21, c22) = (βc1, βc1) rather than the origin. The second stage optimization is

indicated in Figure 4(b).

In contrast to the Proposition 3 result that increasing α always increases the

demand for both the risky asset and the absolute value of the risk free asset, increasing

β decreases the demand for the risky asset and increases the demand for the risk free

asset if δ1 ≥ 0, implying that period one and two consumption are intertemporal

(Fisherian) independents or complements, i.e., 1/η = 1 + δ1 ≥ 1.

Proposition 4 Assume OCE preferences are defined by eqn. (31), where certainty
preferences do not exhibit persistence, i.e., α = 0. Then if δ1 ≥ 0, we have

∂n

∂β
< 0 and

∂nf
∂β

> 0. (62)

The intuition for this result can best be understood in terms of a competing

allocation effect and an investment effect. Noting that

n =

(
I −

(
p1 +

βpf
ξf

)
c1

)(
1− k

1
1+δ2

)
(
p21 + k

1
1+δ2 p22

)
(ξ21 − ξ22)

, (63)
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it follows that
∂n

∂β
= J1 + J2, (64)

where

J1 = −
pfc1

(
1− k

1
1+δ2

)
(
p21 + k

1
1+δ2 p22

)
(ξ21 − ξ22) ξf

and J2 = −

(
p1 +

βpf
ξf

)(
1− k

1
1+δ2

)
(
p21 + k

1
1+δ2 p22

)
(ξ21 − ξ22)

∂c1

∂β
.

(65)

Note that J1 < 0 and since ∂c1
∂β

< 0, J2 > 0.30 J1 represents the allocation effect,

since for a fixed c1, increasing β (and hence τR) will shift the investment in the

risky asset to the risk free asset and thus decrease the risky asset holdings. J2

represents an investment effect, since increasing β reduces period one consumption

and thus increases the investment in the risky asset. Although J1 and J2 always

affect the risky asset holdings in opposite ways, if δ1 ≥ 0, the allocation effect J1

always dominates J2 and thus increasing β reduces the risky asset holdings. The

critical role of δ1 can be understood in terms of the elasticity of substitution. When

δ1 ≥ 0, the consumer can be thought of as viewing period one and two consumption

as independents or complements and resisting the revision of her optimal c1/ĉ2 ratio

when changes in β alter the slope of the ĉ2 constraint. As a result, the allocation

effect always dominates. On the other hand, when δ1 → −1, the consumer becomes

very substitute oriented and hence very responsive to changes in the slope of the ĉ2

constraint. This means that it is possible corresponding to a change in β that the

positive investment effect can dominate and n will actually increase with β.31

Returning to Question 2 in Section 1, we see that the parameter γ in the NM util-

ity (3) plays both the role of a certainty persistence parameter and a RPD parameter.

With regard to optimal period one consumption, these roles are not in conflict as c1

decreases with both α and β. However the two roles affect asset demands differently.

First when γ = β, it induces two fund separation and impacts the portfolio compo-

sition. Second when γ = α, it alters the allocation between c1 and the certainty

equivalent ĉ2.
Given the difference in risky asset demand behavior with respect to α and β, we

next extend Propositions 3 and 4 to the case where both preference effects are present.
30Given that α = 0 and U is additively separable, it follows that period one consumption is a

normal good, implying that ∂c1/∂q1 < 0. Noticing from eqn. (56) that ∂q1/∂β > 0 since R̂ > Rf ,

we always have ∂c1/∂β < 0.
31More specifically in terms of the proof of Proposition 4, when δ1 → −1, since p1R̂

β1+δ1
in eqn.

(140) is almost a constant, both eqns. (139) and (140) will reverse signs resulting in ∂n
∂β > 0.
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Proposition 5 Assume OCE preferences are defined by eqn. (31). Then we have

∂n

∂α
> 0. (66)

If we assume that δ1 ≥ 0 and β ≥ α, then we have

∂n

∂β
< 0 and

∂nf
∂β

> 0. (67)

Assuming α = β = γ, we can obtain the following Corollary.

Corollary 1 Assume OCE preferences are defined by eqn. (31). Then if α = β = γ,

∂n

∂γ
T 0⇔ δ1 S 0 (68)

and
∂nf
∂γ

> 0 if δ1 ≥ 0. (69)

Corollary 1 clearly holds for the NM persistence utility special case where δ1 =

δ2 = δ.

Remark 1 In general, if δ1 < 0, the demand for the risk free asset need not be

monotone in β or γ. For example, in Figure 5, we plot the optimal demands for

c1, n and nf versus γ when δ1 = δ2 = δ < 0. Clearly although we have ∂c1
∂γ

< 0 and
∂n
∂γ
> 0, the nf curve is not monotone in γ.

Remark 2 Lupton (2001) assumes a dynamic setting with Expected Utility prefer-
ences, a risk free asset and a single risky asset where price changes are assumed to

follow a Gauss-Wiener process. He concludes that the demand for the risky asset is

reduced by a habit liability (present value of increases in future consumption induced

by habit formation) both in level and as a share of net wealth. Despite our different

setting, we similarly find that the existence of a risk free subsistence fund reduces the

demand for the risky asset when δ (= δ1 = δ2) > 0. However it is clear from Proposi-

tion 5 that this decrease in demand is attributable to risk preference dependence and

not certainty persistence which is not discernible by Lupton given his use of Expected

Utility preferences.32

32Detemple and Zapatero (1991) and Constantinides (1990) consider similar dynamic settings

where preferences are Expected Utility and risky asset returns follow specific stochastic processes.

However these authors focus on asset prices and do not explicitly address the comparative statics of

asset demand behavior with respect to changes in the habit formation parameter γ.
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4.4 Selected HARA Conditional Utilities

For the asset return comparative static analyses considered in Section 5, the ĉ2(c1)

constraint is required to be linear. Following Proposition 1, this will be the case

if and only if the conditional NM index Vc1 (c2) is a member of the HARA family.

Without loss of generality, the ĉ2 constraint can be expressed as

I = q1c1 + q2ĉ2 + ∆, (70)

where ∆ is independent of c1 and ĉ2 and can be thought of as an adjustment to I.

In Table 1, expressions for q1, q2 and ∆ are provided for popular members of the

HARA family. Note that the negative exponential utility is RPI even though βc1

enters into the utility function, since the βc1 term can be eliminated via a positive

affi ne transformation without affecting optimal asset holdings. As will become clear

in the next section, changes in the risky asset’s expected return or risk cause the linear

ĉ2 constraint to rotate or shift depending on the particular HARA utility assumed.

For instance for the CRRA case (line 1 in Table 1), the constraint in Figure 6(a)

rotates around a fixed point (c∗1, ĉ
∗
2). For the negative exponential case (line 3 in

Table 1), the constraint in Figure 6(b) makes a parallel shift. This difference is

due to the fact that for negative exponential utility, optimal risky asset demand is

independent of conditional income I − p1c1.
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V (c1, c2) = − (c2−βc1)−δ2

δ2
q1 = p1 + β

Rf
− β

R̂
, q2 = 1

R̂
, ∆ = 0

V (c1, c2) = − (c2−a−βc1)−δ2

δ2
q1 = p1 + β

Rf
− β

R̂
, q2 = 1

R̂
, ∆ = a

Rf
− a

R̂

V (c1, c2) = − exp(−κ(c2−βc1))
κ

q1 = p1, q2 = 1
Rf
, ∆ =

ln(π21kRfp22+π22k
−Rfp21)

κRf

V (c1, c2) = (b− c2 + βc1)2 q1 = p1 + β
Rf
− β

R̂
, q2 = 1

R̂
, ∆ = b

Rf
− b

R̂

Table 1:

In the table, it is assumed that δ2 > −1, α, β, b, κ > 0 and a > or < 0.

Remark 3 It should be noted that for the quadratic case (line 4 in Table 1), R̂ is

defined by eqn. (42) with δ2 = −2. For the negative exponential case (line 3 in Table

1), it can be seen from the formula for the ĉ2 constraint implied by q1, q2 and ∆ that

a certainty equivalent return R̂ does not exist.

5 General Linear Constraint Comparative Statics

In this section, we first prove a new comparative static result for general linear con-

straints and then show how it can be applied to the consumption-portfolio problem

when preferences take the OCE form defined by the certainty persistence U in eqn.

(31) and the conditional HARA utilities V (c1, c2) in Table 1. Because certainty per-

sistence and risk preference dependence parameters are reflected differently in the ĉ2
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linear constraint, it is possible to isolate their respective effects on the comparative

statics of pure increases in the risky asset’s return and risk. Finally, this isolation

facilitates a very simple explanation of the paradox introduced in Section 2.

5.1 General Theorem

We next state our main comparative static Theorem and Corollary and discuss the

intuition using a very simple geometric argument.

Theorem 1 Assume the optimization problem

max
c1,c2

U (c1, c2) = u1 (c1) + u2 (c2) (71)

S.T. c2 − c∗2 = (c∗1 − c1)R, (72)

where U is defined up to an increasing transformation, u′i > 0, u′′i < 0 (i = 1, 2), −R
is the slope of the constraint and (c∗1, c

∗
2) is the anchor point of the constraint when

changing R. Then

(a) if c∗2 = 0, then ∂c1
∂R
T 0⇔ − c2u′′2 (c2)

u′2(c2)
T 1,

(b) if c∗2 > 0, then ∂c1
∂R

< 0 if − c2u′′2 (c2)

u′2(c2)
≤ 1,

(c) if c∗2 < 0 , then ∂c1
∂R

> 0 if − c2u′′2 (c2)

u′2(c2)
≥ 1.

Cases (a), (b) and (c) in Theorem 1 correspond to Figures 7(a), (b) and (c),

respectively. When changing R, (c∗1, c
∗
2) remains fixed and the constraint is always

anchored at this point. Therefore in applying Theorem 1, if a given utility function

can be transformed into the additively separable form (71) and the constraint can be

rewritten in the form of eqn. (72), then it is possible to determine the sign of ∂c1
∂R

from the sign of c∗2.

Remark 4 To apply Theorem 1, one must ensure that the parameters resulting in

changes in R do not enter into c∗1 or c
∗
2. Suppose the constraint takes the form

I = q1c1 + q2c2 + ∆, (73)

where in general q1, q2 and ∆ are functions of the parameters ϑ1, ϑ2, ..., ϑn, and can

be transformed into (72), then

R =
q1

q2

. (74)
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Figure 7:

To obtain (72), one must solve for c∗2 and c
∗
1. Assume that changing ϑ1 results in

the different constraints as shown in Figure 7(a), (b) or (c). It should be stressed

that c∗1 or c
∗
2 cannot be a function of ϑ1. Otherwise, the constraint (73) cannot be

transformed into (72). Noticing that at c2 = c∗2, c1 will not change with ϑ1 and one

can obtain c∗2 as a function of ϑi (i ∈ {2, 3, ..., n}) from

∂c1

∂ϑ1

∣∣∣∣
c2=c∗2

=
∂
(
I−∆−q2c2

q1

)
∂ϑ1

∣∣∣∣∣∣
c2=c∗2

= 0. (75)

Similarly, c∗1 as a function of ϑi (i ∈ {2, 3, ..., n}) can be obtained from

∂c2

∂ϑ1

∣∣∣∣
c1=c∗1

=
∂
(
I−∆−q1c1

q2

)
∂ϑ1

∣∣∣∣∣∣
c1=c∗1

= 0. (76)

A simple geometric intuition can be given for Theorem 1. Define the marginal

rate of substitution and minus the slope of the constraint (72), respectively, by

m1 =def
u′1 (c1)

u′2 (c2)
and m2 =def −

c2 − c∗2
c1 − c∗1

. (77)

In Figure 8, consider the two constraint lines anchored at the common point (c∗1, c
∗
2).

At the tangency between the lower constraint and indifference curve, m1 = m2.

Increasing R in eqn. (72) corresponds to a rotation of the lower constraint line
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upward to the right and is equivalent to changing c2 for a fixed c1. The elasticities

of the two slope changes with respect to c2 are given by

ε1 =def
∂ lnm1

∂ ln c2

= −c2u
′′
2 (c2)

u′2 (c2)
and ε2 =def

∂ lnm2

∂ ln c2

=
c2

c2 − c∗2
. (78)

If ε1 T ε2 for ∀c2 then we have ∂c1
∂R
T 0. Noticing that

c∗2 S 0⇔ ε2 S 1, (79)

the results in Theorem 1 follow immediately. Returning to the case in Figure 8,

because ε1 > ε2 in response to an increase in R, the higher indifference curve intersects

the shifted constraint at the initial optimal c1, implying that the tangent to the

indifference curve is steeper than the shifted constraint. Therefore, the new optimal

c1 is to the right of the initial c1-value, implying that c1 increases with R.

Applying Theorem 1 to CES preferences, yields the following Corollary.

Corollary 2 Assume the following optimization problem

max
c1,c2

U (c1, c2) = −c
−δ1
1

δ1

− c−δ12

δ1

(80)

S.T. c2 − c∗2 = (c∗1 − c1)R, (81)

where U is defined up to an increasing transformation, −R is the slope of the con-

straint and (c∗1, c
∗
2) is the anchor point of the constraint when changing R. Then
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(a) if c∗2 = 0, then ∂c1
∂R
T 0⇔ δ1 T 0,

(b) if c∗2 > 0, then ∂c1
∂R

< 0 if δ1 ≤ 0,

(c) if c∗2 < 0, then ∂c1
∂R

> 0 if δ1 ≥ 0.

The following Example shows that Theorem 1 may apply even if u2 (c2) does not

take the form of utility in Corollary 2.

Example 1 Assume the additively separable form of U and constraint in Theorem

1. Let u2 (c2) be given by

u2 (c2) = −c
−(δ+e)
2

δ + e
− c

−(δ−e)
2

δ − e , (82)

where δ > −1 and 0 < e ≤ 1 + δ. We show that it is possible to determine whether

− c2u′′2 (c2)

u′2(c2)
≷ 1 for all c2 and hence use Theorem 1 to determine the sign of ∂c1/∂R.

Note that u2 is increasing and concave and can be thought of as being a perturbation

of the power utility where δ is increased and decreased by e. In contrast to the CES

case where the elasticity ε1 = 1 + δ, for the utility (82) we have

ε1 = −c2u
′′
2 (c2)

u′2 (c2)
= 1 + δ +

(
1− c2e

2

1 + c2e
2

)
e (83)

which is bounded by 1 + δ ± e since

1 + δ − e < 1 + δ +

(
1− c2e

2

1 + c2e
2

)
e < 1 + δ + e. (84)

If δ − e ≥ 0 (δ + e ≤ 0), then it follows that − c2u′′2 (c2)

u′2(c2)
> (<)1.

Remark 5 It should be emphasized that Theorem 1 sets restrictions only on u2 (c2).

The function u1 (c1) can be completely general and u2 (c2) can take more complicated

forms than the power utility in (80), such as in Example 1. One can still apply

Theorem 1 to obtain comparative statics for c1 even though it may not be possible to

derive an analytic expression for optimal c1.

5.2 Certainty Persistence Comparative Statics

In this subsection and the next, four cases are considered which illustrate the appli-

cation of Corollary 2. The first case assumes the certainty persistence U and budget

constraint considered in Section 2. The process outlined in Remark 4 is illustrated

in some detail, allowing for a more abbreviated analysis in Cases 2-4 below.
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Case 1 Assume the following certainty habit persistence optimization problem

max
c1
U (c1, c2) = −c

−δ1
1

δ1

− (c2 − αc1)−δ1

δ1

, α > 0 S.T. c2 = (I − p1c1)Rf . (85)

Transform the problem into the equivalent

max
c1
− c−δ11

δ1

− (cnew2 )−δ1

δ1

S.T. cnew2 = c2 − αc1 = (I − p1c1)Rf − αc1. (86)

In order to apply Corollary 2, the cnew2 constraint needs to be rewritten in the form of

(81). First observing that the marginal costs q1 = p1 + α/Rf , q2 = 1/Rf and

R =
q1

q2

= p1Rf + α, (87)

the risk free rate of interest Rf can be viewed as the parameter ϑ1 in Remark 4. Next

it is necessary to solve for (cnew2 )∗ and c∗1 and then verify that each is independent of

Rf . To find (cnew2 )∗, express c1 as a function of Rf and cnew2

c1 =
IRf − cnew2

p1Rf + α
(88)

and then differentiate with respect to Rf holding cnew2 = (cnew2 )∗ . Since we are at the

anchor point, it follows that

∂c1

∂Rf

∣∣∣∣
cnew2 =(cnew2 )

∗
= 0 =

αI + p1 (cnew2 )∗

(p1Rf + α)2

⇒ (cnew2 )∗ = −αI
p1

< 0. (89)

Analogously differentiating the cnew2 constraint with respect to Rf holding c1 = c∗1,

yields

∂cnew2

∂Rf

∣∣∣∣
c1=c∗1

= 0 = I − p1c
∗
1

⇒ c∗1 =
I

p1

. (90)

Clearly c∗1 and (cnew2 )∗ satisfy the requirement of being independent of Rf . Therefore,

it follows from Corollary 2(c) that δ1 ≥ 0 implies ∂c1
∂Rf

> 0. The geometry for this

Case is shown in Figure 9. Figure 9(a) illustrates that for the optimization of the

initial untransformed problem, c1 increases with Rf when δ1 = 1 > 0. However, since
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Figure 9:

the indifference curves do not correspond to CES preferences, Corollary 2 cannot be

applied directly. In Figure 9(b), the same problem is considered in the new coordinate

system, c1 − cnew2 , utilizing standard CES indifference curves. Since (cnew2 )∗ < 0, it

follows that c1 increases with Rf when δ1 = 1 > 0.

Remark 6 When comparing Figures 9(a) and (b), it is natural to wonder why for
considering changes in Rf there is a shift in the anchor point from (I/p1, 0) to

(I/p1,−αI/p1). This follows immediately from the fact that when the utility is trans-

formed from U(c1, c2 − αc1) to U(c1, c
new
2 ), since

cnew2 = c2 − αc1, (91)

the c2-component of the anchor point shifts from c∗2 = 0 to (cnew2 )∗ = −αc∗1.

5.3 Uncertainty Comparative Statics

By using Corollary 2, it is possible to resolve the paradox introduced in Section 2

concerning the effects on optimal period one consumption of a pure increase in ER̃

(and a mean preserving increase in the risk associated with R̃). Three cases based

on the certainty persistence utility and a generalization of the RPD utility in (31)

are considered. They yield a clear separation of the roles of certainty persistence and
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risk preference dependence. In order to derive these comparative static results, it is

necessary to express the certainty equivalent return R̂ in terms of the risky asset’s

payoffs ξ21 and ξ22. Substituting the expressions for p21 and p22 from (24) into the

formula (42) for R̂, it is then possible to prove the following two results.

Result 1 Assume the conditional NM index Vc1(c2) is a member of the HARA fam-

ily33 and the bivariate asset return is given by

R2s(θ) = R2s + θ, (92)

where R2s = ξ2s
p

(s = 1, 2) and θ > 0 is a pure expected return shift parameter. Then

it follows that
∂R̂

∂ER̃
=
∂R̂

∂θ
> 0, (93)

where ER̃ =
∑2

s=1 π2sR2s.

Result 2 Assume the conditional NM index Vc1(c2) is a member of the HARA family

and the bivariate asset return is given by

R21(λ) = λR21 − (λ− 1)ER̃ and R22 (λ) = λR22 − (λ− 1)ER̃, (94)

where R2s = ξ2s
p

(s = 1, 2), ER̃ =
∑2

s=1 π2sR2s and λ > 0 is a risk spread parameter.

Then corresponding to a mean preserving increase in risk associated with λ,

∂R̂

∂λ
< 0. (95)

Although these results are based on the assumption of a two asset complete market

setting, they can easily be extended to the more general cases of multiple risky assets

and incomplete markets if one makes the natural modifications to the definition of

R̂. The extension to incomplete markets follows from the fact that R̂ is defined only

for the HARA class of conditional risk preferences, and in this case the incomplete

markets are effectively complete as discussed above in connection with Proposition

1.34

33It should be noted that the negative exponential utility cannot be assumed in Results 1 and 2,

since following Remark 3 no R̂ exists for this utility.
34For example, suppose V takes the CRRA form and there are m risky assets and one risk free

asset. Then ĉ2 = R̂(I−p1c1). If I−pc1 is fixed and ER̃i for risky asset i (i ∈ {1, ...,m}) increases,
c̃2 =

∑m
i=1 niξ̃2i + nfξf must increase implying that ĉ2 and R̂ increase as well. Therefore, R̂ is an

increasing function of the expected return for any risky asset. A similar argument can be made for

other members of the HARA class. Also, the argument extends to changes in risk.
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For each of the subsequent uncertainty cases it is possible to characterize the sign

of ∂c1/∂R̂, where utilizing Results 1 and 2 the increase in R̂ can be viewed as arising

from an either an increase in ER̃ or a mean preserving reduction in risk.

Case 2 Consider the OCE setting with certainty persistence, where

U (c1, c2) = −c
−δ1
1

δ1

− (c2 − αc1)−δ1

δ1

, α > 0 and V (c2) = −c
−δ2
2

δ2

. (96)

The period one consumption-savings problem (40) - (42) can be transformed into

max
c1
− c−δ11

δ1

− (ĉnew2 )−δ1

δ1

S.T. ĉnew2 = ĉ2 − αc1 = (I − p1c1)R̂− αc1. (97)

Proceeding as in Case 1, it can be verified that

(ĉnew2 )∗ = −αI
p1

< 0 and R = p1R̂ + α. (98)

Then based on Corollary 2(c), δ1 ≥ 0 implies ∂c1
∂R̂

> 0.

Case 3 Consider the OCE setting with risk preference dependence

U (c1, c2) = −c
−δ1
1

δ1

− c−δ12

δ1

and Vc1 (c2) = −(c2 − βc1)−δ2

δ2

, β > 0. (99)

It can be verified that the constraint can be written as35

ĉ2 = (I − p1c1)R̂− c1β

(
R̂

Rf

− 1

)
. (100)

Since

ĉ∗2 =
βI

p1 + β/Rf

> 0 and R =

(
p1 +

β

Rf

)(
R̂− β

p1 + β/Rf

)
, (101)

it follows from Corollary 2(b) that δ1 ≤ 0 implies ∂c1
∂R̂

< 0. The geometry is shown in

Figure 10. Since the preferences are already CES, it is not necessary to transform

U and create a new coordinate system. It follows from ĉ∗2 > 0 that δ1 = −0.5 < 0

implies ∂c1
∂R̂

< 0.

35As noted in footnote 25, R̂ is the certainty equivalent of the return from the risky mutual fund

only and the term c1β
(
R̂
Rf
− 1
)
in the ĉ2 constraint is a risk preference dependence perturbation

term incorporating the effect of the risk free subsistence fund.
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Remark 7 It is clear from Figure 10 that for the RPD case, the anchor point (c∗1, c
∗
2)

is determined by the intersection of the ray corresponding to the requirement that

ĉ2 > βc1 and the ĉ2 constraint. Equating eqn. (100) and ĉ2 = βc1 and solving for

period one consumption yields

c∗1 =
I

p1 + β
Rf

and ĉ∗2 = βc∗1. (102)

Comparing the certainty persistence and RPD cases, the anchor points satisfy ĉ∗2 = αc∗1
and ĉ∗2 = βc∗1, respectively. The two cases differ in the value of c∗1. The RPD term

p1 + β
Rf
will be recognized to be the marginal direct cost of c1 plus the indirect cost of

the risk free subsistence fund (see the discussion of eqn. (54) in Subsection 4.2).

Case 4 Consider the OCE setting with both certainty persistence and risk preference
dependence

U (c1, c2) = −c
−δ1
1

δ1

− (c2 − a− αc1)−δ1

δ1

and Vc1 (c2) = −(c2 − a− βc1)−δ2

δ2

, (103)

where a is allowed to be positive, zero or negative, c2 > a+ αc1 and c2 > a+ βc1. It

can be verified that the constraint can be written as

ĉ2 = (I − p1c1)R̂− (βc1 + a) R̂

(
1

Rf

− 1

R̂

)
. (104)
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Defining ĉnew2 = ĉ2 − αc1, the transformed optimization problem becomes

max
c1
− c−δ11

δ1

− (ĉnew2 )−δ1

δ1

S.T. ĉnew2 = (I − p1c1)R̂− (βc1 + a) R̂

(
1

Rf

− 1

R̂

)
− αc1.

(105)

Since

q1 = p1 +

(
β

Rf

− β − α
R̂

)
and q2 =

1

R̂
, (106)

it follows that

R =
q1

q2

=

(
p1 +

β

Rf

)(
R̂− β − α

p1 + β/Rf

)
. (107)

Moreover,

∂ĉnew2

∂R̂

∣∣∣∣
c1=c∗1

= I − a

Rf

− p1c
∗
1 −

β

Rf

c∗1 = 0⇒ c∗1 =
IRf − a
p1Rf + β

. (108)

Noticing that

c1 = −
ĉnew2 + a

(
R̂
Rf
− 1
)
− IR̂

p1R̂ + βR̂
Rf
− β + α

, (109)

one can obtain

∂c1

∂R̂

∣∣∣∣
ĉnew2 =(ĉnew2 )

∗
= −Rf ((β − α)RfI + a (α + p1Rf )− (β + p1Rf ) (ĉnew2 )∗)(

β
(
R̂−Rf

)
+
(
α + p1R̂

)
Rf

)2 = 0,

(110)

implying that

(ĉnew2 )∗ =
a (p1Rf + α) + (β − α)RfI

p1Rf + β
. (111)

Following Corollary 2, one can conclude that

(i) when a > 0,

α ≤ β :
∂c1

∂R̂
< 0 if δ1 ≤ 0; (112)

(ii) when a = 0,

α = β :
∂c1

∂R̂
T 0⇔ δ1 T 0, (113)

α < β :
∂c1

∂R̂
< 0 if δ1 ≤ 0, (114)

α > β :
∂c1

∂R̂
> 0 if δ1 ≥ 0; (115)

(iii) when a < 0,

α ≥ β :
∂c1

∂R̂
> 0 if δ1 ≥ 0. (116)
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We can now readily resolve the paradox introduced in Section 2. There it was

observed that on the one hand the presence of the persistence parameter γ in the NM

index (3) does not affect the necessary and suffi cient for condition for ∂c1/∂ER̃ T 0

and on the other hand the presence of the persistence parameter in the analogous

CES certainty utility does affect the condition for ∂c1/∂Rf T 0. Assuming a = 0,

it is immediately clear from eqn. (111) that (cnew2 )∗ = 0 if α = β = γ whether or

not the common value is equal to 0. As a result, the Expected Utility expression

(113) holds and using Result 1, the condition for ∂c1/∂ER̃ T 0 is unaffected by the

persistence parameter. Effectively the negative (cnew2 )∗ component of the anchor

point for certainty persistence (Case 2) is exactly offset by the positive ĉ∗2 component

for risk preference dependence (Case 3), resulting in Figure 7(a) applying whether

or not γ is assumed to equal 0. For the certainty case only the situation without

persistence corresponds to Figure 7(a), with Figure 7(c) holding in the presence of

persistence.

Given the strong comparative static consequences of assuming α = β together

with the observations in Subsection 4.1 that certainty persistence and risk preference

dependence reflect very different preference attributes, it seems quite reasonable to

allow the two parameters to be different. But then, can a case be made for assuming

α > β or β > α? (To simplify the discussion, assume a = 0.) First, note that

c22 > βc1 ensures no bankruptcy. Since βc1 is the minimum subsistence level that

will be tolerated when facing random period two consumption, a consumer will not

allow consumption in any state to fall below this level no matter how small the

probability π22 or how attractive c21 is. Second, ĉ2 >
(
α + α

1
1+δ1

)
c1 guarantees

positive marginal utility with αc1 establishing the minimum level for the certainty

equivalent ĉ2. This certainty persistence restriction can allow for a very low level of c22

so long as the overall ĉ2 based on consumption in both states is above
(
α + α

1
1+δ1

)
c1.

Hence it may not be unreasonable to suppose that βc1 rather than αc1 establishes

the bare minimum consumption, suggesting that α > β.

Remark 8 Suppose V takes the negative exponential form as in line 3 of Table 1.

Then changing ER̃ or risk results in parallel shifts of the ĉ2 constraint as in Figure

6(b) rather than a rotation around a fixed anchor point (c∗1, ĉ
∗
2). Such a change in

the constraint is inconsistent with the characterization in (72) of Theorem 1 and as

reflected in Figure 7. Hence Theorem 1 cannot be applied for this member of the

HARA family.
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6 Conclusion

In this paper, I have shown that the classic Expected Utility habit formation model

confounds the different meanings and consequences of certainty persistence and risk

preference dependence. The former has the interpretation that the more I eat today

the hungrier I become tomorrow, while the latter is associated with the more I eat

today, the more I want to avoid risk in my consumption tomorrow and the larger my

subsistence requirement. In addition to being associated with different preference

interpretations, these two properties can have opposite effects on risky asset demand

and generate potentially opposite responses to increases in the risky asset’s expected

return and risk. This confounding parallels that of the Arrow-Pratt risk aversion

measure and the reciprocal of the intertemporal elasticity of substitution in CES

Expected Utility preferences that I first noted in Selden (1978, 1979). Today it is

generally viewed that assuming δ1 = δ2 or equivalently τR = 1/η is an overly strong

restriction to impose on preferences.

Given the important role that the Expected Utility habit formation model has

played in asset pricing and macroeconomics, the results in this paper suggest a num-

ber of potentially interesting questions for future research. One natural extension

would be to dynamic settings. Another very interesting but quite different area for

future work would involve the application of the new laboratory methodologies for

testing different uncertainty preference hypotheses in terms of observed asset demand

behavior by subjects in an experimental environment (e.g., Choi, et. al. 2007). In a

two period setting such as assumed in this paper, do individuals’certainty preferences

exhibit certainty persistence and do their risk preferences exhibit risk preference de-

pendence? If both are verified, then can one show based on observed choices that

the persistence and risk preference dependence effects are different?36

Finally as noted in Section 1, there is a clear connection between the habit for-

mation and reference dependent preference models. For the latter, there also exist

different strands of research which consider certainty and risky settings. What would

be the implications of assuming that the reference point and loss aversion functions

differ between certainty and uncertainty environments in multiperiod applications

such as considered in this paper?

Appendix
36Indeed still another possibility not considered in this paper is that the parameters α and β are

neither identical nor independent, but rather exhibit some functional relationship.
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A Proof of Proposition 1

First prove necessity. ĉ2 is a linear function of c1 only if each state c2i is a linear

function of c1. It follows from Pollak (1971) that the NM index must be a HARA

member.37 Next prove suffi ciency. If h is a HARA member, it can be easily verified

that (Gollier 2001)

−∂
2h/∂c2

2

∂h/∂c2

=
1

a+ b (c2 − ζc1)
=

1

(a− bζc1) + bc2

, (117)

where a and b are arbitrary constants. Since for the conditional problem, c1 is fixed,

it follows from Selden (1980, Corollary, p. 440) that ĉ2 is a linear function of c1.

Since ζc1 will not affect linearity of the ĉ2 constraint and an affi ne transformation of

V based on c1 will not change the ĉ2 constraint, we can conclude that if

Vc1 (c2) = f (c1)h (c2 − ζc1) + g (c1) , (118)

the ĉ2 constraint is linear in c1.

B Proof of Proposition 2

The computation of ∂(1/η)
∂α

is straightforward as shown in eqn. (34). This proof

establishes the sign of the derivative. To simplify the notation, let x = c2
c1
. It follows

from (34) that
∂η

∂α
T 0⇔ f (α) S 0, (119)

where

f (α) = 1 + (x− α)−1−δ1 (αδ1 + x− α) . (120)

For any fixed x,

0 < α < αmax, (121)

where αmax satisfies

αmax + α
1

1+δ1
max = x. (122)

When δ1 ≥ 0, we have

αδ1 + x− α > αδ1 ≥ 0⇒ f (α) > 0⇒ ∂η

∂α
< 0. (123)

37It should be noted that the modified Bergson family defined in Pollak (1971) corresponds to the

HARA class of NM indices (Gollier 2001 and Rubinstein 1976).
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When δ1 < 0, it can be verified that

f ′ (α) = δ1 (x− α)−2−δ1 (2x+ (δ1 − 1)α) . (124)

Since −1 < δ1 < 0, we have

2x+ (δ1 − 1)α > 2 (x− α) > 0. (125)

Therefore, f ′ (α) < 0, implying f (α) is a monotonically decreasing function of α.

Moreover when α = αmax, it follows that

f (α) = 1 + α−1
max

(
αmaxδ1 + α

1
1+δ1
max

)
= 1 + δ1 + α

− δ1
1+δ1

max > 0. (126)

Therefore we always have f (α) > 0, ∂η/∂α < 0 and ∂(1/η)/∂α > 0.

C Proof of Proposition 3

To prove this result, we first introduce the following Lemma.

Lemma 1 For the consumption-portfolio problem in the OCE setting where U and

V are given in (31), optimal period one consumption satisfies

∂c1

∂α
< 0 and

∂c1

∂β
< 0. (127)

Proof. Solving the consumption-portfolio problem, it can be verified that

c1 =
I

p1 + α/R̂ + β
(

1
Rf
− 1

R̂

)
+
(
p1R̂ + α + β

(
R̂
Rf
− 1
)) 1

1+δ1 /R̂

. (128)

Obviously,
∂c1

∂α
< 0. (129)

Since R̂ > Rf , it also follows that

∂c1

∂β
< 0. (130)

Next we prove the result. Since Lemma 1 still applies when β = 0, it follows from

p1
∂c1

∂α
+ p

∂n

∂α
+ pf

∂nf
∂α

= 0 (131)
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and
∂c1

∂α
< 0 (132)

that

p
∂n

∂α
+ pf

∂nf
∂α

> 0. (133)

It follows from (58) that
∂
(nf
n

)
∂α

= 0 (134)

and remembering that n > 0, we can immediately obtain

∂n

∂α
> 0 and

∂ |nf |
∂α

> 0. (135)

D Proof of Proposition 4

Since Lemma 1 still applies when α = 0, we have

∂c1

∂β
< 0. (136)

It follows from substituting the optimal period one consumption from (128) where

α = 0 into the conditional demand function (63) that

n =

I
(

1− k
1

1+δ2

)((
p1R̂ + β

(
R̂
Rf
− 1
)) 1

1+δ1 − β
)

R̂

(
p1 + β

(
1
Rf
− 1

R̂

)
+

((
p1R̂ + β

(
R̂
Rf
− 1
)) 1

1+δ1

)
/R̂

)(
p21 + k

1
1+δ2 p22

)
(ξ21 − ξ22)

,

(137)

which can be rewritten as

n =

I
(

1− k
1

1+δ2

)(
1−

(
p1R̂

β1+δ1
+ 1

βδ1

(
R̂
Rf
− 1
))− 1

1+δ1

)
((

p1R̂ + β
(
R̂
Rf
− 1
)) δ1

1+δ1 + 1

)(
p21 + k

1
1+δ2 p22

)
(ξ21 − ξ22)

. (138)

If δ1 ≥ 0,

∂
(
p1R̂ + β

(
R̂
Rf
− 1
)) δ1

1+δ1

∂β
≥ 0 (139)

and

∂
(

p1R̂

β1+δ1
+ 1

βδ1

(
R̂
Rf
− 1
))− 1

1+δ1

∂β
> 0. (140)
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Since n ≥ 0, it follows that
∂n

∂β
< 0. (141)

Noticing that

p1
∂c1

∂β
+ p

∂n

∂β
+ pf

∂nf
∂β

= 0, (142)

if
∂c1

∂β
< 0 and

∂n

∂β
< 0, (143)

it follows from the budget constraint that

∂nf
∂β

> 0. (144)

E Proof of Proposition 5

For the consumption-portfolio problem where the OCE utilities U and V are given in

(31), conditional optimal asset demands satisfy eqn. (61),38 implying that

∂
(
nf−βc1/ξf

n

)
∂α

= 0. (145)

Following a similar argument as in eqns. (131) - (133), we can conclude that

∂n

∂α
> 0. (146)

It follows from substituting the optimal period one consumption from (128) into the

conditional demand function (63) that

n =

I
(

1− k
1

1+δ2

)((
p1R̂ + α + β

(
R̂
Rf
− 1
)) 1

1+δ1 + α− β
)

(
p1R̂ + α + β

(
R̂
Rf
− 1
)

+
(
p1R̂ + α + β

(
R̂
Rf
− 1
)) 1

1+δ1

)(
p21 + k

1
1+δ2 p22

)
(ξ21 − ξ22)

,

(147)

which can be rewritten as

n =

I
(

1− k
1

1+δ2

)1− 1−α/β(
p1R̂+α

β1+δ1
+ 1

βδ1

(
R̂
Rf
−1

)) 1
1+δ1


((

p1R̂ + α + β
(
R̂
Rf
− 1
)) δ1

1+δ1 + 1

)(
p21 + k

1
1+δ2 p22

)
(ξ21 − ξ22)

. (148)

38It should be noted that eqn. (61) holds no matter whether α = 0 or not.
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If δ1 ≥ 0, we have

∂
(
p1R̂ + α + β

(
R̂
Rf
− 1
)) δ1

1+δ1

∂β
≥ 0, (149)

∂ (1− α/β)

∂β
> 0 (150)

and

∂
(
p1R̂+α

β1+δ1
+ 1

βδ1

(
R̂
Rf
− 1
))− 1

1+δ1

∂β
> 0. (151)

Therefore, when assuming β ≥ α, we have

∂n

∂β
< 0 if δ1 ≥ 0. (152)

Finally, since
∂c1

∂β
< 0 and

∂n

∂β
< 0, (153)

it follows from the budget constraint that

∂nf
∂β

> 0. (154)

F Proof of Corollary 1

If α = β = γ, it follows from eqn. (148) that

n =
I
(

1− k
1

1+δ2

)
((

p1R̂ + γ R̂
Rf

) δ1
1+δ1 + 1

)(
p21 + k

1
1+δ2 p22

)
(ξ21 − ξ22)

. (155)

It can be easily seen that
∂n

∂γ
T 0⇔ δ1 S 0. (156)

When δ1 ≥ 0, we have
∂c1

∂γ
< 0 and

∂n

∂γ
≤ 0, (157)

implying that
∂nf
∂γ

> 0. (158)
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G Proof of Theorem 1

Differentiating the first order condition

u′1 (c1)

u′2 (c2)
= R (159)

with respect to R, yields

u′′1 (c1)
∂c1

∂R
= Ru′′2 (c2)

∂c2

∂R
+ u′2 (c2) . (160)

Differentiating the constraint

c2 − c∗2 = (c∗1 − c1)R (161)

with respect to R, it follows that

∂c2

∂R
= (c∗1 − c1)−R∂c1

∂R
. (162)

Substituting eqn. (162) into (160) yields

(u′′1 (c1) +Ru′′2 (c2))
∂c1

∂R
= u′′2 (c2) (c∗1 − c1) + u′2 (c2) . (163)

Since we require that the optimal point given by the first order condition is a local

maximum, the second order condition ensures that

u′′1 (c1) +R2u′′2 (c2) < 0. (164)

Therefore,
∂c1

∂R
T 0⇔ Ru′′2 (c2) (c∗1 − c1) + u′2 (c2) S 0. (165)

Notice that

Ru′′2 (c2) (c∗1 − c1) + u′2 (c2) S 0⇔ −(c2 − c∗2)u′′2 (c2)

u′2 (c2)
T 1. (166)

If c∗2 = 0, then we have
∂c1

∂R
T 0⇔ −c2u

′′
2 (c2)

u′2 (c2)
T 1. (167)

If c∗2 > 0, then

−c2u
′′
2 (c2)

u′2 (c2)
< 1⇒ −(c2 − c∗2)u′′2 (c2)

u′2 (c2)
< 1⇒ ∂c1

∂R
< 0. (168)

If c∗2 < 0, then

−c2u
′′
2 (c2)

u′2 (c2)
> 1⇒ −(c2 − c∗2)u′′2 (c2)

u′2 (c2)
> 1⇒ ∂c1

∂R
> 0. (169)
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H Proof of Corollary 2

Applying Theorem 1 to the special CES utility function, we can immediately get the

result.

I Proof of Result 1

Consider the bivariate distribution defined by eqn. (92) and define

k =
π22

(
ξfp− ξ22 (θ) pf

)
π21

(
ξ21 (θ) pf − ξfp

) , (170)

where

ξ21 (θ) = ξ21 + θp, ξ22 (θ) = ξ22 + θp. (171)

It can be easily seen that

∂k

∂θ
< 0⇔ ∂k

∂Eξ̃
< 0⇔ ∂k

∂ER̃
< 0. (172)

Notice that

(p21 + p22) R̂ =
π21 + k−1π22(

π21 + k
−δ2
1+δ2 π22

) 1
δ2

+1
. (173)

Since p21 + p22 =
pf
ξf

= const and

∂ π21+k−1π22(
π21+k

−δ2
1+δ2 π22

) 1
δ2
+1

∂k
=
k
−2+

2δ2
1+δ2 π21π22

(
π21 + k

−δ2
1+δ2 π22

)− 1
δ2
(
k

1
1+δ2 − 1

)
(
k

δ2
1+δ2 π21 + π22

)2 < 0, (174)

we can conclude that
∂R̂

∂ER̃
> 0. (175)

J Proof of Result 2

Defining

ξ21(λ) = λξ21 − (λ− 1)Eξ̃ and ξ22 (λ) = λξ22 − (λ− 1)Eξ̃. (176)
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and noting that

π21ξ21(λ) + π22ξ22(λ) = λ (π21ξ21 + π22ξ22)− (λ− 1)Eξ̃

= λEξ̃ − (λ− 1)Eξ̃ = Eξ̃, (177)

it is clear that (176) corresponds to a mean preserving spread. Since

p21 =
ξfp− ξ22(λ)pf

(ξ21(λ)− ξ22(λ))ξf
and p22 =

ξ21(λ)pf − ξfp
(ξ21(λ)− ξ22(λ))ξf

, (178)

it can be easily verified that

∂p22

∂λ
= −∂p21

∂λ
< 0, (179)

implying that k defined by (39) satisfies

∂k

∂λ
> 0. (180)

From the proof of Result 1, we have

∂R̂

∂k
< 0, (181)

implying that
∂R̂

∂λ
< 0. (182)
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