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experimental settings. However the domain of preferences of these asset

demand tests di¤er from the mixture space of distributions assumed in the

traditional binary lottery laboratory tests of von Neumann-Morgenstern

Expected Utility preferences. We derive new sets of axioms for preferences

over contingent claims to be representable by an Expected Utility function.
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1 Introduction

Traditionally, researchers seeking to test whether individuals satisfy the classic von

Neumann and Morgenstern (1953) axioms for Expected Utility preferences have

often based their experiments on binary choices over a mixture space of lotteries.

In recent years, a second approach has evolved which investigates whether �nan-

cial assets selected by individuals in a laboratory setting are consistent with the

maximization of state independent Expected Utility subject to a standard budget

constraint.1 An innovative new experimental design introduced by Choi, et al.

(2007a) has facilitated laboratory tests of these theoretical models. Referring to

the advantages of their approach versus binary lottery tests, Choi, et al. (2007a,

p. 154) argue that �... [our] experimental technique allows us to confront subjects

with choice problems that span a broad range of common economic problems, both

in theory and in empirical applications, rather than ... stylized choices designed

to test a particular theory.�

The asset demand tests are based on the classic Arrow-Debreu contingent claim

setup, in which it is assumed that there are a �nite number of states and agents

possess preferences over state contingent consumption. In this setting one typ-

ically assumes a �xed set of state probabilities and varying state consumption

payo¤s. An important variation is to assume that each demand observation cor-

responds to a di¤erent pair of probabilities and prices.2 Since in these contingent

claim settings an individual never chooses between di¤erent consumption vectors

associated with di¤erent state probabilities, we wish to avoid making the overly

strong assumption that agents possess preferences over the space of all possible

probability distributions. Indeed both von Neumann and Morgenstern (1953, p.

630) and Aumann (1962) argue that the completeness axiom in the lottery model

is of �dubious validity�. Hence it is natural to ask precisely what axioms guaran-

tee that Expected Utility holds in the choice space corresponding to the particular

asset demand model being tested. The diverse collection of asset demand tests

di¤er not only in their assumptions about whether the state probabilities are �xed

or variable, but also whether the probabilities are objective or subjective and

whether the NM (von Neumann-Morgenstern) index is concave or locally convex.

1Non-parametric asset demand tests have been derived by Varian (1983, 1988), Green and

Srivastava (1986), Choi, et al. (2007b), Kubler, Selden and Wei (2014), Polisson, Quah and

Renou (2015), Echenique and Saito (2015) and implemented in experimental settings by Choi,

et al. (2007b) and Polisson, Quah and Renou (2015). Functional form asset demand tests have

been developed by Dybvig (1983) and Kubler, Selden and Wei (2014).
2See for example, Varian (1983), Green and Srivastava (1986), Kubler, Selden and Wei (2014)

and Polisson, Quah and Renou (2015).
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One key motivation for the speci�c sets of axioms we assume is that they in prin-

ciple allow one to utilize the di¤erent experimental tests to determine which set

is most consistent with the observed asset demands.

We consider three di¤erent choices settings. The �rst is associated with a

single contingent claim space with a �xed set of exogenously given probabilities.

We show that the required set of axioms for an Expected Utility representation

consists of Strict Monotonicity, Tradeo¤ Consistency and Local Risk Attitude Con-

gruence.3 Following Wakker (1989) Strict Monotonicity and Tradeo¤Consistency

ensure the existence of a subjective Expected Utility (SEU) function where the

probabilities are endogenously, and not exogenously, given and the representation

is strictly increasing, additively separable and state independent. In order to

ensure that the subjective probabilities resulting from the �rst two axioms match

the exogenously given probabilities, we assume Local Risk Attitude Congruence.

This axiom generalizes the Risk Aversion axiom of Werner (2005) where the latter

guarantees that the NM, or Bernoulli, index is concave which is consistent with the

traditional revealed preference tests in Varian (1983, 1988), Green and Srivastava

(1986), Choi, et al. (2007b) and Kubler, Selden and Wei (2014). The more gen-

eral Local Risk Attitude Congruence allows the NM index to have regions of both

concavity and convexity which is consistent with the Expected Utility revealed

preference tests of Polisson, Quah and Renou (2015).4 Thus in Theorem 1, we

show that Strict Monotonicity, Tradeo¤Consistency and Local Risk Attitude Con-

gruence are necessary and su¢ cient for an Expected Utility representation where

the resulting NM index is locally concave or convex. It is natural to wonder if

Local Risk Attitude Congruence has substantive empirical content. To see that

in fact it does, �rst note that Polisson, Quah and Renou (2015, pp. 9-11) develop

both a test of SEU (Subjective Expected Utility) and a test of Expected Utility

with exogenously given objective probabilities where in each case concavity is not

required. If asset demands pass the �rst test but fail the second, then Local

Risk Attitude Congruence must be violated and the agent�s behavior is consistent

with SEU where the subjective and exogenously given objective probabilities do

not coincide. Similarly, if one assumes concavity of the utility function and an

individual agent�s data fails the revealed preference test for Expected Utility in

Kubler, Selden and Wei (2014) but passes the revealed preference test for Sub-

3This can also be achieved with alternative axioms such as the Sure-thing Principle of Savage

(e.g., Werner 2005). Our motivation for imposing Tradeo¤ Consistency is that it together with

the new Modi�ed Tradeo¤Consistency axiom provide a very nice bridge between the cases where

Expected Utility holds on one contingent claim space and where it holds across multiple spaces.
4Although Local Risk Attitude Congruence requires the NM index to be either convex or

concave on an open neighborhood, this distinction cannot be tested on a �nite data set.
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jective Expected Utility in Echenique and Saito (2015), then one can conclude

that Strict Monotonicity and Tradeo¤ Consistency hold but Local Risk Attitude

Congruence fails.

The second choice setting considered is a set of contingent claim spaces where

each space corresponds to a di¤erent set of probabilities. Without additional

axioms, although there will be an Expected Utility representation on each space,

there is no assurance that the corresponding NM indices will be the same (up to a

positive a¢ ne transformation). To guarantee that the NM indices are not prob-

ability dependent, we introduce a Modi�ed Tradeo¤ Consistency axiom, which

generalizes Tradeo¤ Consistency to this more general choice space. Then in The-

orem 2, we show that Strict Monotonicity, Modi�ed Tradeo¤ Consistency and

Local Risk Attitude Congruence are necessary and su¢ cient for a locally concave

or convex Expected Utility representation.

To our knowledge, the idea that NM indices could be probability dependent

seems to be new.5 (See Example 1 for a discussion of the intuition for why an

individual�s preferences might be representable by a probability dependent util-

ity across contingent claim spaces.) However, there exists some experimental

evidence suggesting that individuals may well have di¤erent risk preferences on

the di¤erent contingent claim spaces corresponding to di¤erent contingent claim

probabilities. First, it can be seen from Tables 1 - 3 in Choi, et al. (2007b) that

for preferences exhibiting loss or disappointment aversion, the �tting parameters

for these representations are signi�cantly di¤erent for the contingent claim spaces

associated with the symmetric versus the asymmetric state probabilities. Second,

Polisson, Quah and Renou (2015) implement their nonparametric revealed pref-

erence tests of Expected Utility and other models on the same data obtained by

Choi, et al. (2007b), and �nd that the critical cost e¢ ciency indices and predic-

tive success measures also vary across symmetric and asymmetric treatments (see

Figure 5 and Tables 2 - 4 in Polisson, Quah and Renou 2015). These papers are

suggestive that the degree to which asset demands are consistent with Expected

Utility maximization does indeed vary across di¤erent contingent claim spaces.

5In the lottery setting, a similar phenomenon is observed, which is referred to as the "utility

evaluation e¤ect" by Machina (1983). McCord and de Neufville (1985), for example, note that

Using di¤erent assessment probabilities...lead to di¤erent indi¤erence state-

ments... There is no reason to expect functions assessed with di¤erent proba-

bilities to be identical. The systematic di¤erences among functions assessed with

di¤erent probabilities also appears theoretically compatible with the overvaluing

of certainty. (McCord and de Neufville, 1985, p. 282)
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However, this claim is somewhat limited by the experimental design, which only

varies state probabilities across di¤erent treatments of subjects. A more direct

and explicit test of the di¤erent axioms in Theorems 1 and 2 is given by Polisson,

et al. (2016), where crucially state probabilities are allowed to vary within indi-

vidual subjects. Both parametric and nonparametric procedures are applied to

these new data, and evidence is provided supporting the notion that the NM index

can be probability dependent. Hence the axioms in Theorem 1 may be satis�ed

but not necessarily the Modi�ed Tradeo¤ Consistency axiom in Theorem 2.

The �nal choice setting considered is the general space of risky prospects where

the admissible set of contingent claim distributions includes those for which pay-

o¤s are allowed to have di¤erent probabilities.6 We show in Theorem 3 that the

Certainty Uniqueness axiom is required to extend the Expected Utility represen-

tation from a set of contingent claim spaces where the probabilities are �xed and

choices are not allowed across the spaces to this more general choice setting. The

required Certainty Uniqueness axiom imposes the surprisingly weak requirement

that degenerate lotteries with the same payo¤ on di¤erent contingent claim spaces

are indi¤erent. This suggests that the key axiom in extending the Expected Util-

ity on di¤erent contingent claim spaces with di¤erent state probabilities to the

conventional space of risky prospects where choices across contingent claim spaces

are allowed is Modi�ed Tradeo¤ Consistency.

Based on these three sets of axioms, it would seem in principle possible to use

laboratory tests (as in Polisson, et al. 2016) to distinguish between asset demands

(i) being consistent with maximizing Expected Utility for a single contingent claim

space but not for multiple spaces and (ii) being consistent with Expected Utility

across multiple spaces. But it should be emphasized that it is impossible to

tell from just asset demands whether the consumer�s choices are consistent with

maximizing Expected Utility over a space of risky prospects and hence whether

or not the Certainty Uniqueness axiom holds. This is because asset demands are

invariant to a particular class of monotone transforms of Expected Utility functions

whereas choices over risky prospects are not (see the discussion of the utility (7) in

the next section). For instance, an Expected Utility and a non-Expected Utility

representation of preferences over risky prospects can yield exactly the same asset

demand functions.7 To test Certainty Uniqueness, it would seem that the demand

6The key di¤erence between the space of risky prospects and the classic distribution space

for von Neumann and Morgenstern (1953) and Samuelson (1952) is that the former has a �xed

number of states and hence is not a mixture space.
7In Chambers, Liu and Martinez (2016), the authors state "our test is intimately tied to the

classic von Neumann-Morgenstern axioms of expected utility". Because of the transformation

property of demands, one should not interpret this as suggesting that one can conduct an asset
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analysis needs to be augmented by a lottery test, such as in Kim (1996), where

lotteries are compared on di¤erent contingent claim spaces.

The rest of the paper is organized as follows. In the next section, we compare

and contrast the choice spaces and Expected Utility representations associated

with (i) contingent claims assuming a �xed set of probabilities, (ii) contingent

claims assuming state probabilities vary as parameters and (iii) a set of probability

distributions or risky prospects corresponding to the case where both probabilities

and consumption vectors are choice variables. Section 3 develops the axiom sys-

tem for Expected Utility de�ned over contingent claims, �rst for the case where

probabilities are �xed and then for the case where they vary. In Section 4, we

identify the incremental set of axioms required to go from Expected Utility prefer-

ences de�ned over a set of contingent claim spaces to Expected Utility preferences

de�ned over the space of distribution, where the number of states is �nite. Proofs

of the results are provided in the Appendix.

2 Di¤erent Preference Domains

Assume there are S � 2 states of nature and there is a single consumption good
in each state. A typical consumption plan is an S vector (c1; c2; :::; cS) in the

consumption space de�ned by RS+. We assume that probabilities are objective

and known and denote the probability of state s by �s. Let � = (�1; �2; :::; �S),

where � 2 int
�
�S�1� = f� 2 RS++ :PS

s=1 �s = 1g. Given this setting, we next
de�ne three di¤erent choices spaces which we will investigate.

The �rst preference domain we consider corresponds to the classic Arrow-

Debreu contingent claim setup in which for a given value of � 2 int
�
�S�1� a

decision maker is assumed to have complete, transitive and continuous prefer-

ences over RS+ which are denoted ��. The second preference domain arises if

one assumes as in Kubler, Selden and Wei (2014) that the consumer confronts a

sequence of independent contingent claim optimizations where probabilities and

prices vary. Then corresponding to a set of probability vectors f�g, there will
be a set of preference relations f��g which need not give the same ordering over
consumption vectors. The set of preference orderings is assumed to be repre-

sentable by a continuous utility function U (cj�) : RS+ ! R where the notation
U (cj�) indicates that corresponding to each �, there will be a potentially di¤er-
ent utility. It should be emphasized that for this set of utilities, the probability

vector � is allowed to change, but only as a parameter. One can view U (cj�)
as being de�ned over a series of contingent claim spaces but not on their union.

demand test of the von Neumann-Morgenstern axioms.
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Figure 1:

Therefore although we can use U (cj�) to compare lotteries in each given contin-
gent claim space, it cannot be used to compare the lotteries across the di¤erent

contingent claim spaces. This is expressed geometrically in Figure 1, where two

states are assumed. Each shaded plane in the �gure corresponds to a contingent

claim space with a given �1. Preferences on the planes corresponding to �01 and

�001 are represented respectively by U (cj�0) and U (cj�00).
Another motivation, quite di¤erent than the one discussed in the introduction,

for investigating the axiomatization of Expected Utility where probabilities are

allowed to change can be found in the work on speculation and the acquisition

and value of information (see Rubinstein 1975, Hirshleifer and Riley 1979 for a

classic overview and Schlee 2001 for more a more recent example). The papers in

this literature typically utilize the contingent claim setting and continue to assume

that risk preferences are representable by the same Expected Utility function as

new information is obtained and probabilities vary.8

The third choice space we consider is the full set of distributions correspond-

ing to (c;�), or the set of �risky prospects�. To make this precise, de�ne a

risky prospect as a pair of vectors (c;�) 2 RS+ � int
�
�S�1�. Assume that

a decision maker has continuous, complete and transitive preferences over P =

RS+ � int
�
�S�1�, denoted �P . For any �xed � 2 int

�
�S�1� this implies pref-

erences �� are well de�ned. To distinguish the representation of �P from the

representation of f��g, we use the notation U (c;�) instead of U (cj�). The

former, in contrast to the latter, has both c and � as arguments since one can

compare lotteries across di¤erent contingent claim spaces, or slices in Figure 1.

For each of the above three preferences cases, we provide in the next two

8It is obviously the case that a careful analysis of these issues requires an explicit temporal

component of the choice problem. To simplify the analysis, a large part of the literature considers

comparative statics experiments where probabilities vary across di¤erent static problems
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Sections a set of axioms that is necessary and su¢ cient for preferences to be

representable by an Expected Utility function. We next illustrate the di¤erence

in the resulting Expected Utilities using the following example9

U (c1; c2; c3j�1; �2; �3) = ��1
3X
s=1

�s (exp (��1cs) + exp (��2cs) + exp (��3cs)) :

(1)

Note �rst that if, as in the standard contingent claim case, probabilities are �xed

at �1 = 0:5, �2 = 0:3 and �3 = 0:2 (de�ning a speci�c slice in Figure 1),10 eqn.

(1) is equivalent up to a positive a¢ ne transformation to

U (cj�) = �0:5 (exp (�0:5c1) + exp (�0:3c1) + exp (�0:2c1))
�0:3 (exp (�0:5c2) + exp (�0:3c2) + exp (�0:2c2))
�0:2 (exp (�0:5c3) + exp (�0:3c3) + exp (�0:2c3)) : (2)

Moreover it can be veri�ed that

@U=@c1
@U=@cs

����
c1=cs

=
�1
�s

(s = 2; 3) (3)

and the utility (2) passes the Expected Utility test in Dybvig (1983), implying

that it can be viewed as an Expected Utility when probabilities are �xed and the

NM index is given by

v (c) = � (exp (�0:5c) + exp (�0:3c) + exp (�0:2c)) : (4)

However when probabilities are allowed to vary and one considers preferences on

di¤erent contingent claim spaces, the resulting contingent claim demands cannot

pass the tests discussed in Kubler, Selden and Wei (2014). The reason is that

when probabilities vary, the NM index associated with the utility (1) will also

change. In general, the kind of utility function in (1) takes the form

U (cj�) = f
 
�;

SX
s=1

�sv�(cs)

!
; (5)

where f (�; x) is a monotone transformation of x that can depend on � and the

NM index v� is allowed to depend on probabilities (see footnote 15 below). It

should be emphasized that for the utility (1), the NM index

v�(c) = � (exp (��1c) + exp (��2c) + exp (��3c)) (6)

9This utility will be recognized to be a modi�ed version of a representation discussed in

Kubler, Selden and Wei (2014).
10Obviously for the three state examples considered in this section, the notion of "slices" as

in Figure 1 should be viewed as an intuitive proxy for the more complex spaces.
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depends on � but is state independent and thus is not denoted by vs;�. The

notation f(�; �) indicates that on each contingent claim slice corresponding to each
probability vector �, one can consider a di¤erent increasing monotonic transform

of the Expected Utility
PS

s=1 �sv(cs) and optimal contingent claim demands will

not be altered.

Next consider the utility function

U (c1; c2; c3j�1; �2; �3) = ��1
3X
s=1

�s (exp (�0:5cs) + exp (�0:3cs) + exp (�0:2cs)) :

(7)

If one ignores the �1 in front, this is a standard Expected Utility with the same

NM index on each contingent claim slice

v (c) = � (exp (�0:5c) + exp (�0:3c) + exp (�0:2c)) : (8)

More generally, the utility (7) takes the form

U (cj�) = f
 
�;

SX
s=1

�sv(cs)

!
; (9)

where f(�; x) is a monotone transformation of x that can depend on � but the

NM index v is independent of probabilities �. Since (7) is an Expected Utility

on each contingent claim slice in Figure 1 and the NM index is the same on

each slice, it will result in demands that pass the tests in Kubler, Selden and

Wei (2014). From observing optimal contingent claim demands, one can never

distinguish ordinal transformations in the utility function corresponding to f(�; �).
However when considering comparisons over lotteries, the utility function de�ned

in (7) (and more generally (9)) cannot be viewed as an Expected Utility function.

To see this, consider the following two lotteries

L1 =< 1; 2; 3; 0:2; 0:3; 0:5 > and L2 =< 2; 1; 3; 0:3; 0:2; 0:5 >; (10)

where the payo¤s in L1 and L2, respectively, are given by 1; 2; 3 and 2; 1; 3 and

the probabilities by 0:2; 0:3; 0:5 and 0:3; 0:2; 0:5. Clearly for any Expected Utility

maximizer, L1 and L2 will be indi¤erent. However for the utility function (7)

since �1 = 0:2 for L1 and �1 = 0:3 for L2, we have

U (L1) < U (L2) : (11)

Hence from the lottery point of view, the transformation f(�; x) = �1x a¤ects the

consumer�s choice whereas it does not in a demand optimization. Because of the

transformation, the probabilities do not enter into the utility function linearly and
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(7) is not an Expected Utility function. The probability weighting function for

state i (i = 1; 2; 3) is �1�i. From this perspective, this utility form can be viewed

as being more analogous to a Prospect Theory form (see Kahneman and Tversky

1979) than Expected Utility.

Finally for the third choice space where preferences over lotteries (for a �nite

number of states S), �P , are represented by an Expected Utility function, the
representation will take the form

U(c;�) = f

 
SX
s=1

�sv(cs)

!
; (12)

where f is a continuous, monotone transformation independent of probabilities

and the continuous NM index v is also independent of probabilities. For instance

in terms of the examples considered above, U(c;�) can be any probability inde-

pendent monotone transform of

�
3X
s=1

�s (exp (�0:5cs) + exp (�0:3cs) + exp (�0:2cs)) : (13)

3 Preferences over Contingent Claims

In this section, we derive Expected Utility representations assuming preferences

are de�ned over a single or set of contingent claim spaces conditioned on state

probabilities. For the set of state probabilities int
�
�S�1�, suppose that the

corresponding set f ��g exists and is representable by U (cj�). We �rst give the
representation result over each contingent claim space, where � is speci�ed. Then

we investigate the incremental axioms which are necessary and su¢ cient for the

Expected Utility representation for each preference relation in the set f ��g to
have the same NM index v, up to a positive a¢ ne transform, on each slice. We

compare and contrast axioms in our risky setting with related axioms in the SEU

(Subjective Expected Utility) setting.

3.1 Representation over Each Contingent Claim Space

In this subsection, we �rst consider the standard contingent claim setting where

for a �xed �, U (cj�) takes the state independent Expected Utility form as in (5).
We provide the necessary and su¢ cient conditions for this to be the case.

It will prove convenient to introduce the following natural Strict Monotonicity

axiom �rst.
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Axiom 1 (Strict Monotonicity) For any given � 2 int
�
�S�1�, c �� c0 whenever

cs � c0s for all s 2 f1; 2; :::; Sg and c �� c0 whenever cs � c0s for all s 2 f1; 2; :::; Sg
and there exists at least one i 2 f1; 2; :::; Sg such that ci > c0i.

Based on the SEU literature, a natural candidate axiom for U (cj�) to be
an Expected Utility is the following version of the Tradeo¤ Consistency axiom

introduced by Wakker (1989).11

Axiom 2 (Tradeo¤ Consistency) For any given � 2 int
�
�S�1�, if c�sx �� c0�sy,

c0�sw �� c�sz and c000�s0y �� c00�s0x, then c000�s0w �� c00�s0z, where c�sx denotes the
consumption vector c with consumption cs in state s replaced by x and x; y; z; w 2
R+.

It follows fromKöbberling andWakker (2003, Theorem 5) that Axiom 2 implies

the Sure-Thing Principle

c�sx �� c0�sx, c�sy �� c0�sy (14)

and the Thomsen-Blaschke condition when S = 2,

(c1; c2) s� (c01; c02) ; (c1; c02) s� (c01; c002) ; (c001; c02) s� (c1; c002)) (c001; c2) s� (c1; c002) :
(15)

Therefore Axiom 2 implies that the utility function is additively separable. More-

over, Wakker (1984, Theorem 3.1) proves that Axioms 1 and 2 imply that there

exists a SEU representation

U (cj�) = f
 
�;

SX
s=1

!sv�(cs)

!
; (16)

where f and v� are continuous and ! = (!1; :::; !S) is the unique endogenously

determined probability vector.12 However, there is no guarantee that for each s 2
f1; 2; :::; Sg, !s coincides with the exogenously given probability �s. Therefore, in
order to obtain the representation (5), we need another axiom. Before introducing

this axiom, we �rst de�ne Local Risk Attitude Congruence.

De�nition 1 For any given � 2 int
�
�S�1�, the agent is locally risk attitude

congruent if and only if there exists a c > 0 such that there is an open neighborhood

11The SEU setting is considered in the seminal book of Savage (1954) and further investigated

in an extensive literature including the important papers of Anscombe and Aumann (1963) and

Wakker (1989). For a more complete discussion of the SEU framework and associated axioms,

see, for example, Wakker (1989), Nau (2011) and Karni (2013).
12It should be noted that in eqn. (16), !s is allowed to depend on �.

11



B(c) in the contingent claim space around the point c = (c; c; ::; c) 2 RS++ such
that for every c0 = (c0; c0; ::; c0) 2 B(c), either c0 �� c0 or c0 �� c0 holds for all
c0 2 B(c) with

PS
s=1 �sc

0
s = c0.

Then we can assume the following axiom.

Axiom 3 (Local Risk Attitude Congruence) For any given � 2 int
�
�S�1�, the

agent is locally risk attitude congruent.

The Local Risk Attitude Congruence axiom has two distinct implications on

behavior. First, it requires that there is an open neighborhood on which cardinal

utility is either concave or convex. This should be seen as a regularity condition.

The condition is equivalent to requiring that there is an open neighborhood on

which cardinal utility is twice continuously di¤erentiable.13 While it is possible

that cardinal utility is nowhere twice continuously di¤erentiable, we view this part

of the axiom as a regularity assumption which has little empirical content (clearly

it cannot be falsi�ed from any �nite set of observations). Second, and importantly,

the axiom requires that in regions where the agents�utility is concave (convex), he

is actually risk-averse (or risk-loving) with respect to the objective probabilities.

This forces the objective probabilities to agree with the subjective probabilities.

To see this more explicitly, consider the following example. Assume that the

individual�s risk preferences implied by Tradeo¤ Consistency are represented by

U (cj!) = !1 ln c1 + !2 ln c2; (17)

where ! = (!1; !2) is the subjective probability vector. Let � = (�1; �2) denote

the objective probability vector. Now assume that ! 6= �, i.e.,

! = (!1; !2) = (0:6; 0:4) and � = (�1; �2) = (0:5; 0:5) : (18)

Choose a consumption vector (c1; c2) = (1; 1) and consider its open neighborhood

f(c1; c2) j 0:8 < c1 < 1:2 and 0:8 < c2 < 1:2g : (19)

Choose two consumption streams in this open neighborhood (c01; c
0
2) = (1:1; 0:9)

and (c001; c
00
2) = (0:9; 1:1). Based on the objective probability �, both distributions

13It should be noted that if di¤erentiability is assumed, then Axiom 3 can be weakened to

rede�ne Local Risk Attitude Congruence as follows. For a given � 2 int
�
�S�1

�
, there exists at

least one c0 > 0 such that there is an open neighborhood B(c0) in the contingent claim space

around the point c0 = (c0; c0; ::; c0) 2 RS++ such that either c �� c0 or c0 �� c holds for

all c 2 B(c0) with
PS

s=1 �scs = c0. Similarly, Axiom 4 can be weakened from assuming risk

aversion for every c 2 RS+ to assuming risk aversion for a given c 2 RS+.
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(c01; c
0
2; �1; �2) and (c

00
1; c

00
2; �1; �2) are mean preserving spreads of (c1; c2; �1; �2).

Therefore, if the individual�s preferences are represented by

U (cj�) = �1 ln c1 + �2 ln c2; (20)

we always have

U (c1; c2j�) > U (c01; c02j�) and U (c1; c2j�) > U (c001; c002j�) (21)

This can be also con�rmed by the following calculations

U (c1; c2j�) = �1 ln 1 + �2 ln 1 = 0; (22)

U (c01; c
0
2j�) = �1 ln 1:1 + �2 ln 0:9 � �0:005 (23)

and

U (c001; c
00
2j�) = �1 ln 0:9 + �2 ln 1:1 � �0:005: (24)

However, since subjective probabilities and objective probabilities diverge, based

on the representation (17), the risk attitudes are not consistent in this open neigh-

borhood. Especially, we have

U (c1; c2j!) = !1 ln 1 + !2 ln 1 = 0; (25)

U (c01; c
0
2j!) = !1 ln 1:1 + !2 ln 0:9 � 0:015 (26)

and

U (c001; c
00
2j!) = !1 ln 0:9 + !2 ln 1:1 � �0:025; (27)

implying that

U (c1; c2j!) < U (c01; c02j!) and U (c1; c2j�) > U (c001; c002j!) : (28)

As we show in Theorem 1 below Local Risk Attitude Congruence excludes all pos-

sible subjective beliefs that do not coincide with the given objective probabilities.

It should be noted that the following Risk Aversion axiom in Werner (2002,

2005) is a special case of Axiom 3.14

14Since we assume Tradeo¤ Consistency proposed by Wakker instead of the Sure-Thing Prin-

ciple used by Werner (2005), we automatically obtain the SEU representation (16) instead of

the additively separable form

U (cj�) = f
 
�;

SX
s=1

vs(�;cs)

!
:

For Werner (2005), since Sure-Thing Principle can only ensure this latter representation, to

obtain a state-independent objective Expected Utility representation globally, he needs to prove

that at every point x 2 R++, vs(�;x) = �s
�1
v1(�;x) and hence he requires a global Risk Aversion

axiom. For us, once the form (16) is obtained, it is enough to show that at one point !s = �s
and hence we only need a local axiom.

13



Axiom 4 (Risk Aversion) For any given � 2 int
�
�S�1� and every given c 2 RS+,

E� (c) �� c; (29)

where E�(c) denotes the S-vector c for which �cs =
PS

i=1 �ici for each s.

Then we have the following result.

Theorem 1 For any given � 2 int
�
�S�1�, U (cj�) takes the following functional

form

U (cj�) = f
 
�;

SX
s=1

�sv�(cs)

!
; (30)

where f (�; x) is a continuous function that can depend on � and is strictly increas-

ing in
PS

s=1 �sv�(cs) and v� (c) is a continuous and strictly increasing function

where there exists a c 2 R++ and an � (c) > 0 such that v� (c) is either concave or
convex in the positive open interval (c� � (c) ; c+ � (c)), if and only if Axioms 1,
2 and 3 hold.

Remark 1 Since we assume in Section 2 that U is strictly increasing, we can

take v(�) and f(�; �) to be strictly increasing.15 It should also be noted that the

use of Axiom 3 in Theorem 1 implies that the indi¤erence (hyper)surfaces of the

utility U (cj�) need not to be concave or convex. In contrast, if one instead

assumes Axiom 4 holds, then the NM index v� is guaranteed to be concave and

hence U (cj�) is quasiconcave. Both of these observations also apply to Theorems
2 - 4 below.

It will be noted that each NM index v� is allowed to depend on probabilities.

This is consistent with the utility (1) discussed in Section 2, which takes the form

of U (cj�) in Theorem 1. Indeed it can readily be veri�ed that (1) satis�es Axioms
1, 2 and 3 for each given probability vector. Whereas Theorem 1 clearly allows

for the possibility of probability dependent NM indices across slices, the following

example provides some economic intuition for how this might arise.

Example 1 Consider the following representation

U (c1; c2j�1; �2) = �1cf(�1;�2)1 + �2c
f(�1;�2)
2 ; (31)

15Note that if v� is strictly decreasing and f(�; x) is also strictly decreasing in x, U (cj�) is
still a strictly increasing function. However, this will not yield a new U (cj�) or alter demands.
In the context of solving for optimal demands in the classic contingent claim setting, the NM

index v� is required to be increasing and the assumption that U (cj�) is strictly increasing
implies that f(�; x) must be strictly increasing in x. The case where v� and f(�; x) are strictly

decreasing is ignored throughout this paper.

14



where f (�1; �2) = a0 j�2 � �1j+a1 and a0 < 0 and a1 are some constants. Clearly
this utility satis�es the conditions in Theorem 1 for a �xed set of objective prob-

abilities. In this case, the utility takes the popular CRRA (constant relative risk

aversion) form. But when (�1; �2) varies, moving from one contingent claim

slice to another, the NM index v� (c) = cf(�1;�2) varies (by more than a positive

a¢ ne transform) and hence preferences across slices are not Expected Utility rep-

resentable. Since a0 < 0, increasing the di¤erence j�2 � �1j decreases exponents
of c1 and c2 and hence increases the Arrow-Pratt relative risk aversion. But can

an intuitive argument be given for why an individual�s risk aversion should in-

crease as the di¤erence in probabilities increases when one moves across slices?

In the contingent claim setting, since the payo¤ in each contingent claim state

is unknown before prices are given and one solves for optimal demands, it would

seem reasonable to view the contingent claim slice associated with the probability

� =
�
1
8
; 7
8

�
or
�
7
8
; 1
8

�
as being more risky than the contingent claim slice associated

with the probability � =
�
1
2
; 1
2

�
. The worry would be that the low (high) prob-

ability state might occur when the consumer faces a low (high) price. That is,

since the consumer does not know which contingent claim vector will ultimately

be selected, the risk is that the contingent claim that she desires most in the opti-

mization might have a very low chance of occurring. Ex ante, it seems reasonable

to suppose that she would prefer each state to be equally likely. Following this

logic, an individual would have higher risk aversion on the contingent claim slice

associated with � equaling
�
1
8
; 7
8

�
or
�
7
8
; 1
8

�
versus on the contingent claim slice

associated with � =
�
1
2
; 1
2

�
. This argument would suggest that risk aversion in-

creases with the dispersion between the probabilities and that there is no a priori

reason to distinguish between cases like
�
1
8
; 7
8

�
and

�
7
8
; 1
8

�
, which is consistent with

f (�1; �2) = a0 j�2 � �1j+ a1.

As noted above in the discussion of the SEU representation (16) since in our

setting probabilities are given exogenously and not endogenously determined, the

Strict Monotonicity and Tradeo¤ Consistency axioms can not ensure that the

endogenously determined ! matches the exogenously given �. To see this more

explicitly, consider the following two examples. The �rst one can be viewed as a

variant of a Prospect Theory representation and the second one can be viewed a

state dependent utility. Both examples satisfy Strict Monotonicity and Tradeo¤

Consistency.

Example 2 Assume that

U (cj�) = �21v (c1) + �22v (c2) + �23v (c3) : (32)
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Note that this representation is a¢ nely equivalent to the SEU representation16

U(c) =
3X
s=1

!sv(cs); (33)

where

!s =
�2s

�21 + �
2
2 + �

2
3

: (34)

Clearly the utility (32) satis�es Strict Monotonicity and Tradeo¤ Consistency and

is a SEU function. Although the utility satis�es the state independence requirement

of Theorem 1, it does not satisfy the requirement that the probabilities enter into

the utility function linearly.

Example 3 Assume that

U (cj�) = �1v (c1) + 2�2v (c2) + 3�3v (c3) : (35)

Note that (35) is a¢ nely equivalent to the state independent SEU

U(c) =
3X
s=1

!sv(cs); (36)

where

!1 =
�1

�1 + 2�2 + 3�3
; !2 =

2�2
�1 + 2�2 + 3�3

and !3 =
3�3

�1 + 2�2 + 3�3
(37)

and (35) satis�es Strict Monotonicity and Tradeo¤ Consistency. However in our

setting, the probability vector � is exogenous and �xed and cannot be transformed

into !. To see that this implies the utility (35) is not state independent, observe

that it can be written as

U (cj�) =
3X
s=1

�ssv(cs); (38)

where the NM index in each state is given by

vs(cs) = sv(cs); (39)

which is clearly state dependent and is inconsistent with the representation in

Theorem 1. Thus, the Strict Monotonicity and Tradeo¤ Consistency axioms in

the SEU setting do not imply state independence in our setting, where probabilities

are exogenous.

16Since the SEU axioms imply the existence of a v and a !, we use in (33) the notation U(c)

rather than U(cj!) to re�ect the fact that ! should not be viewed as a parameter that can be
changed like our exogenously given �.
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Remark 2 Wakker and Zank (1999, Theorem 7) argue that Strict Monotonicity

and Tradeo¤ Consistency can guarantee the existence of an objective Expected

Utility representation if the objective probabilities are known. This would seem

to contradict our discussion above. To see why this is not the case, �rst note

that (i) they assume preferences are de�ned over risky prospects, (ii) all risky

prospects are available to be chosen, (iii) their de�nition of Tradeo¤ Consistency

is based on preferences over risky prospects and (iv) preferences satisfy probabilistic

sophistication (see the discussion of Axiom 7 below). In this setup, they prove

that the objective and subjective probabilities are always the same. However as

can be seen very clearly in Exercise 2.3.1 in Wakker (2010), the argument hinges

on changing the probability structure of the lotteries by modifying the number of

states and then using probabilistic sophistication. But in the contingent claim

setting, the number of states and the probability of each state are �xed and neither

can be changed. As a result, we use the Local Risk Attitude Congruence Axiom 3

to ensure that the subjective and objective probabilities are the same.

3.2 Representation over Sequence of Contingent Claim Spaces

Suppose rather than allowing the NM index v in Theorem 1 to vary as the state

probabilities change, one wants to ensure that the set of preference relations f��g
are representable by a common Expected Utility function across contingent claim

slices as in Figure 1. As shown in eqn. (1), even if U (cj�) takes the Expected
Utility form in each contingent claim space, it may not be an Expected Utility

with respect to the set of preference relations f��g. Interestingly, this additional
requirement can be achieved by simply modifying the Tradeo¤Consistency Axiom

2 to be applicable to the case of multiple slices and multiple probability vectors.

Axiom 5 (Modi�ed Tradeo¤ Consistency) For each � 2 int
�
�S�1�, assuming

c�sx �� c0�sy and c0�sw �� c�sz then for any �0 2 int
�
�S�1�, if c000�s0y ��0 c00�s0x,

we have c000�s0w ��0 c00�s0z, where x; y; z; w 2 R+.

To provide some intuition for Axiom 5, assume S = 2 and consider the following

consumption pairs

c = (c1; 1) ; c
0 = (c01; 0) ; c

00 = (c001; 1) and c
000 =

�
c0001 ;

1

9

�
: (40)

Consider two contingent claim slices corresponding to

�1 = 0:5 and �01 = 0:4 (41)
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Figure 2:

and the consumption values

x = 1; y = 4; w = 16; z = 9: (42)

Axiom 5 implies that if

(1; 1) �� (4; 0) ; (9; 1) �� (16; 0) and (1; 1) ��0
�
4;
1

9

�
; (43)

then we must have

(9; 1) ��0
�
16;

1

9

�
: (44)

The chain of indi¤erent consumption pairs, (43) and (44), are shown respectively

in Figures 2(a) and (b), where we assume the Expected Utility representation

U (cj�) = �1
p
c1 + �2

p
c2: (45)

Axiom 5 is clearly satis�ed.17 In the SEU setting, since the probabilities are

endogenously determined, one only considers the case with a �xed probability

structure like Figure 2(a). Our contribution here is to assume Tradeo¤ Consis-

tency holds where the probability structure changes as in Figure 2(b).

Then we have the following theorem.

Theorem 2 For all � 2 int
�
�S�1�, U (cj�) takes the following functional form

U (cj�) = f
 
�;

SX
s=1

�sv(cs)

!
; (46)

17Figure 2 is similar to Figure 4.5.1 in Köbberling and Wakker (2004).
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where f (�; x) is a continuous function that can depend on � and is strictly in-

creasing in
PS

s=1 �sv�(cs) and v (c) is a continuous and strictly increasing function

where there exists a c 2 R++ and an � (c) > 0 such that v (c) is either concave or
convex in the positive open interval (c� � (c) ; c+ � (c)), if and only if Axioms 1,
3 and 5 hold for all � 2 int

�
�S�1�.

4 Preferences over Lotteries

In the previous section preferences were assumed to be de�ned over contingent

consumption, and probabilities entered only as parameters. In this section, we

suppose instead that a decision maker faces choices over di¤erent �risky prospects�

or lotteries, which are de�ned as vectors (c;�) 2 RS+ � int
�
�S�1�. As described

in Section 2, we assume a continuous, complete and transitive preference ordering

over P = RS+� int
�
�S�1� denoted by �P . What additional axioms beyond those

in Theorem 2 are required to extend the Expected Utility representation of f��g
to �P? Maintaining Axioms 1, 3 and 5, the following turns out to be necessary

and su¢ cient.

Axiom 6 (Certainty Uniqueness) For any certain consumption c = (c1; c2; :::; cS),
where cs = c is a constant for each state s,

(c;�) �P (c;�0) 8�;�0 2 int
�
�S�1� : (47)

Certainty Uniqueness suggests that an individual�s preferences are "slice inde-

pendent". She evaluates a lottery based just on its distribution function indepen-

dent of the contingent slice on which the lottery is located. In fact, this axiom is

quite natural when choosing over degenerate lotteries. For example, consider the

certain consumption vector c = (c; :::; c). Assume that the Certainty Uniqueness

axiom does not hold and the preferences over a set of contingent claim slices are

represented by

U (cj�) =
 

SX
s=1

�s
p
cs

!�1
: (48)

It can be easily veri�ed that

U (cj�) = c
�1
2 : (49)

This implies that the certain consumption vector (c; :::; c) in the contingent claim

slice with the higher �1 is preferred to that in the contingent claim slice with

the lower �1. This seems counter intuitive since if one views the consumption

vector (c; :::; c) as a degenerate lottery, it has the same payo¤s on each contin-

gent claim slice. When considering an optimization problem in the contingent
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claim setting rather than making binary choices over lotteries, one never compares

consumption vectors across di¤erent contingent claim slices and hence one can-

not say (c; :::; c) in every contingent claim slice is indi¤erent. Therefore although

Certainty Uniqueness seems indisputable in a lottery setting, it is essentially irrel-

evant in the contingent claim setting. Suppose one assumes that (i) consumption

vectors on each contingent claim slice can be always viewed as lotteries and (ii)

the individual�s preferences over consumption vectors are naturally extendable to

preferences over lotteries. Then Certainty Uniqueness would seem to hold auto-

matically. In other words, if the preferences are Expected Utility representable

with the same NM index on each contingent claim slice and Assumptions (i) and

(ii) hold, then one would expect that preferences over risky prospects would also

be Expected Utility representable with the same NM index and this is precisely

what Certainty Uniqueness guarantees.

Axiom 6 can be illustrated in Figure 1, where it would correspond to an individ-

ual being indi¤erent to the same c point along the 45� rays on the slices character-

ized by �0 and �00. Together, Axiom 6 and the assumption that U (cj�) is strictly
increasing suggest that for any certain consumption vectors c = (c1; c2; :::; cS)

and c0 = (c01; c
0
2; :::; c

0
S) where cs = c and c0s = c0 (8s 2 f1; 2; :::; Sg) and for any

�;�0 2 int
�
�S�1�, (c;�) �P (c0;�0) if and only if c � c0. Therefore, U (c;�) is

also strictly increasing in c.

Then we have the following theorem.

Theorem 3 U(c;�) representing �P takes the following functional form

U (c;�) = f

 
SX
s=1

�sv (cs)

!
; (50)

where f (x) is a continuous and strictly increasing function and v (c) is a con-

tinuous and strictly increasing function where there exists a c 2 R++ and an

� (c) > 0 such that v (c) is either concave or convex in the positive open interval

(c� � (c) ; c+ � (c)), if and only if Axioms 1, 3, 5 and 6 hold for all � 2 int
�
�S�1�.

Remark 3 Comparing Theorems 2 and 3, it is clear that the only di¤erence is
the assumption of the Certainty Uniqueness Axiom 6 for the latter. However in

our opinion, this axiom appears to be quite weak and it would be very surprising if

laboratory tests revealed that individuals systematically violated Certainty Unique-

ness. Thus the signi�cant restrictions in the contingent claim setting derive from

the Tradeo¤ Consistency and Modi�ed Tradeo¤ Consistency axioms. The former

axiom together with Strict Monotonicity restricts the consumer�s utility to take
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the Expected Utility form on subsets of the larger space of risky prospects P corre-
sponding contingent claim slices. The latter requires the NM index to be the same

for each subset of P corresponding to the set of slices. If this seemingly strong

restriction fails to hold for all slices, then the consumer�s choices over lotteries

from di¤erent slices will fail to be representable by an Expected Utility function

with the same NM index and Theorem 3 will fail to hold as well. The fact that

an individual�s preferences might be representable by an Expected Utility function

over some by not other subsets of the general space of lotteries is not new. Al-

beit in a quite di¤erent context, there is considerable laboratory analysis suggesting

that individuals behave quite di¤erently when lottery choices include versus do not

include degenerate lotteries. In his analysis of this "certainty e¤ect", Conlisk

(1989), for instance, �nds that the fraction of Expected Utility violations drops

from about 50 percent to about 32 percent depending on whether the choice set

includes or excludes degenerate lotteries.

Comparing the representations (46) and (50) in Theorems 2 and 3, respectively,

Axiom 6 is necessary and su¢ cient for the transformation f to be independent

of �. For example, the introduction of Axiom 6 rules out eqn. (1) in Section

2 as a possible representation of �P . It should be stressed that the form of

utility in Theorem 3 is not veri�able at the demand level since whether or not

the transformation f depends on probabilities cannot be determined from the

contingent claim demand functions.

It is natural to wonder whether it is enough to use the Tradeo¤ Consistency

Axiom 2 instead of the modi�ed version Axiom 5 together with Axioms 1, 3 and

6 to obtain the desired result in Theorem 3. The following example shows that

this is not the case.

Example 4 Assume that

U (c;�) = f

 
�;

SX
s=1

�sv�(cs)

!
=
�
�1c

�1
2
1 + �2c

�1
2
2 + �3c

�1
2
3

� 1
�1
; (51)

where

v� (cs) = c
�1
2
s and f (�; x) = x

1
�1 : (52)

If consumption in each of the states is the same, cs = c, then

U (c;�) =
�
�1c

�1
2 + �2c

�1
2 + �3c

�1
2

� 1
�1 =

p
c; (53)

which is independent of probabilities and hence Axiom 6 holds. For each �xed

probability �, (51) is clearly an Expected Utility function. Therefore, Axioms 1,

2 and 3 hold. But obviously (51) does not take the form of (50) in Theorem 3.
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Assuming Axioms 1, 2 (in place of Axiom 5) and 3 hold, is it possible to replace

Axiom 6 by another axiom which ensures that U takes the form in (50)? Before

introducing a new axiom, we de�ne some additional notation. For any (c;�),

where � 2 int
�
�S�1�, assuming (c;�) corresponds to the random variable X,

the cumulative distribution function is

FX (z) =

SX
s=1

�sI (cs � z) ; (54)

where

I (cs � z) =
(
1 (cs � z)
0 (cs > z)

: (55)

Axiom 7 For any pair of random variables X and Y corresponding, respectively,

to (c;�) and (c0;�0), where �;�0 2 int
�
�S�1�, if FX (z) = FY (z), then

(c;�) �P (c0;�0) : (56)

The intuition for this axiom is that for any pair of lotteries de�ned on di¤erent

contingent claim spaces, if their respective cumulative distribution functions are

the same, then the lotteries will be indi¤erent. This is consistent with both the

NM index v and the transformation f being independent of �. It is clear that

Axiom 7 implies Axiom 6.

Remark 4 Axiom 7 will be recognized to be similar to the probabilistic sophisti-

cation property introduced by Machina and Schmeidler (1992) in an SEU setting

(also see Grant, Özsoy and Polak 2008). Because this property is based on subjec-

tive probabilities, it is necessary to introduce axiomatic structure to ensure that the

endogenous probabilities satisfy probabilistic sophistication. However in the case

of Axiom 7, the probabilities are given exogenously and the axiom can be directly

assumed.

We next show that Axiom 7 together with Axioms 1, 2 and 3 are necessary

and su¢ cient for �P to be representable by an Expected Utility function where
the NM index does not depend on probabilities in contrast to the case of Example

4.

Theorem 4 When S > 2, U(c;�) representing �P takes the following functional
form

U (c;�) = f

 
SX
s=1

�sv (cs)

!
; (57)
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where f (x) is a continuous and strictly increasing function and v (c) is a con-

tinuous and strictly increasing function where there exists a c 2 R++ and an

� (c) > 0 such that v (c) is either concave or convex in the positive open interval

(c� � (c) ; c+ � (c)), if and only if Axioms 1, 2, 3 and 7 hold for all � 2 int
�
�S�1�.

Finally, it is natural to inquire into the relationship between Theorem 4 and

the conventional Expected Utility representation result based on the Strong Inde-

pendence axiom (e.g., Samuelson 1952 and Grandmont 1972). First let F denote
the set of all cumulative distribution functions de�ned on the consumption space

(0;1). Assume preferences are de�ned over F , which is a mixture space. Since
F consists of all possible distributions, it is not restricted to S states. Indeed

the Strong Independence axiom typically assumed for preferences over F holds for
any mixture of lotteries where the maximum number of states of the lotteries is

S. Therefore, the only di¤erence between the set of risky prospects P assumed

in this section and F is that for the former the number of the states are �xed at

S and for F , there is no restriction to the number of states.
It should be noted that preference properties such as �rst order stochastic

dominance relating to the shape of the indi¤erence curves in the probability tri-

angle proposed by Marschak (1950) and extended by Machina (1982) fail to be

distinguishable at the corresponding contingent claim demand level. In fact, the

set of lotteries in the probability triangle can be viewed as orthogonal to the set of

lotteries in the contingent claims spaces parameterized by �. The existence of an

Expected Utility representation for lotteries de�ned in the contingent claim space

cannot ensure an Expected Utility representation over lotteries corresponding to

the probability triangle and vice versa.

5 Conclusion

In this paper, axiom systems are presented for an Expected Utility representation

in three di¤erent subspaces of the full distribution space. The �rst subspace is a

single contingent claim space. The axioms for this space are consistent with the

revealed preference tests assuming known �xed probabilities. The second subspace

is a set of contingent claim spaces. The axioms for this space are consistent with

the revealed preference tests assuming known variable probabilities. The third

subspace is the space of risky prospects with �xed number of states. Although

the axiom system for this space is not testable based on the optimal demand

data (�i; ci;pi)ni=1, it provides a bridge for connecting the contingent claim space

and the lottery space. We identify the additional axioms required to have an
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Expected Utility representation over risky prospects when one has an Expected

Utility representation for each contingent claim space.

For future research, it would seem potentially interesting to extend the analy-

sis in this paper to non-Expected Utility preferences. Indeed there have recently

been e¤orts to apply more general preference models such as Loss/Disappointment

Aversion, RDU (Rank-Dependent Expected Utility) and Cumulative Prospect

Theory to the contingent claim demand setting (see, for example, Choi, et al.

2007b and Carlier and Dana 2011). In each of these cases, a �xed set of state

probabilities are assumed. What modi�cations of the preference axioms in the

single contingent claim space are required when extending the choice spaces of

these non-Expected Utility models to a set of contingent claim spaces and a set of

risky prospects? In these alternative choice domains do analogues of Local Risk

Attitude Congruence, Modi�ed Tradeo¤ Consistency and Certainty Uniqueness

play a role?

Appendix

A Proof of Theorem 1

For each � 2 int
�
�S�1�, given our assumption that �� is complete, transitive

and continuous, it follows from Wakker (1984, Theorem 3.1) that there exists a

SEU representation

U (cj�) = f
 
�;

SX
s=1

!sv�(cs)

!
; (A.1)

where f and v� are continuous if and only if Axioms 1 and 2 hold. There-

fore, we only need to show that ! = � if and only if Axiom 3 holds. The

proof of necessity is almost directly from Werner (2002) �we include it for com-

pleteness: For a given c = (c; c; ::; c) 2 RS++, consider the open neighborhood
B (c) = (c� � (c) ; c+ � (c))S. Then for each point c0 = (c0; c0; ::; c0) 2 B (c),
consider the following optimization problems

max
c02B(c)

f

 
�;

SX
s=1

�sv�(c
0
s)

!
S:T:

SX
s=1

�sc
0
s = c0 (A.2)

if v� is concave and

min
c02B(c)

f

 
�;

SX
s=1

�sv�(c
0
s)

!
S:T:

SX
s=1

�sc
0
s = c0 (A.3)
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if v� is convex. If v� is concave in B (c), then it follows from Jensen�s inequality

that
SX
s=1

�sv�(c
0
s) � v�

 
SX
s=1

�sc
0
s

!
= v� (c0) =

SX
s=1

�sv�(c0): (A.4)

Therefore, c0 is an optimal solution to the optimization problem (A.2), implying

that c0 �� c0 holds for all c0 2 B(c) with
PS

s=1 �sc
0
s = c0. Similarly, one can argue

if v� is convex, then c0 �� c0 holds for all c0 2 B(c) with
PS

s=1 �sc
0
s = c0. Since

this conclusion holds for every c0 2 B (c), Axiom 3 holds. Next prove su¢ ciency.
If Axiom 3 holds, for a given c 2 R++ and each c0 = (c0; c0; ::; c0) 2 B (c),

we de�ne e" (c0) 2 RS by "t = " (c0), "s = ��t" (c0) =�s and "k = 0 for all

k 6= t; s such that c0 + e" (c0) ; c0 + " (c0) ; c0 + " (c0) � e" (c0) 2 B(c), where

" (c0) = (" (c0) ; " (c0) ; :::; " (c0)). Since c0 �� c0+e" (c0) or c0+e" (c0) �� c0, one
of the following two inequalities holds

!sv� (c0 + " (c0)) + !tv�

�
c0 �

�t" (c0)

�s

�
� !sv� (c0) + !tv� (c0) (A.5)

or

!sv� (c0 + " (c0)) + !tv�

�
c0 �

�t" (c0)

�s

�
� !sv� (c0) + !tv� (c0) : (A.6)

Without loss of generality, assume that inequality (A.5) holds. Then we also have

c0 + " (c0) �� c0 + " (c0)� e" (c0), implying that
!sv� (c0) + !tv�

�
c0 +

�
1 +

�t
�s

�
" (c0)

�
� !sv� (c0 + " (c0)) + !tv� (c0 + " (c0)) :

(A.7)

Adding separately the left and right hand sides of eqns. (A.5) and (A.7) and

rearranging terms yields

!tv�

�
c0 +

�
1 +

�t
�s

�
" (c0)

�
+!tv�

�
c0 �

�t" (c0)

�s

�
� !tv� (c0)+!tv� (c0 + " (c0)) :

(A.8)

Setting

x = c0 + " (c0) =2; h =

�
1 + 2

�t
�s

�
" (c0)

2
and � =

1

1 + 2 �t
�s

; (A.9)

eqn. (A.8) can be rewritten as

v� (x+ h) + v� (x� h) � v� (x+ �h) + v� (x� �h) : (A.10)

Using the above inequality repeatedly n times, one obtains

v� (x+ h) + v� (x� h) � v� (x+ �nh) + v� (x� �nh) : (A.11)
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Since � < 1, taking the limit n!1 yields

1

2
(v� (x+ h) + v� (x� h)) � v� (x) : (A.12)

Since v� (c) is continuous, following Jensen (1906), midpoint concavity is equiv-

alent to concavity. Therefore, eqn. (A.12) implies that v� (c) is concave in the

open interval corresponding to B (c). Since v� (c) is continuous and concave

in the open interval corresponding to B (c), it is di¤erentiable except for at most

countable points in the open interval corresponding to B (c). Thus
PS

s=1 !sv�(cs)

is also di¤erentiable except for at most countable points in the open interval cor-

responding to B (c). It follows from the �rst order condition that for every point

c0 in the open interval corresponding to B (c) except at most countable points

!sv
0
�(c0)

!1v0�(c0)
=
!s
!1
=
�s
�1

(s = 2; 3; :::; S) : (A.13)

Since
SX
s=1

!s =
SX
s=1

�s = 1; (A.14)

we have

!s = �s (s = 1; 2; :::; S) : (A.15)

Therefore,

U (cj�) = f
 
�;

SX
s=1

�sv�(cs)

!
; (A.16)

which completes the proof for su¢ ciency.

B Proof or Theorem 2

Necessity is clear. Next prove su¢ ciency. Taking �0 = �, it follows from Theorem

1 that Axioms 1, 3 and 5 imply that

U (cj�) = f
 
�;

SX
s=1

�sv�(cs)

!
: (B.1)

Suppose that � 6= �0. c�sx �� c0�sy and c0�sw �� c�sz imply that

v� (x)� v� (y) = v� (z)� v� (w) : (B.2)

Similarly, c000�s0y ��0 c00�s0x and c000�s0w ��0 c00�s0z imply that

v�0 (x)� v�0 (y) = v�0 (z)� v�0 (w) : (B.3)
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Moreover, in eqns. (B.2) and (B.3), x; y; z can be freely chosen, i.e., for any x; y,

due to continuity, one can always �nd a consumption stream c0�sy on the same

indi¤erence (hyper)surface as c�sx. Since Axiom 5 implies that for any x; y; z, if

eqn. (B.2) holds, then (B.3) also holds. Therefore, v� and v�0 must be a¢ nely

equivalent, i.e., for any � 6= �0 2 int
�
�S�1�, we must have

v� = av�0 + b; (B.4)

where a > 0 and b are some constants. Since the NM index is de�ned up to a

positive a¢ ne transformation, we can conclude that

U (cj�) = f
 
�;

SX
s=1

�sv(cs)

!
; (B.5)

which completes the proof.

C Proof of Theorem 3

Necessity is obvious. Next we prove su¢ ciency. It follows from Theorem 2 that

Axioms 1, 3 and 5 are equivalent to a utility representation of the form

U (c;�) = f

 
�;

SX
s=1

�sv(cs)

!
; (C.1)

where v(cs) is a strictly increasing function. It follows from Axiom 6 that

8c =(c; c; :::; c) 2 RS+ and 8�;�0 2 int
�
�S�1�, we have

f (�; v (c)) = f (�0; v (c)) ; (C.2)

implying that f(�; �) must be independent of probabilities.

D Proof of Theorem 4

Necessity is obvious. Next we prove su¢ ciency. It follows from Theorem 1 that

Axioms 1, 2 and 3 are equivalent to a utility representation of the form

U (c;�) = g

 
�;

SX
s=1

�sv�(cs)

!
: (D.1)

Assuming that c1 = c2 = c3 = ::: = cS = c, Axiom 7 implies that

U(c;�) = g (�; v�(c)) (D.2)
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is independent of probabilities and hence

g� (v�(c)) = f (c) ; (D.3)

where f is independent of probabilities. It follows that 8c

g� (c) = g�
�
v� � v�1� (c)

�
= f � v�1� (c) ; (D.4)

implying that

g� = f � v�1� : (D.5)

If c1 6= c2 = c3 = ::: = cS = c then it follows from Axiom 7 that

U(c;�) = f � v�1� ((1� �1) v�(c) + �1v�(c1)) (D.6)

is independent of �s (s > 1), or equivalently,

@v�1� ((1� �1) v�(c) + �1v�(c1))
@�s

= 0 (8s = 2; 3; :::; S) : (D.7)

Holding �1 �xed, consider two di¤erent pro�les of probabilities � and �0 with

associated NM indices v� and v�0. It follows from (D.7) that there exists a

�(c1; c) such that

�(c1; c) = v
�1
� ((1� �1) v�(c) + �1v�(c1)) (D.8)

and

�(c1; c) = v
�1
�0 ((1� �1) v�0(c) + �1v�0(c1)) ; (D.9)

implying that

v� (�(c1; c)) = (1� �1) v�(c) + �1v�(c1) (D.10)

and

v�0 (�(c1; c)) = (1� �1) v�0(c) + �1v�0(c1): (D.11)

Therefore,

v� (�(c1; c))) = h(v�0 (�(c1; c)))

= �1h(v�0(c1)) + (1� �1)h(v�0(c))
= h ((1� �1) v�0(c) + �1v�0(c1)) : (D.12)

Since eqn. (D.12) holds for any given �1, c1 and c, we can conclude that h is a

linear function which can depend on �s and �0s (s = 2; 3; :::; S). Since 8�;�0 2
int
�
�S�1� with the same �1, there always exists a linear function h�;�0 (�) such

that v�(c) = h�;�0(v�0(c)), we can conclude that

v�(c) = �
0
1 (�1; �2; :::; �S�1) v�1 (c) + �

0
2 (�1; �2; :::; �S�1) (8c) ; (D.13)
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where �01 and �
0
2 are arbitrary coe¢ cients. Assuming c2 6= c1 = c3 = ::: = cS = c

and following the similar argument, we can also show that

v�(c) = �
00
1 (�1; �2; :::; �S�1) v�2 (c) + �

00
2 (�1; �2; :::; �S�1) (8c) ; (D.14)

where �001 and �
00
2 are arbitrary coe¢ cients. Combining eqn. (D.13) with (D.14)

yields

v�(c) = �1 (�1; �2; :::; �S�1) v (c) + �2 (�1; �2; :::; �S�1) (8c) ; (D.15)

where �1 and �2 are arbitrary coe¢ cients and v is independent of probabilities.

Therefore we have

U(c;�) = g

 
�;

SX
s=1

�sv�(cs)

!
= f � v�1�

 
SX
s=1

�sv�(cs)

!
= f

 
SX
s=1

�sv (cs)

!
:

(D.16)
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