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The Centers for Medicare & Medicaid Services (CMS) and thiéddal Quality Forum have endorsed the 30-day mor-
tality rate as an important indicator of hospital qualitprierns have been raised, however, as to wheitesrdischarge
mortality rates are reasonable measures of hospital guedithey consider the frequency of an event that occurs after
a patient is discharged and no longer under the watch andotd@spital staff. Estimating theausal effecof length-
of-stay (LOS) on post-discharge mortality from retrospectiata introduces a number of econometric challenges. We
describe three potential sources of (endogeneity and dagydiases and propose an approach that provides conserva
tive estimates of the true treatment effect. Using a largasgd comprised of all hospital encounters of every Medicar
Fee-for-Service patient with acute myocardial infarcticom 2000 to 2011, we find evidence that an increase in LOS is
associated with a decrease in 30-day mortality rates. Aitiaddl day in the hospital could decrease 30-day mortality
rates by over 6%. Moreover, we find that, from a social plasrgarspective, the gains achieved in reducing mortality
rates likely exceed the cost of keeping the patients in tispitel for an additional day.
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Introduction

The National Quality Forum (NQF), a non-profit organizattbat conducts research on hospital quality

measures, and the Centers for Medicare and Medicaid Ser{@éS) provide various publicly accessible

measures of hospital quality. Both of these organizatiafdigh their measures of hospital quality for two

main purposes: (1) to provide information to potential atis regarding the quality of care at different

hospitals and (2) to encourage hospitals to improve thedlityuof care. When CMS first launched the

Hospital Compare website (www.medicare.gov/hospitajgare/) in 2005, only process-of-care measures,

such as the percentage of pneumonia patients given the psimiate initial antibiotic(s), were reported.

By 2008, CMS began reporting outcome measures such as 3Maléglity for acute myocardial infarction

(AMI), heart failure (HF), and pneumonia (PNE) on its webg@enters for Medicare & Medicaid Services
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2015. CMS’s perspective that 30-day mortality rates are an it@md measure of quality is made clear

under the Hospital Value Based Purchasing plan, which biegi@stal year 2013. Under this plan, hospital

reimbursements are adjusted based on a Total Performaaos 8tich includes 30-day mortality rates for

AMI, HF, and PNE Centers for Medicare & Medicaid Services 2018QF also endorses 30-day mortality

as a hospital quality measure because “it allows for a broawl of quality of care that encompasses more
than what can be captured by individual process-of-caresarea” National Quality Forum 2009

Although both CMS and NQF report 30-day mortality rates aseasure of hospital quality, there are
conflicting views as to whether the reported 30-day moytatieasure is a fair measure of quality. Indeed,
there is an “ongoing debate about Hospital Compare, whossunes, critics say, do not necessarily reflect
quality of care provided at hospitalsFieming 2012. One argument is that this 30-day mortality measure,
which captures deaths which occur following hospital désgke, is likely to be strongly influenced by what
happensifter hospital dischargesome people have raised questions as to whether it is faitrtbute post-
discharge outcomes to hospitals whose focus ispatientcare delivery. With this in mind, in-hospital
mortality (rather than post-discharge mortality) is oftemsidered as a measure of quality (€tark and
Huckman(2012, Kc et al. (2013, Kuntz et al.(2015). On the other hand, hospitals play a large role in
what happens to patients after hospital discharge in tlegttifpically arrange for follow-up appointments
as well as communicate with follow-up care providers sucthasprimary care and specialist physicians.
In this respect, “[iJt's reasonable to say that hospitaléehsome responsibility for what happens when the
patient leaves"Clark 2013.

Our study contributes to this debate by exploring whetheretare factors related topatient carewhich
can impact thepost-discharge outcomaf 30-day mortality, which, in this paper, is defined as wieth
patient dies within 30 days of hospital discharge. Studfggra@cess-of-care measures and their impact on
mortality have led to mixed conclusions. For exampglea et al(2007) found that better process-of-care
measures reported on Hospital Compare are related to laskeadjusted inpatient mortality, whileyan
et al. (2009 found that when controlling for hospital fixed effects, {h®cess-of-care performance mea-
sures are not associated with 30-day mortality. The auttmrslude that “this suggests that the relationship
between hospital-level process-of-care performance 2dwdlfy] mortality is not causal.”

In contrast, our paper considers the impact of increasingtiemt’s hospital length-of-stay (LOS), with
the idea that an extra day in the hospital may provide bermfith as allowing a patient to reach a higher
level of stability as well as providing more time for patiemd be educated about expectations with respect
to their post-discharge behavior, thereby resulting indacéon in the risk of mortality. Prior studies have
shown that early discharges are associated with worse meteuch as increased 30-day hospital readmis-
sions for AMI patients Carey 201%and increased intensive care unit (ICU) readmissi#ttsand Terwi-

esch 201P We hypothesize that a similar effect exists between LO&raartality. A number of articles



have studied the relationship between LOS and mortalitguBimg on Medicare fee-for-service patients
hospitalized for HF during the time period 1993-20B6gno et al(2010 documented a decrease in hospi-
tal LOS and found that mortality rates had either stayedain@esor increased, but they were unable to show
a causal relationship between these tre@tgan et al(2012 found no association between shorter ICU
LOS and in-hospital mortality andimond and Doylg2011) found no effect of shorter postpartum hospital
LOS on mortality or readmissions of mother and new-borne®gapers found that an increase in LOS was
associated with an increase in the risk of post-dischargeatitg (e.g.Williams et al.(2010, Nichols et al.
(2014, Reynolds et al(2015). Looking at patients with similar ailments to those wedstiKaboli et al.
(2012 examined Veterans Hospitals and found that reduction€<38 from 1997 to 2010 did not come at
the expense of higher mortalit¢lark (2012 argued that some hospitals may be ‘cherry-picking’ health
ier patients who have shorter LOS and lower mortality ratethey may even be discharging/transferring
patients with poor prognoses, so that “they look better wtheir death rates are compared with hospitals
that keep patients longer.” While these papers considaeerktationship between LOS and mortality, none
of them — other tha'\imond and Doylg2011) —conducted a rigorous study of thausaleffect.Note that
the setting considered limond and Doylg2011) is very different; moreover, their identification relieis o

a regression discontinuity design that cannot be used isetting.

Our objective is to measure tltausaleffect of an increase in hospital LOS on post-dischargeatityt
using a dataset from CMS that consists of all Medicare Fe&@ovice inpatient hospital visits between
2000 and 2011. Estimating the impact of LOS on the probgtfipost-discharge mortality is complicated
for a number of reasons. First, it is not possible to peryecttasure a patient’'s severity level and unob-
servable severity factors might be positively correlatethwoth LOS and mortality risk. To address the
possible endogeneity of LOS, we use an instrumental vari@dhl approach that is based on a patient’s
admission day-of-week. To circumvent the concerns thagpiseverity might differ by day-of-week, our
analysis focuses on non-elective patients whose admidggmosis is AMI because this diagnosis can be
considered to be “non-deferrable#rd et al. 2008 i.e. admissions are equally likely on the weekdays and
weekend. In our data, we find that the residuals from a LOStequtor AMI patients admitted on Mon-
day or Tuesday are negative, suggesting that they are ‘pueehd discharged. The average LOS for AMI
patients is 5.3 days, which implies that patients admiteetyen the week would be ready for discharge on
the weekend. However, because hospitals prefer to diselpatignts before the weekend (Maenava et al.
(2002 andWong et al(2009), these patients end up with a shorter than normal LOS .V&riation in LOS
based on admission day-of-week helps us capture the impabibaer LOS on increased mortality risk.
To mitigate concerns about variation in hospital resouvedl@bility by day-of-week, we exclude weekend

admits.



Our identification strategy relies on the non-deferrabtergeof AMI along with our finding that observed
patient-level covariates for those admitted on IV days (Meynor Tuesday) are not significantly differ-
ent from the covariates of patients admitted on non-1V d&ysdnesday, Thursday, or Friday). To address
any concerns that admission day-of-week might be corlatth the unobserved severity of the patient’s
condition, we also conduct a sensitivity analysis that érasihow an unobservable covariate could poten-
tially affect our results. We find that in order for there todreunobserved confounder that would explain
away our results, the effect size of this unobserved cordeu(or aggregation of multiple unobserved con-
founders) would have to be much larger than that of any oleskeconfounder. Although the sensitivity
analysis provides some support for the robustness of oultsas violations in the exclusion criteria, we
also use two alternative instrumental variables that malg$® susceptible to the limitations of our Mon-
day/Tuesday instrument. The alternative instrumentahitas are (1) instruments for each admission day
of the week, and (2) an indicator for whether a patient is joted to be discharged on a Saturday. For both
of these alternative instruments, we find that longer LOS$oaiated with a reduction in 30-day post dis-
charge mortality risk, providing additional evidence t@part the results found with the Monday/Tuesday
instrument.

The second empirical challenge that results from usingsetctive data is the potential for censoring
biases in our outcome variable, 30-day post-dischargeatitgriT here are two types of censoring bias. First,
since patients who die in the hospital cannot also die pisshdrge, the post-discharge mortality outcome is
censored for these patients. That is, in-hospital moytalitd post-discharge mortality are competing risks,
which can lead to biased estimates of the causal effect of a@$ost-discharge mortality. We address
this concern by coding patients with in-hospital death agigors, i.e. they do not experience 30-day post-
discharge death.

The second source of censoring bias results from the fartiteaisk of death is decreasing over time for
patients with AMI. Thus, patients discharged later waicessariljhave lower post-discharge mortality risk
due solely to the fact that the window of time for the eventatetplace is later. To address this concern,
we utilize an adjusted time-window for mortality, so that eansider whether patients die between 2 to 31
days after discharge if they may be discharged early, cosdgara window of 1 to 30 days for patients who
are not prematurely discharged. The two adjustments fasar@rg biases should result in a conservative
estimate of the true treatment effect because we are usedpaed mortality rate by considering all patient
with in-hospital death as surviving and we are using a ghiftee window with lower mortality risk for all
patients who are ‘encouraged’ to be discharged early, dvargh some will not be. We use simulation to

demonstrate that, indeed, the adjustments for the two ciegsbiases result in conservative estimates of



the true treatment effect. That is, while the estimates tilidbgmsed, they are biased in the direction that
makes it more difficult to detect an effect of shorter LOS @aging post-discharge mortality risk.

Our results show that keeping patients in the hospital fer more day could decrease 30-day mortality
rates by over 6%. Using hospital cost estimates and valugeoéstimates, we calculate that keeping an
AMI patient admitted on a Monday or Tuesday one more day irhtbepital is likely to be cost-effective
from a social welfare perspective. Moreover, we find thatresults are very robust to a range of estimates
of hospital costs and the value of life. One interpretatibowr findings is that hospitals should consider
moving to a 7-day discharge cycle, thereby reducing thdiiked of premature discharge prior to the onset
of the weekend.

The remainder of the paper is structured as follows: Sedéidascribes the dataset and the sample we
use for our analyses. Secti@ndescribes the econometric challenges of our setting an@@mometric
approach to address them. In Sectibme present our main results, including a number of robustnes
checks. In Sectioh, we conduct a cost-benefit analysis and discuss the imiolicsadf our findings from a

social planner’s as well as a hospital administrator’s pecsve. We conclude in Sectidn

2. Setting
2.1. Data

We utilize data on all inpatient hospitalizations from 2002011 for Medicare Fee-For-Service (FFS)
beneficiaries. Medicare FFS is the typical version of Mediaander which 70-80% of beneficiaries are
covered. These data are drawn from the 100% sample in theckredProvider Analysis and Review (Med-
PAR) inpatient filé. Note that this does not include patients treated at the $mwmgitals, but not covered
by Medicare. As a result, we do not have information aboutthggestion at each hospital. Although our
dataset does not include operational metrics, it has hulye Var a study of the determinants of post-
discharge mortality. By virtue of it being a national datatbat covers more than 3500 hospitals in all
states in the U.S. and includes all Medicare FFS patiengitatized for AMI, it enables us to provide an
extremely comprehensive analysis for the U.S.

Our observations are at the patient-visit level. For eactphalization, we have the patient's demo-
graphic information including age, gender, race, covechgéce, and hospitalization characteristics includ-
ing admission and discharge dates (which enable us to cenipeipatient’s LOS and account for potential
seasonal variations), the primary condition or other csténg conditions identified by up to 10 International
Classification of Diseases, Ninth Revision, Clinical Mazhfiion (ICD-9-CM) codes, the Medicare Severity

adjusted Diagnosis Related Group (MS-DRG) classificatiogigating the DRG to which the claims that

! See http://www.resdac.org/cms-data/files/medpar-riffdescription of this dataset.



comprise the stay belong for payment purposes), hospitdladmission type (e.g., elective or emergency
basis). We also generate a severity of illness measure litteabser index Elixhauser et al. 1998using
the ICD-9-CM codes and the MS-DRG classification. The patetcome variable, 30-day post-discharge

mortality, is defined as death within 30 days of dischargemfeohospitalization.

2.2. Selection of Patient Sample

Our analysis is restricted to patients with AMI. AMI was orfdlte first three diagnoses for which mortal-

ity rates were reported on Hospital Compare and incorpdriate the Value Based Purchasing Program.
Moreover, as we will describe later, patients with AMI emp@dnumber of desirable properties from an
econometric standpoint. We use the primary ICD-9 codesantify patients with AMI.

Appendix TableA.3 describes our sample selection process. We only consideithbstays with admis-
sion and discharge that occur between January 1, 2000 arnehiimr 30, 2011. Because we study 30-day
mortality, an event which occurs within 30 days of dischakge exclude admissions and discharges that
occur during December 2011 to avoid potential censoringusfautcome variable. Due to data fidelity
concerns, we exclude visits with overlapping admissiors, (@dmissions that occur prior to discharge of
the previous hospital stay). Following CM&i@dy et al. 2013 we focus on acute care stays. Stays that
involve hospital transfers are excluded as it is difficultémtrol for what happens in two different hospitals
and during the transfer time. Furthermore, we do not know péditients were transferred; e.g., they needed
specialized treatment or wanted to be closer to home.

We exclude stays that are not paid under the current DRG cagktprospective payment system (PPS)
which Medicare switched to in 1983; after this significantpa&nt change, patient care also began to change
since payments were no longer based on the amount of timenpapent in the hospital, but rather based
on the average cost to treat the particular DRG. Because & BDRE& codes to control for patient severity,
it is important these codes are used in a similar manner ssb@spitals.

We then keep the patients with AMI. Following CMGHady et al. 2018 we exclude admissions within
30 days of a prior hospitalization’s discharge as it is uaickehether the first or second hospital stay impacts
patient outcomes most. Since the hospitals with fewer tHawigits for each corresponding condition
do not have their performance publicly reported becaus®oterns regarding statistical power to assess
performance with so few observations, we exclude hospitalshave less than 25 visits for AMI. Patients
who are discharged to destinations that provide inpatigated services are excluded as we do not know
the reason for transferring the patient between servicgs,requirements of specialty services available at
specific institutions versus requests due to personaliemedes. In Section 4.3 we run robustness checks

including these patients. We only include patients 65 yaadsolder, which is the primary indication for



Medicare eligibility. Patients who left against medicavee, who do not have their race reported, or who
do not reside in the U.S. are also excluded.

We focus on emergency and urgent (i.e., non-elective) miatie leverage theandomvariation in admis-
sion day-of-week to construct an instrumental variable Section3.2 for details). Such an identification
strategy is not possible for elective patients whose adarissare mostly scheduled. Following CMS, we
exclude patients who are discharged on the same day theylanitted as they are unlikely to have been
admitted for a true AMI. Next we exclude LOS outliers (greatean the 99th percentile value) and cost
outliers (as identified in the MedPAR inpatient file). Notattive include patients with in-hospital death in
our sample. As discussed in detail in Sect®f we include them as survivors (of 30-day post-discharge

mortality) to address the in-hospital death bias.

2.3. Summary Statistics
Table1 presents means and standard deviations for our patienisaspvell as for the subset of patients
who survive to hospital discharge. The 30-day post-diggharortality rate is 6.4%. The average LOS for
these patients is 5.3 days. Moreover, there is considevabigtion in length of stay depending on the day
of admission with a more than 7% gap between the shortest bOEBdnday admits and the longest LOS
for Friday admits; in Sectiof3, we discuss how this variation enables us to construct druimgnt to deal
with the bias attributable to unobservable patient seveharacteristics.

Note that the sample size given in Taldlenay not be exactly equivalent to the sample sizes in our
regressions in Sectioh This is because some samples are dropped because theyfaot pedictors of

30-day post-discharge mortalfity

3. Econometric Model and Approach
Our goal is to estimate the impact of hospital LOS on 30-dastqischarge mortality. We start with the

following reduced form equation:

y; = BX;+0log(LOS;) +EM; +yY R, +nH; +¢; 1)
Yi = 1{y;*>0} (2)

wherey; is the binary outcome with 1 indicating the patient died witBO-days following discharge from
the hospital. Thusy! can be interpreted as the latent risk of death occurringar8thdays post-discharge.
In equation (), X, is a vector of patient characteristics: age, gender, raoehdtiser co-morbiditie’s

DRG code, a dummy variable for having one or more surgicatguiares (any minor/major diagnostic or

2 For example, if all patients in hospitaldie within 30 days of discharge, then a hospital fixed effecttfospitali would be a
perfect predictor of mortality and all patients treated aspital: would be dropped from the mortality regression.

% Elixhauser et al(1998 defines 30 comorbid conditions using the ICD-9-CM and MS@#bdes. Equationlf includes 30
dummy variables, one for each of the 30 conditions.



Table 1 ~ Summary statistics

Including weekend admits Excluding weekend admits
All Excluding patients All Excluding patients
with in-hospital death with in-hospital death
N 1,808,889 1,609,866 1,317,944 1,174,353
Age 78.8 (8.3) 78.4 (8.3) 78.7 (8.3) 78.4 (8.3)
Elixhauser Score 2.9(1.5) 2.9(1.5) 2.9(1.5) 2.9(1.5)
Female 0.50 0.50 0.50 0.50
Race
White 0.89 0.89 0.89 0.89
Black 0.08 0.08 0.08 0.08
Hispanic 0.02 0.02 0.02 0.02
Other 0.02 0.02 0.02 0.02
Had surgical procedure(s) 0.71 0.71 0.71 0.71
Intensive care use
No 0.49 0.50 0.49 0.50
General 0.26 0.24 0.25 0.24
Surgical 0.02 0.02 0.02 0.02
Medical 0.03 0.03 0.03 0.03
Intermediate 0.19 0.20 0.19 0.20
Other 0.02 0.02 0.02 0.02
Average LOS (days) 5.3(3.4) 5.4 (3.4) 5.3(3.4) 5.4 (3.4)
Sunday 5.2 (3.4) 5.4 (3.4)
Monday 5.1 (3.5) 5.2 (3.4) 5.1 (3.5) 5.2 (3.4)
Tuesday 5.1(3.4) 5.3(3.4) 5.1(3.4) 5.3(3.4)
Wednesday 5.2 (3.4) 5.4 (3.4) 5.2 (3.4) 5.4 (3.4)
Thursday 5.4 (3.4) 5.5 (3.4) 5.4 (3.4) 5.5 (3.4)
Friday 5.5(3.4) 5.6 (3.3) 5.5(3.4) 5.6 (3.3)
Saturday 5.4 (3.4) 5.5(3.3)
Post-Discharge Death in 30 days 0.064 0.072 0.064 0.071

Note. Mean and standard deviation (in parentheses) shown.

therapeutic proceduréspand intensive care use indicatoks;, Y R; andH; are all vectorsi/; is the month

of hospital admissionY R; is the year of hospital admission; anfd; is the hospital in which patient

is treated. Hence, we include month and year dummies as wélbsgpital fixed effects; the inclusion of
the hospital fixed effects controls for the potential impafatnobservable attributes of the more than 3500
hospitals in our study. As is standard practice, we takedbarithm of the patient’s LOS in order to account
for the heavy talil in the distribution. We assume that thereerme; is a standard normal random variable
to fit the Probit model.

4While we do not have any data on the socio-economic statusegfatients, we believe this is of minimal concern. Although
expect patients with lower socio-economic status to be rikety to die, we also expect them to be less likely to be premsdy
discharged as hospitals are hesitant to send patients héhsutva solid support system to help manage their recovktigere
were a positive correlation between premature dischardesacio-economic status, this could result in us errongaumhcluding
that premature discharge increases the likelihood of digrt@hen the true effect may be due to socio-economic status



3.1. Empirical Challenges
While our retrospective patient dataset is quite rich, weefaced with a number of estimation challenges
which we describe next. In Sectio@s2 and 3.3, we describe in detail how we address these potential

sources of bias.

3.1.1. EndogeneityAlthough the Elixhauser co-morbidity conditions have beedely used in pre-
vious research, these measures are not a perfect contqphtient severity. Unobservable severity factors
might be positively correlated with both LOS and the depemndariable in equationl). Since sicker
patients tend to stay longer in the hospital and are also likelg to die, we might draw an erroneous con-
clusion that longer LOS leads to higher mortality risks. @doligss this concern, we utilize an instrumental

variable approach.

3.1.2. Censoring due to in-hospital deathdVe focus on post-discharge mortality for two primary
reasons. First, this is a measure of quality that is commuoséd to compare performance across different
hospitals. Second, since we want to estimate the effect & tw®mortality, post-discharge mortality is more
appropriate than alternative mortality measures such-aegpital mortality or post-admission mortality. If
one examinem-hospital mortality it is not clear how to interpret the coefficient of LOS as iedmot make
sense to keep a patient in the hospital an extra day if s/halleedy died. In the case of post-admission
mortality, other factors, such as care in the first 24 hoursasfpital stay, may be more likely to have an
impact than a patient’'s LOS.

However, by focusing on post-discharge mortality, we mesbgnize a potential bias introduced by
patients with in-hospital death. In particular, in-hoapdeath is a competing risk to post-discharge death;
a patient with in-hospital death cannot also have posthdige death. As such, excluding patients who
died in hospital from the sample could bias our results. Tdresk this problem, we include patients with

in-hospital death in our cohort, but code them as survivbB9eday post-discharge mortality.

3.1.3. Censoring due to decreasing mortality hazardstudies have shown that for patients with AMI,
the likelihood of death decreases with time following the ¥dvient Oharmarajan et al. 20}5This is true
in our data, as shown in Figuiie Because of the decreasing hazard rate for mortality, whasidering any
single patient, if one looks at a later time window (e.g. fqradient discharged 1 day later), the mortality
risk will necessarily be lower even if there is no effect of 8@n mortality. Ignoring this could lead one
to conclude that shorter LOS increases mortality r&slen if no effect exist§o account for this potential

bias, we propose a shifted time-window over which we defirs-déscharge mortality.
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Figure 1 Mortality hazard rate of AMI patients in our data.

3.2. Addressing Endogeneity Bias

A valid instrumental variable (1V) is correlated with thedmrgenous variablédg(LOS)) and uncorrelated
with the unobservable nois&\poldridge 201). We propose an IV that is based on a patient’s admission
day-of-week and evaluate whether it satisfies these twogptieg. A number of studies in other healthcare
settings have used time-of-day or day-of-week as an |V asirttieg of admission has been shown to have
an impact on the type of care patients receive (Elg.et al.(2000, Hamilton et al.(2000, Ryan et al.
(2009, Bhattacharya et a(2008, Goyal et al.(2013, Baiocchi et al(20143).

Relationship Between Admission Day-of-Week and LOSWe start by examining whether admission
day-of-week is correlated with our endogenous variableSLTablel shows that the average LOS for
patients differs based on admission day-of-week. We egtina separate regression of the logarithm of
LOS on patient observables (age, gender, race, ElixhaD&, had surgical procedure(s) or not), time
dummies (month and year of hospital admission) and hodpitad effects. Figur@(a) shows the average
residual from this regression plotted against the admissay-of-week for our patient cohort. We can see
that patients admitted on Monday or Tuesday have negatiemge residuals, suggesting that they are
‘prematurely’ discharged.

The average LOS for AMI patients in our sample is 5.3 days. dhspatients admitted on Sunday,
Monday or Tuesday are likely to be ready for discharge on teekend. There is substantial evidence
(e.g-Varnava et al(2002, Wong et al.(2009) that hospitals prefer to discharge patients just pridihe
weekend rather than keeping the patients over the weekenad wiany services are not available; this is

also consistent with patients’ preferences to be discloaifpossible, prior to the weekehdndeed, there

®In discussions with administrators at a major medical aente were informed that on the weekend social workers arergéiy
not available and it is difficult to arrange for home healithesi.
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Figure 2 Day-of-week effect

seems to be evidence of this preference in our data wherbadige rates peak on Friday and fall sharply
on Saturday and Sunday (see Figai(e)). This suggests that we may be able to leverage the variation
in LOS due to this “discharge before the weekend effect” aglantification strategy and isolate a valid
instrumental variable based on admission day of week. NMatethat we are considering a weekend effect
is different than that seen iRinne et al.(2014), which examines the impact of a weekend discharge on
hospital readmissions and finds no effect. In contrast, wsider the effect of being discharged ‘early’ due
to the hospitals’ practice to discharge before the weekéfedstart by using Monday/Tuesday admissions
as our instrument, which allows us to conduct a sensitivitglysis in Sectionrt. 1 Later, we use multiple
instruments defined by admission on each day of the week.

Unobserved Severity by Admission Day-of-WeekEor an 1V to be valid, it must be uncorrelated with
the unobservable noise; in our case, the admission dayeekwmnust be uncorrelated with the unobserved
severity of the patient condition. We follow the approaclediby Card et al.(2009 who define non-
deferrable diagnoses as those for which admissions ardletkely on the weekend and weekdays. The
rationale behind this approach is that patients will onlyt@the hospital on the weekend “for a relatively
severe set of conditions that require immediate hospittdin”, i.e. their condition is ‘non-deferrableCérd
et al. 2009. Card et al(2009 relies on non-deferrability to argue that hospitalizetigrds with these types
of conditions who are just under age 65 are no different thase admitted who are just over age 65 (and,
hence, Medicare eligible), while we use it to argue that weobed patient severity measures are unlikely
to be correlated with admission day of week. Specificallygach ICD9 code, we calculate t-statistics to

see if the proportion of patients admitted on the weekendhisificantly different from 2/7 of the total
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weekly admissiorfs Recall that our analysis is restricted to patients adchitte an emergency or urgent
basis and for these patients we find that 77% of ICD9s for AMiEBathis criterion for non-deferrability.
These results are consistent wilard et al.(2009, which finds that AMI satisfies the criterion for non-
deferrability, implying that patient severity for thesendations does not differ by admission day-of-week.
A number of studies (e.ddamilton et al.(2000, Bhattacharya et a(2008, Kc and Terwiesct{2012)
examine the exclusion criteria by comparing their IV to olable measures of severity. We do this as
well and compare observed patient-level covariates fadtammitted on Monday/Tuesday versus Wednes-
day/Thursday/Friday: age, gender, Elixhauser score, rgaber of procedures a patient experiences dur-
ing the hospital stay, intensive care use indicators, aaditle most prevalent DRG codes (Tal2e Due
to our large sample size, we focus on standardized diffegnvehich is the mean difference divided by the
average standard deviatioRlgry and Riedwyl 1986 We find that the standardized differences of these
covariates are well below the 0.2 rule-of-thunfifméenbaum and Rubin 1988y this measure, there is no
evidence that patients admitted on the IV days are diffetteant those admitted on other days. Note, we
also compared standardized differences between all gairsekdays and found no evidence of differences

between any of the pairs.

Table 2 Standardized Differences

MTu admissions WThF Admissions Std. Diff.
Age 78.69 78.78 -0.01
Female 0.50 0.50 -0.01
Race
White 0.89 0.89 0.00
Black 0.08 0.08 0.00
Hispanic 0.02 0.02 0.00
Other 0.02 0.02 0.00
Elixhauser 2.93 2.93 0.00
# Procedures 3.13 3.10 0.01
Intensive care use
No 0.49 0.49 0.00
General 0.25 0.25 0.00
Surgical 0.02 0.02 0.00
Medical 0.03 0.03 0.00
Intermediate 0.19 0.19 0.00
Other 0.02 0.02 0.00
Top 5 DRGs
121 (before 2007 0.27 0.27 0.00
122 (before 2007 0.09 0.09 0.00
280 (after 2007) 0.08 0.08 0.00
123 (before 2007 0.07 0.07 0.00
516 (before 2007 0.06 0.06 0.00

Note. N=1,317,944. For patients admitted on weekdays only.

In sum, our identification strategy relies on the non-defele nature of AMI, the fact that observed

% To account for potential differences across states, weaah etest by state.
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covariates of AMI patients admitted on IV and non-1V days sirilar, and that admission on an IV day
does not directly affect a patient’s mortality risk. Howewvas it is impossible to completely rule out the
existence of an unobservable variable violating the ekmtusriteria, we conduct a sensitivity analysis in
Sectiond.1to examine the impact of potential violations of the assuomathat our instrument is indepen-
dent of unmeasured confounders.

Resource Availability on IV days: The motivation for using day of admission as an instrumettias
patients have shorter LOS when admitted earlier in the weellise of the desire to discharge patients
before the weekend. However, there might be concerns taaygte of care provided to patients on week-
ends is different than other days of the week. For instandé, less staffing and resources available on
weekends, one may question if patients admitted on weeklesnts worse outcomes because of lack of
access to care and not because of their LR{an et al (2005 found that while cardiac patients admitted
on the weekend have longer delays to catheterization, to&enot seem to be any difference in outcomes.
On the other hand)obkin (2003 found that weekend admission is associated with highkeofisnortality.

In our main analysis, we exclude weekend admits to addressa@mcerns regarding differences in care
provided on the weekend and provide a robustness check troSéc3that includes weekend admits.

It is common for many surgeries, especially the more compiess, to be scheduled on Mondays. Thus,
while we focus on emergency and urgent patients, the awitijabf surgical staff may be reduced for
patients admitted to a surgical service on Monday. As 71%Mf patients have some sort of surgical pro-
cedure, this may have an impact on their care. However,clrgghedules are unlikely to have a significant
impact on care for patients admitted to a medical servicBelction4.3, we will provide a robustness check
which excludes patients who have a surgical procedure glahieir hospital stay. In addition, one could
argue that patients admitted on Fridays may be more liketligccompared to patients who are admitted
on Monday to Thursday because Friday admits will not get émeeslevel of service during the critical first
few days that overlap with the weekend. In Sectiod we will provide a robustness check which excludes

patients admitted on Fridays.

3.3. Addressing Censoring Biases
In Sections3.1.2and3.1.3we described two potential censoring biases that can impacdctudy of post-
discharge mortality: in-hospital deaths and decreasingdatity risks. To address these biases we propose
two ‘adjustments’ to our outcome variable: 1) patients viriihospital death will be included and coded as
survivors and 2) patients who are discharged early will laashifted time-window to define post-discharge
mortality. In this section, we describe these adjustments.

In-hospital Death:To address the potential bias introduced by patients withoispital death, we incor-

porate the competing risk approach within the Probit mogedditing 30-day post-discharge mortality to O
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for those who died in hospital. That is, setting 30-day niityto O for those with in-hospital death assumes
that everyone who died in the hospital would have otherwisgiged 30 days, which would give us a
conservative estimate of the effect of LOS on 30-day maytalihis idea is similar to the method used in
Kuntz et al.(2015 to address the competing risk of hospital discharge whedysig the impact of hospital
occupancy on hospital mortality.

Decreasing Failure RateTo address the potential bias introduced by the fact thatiskeof death for
patients with AMI has a decreasing failure rate, we proposshift the window for which mortality is
considered based on whether a patient may have been disdreagy.

Consider a patient who is discharged (alive) on day/hether the patient dies on any day in the interval
[t+1,t+30] determines his 30-day post-discharge mortality. If, iadt¢he patient is discharged (alive) on
dayt — 1, 30-day post-discharge mortality would be death on any &y intervalz, ¢ + 29]. However, we
need to consider the same time interval for deéath1, ¢ + 30] in order to avoid potential biases introduced
by the decreasing failure rate. Thus, for any patient diggthearly (on day — 1), we should consider the
interval [t 4+ 1, ¢ 4 30] to define 30-day post-discharge mortality. If the patieesdin day, we will count
that as an in-hospital death.

These two adjustments together will bias our estimatesh®treatment effect in the positive direction.
This is because we are 1) using a lower mortality rate by ginlythose with in-hospital deaths as surviving
and 2) using a shifted time window with lower mortality ristr fall patients who are ‘encouraged’ (by
the 1V) to be discharged early, even though some may not lmeul&iion experiments in the Appendix

demonstrate that this approach will result in conservastenates of the true treatment effect.

3.4. Estimation Approach
As explained above, we use an instrumental variable apprasevell as adjustments to the outcome vari-

able of interest. In the first stage, we fit a linear modeldg(LOS):
log(LOS;) = X+ EM; + )Y R, + 1 H; + AZ; +v; (3)
In the second stage, a Probit model is estimated:

yr = BX;+0log(LOS;) + EM; + Y Ry +nH, +¢; (4)
Yi = 1{y;*>0} ®)

Thus, the first stage useé% as an instrument fdog(LOS) in the second stage. We &t be an indicator
that equals 1 if the patient is admitted on Monday or Tuesalag,0 otherwise. These equations are esti-
mated jointly via Maximum Likelihood Estimatiom{ooldridge 201). We estimate robust standard errors,

clustered by admission day-of-week, month, and year. Asqfarur robustness checks in Sectir3, we
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use alternative clusters: DRG code; hospital; DRG code &ad, yhospital and year; DRG code, hospital,
and year.

Considering the admission day-of-week effect in Equati®)n e expect the coefficient for our Mon-
day/Tuesday admission day instrumeft)( )\, to be negative. Finally, we hypothesize that these ‘prema-
ture’ discharges due to hospitals’ desire to dischargepetibefore the weekend will increase the risk of
mortality, so that is negative.

We use the data with adjustments made to the outcome vagabkedescribed in Sectidh3. Specifi-
cally, any patient with in-hospital death is included in #aanple with post-discharge mortality setto O, i.e.
y; = 07. A challenge that arises in considering the shifted timedaiv is that, unlike in a simulation, we
cannot know for sure which patients are discharged earlycaieonly know that patients admitted on Mon-
day or Tuesday are more likely to have shortened LOS. It isaswnable to expect thalt patients admitted
on Monday/Tuesday were discharged early. We calculated@&residual among patients admitted on IV
days and discharged from the hospital alive; patients wesidual near -1 are likely to have been discharged
1 day early. We used the modified time-window for the momgtatiitcome (days2, 31] post-discharge,
instead of day$l, 30]) for the5% of patients with residual around -1. In our robustness chesk consider

larger groups of patients who may have been discharged @&adlyequire the adjusted outcome variable.

4. Results

Columns (1) and (2) of Tabl& show that when we do not instrumehig(LOS), the coefficient of
log(LOS) on the probability of mortality is positive and statistigadignificant at the .1% level. This bias
is likely due to less sick patients (by unobservable measofrseverity) being more likely to have shorter
LOS and lower mortality risk.

In columns (3) and (4) we use Monday/Tuesday admission touimentlog(LO.S), and find that the
coefficient on log(LOS) is negative and significant at the 1&9&l. The F statistic for the significance of the
instrument in the first-stage regression is 913.66 (adjufstethe day-month-year clusters), which indicates
our instrument is quite strong. The average marginal efiéet one-day increase in LOS among patients
who survived hospital discharge is a reduction in the 304thaytality risk from .0612 to .0572, which
is about a 6.5% decrease. We will use these estimates of tlggmalaeffects when considering different
patient care strategies in Section

The results of the Walg? test suggest that our instrument is able to control for atamiial portion of

the endogeneity bias in our sample. This, along with the adefierrability results Card et al. 200pand
"Note that in doing so, some DRGs of patients with in-hosgiesth (e.g., DRG code 123: “Circulatory disorders with AMI,

expired”) become perfect predictorssf= 0. We replace such DRGs by their counterparts for survivois-bbspital death, e.g.,
DRG code 123 is replaced by DRG code 121 “Circulatory disardéth AMI & major complication, discharged alive”.
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Table 3  30-Day Mortality Model Results
Model (1) (2) 3) 4)
Probit Probit IV Probit IV Probit

(excluding patients w/ (including patients w/ (excludiregipnts w/ (including patients w/
in-hospital death) in-hospital death in-hospital death) n-hospital death
as survivors and as survivors and
w/ adjustments to w/ adjustments to
mortality measure) mortality measure)

Second Stage (Mortality)

log(LOS) 0.14~~ 0.28** -0.19~ -0.17
(0.00) (0.00) (0.07) (0.07)
p=0.000 p=0.000 p=0.006 p=0.015
Age, Gender, Race Yes Yes Yes Yes
Elixhauser Vars Yes Yes Yes Yes
Had surgical procedure(s) Yes Yes Yes Yes
Month, Year Dummies Yes Yes Yes Yes
Hospital FE Yes Yes Yes Yes
First Stage (log(LOS))
v -0.06** -0.05**
(0.00) (0.00)
p=0.000 p=0.000
Age, Gender, Race Yes Yes
Elixhauser Vars Yes Yes
Had surgical procedure(s) Yes Yes
Month, Year Dummies Yes Yes
Hospital FE Yes Yes
Num. of obs. 1171148 1314136 1171148 1314136
Wald x? test 22.71 39.31
Wald p-value 0.00 0.00

Note. Robust standard errors clustered by admission day-of-weekth, and year in parenthesésp < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
TableA.4 in the appendix provides the coefficients, robust standaiss and p-values for all control variables for the modetolumn 4.

the results of our standardized differences comparing iserwved patient-level covariates of AMI patients

admitted on Monday/Tuesday versus other days, supporteliaeility of the IV estimates. In results not

reported here we found that the instrument is statisticadjpificant and of the same magnitude even when

stratifying by different levels of patient severity, as rse@d by the Elixhauser score, and by different

patient conditions as measured by ICD9 codes, suggestighth admission day of week effect is present

across a large group of patients in our data. As such, it soregble to conclude that the population which

complies with our instrument is broadly spread across bgtereous patients. Thus, the IV results in Table

3 provide estimates for the local average treatment effetiQf across heterogeneous patients. Finally,

comparing columns (3) and (4), we see that, as expected bgnalysis in the Appendix, the adjustments

to the mortality measure bias the coefficient on LOS moretpesi

4.1. Sensitivity Analysis

In order to mitigate the possibility that unobservable graticharacteristics may be correlated with admis-

sion day of week, we study AMI patients who are admitted onraargency or urgent basis and therefore
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do not choose which day to be admitted to the hospital. Onenpiat concern is that we observe a slightly
higher admission rate on Monday compared to other days ofvdek: see Figur&. This is in line with
the literature that has found a Monday preference for AMI sindke onsét(Spielberg et al. 1996vian-
fredini et al. 2001Arntz et al. 2000Kinjo et al. 2003. The proposed factors for such a preference include
stress from returning to work after the weekend and diffeean family life and leisure patterns during the
weekend versus weekdays. That said, one could argue thhigher admission rates of AMI patients on
Mondays may be due to patients waiting until Monday to go éftbspital. This would only be possible for
patients with ‘deferrable’ AMI, which we believe is likelp be a very small portion of the AMI population,

if it exists at all. Patients who wait to go to the hospital nieysicker due to delays in getting treatment,
which would bias our estimates more negative. On the othed, hzatients who can afford to wait (instead
of going immediately to the hospital over the weekend) malebs severe, which would bias our estimates
more positive. Thus, if patients admitted on Monday are seolmably different than those admitted on other
days of the week, it is not clear in which direction this woblds the results.

While we do not find evidence that AMI patients presentinghe hospital on Monday versus other
days of the week are different (e.g., Tallshows that observed covariates for Monday/Tuesday admits
versus Wednesday/Thursday/Friday admits are similargamaeot completely rule out the possibility of an
unobservable variable being correlated with admissionafayeek. For instance, we do not have data on
congestion in the hospitals which, if correlated with ddyweek, could potentially bias our resultdve
therefore use the methodology frdBaiocchi et al(2014h to conduct a sensitivity analysis to see if our
results could be explained away by an unobserved confouhdeis correlated with our instrument.

Following Baiocchi et al(2014h), suppose there exists an unobserved confoumngerith mean 0 and
variance 1 that is independent of the measured confounderd/,, Y R;, H;, but is correlated with the
outcome (30-day mortality) and whether a patient is adchittean 1V day or not. We assume the following

model;

u; = ¢Zz +Ui

81n the literature, the day of AMI and stroke onset is definedhastime of onset of the first symptoms, usually reported lgy th
patient, and not the day of hospital admission.

9 There is some evidence that hospital occupancy is incréasasMonday and Tuesday (ekanter and Morar§2007), Fieldston
et al. (2011). These findings suggest thathigh occupancy rates increase mortality risks, this wousgrdportionately impact
patients admitted on Wednesday to Friday (recall that was@n weekday admissions in our analysis). Based on our Ihnggist
that shorter LOS will increase mortality risk and that Mop@ad Tuesday admits (our instrument) have shorter LOSngahvigh
occupancy rates on Wednesday to Friday could result in ceatbee estimates of the true effect of LOS on mortality. Tisawhile
the estimates may be biased, they are likely to be biaseckiditection that makes it more difficult to detect an effecslobrter
LOS increasing post-discharge mortality risk.
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Figure 3 Percentage of AMI admissions by day-of-week.
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We are interested in establishing a consistent estimaté. {drand ¢ are sensitivity parameters, whefe
measures the effect of a one standard deviation increabe imimeasured confounder on 30-day mortality
under no treatment angd measures how much higher the mean of the unobservahlé in standard
deviation units of being admitted on the instrument days r{¥y/Tuesday)Z;. Under this modelZ;

would be a valid instrument if we could control fag. Thus, we can provide a consistent estimateffor

using 2SLS withy; — §¢Z; as the outcome variable avd] as the 1V:

Note that the noise termyp; + ¢;, is zero-mean conditional ok;, M;, Y R;, H; andZ;. We can run regres-
sions for different values of and¢ to determine parameter regimes where the estimafief) negative
and statistically significant at the 5% level, ii) positivedastatistically significant at the 5% level, or iii)
statistically not different than 0 at the 5% level. If theirag where i) holds is large, we can conclude that
our estimates fof are reasonably robust to potential violations in the exclusriteria of the IV being
independent of unobserved confounders. This methodolegyires that we use the 2SLS estimator, and
hence we use a linear probability model for the 30-day mitytaistead of a Probit model.

Figure4 summarizes our sensitivity analysis for the 30-day madytatiodel. In particular, we see that the
white region, where the estimates toare negative and statistically significant at the 5% legaiLiite large.
The gray (black) regime depicts where the estimate8 &oe statistically not different than zero (are positive
and statistically significant at the 5% level.) We note thatinagnitude of the coefficients does not change
(though the standard errors do) in the white region. Moredke (¢, ¢)-values for all observed covariates

(as indicated by x’s) are well within the white region. That in order for there to be an unobserved
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confounder that would explain away our LOS result, the éféée of this unobserved confounder would
have to be much larger than that of any observed confoungecifgally, unobserved patient severity
factors must have a larger effect size than observable mesasfi health such as the MS-DRG codes or
Elixhauser comorbidity conditions. Though it may be urljithat any single unobserved confounder would
have larger predictive power, it is possible that the cutivdaffect of many unobservable factors together

could impact the significance of our results.
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Figure 4  Sensitivity Analysis for the 30-day mortality mode I. (1) White area represents regime for § and ¢
where the estimates for 6 are negative and statistically significant at the 5% level. ( 2) Gray area
represents regime for § and ¢ where the estimates for 6 are statistically not different than 0 at the
5% level. (3) Black area represents regime for  § and ¢ where the estimates for 6 are positive and
statistically significant at the 5% level. x's represent 6 and ¢ values for observed covariates.

4.2. Alternative Instruments

In order to provide more evidence to support our conclugiansghorter LOS is associated with an increase
in 30-day post-discharge mortality, we consider alteueatistrumental variables that may be less suscep-
tible to the potential limitations of the Monday/Tuesdagtmment.

Indicators for all Admission Days-of-WeekThe rationale for using a single indicator for admissions on
Monday or Tuesday as the instrument was that patients ahetirlier in the week are more likely to be
discharged early. Using a single indicator also allowedwshduct the sensitivity analysis of Sectibri.
However, Figur€(a)shows that LOS varies across all admission days of the weekh&vefore consider a
specification with multiple instruments: four indicatorriedles, one for each admission day of week, with
one day (Friday) being the base case.

Column (1) of Table4 shows the results of this alternative specification. In tret §tage, we see that
patients admitted earlier in the week have shorter LOS thaset admitted later in the week. We saw this

previously when we first introduced the idea of using adraisslay of week as an IV. In addition, we
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see that the coefficient on log(LOS) is negative and stedithyi significant in the second stage, providing
additional support for the hypothesis that longer LOS iseisded with a reduction in 30-day post discharge

mortality risk.

Table 4 Alternative Instruments

Excluding patients with in-hospital deathncluding patients with in-hospital death
as survivors and with adjustments to
mortality measure
1) (2) (3) 4) (5) (6)
All Cohort 1 Cohort 2 All Cohort 1 Cohort 2
Second Stage (Mortality)
log(LOS) -0.15*  -0.78 -1.13~~ -0.13  -0.96" -1.10
(0.06) (0.33) (0.34) (0.06) (0.29) (0.30)
First Stage (log(LOS))
Instrument(s)
Mon admit -0.10** -0.09**
(0.00) (0.00)
Tues admit -0.09** -0.08**
(0.00) (0.00)
Wed admit -0.07+* -0.06**
(0.00) (0.00)
Thurs admit -0.04~~ -0.04
(0.00) (0.00)
Fri admit (base) (base)
Predicted Sat Discharge 0.02** 0.02** 0.02** 0.02**
(0.00) (0.00) (0.00) (0.00)
Num. of obs. 1171148 399713 309617 1314136 420377 322419
Wald x? test 26.40 5.99 7.82 47.43 9.74 9.81
Wald p-value 0.00 0.01 0.01 0.00 0.00 0.00

Note. Robust standard errors clustered by admission day-of-weekth, and year in parentheses < 0.1, * p < 0.05, ** p < 0.01, ***
p < 0.001.

Predicated Saturday DischargeWe consider another alternative instrument which is alssetiaon
the idea that patients are less likely to be discharged onvdekend, thereby impacting LOS for some
patients. Rather than examining this phenomenon by admisky-of-week, we consider the predicted
day of discharge. Specifically, we define our instrumentabtde as an indicator for whether a patient is
predicted to be discharged on a Saturday.

In order to predict a patient's day of discharge, we start tBdigting a patient’s LOS. First, for all
patients who were admitted on a weekday and survived to tabsiischarge, we fit a length of stay regres-

sion including the following covariates: DRGs, Elixhaudammies, age, gender, race, whether or not had
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surgery, admission month, admission year, and hospitak, Me use the results of this regression to predict
a patient’s LOS. A patient’s predicted day of discharge éntbdetermined by adding the predicted LOS to

the patient’s admission day. If it falls on a Saturday, thengatient is classified as having a predicted Satur-
day discharge; otherwise, he is classified as not havingdigieel Saturday discharge. We use the indicator
variable for whether a patient is predicted to be dischaaye8aturday as our alternative V. Because the
predicted Saturday discharge IV is constructed using @bsgecovariates, we believe it is reasonable to

assume that there does not exist an unobservable variabis torrelated with both the predicted Saturday
discharge and mortality, and hence satisfying the exatusstriction.

We restrict our analysis to patients who are predicted toisehdrged before the first Sunday following
admission. In other words, we exclude patients admitted onddy, Tuesday, Wednesday, Thursday, or
Friday if their predicted LOS is greater than 5, 4, 3, 2, 1 dagspectively. We do this because these
patients are more likely to stay in the hospital over the veeek when fewer services are available and the
type of care provided may be different than that availableveekdays. We define this group of patients
as Cohort 1. Next, in order to better balance patient cotesmjave conduct a four-to-one matching with
replacement based on predicted LOS to generate the secbad.c®pecifically, using the initial cohort of
patients predicted to stay in the hospital only on weekdaganatch four patients with the same predicted
LOS who are not predicted to have a Saturday discharge to @hdhe same predicted LOS but who is
predicted to have a Saturday discharge. Taldbows the standardized differences between those with and
without predicted Saturday discharge for these two coh@féscan see that prior to matching (Cohort 1),
the predicted Saturday discharge patients are differanttthose who are not. However, after matching, the
standardized differences are well below the 0.2 rule-afyth.

Columns (2), (3), (5), and (6) of Tabke show the results with this alternative IV based on predicted
Saturday discharge for Cohort 1 (without matching) and @oBRawith matching). We can see in the
first stage that patients with predicted Saturday dischaayelonger LOS than those without predicted
Saturday discharge. Because both cohorts consider atigtht relatively short predicted LOSI(5), it
seems that the reluctance to discharge patients on the netekanifests itself by having patients stay
longer, being discharged on Monday instead of Friday. Megean the second stage, we see that the
coefficient on log(LOS) is negative and statistically sfguaint for both cohorts.

Because of the non-linearities introduced by the Probitehadd the differences in the cohorts for the
predicted Saturday discharge IV and our main specificatiofiable3, it is difficult to directly compare
the magnitude of the coefficients. For Cohort 1, the -0.96fwdent in column (5) signifies an average
treatment effect which reduces the mortality rate from 816 4.77% with an additional day in the hospital.

For Cohort 2, the -1.10 coefficient in column (6) signifies dution in the mortality rate from 9.96% to
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Table 5 Standardized Differences: Cohort 1 and Cohort 2

Cohort 1 Cohort 2
Predicted Sat discharge? No Yes  Std. Diff.|] No Yes  Std. Diff.
N 250677 180642 202707 133979
Age 76.50 78.22 -0.21 | 77.30 77.32 0.00
Female 0.43 0.49 -0.11 0.46 0.46 0.00
Race
White 0.91 0.90 0.05 0.91 0.91 0.00
Black 0.05 0.06 -0.05 0.06 0.06 0.00
Hispanic 0.01 0.01 -0.02 0.01 0.01 0.00
Other 0.02 0.02 0.00 0.02 0.02 -0.01
Elixhauser 2.28 2.64 -0.26 2.41 2.41 0.00
# Procedures 3.69 3.08 0.23 3.42 3.40 0.01
Intensive care use
No 0.61 0.56 0.09 0.59 0.59 0.00
General 0.16 0.20 -0.08 0.18 0.18 0.00
Surgical 0.01 0.01 -0.01 0.01 0.01 0.01
Medical 0.02 0.02 -0.04 0.02 0.02 -0.01
Intermediate 0.19 0.19 0.00 0.19 0.19 0.00
Other 0.01 0.01 -0.02 0.01 0.01 0.00
Top 5 DRGs
121 (before 2007) 0.10 0.22 -0.33 0.15 0.15 0.00
122 (before 2007) 0.15 0.13 0.04 0.15 0.15 -0.01
247 (after 2007) 0.14 0.07 0.23 0.10 0.09 0.00
516 (before 2007) 0.08 0.08 0.01 0.09 0.09 -0.01
281 (after 2007) 0.08 0.06 0.05 0.08 0.08 0.01

Note. For Cohort 2, means and variances are adjusted by observesights resulting from the
four-to-one matching with replacement.

5.45%. Cohort 2 is better balanced on observed covariatggesting it is less likely to be unbalanced by

unobservable factors than Cohort 1. This suggests thetsesulCohort 2 are likely to be more reliable.

However, it is a slightly different subset of the patientstlse estimation results fundamentally only apply

to the matched cohort rather than the full population.

Note that the compliers with respect to the predicted Satudischarge IV are different from the com-
pliers with respect to our original IV, Monday/Tuesday agsivn, and that each IV identifies the average
treatment effect for its group of compliers. The compliefhwespect to the predicted Saturday discharge
IV are patients who would stay longer in the hospital if poteld to be discharged on the first Saturday after
admission compared to other days while the compliers wipeet to the Monday/Tuesday admission IV
are patients who would stay shorter in the hospital if adeditin Monday or Tuesday compared to Wednes-
day, Thursday, or Friday. Thus, it is not surprising thatrtegnitude of the effect of LOS on mortality is
different when different IVs, which capture different typef variation, are used. We emphasize, however,
that getting similar directional results from two 1Vs thatyron two different groups of compliers increases
our confidence in our finding that an increase in LOS is assstiaith a decrease in 30-day mortality rates.

As we also cannot rule out the possibility of confoundingdag in these results with the new IV, we also
conduct a sensitivity analysis similar to that done in Sevti1for the predicted Saturday discharge IV. This

is possible since itis a single instrument. Figarg in the Appendix summarizes the sensitivity analysis for
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this IV for Cohort 2. The white region, where the estimategfare negative and statistically significant at
the 5% level, is quite large. The gray regime depicts whezeettiimates fof are statistically not different
than zero. A number of observed covariates (x's) are closkdaqray region suggesting that these results
may be more sensitive to violations in the exclusion ciiténan the Monday/Tuesday IV. However, because
Cohort 2 was created through matching, itis less likely thate are substantial differences in unobservable

factors.

4.3. Robustness Checks

This section presents a number of robustness checks forithary specification that uses Monday/Tuesday
admission as the instrument. We start by considering @iffeways of computing standard errors. In Table
3 we clustered standard errors by admission day-of-weektimand year. Since there may be correlations
between patient characteristics and care within a hospital DRG group, we also tried a number of

alternative clustering approaches: by DRG code; hos@itRIG code and year; hospital and year; DRG

code, hospital, and year. For our main model presented imuol in Table3, IV Probit (w/ adjustments

to mortality measure), the estimated robust standardsfrom these alternative clusters are 0.08, 0.07,
0.08, 0.07, and 0.07, respectively, which gives p-valueés3@®.0.011, 0.023, 0.009, and 0.010, respectively.
In addition, the robust standard errors reported in Ta&tdee computed through closed-form equations. If
we compute standard errors through bootstrapping, thestsaptstandard error is 0.06 with p-value 0.004
based on 100 replications.

Next, we consider different groups of patients for which se a shifted time-window to define the post-
discharge mortality outcome. Recall that since we cannowkior sure which patients were discharged
early, we adjusted the time-window for the 5% of patients iégich on Monday or Tuesday whose LOS
residuals were around -1. In Talflewe use the adjusted time-window for a larger group of p&i€tn%,
15%, and 20%). We see that the coefficient on LOS is negativalfonodels, though it is not statistically
significant (even at thg < .10 level) when using 20% of patients admitted on Monday/TugsRacall
from our simulation results that our coefficients are covesre estimates for the true effect, so the negative
coefficients are suggestive that shorter LOS is associatedvereased mortality risk.

Table7 presents a number of additional robustness checks. Thesfitst that we address is the potential
that the ICD9 and DRG codes (used to indicate the patientglitions and severity) are inaccurate due to
potential upcoding hospitals may utilize to increase Marigpayments which are provided on a fee-for-
service basis. To address this, we restrict our analysisriepmofit hospitals because the prior literature has
found that these hospitals have lower rates of upcodingfthrgorofits (seeSilverman and Skinng2004),
Dafny (2005, andPowell et al.(2012). The results in Column (1) show that while the coefficiemL®S

is negative, it is no longer significant. If the DRG and ICD%les at non-profit hospitals are more accurate
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Table 6  Robustness Checks - Varying % Monday and Tuesday admi  ts for whom the 30-day mortality window
is shifted by 1 day

10% 15% 20%

log(LOS) 016 -0.14"  -012
(0.07)  (0.07)  (0.07)
\Y 0.05** -0.05" -0.05""

(0.00) (0.00) (0.00)
Num. of obs.| 1314136 1314136 1314155
Wald x? test | 36.25 33.16 29.81
Wald p-valug,  0.00 0.00 0.00

Note. Robust standard errors clustered by admission day-
of-week, month, and year in parentheses < 0.1, * p <
0.05, ** p < 0.01, *** p < 0.001.

due to lower rates of upcoding, then these results may be ratiable than those which include for-profit
hospitals. Since our results are conservative estimatalsddrue treatment effect, it is possible that there is
still a significant effect. Alternatively, it may be the cdkat for-profit hospitals are indeed doing more early
dischargesBueno et al(2010 found that when hospitals switched to a Fee-for-Servigenant model,
LOS steadily decreased, likely with the intent to generateamevenue.

In Column (2), we restrict the analysis to hospitals thatiarhe top quartile for number of patients as
one might anticipate that the effects of LOS on mortalitylddae different for these hospitals that are more
likely to treat complex cases. We see that the coefficiertlisiegative and statistically significant as well
as being very slightly larger in magnitude.

In Column (3), we exclude patients with a surgical procedluneng their hospital stay as an increase in
complex scheduled surgeries on Mondays may reduce theabilityl of staff to treat the emergency and
urgent patients who are admitted to a surgical service. Defficient on LOS is still negative and statis-
tically significant as well as being larger in magnitude. Aidaally, the coefficient for the IV is slightly
larger in magnitude. As patients with surgeries may be stithjestrict protocols which dictate their LOS
(e.g.Gustafsson et a(2011), Lassen et al(2013, Miller et al. (2014, Thiele et al.(2015 among many
other), there may be more discretion to discharge patiexfted the weekend for patients without surgical
procedures.

In Column (4), we exclude patients admitted on Fridays beedloere may be fewer resources available
for these patients during the critical first few days of htaj@ation which coincides with the weekend. The
coefficient on LOS is negative and statistically significhoreover, the effect size is quite a bit larger.

In Column (5), we include patients who are admitted on thekerds. While the coefficient is still
negative, it is no longer statistically significant. Sinag adjustments result in conservative estimates of
the true treatment effect, it is possible that despite tble ¢ statistical significance in Column (5), there is

still an effect of shorter LOS on increasing post-dischangetality in these cohorts.
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In Column (6), we randomly select one hospital encounterpagient so that we have a single hospi-
talization per patient. This is because an individual peitieay have multiple admissions, which are each
counted as a separate observation. In our sample, about BO% observations are from patients with
multiple visits during our study period. Again, the resalte consistent with that of Tab&

In Column (7), we include patients who are discharged toinasbns that provide inpatient related
services. Recall that we initially excluded these patidris our analysis as we cannot control for the
reason for such transfers. However, this might introducanapde selection bias if the transferred patients
are more likely to die. Indeed, the 30-day post-discharggatity of patients sent to inpatient services is
13.5% and that of patients not sent to inpatient services/i6Still, when we include these patients in
our analysis, the treatment effect estimate is still negastatistically significant, with similar magnitude

as our main specification.

Table 7 Robustness Checks - Different Subsets (In-hospital mortality included as survivors; 30 day mortality
time window is shifted for 5% of Mon and Tues admits)

1) (2) (3) 4) ) (6) (7)
Non-profit  Big w/o Surgical w/o Friday w/Weekend Random (g dis. to
Procedures  Admits Admits Episode inpat. service
log(LOS) -0.09 -0.20 -0.22 -0.27 -0.06 -0.19 -0.19~
(0.09) (0.08) (0.10) (0.11) (0.07) (0.08) (0.07)
\Y; -0.05** -0.05**  -0.06** -0.04+* -0.05**  -0.05** -0.05**
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Num. of obs.| 926980 1028584 380333 1053176 1805879 1198312 1356838
Wald x? test | 19.05 30.56 17.96 22.70 27.66 38.03 44.29
Wald p-valug,  0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note. Robust standard errors clustered by admission day-of-weekith, and year in parenthesesp < 0.1, * p < 0.05, **
p<0.01, *** p <0.001.

In all seven columns of Tables the coefficient onog(LO.S) is negative and the results of the Wald
test show that our instrument is able to control for some efeéhdogeneity. In five out of seven cases, the

coefficient estimate is statistically significant, suggesour results are reasonably robust.

5. Cost-Benefit Analysis and Implications

In this section, we utilize our results from Sectidno estimate the impact of a specific intervention that
hospitals can implement or CMS can impose to reduce poshdige deaths. In our analysis, we take the
perspective of the social planner who aims to reduce adeeits®emes and overall costs. Having observed
that keeping a patient in the hospital for one more day isfec#fe intervention to reduce 30-day mortality,
we compare the following two policies: (Keep the status quoor (2) Increase LOS by one day This

allows us to compare the effect of inpatient care on posthdisye mortality.
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To compare the cost-effectiveness of these two policiedjratediscuss the cost estimates we will use.
Taheri et al(2000 estimate theost of an additional day in the hospital be $420 in 1998, which is $635
in 2017 when adjusted for inflation. Importantliaheri et al. (2000 show that the direct cost of the last
day represents only 2.4% of the total hospitalization cbise Henry J. Kaiser Family Foundati¢p014)
provides an alternative measure and reports that the avéi@gpital expenses for a day of inpatient care
in the U.S. was $1,960 in 2011, or $2,156 in 2017 dollars. H@wnehis measure includes an adjustment
for outpatient care and is therefore likely to be an ovenestie of the actual costs of inpatient care. Based
on these two references, we assume that the cost of keepatgeatpn the hospital one more day is $635
or $2,156, depending on whether one useswheginal or averagecost estimate. We note that the cost of
a hospital day may also change over time according to otlwtor& besides inflation; an example is the
introduction of more costly procedures and tests. This ghaould be more or less than overall inflation,
so we will also consider the robustness of our results taouarrates of increase between 1998 and 2017
for the Taheri et al (2000 cost estimates and between 2011 and 2017 foirtreeHenry J. Kaiser Family
Foundation2014) cost estimates.

Next, we use the estimates providedNturphy and Topel2006 for the benefits of reduced mortal-
ity. They calculated the value of a life-year for an average &0-p&d (the approximate mean age of the
patients in our sample) to be $150,000 per person in 199¢httanslates to $221,926 per year or $18,494
per month in 2017 dollars. Recognizing this may be an ovienast for individuals with serious medical
conditions, we also consider how robust our calculatiord@galternative value of life estimates.

Using the results from our IV Probit models summarized inl&aB and4, we can compute the average
estimated mortality rate under the aforementioned twacisi First consider our main model in Column
4 of Table3 where Monday or Tuesday admission is the V. We note thatademtification strategy relies
on the increased likelihood that patients are dischargdd éadmitted on Monday or Tuesday due to the
‘discharge before the weekend effect. Thus, while we finilence that longer LOS is associated with
a reduction in mortality risk for patients admitted on Mogida Tuesday, we cannot make projections
for the effect on other patients. As such, we focus our imetion on keeping those patients admitted
on a Monday or Tuesday one more day. To be conservative, wrctesur sample to patients who are
discharged on the first Friday after admission and had LO8estibvan the predicted LOS (i.e., it is likely
that these patients experienced the ‘discharge before ¢leand effect’). In our dataset, there are 46,504
such patients admitted over 11.91 years, so we estimate #rerapproximately 3,905 such patients per
year.

When there is no change, the average estimated mortalitgepge for such patients predicted by the
model is 9.60%. If we increase their LOS by 1 day, the averatjmated mortality rate decreases by 0.67

percentage points (a 7% decrease).
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Table 8  Estimated annual mortality rates for keeping patien ts in the hospital an extra day.

Mortality Rate
\Y] # of affected Baseline Intervention # Lives
patients/lyear LOS LOS+1 saved
Mon/Tue admit (Tabl& Col 4) 3,905 9.60 8.93 (-7%) 26
All days of week (Tablel Col 4) 7,241 8.21 7.45 (-9%) 55
Predicted Sat discharge (Taldl€ol 5) 5,575 14.93 7.61 (-49%) 408

Note.Only patients who are ‘encouraged’ by the IV to have shor@6land whose LOS is shorter than their predicted LOS are ketiditional
day in the hospital.

We explore whether keeping these patients in the hospitektxa day is cost-effective over the baseline
of doing nothing. As summarized in TalBethis intervention would result in savings £f905 x 0.0067 =
26 lives per year. The total value of these saved liveslis 494 x 26 = $480,839 for each month these
patients live when we ugdurphy and Tope{2006 to estimate the value of an additional month. If hospitals
kept all 3,905 patients for one more day, the extra costsavarige fron$635 x 3,905 = $2.48m (using
Taheri’s estimate of the marginal cost of an extra daytd 56, 905 = $8.42m (using Kaiser’s estimate of
the average cost of a hospital day). This means that thenpgtseuld need to livé2, 480,00/$480, 839 =
5.16 months (using the marginal cost estimate) or 17.51 montiaduhe average cost estimate) in order
for the inpatient intervention to be cost-effective over baseline of doing nothing.

Note our results refer to the likelihood that a patient witel for 30 days post-discharge, but they do
not provide insight into how long patients will survive aftgé0 days. Our cost-benefit analysis suggests
that patients will need to survive for 5.16 or 17.51 monthdamthe marginal or average cost estimates,
respectively. If all patients died on day 31, then it wouldt@ialy not be cost-effective to keep all patients
an extra day. On the other hand, if we believe that the patigho survive to 30 days due to the extra day in
the hospital are similar to the patients who survive up to@gsdthen keeping patients an extra day is likely
to be cost-effective. This is because on average, amongtienfs we consider, those who survive 30 days
post-discharge live another 5.8 yeldrén fact, when considering the distribution of the numbemafnths
survived after 30 days post-discharge for AMI patients,t85% (72%) of patients survive beyond the
cost-benefit break-even life-spans of 5.16 (17.51) months.

We next consider the robustness of the cost-effectivenessiroproposed intervention. In particular,
since the average survival of AMI patients is 5.8 years, wesiter the range of rates of increase in cost
and the range in reductions in the value of living an addélanonth for which it is still cost-effective to
keep patients an additional day. That is, if the percentagease in cost ig, then the marginal cost of an

additional day in 2017 would b#420 x (1 + z)'?. The area under the curve in Figuséa) demonstrates
¥Note that our estimates for average survival are conseevasi our data are truncated with the last recorded date tf Heing

December 26, 2012; for any patient missing a date of deagh (ney did not die before 12/26/2012) we assigned a deathoda
December 26, 2012.
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the regime where it is cost-effective to keep patients aiitiaddl day in the hospital when costs are given
by the marginal cost fronfaheri et al.(2000. The circle indicates the case where the cost of a hospital
day is adjusted by inflation only (to $635 in 2017 dollars). ¥&a see in this case the cost-effectiveness of
keeping a patient an additional day is robust to reductiorikeé value of living an additional month of up
t0 92.58% of the estimates froMurphy and Tope(20086. It is also robust to increases in annual cost of up
to 17.19% . Further reductions in the benefits of living anitmital month and/or larger annual increases
in cost would render the baseline as more cost-effectigureb(b) shows the same for when the average
cost estimate of an additional hospital day is used. We sddth cost-effectiveness of keeping patients in

the hospital an additional day is very robust.

1 T T T T T T T T T 1
09 r 7 09 r
0.8 b 0.8
0.7 b 0.7

0.6 [ 0.6 [

Not Cost Effective Not Cost Effective
05 05

04r 0.4

% increase in cost
% increase in cost

03[ b 03[

0.2 Inflation adjusted only 1 0.2r Inflation adjusted only

0.1 0.1

| Cost Effective | l Cost Effective
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
% reduction in benefit % reduction in benefit
(a) Taheri et al(2000 costs (b) The Henry J. Kaiser Family Foundati¢®014 costs
Figure 5 Robustness of cost-effectiveness for keeping pati ents in the hospital an additional day, when treat-

ment effect is based on the Monday/Tuesday IV (Table 3 Col 4). Baseline benefits are given by the
value of living an additional month as estimated in Murphy and Topel (2006).

We conducted a similar analysis using the results basecdea@itrnative instruments described in Section
4.2. For the specification with multiple instruments, one focleaeekday admission, we consider keeping
one more day those patients who were discharged on theiFfiddy in the hospital and had shorter LOS
than predicted LOS. As summarized in TaBleve estimate there to be 7,241 such patients per year and
55 lives saved per year. Talesummarizes the cost-effectiveness of such an intervemtien using the
Taheri et al(2000 andThe Henry J. Kaiser Family Foundati¢2014) estimates for the cost of a hospital
day. The results are very similar to the results based on thadisly/ Tuesday admission V.

Next, we used the results for the predicted Saturday digehd@ecause we found that patients who
were predicted to be discharged on Saturday had longer L@ owsidered the intervention of keeping

all patients with predicted non-Saturday discharge wheevdéscharged before the weekend and had LOS
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shorter than predicted LOS one more day. We note that the8%s@edicted baseline mortality rate for
these patients is substantially higher than the observethfitp rate of 3.88%. The estimated treatment
effect is much larger than our other IV analysis suggestsual, the cost-effectiveness (summarized in
Table9) is very robust to reductions in the value of life and to iraes in the cost of a hospital day. Figures
A.3 andA.4 in the Appendix summarize the cost effectiveness of theniatgtion based on the treatment

effect estimated by our alternative instruments.

Table 9  Cost-effectiveness of keeping patients in the hospi tal an extra day.

Taheri costs Kaiser Costs
\Y] Cost of Months Cost Val. of lif¢ Costof Months Cost Val. of life
int. to live robustness robustness int. to live robustness robustness

Mon/Tue admit| $2.48m  5.16 17.19% 92.58% $8.42m 17.51  27.85% 74.81%
All days of week| $4.60m  4.52 18.01% 93.50% $15.61m 15.35  30.38% 77.92%
Pred. Sat dis. | $3.54m  0.47 32.95% 99.32% $12.02m  1.59 90.63% 97.71%

5.1. Managerial and Operational Implications
Our cost-benefit analysis suggests that keeping AMI patiehb are discharged early due to the preference
to avoid discharges over the weekend in the hospital one deyrés cost-effective from a social planner’s
perspective. Over the past few years, the U.S. governmeh€Cd have taken steps through legislation,
e.g. the Affordable Care Act, to provide incentives to Heezdre providers to improve quality of care.
Therefore, it is useful to consider the operational chanlgashospitals would need to introduce if CMS
were to require them to keep patients in the hospital a dayeion

Since we have documented that premature discharges ogbuibefore the start of the weekend, our
analysis suggests that one way to reduce the number of tsatiao are discharged too early is for hospitals
to discharge patients 7-days a week rather than prefeligrdiacharging Monday through Friday. In fact,
this is an approach that the United Kingdom governmenténidiing to implement by 2020 for the National
Health Service's. In order to move to a 7-day-a-week discharge cycle, hdspiégmagers would need to
provide sufficient staff on the weekends, notably socialkems and others who facilitate the discharge
process. This would enable patients to avoid prematuréndiges due to hospitals’ desire to discharge
before the weekend. Doing so would introduce a number ofasjperal decisions such as: how many staff
are needed; what types of staff (e.g. physician assistaotsal workers, nurses, etc.) are needed; and
when staff should be scheduled. If the additional costsiredquo provide these resources are substantial
and exceed our cost estimates for an extra hospital daypthuesiness of our cost-benefit analysis will be

reduced.

1 https://www.gov.uk/government/collections/nhs-7-d&yvices, Accessed 12/15/2017.
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Premature discharges may arise for other reasons (e.gestimyin inpatient bedd<¢ and Terwiesch
2012 2009, family/patient preferences, etc.) and our results ssgipat hospitals should also take steps to
avoid these types of discharges whenever possible. Faniost hospital administrators should consider the
potential benefits of increasing bed capacity if congestionpatient beds appears to be a frequent initiator
for early discharges. Separately, when faced with predsutischarge a patient early, physicians and social
workers should educate patients and family members and &igghthe potential benefits of remaining in
the hospital an extra day.

We note that though our analysis does not enable identditatf the mechanism by which the extra
hospital day helps reduce mortality risk, being able to dessan important next step as it could provide
insights into the operational implications of these findingor instance, if the extra day serves to educate
patients about post-discharge behavior, then it might tssipte to achieve reductions in mortality risk by
hiring more social workers and discharge nurses to begirdiieation process earlier. Alternatively, if the
extra day helps patients reach a higher level of stabitiig, tnight imply that some hospitals will need to
increase their bed capacity to accommodate the patientsaithoeed to stay in the hospital longer. As
such, our work suggests there are important resource tilogguestions that must be studied to understand

how to tactically reduce 30-day post-discharge mortatites.

6. Conclusions
This paper examines the potential reductions in post-digghmortality due to keeping heart attack (AMI)
patients in the hospital longer. We identify and addressat@conometric challenges that researchers have
faced in studying this question: (1) Endogeneity bias megato the possibility of unobservable severity
factors being correlated with length of stay and post-disgh mortality; (2) Censoring bias if patients
who died in-hospital are excluded from the analysis; and>@)soring bias resulting from the decreasing
mortality hazard that characterizes AMI. We use a very ca&hn@nsive data set from CMS that consists of
all Medicare FFS in-hospital AMI patient visits between Q@hd 2011. AMI patients admitted on Monday
or Tuesday are at risk of being discharged prematurely arfcthaéhat keeping these patients in the hospital
for one more day saves an additional 26 lives per year andalue wf these saved lives exceeds the cost
of the extra hospital day under reasonable assumptionseliesults are supported by additional evidence
based on analysis with alternative instruments.

The fact that we find compelling evidence that keeping ceraill patients in the hospital for one more
day significantly decreases their mortality rates showsttieae are factors within a hospital’s control, i.e.
LOS, that impact post-discharge mortality. This finding bamificant implications in that it indicates that

the 30-day mortality measures reported by Hospital Compegéndeed reasonable indicators of hospital
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guality and the government should explore how to more widedlgeminate the information available on the
Hospital Compare website. Additionally, hospitals mayderevisit staffing and bed allocation decisions
in order to be able to keep some patients in the hospital fexéa day.

Although we use a very comprehensive database, we exclledive patients from our analysis because
our instrument for LOS, day-of-week on which the patient admnitted, is most valid for patients admitted
on an emergency or urgent basis. Hence, one limitation ostudy is that the results may not apply to
elective patients. A second limitation is that although wavjmle a number of important tests that support the
validity of our instrument, we cannot completely rule out fiossibility of an unobservable variable being
correlated with admission day of week. It is important toenthtat such unobservable variables could have
biased our results. While our results are consistent whieig adternative instruments that utilize the impact
of the weekend on early/later discharges, it would be istérg to study a setting where an instrument
based on operational metrics or a randomized policy changketrne available. A third limitation is that
because we do not have information in our data about non-ddeglpatients, we are not able to control for
congestion, which has been shown to impact patient outcéegd<c and Terwiesct{2012), Kuntz et al.
(2019). While it may be possible to get such detailed data at thel lef individual hospital systems, to
the best of our knowledge, unlike our MedPAR dataset, sudngpeehensive data set does not exist at the
national level. A fourth limitation of our work is that, wieilwe provide evidence that an extra day in the
hospital significantly reduces mortality risk for heartaat patients admitted on Monday or Tuesday we
do not know exactly why the extra day is beneficial. An extrg aey provide more time for patients to
be educated about their post-discharge behavior and/arytenable the patient to reach a higher level of
stability. In addition, studies have shown that longer litasptays are associated with high risks of adverse
events such as adverse drug reactions, infections, antsldauck and Zhao 20)1To assess the true
benefit of an extra day, the findings of this paper need to bliateal against such risks. Future research
should explore the underlying causes of the relationshipdxen hospital LOS and post-discharge mortality
and also evaluate the benefit of increased hospital LOS sigaitential risks, which can help hospitals to

improve their quality of care.
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Appendix

A. Addressing Censoring Biases - Details

In Section3.3, we proposed an adjustment to our outcome variable to asldegsoring biases caused by decreasing
mortality risks. In this section, we use simulation modelsiémonstrate that our approach will result in conservative

estimates of the true treatment effect.

A.1. Simulation Setup

We now describe our simulation setup, which we use to expgl@émpact of our adjustments on our estimates. We
simulate 1,000,000 hospital stays. For each hospital stays® a beta distribution to simuldi®e to deatht ..., and
a negative binomial distribution to simuléiee to discharget ;;scna... These two random variables are independent
of each other. The distributions and parameters have beefuttg chosen to best represent what we observe in the
data’? Length of staylos, is defined as the minimum of...» andtaischarge: If taischarge > tacarn, PAtients die during
hospital stay and do not experience their simulated timesahdrge. Iftsischarge < tacarn < los + 30, patients die
within 30 days of discharge.

Increasingos has no effect on mortality in the current setup; it only affeehether the patient dies in hospital or
after discharge. In order to introduce the effect of lendtstay, we randomly selegt% of the patients and modify

their length of stay and 30-day post-discharge mortaligoading to the following procedure:

los'=1los—1,

1(30-day post-discharge mortaljty: 1(min(Pr(30-day post-discharge mortalitjos) x o, 1) > Usurvive)

where Pr(30-day post-discharge mortalitys) are empirically derived (see Figufel), U,,,.i.. iS @ uniform random
number betweef and1, anda > 1 is a design parameter which dictates the impact of short&. [ Xhat is, for the
p% of the patients that are randomly selected, theiris reduced by 1 day. Multiplying Pr(30-day post-discharge
mortality | los) by « introduces the increase in mortality risk due to being disghd a day early If o« = 1, the
decreased length of stay has no effect.&or 1, the decreased length of stay increases mortality risk. s&eauProbit
model to estimate the impact &fs on 1(30-day post-discharge mortaljty
Above, we proposed two ‘adjustments’ to our outcome vaeigdbhddress two potential sources of biases. We apply
them to our simulation to examine their effectiveness. Bigatly, we 1) let 1(30-day post-discharge mortaljty: 0
for patients who die during hospital stay and 2) use Pr(3pmtsst-discharge mortality los) instead of Pr(30-day
post-discharge mortalitylos’) to definel (30-day post-discharge mortaljtfor the randomly selected patients, which
ensures that we consider the same time window for mortadithe patients whose length of stay did not change.
Note that in this simulation setup, we are able to avoid angbgervable confounders. Thus, while our original
setting has three potential sources of bias, our simulatdmp here focuses only on the two censoring biases.
2\We choose the distributions and parameters so that the lihortak declines over time (see Figufg and the average length

of stay, the in-hospital mortality rate and the 30-day mhistharge mortality rate are similar to what we observe indata. See
Appendix FigureA.1 for detalils.

n the simulated data, about ®3of the patients haks = 0. Because we cannot reduce thkig, we do our patient selection
only among the patients wittas > 0.

141f a selected patient hdss — 1 = los’ = t4eq:n, We treat the patient as an in-hospital death.
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Figure A.1
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Simulation Setup: A beta distribution with shape parameters a = 0.4 and b =1 is used to sim-

ulate time to death ( STATA conmand ceil (rbeta(0. 4, 1) *1000) and a negative normal dis-
tribution with  n = 20 and p = 20/27 is used to simulate time to discharge ( STATA comrand
rnbi nom al (20, 20/ 27) ). Length of stay is defined as the minimum of time to death and t ime
to discharge. Histograms of time to death, time to discharge and length of stay and the graph of
Pr(30-day post-discharge mortality | length of stay) are shown. All based on 1,000,000 simulated
observations.

A.2. Simulation Results

The first table in Tablé\.1 presents the regression results when none of our propogestradnts are made; that is,

both the in-hospital death bias and decreasing mortaliraittbbias are present. The coefficient®f is negative and

statistically significant even when there is no effect of L&S30-day post-discharge mortality= 1, which suggests

that without addressing the two biases, we might be cagarispurious effect of length of stay on mortality.

The second table in Tabke 1 presents the regression results when both of our propogestiagnts are made. Now

the coefficient ofos is positive and statistically significant when there is nieetfof LOS on 30-day post-discharge

mortality, i.e.«c = 1. This suggests that our two proposed adjustments are likebyer-adjust for the two potential

biases. Thus, if we apply our two adjustments and still fincegative coefficient for length of stay, it is likely a

conservative estimate for the true magnitude of the treateiect. When there is an effect ¢ 1) and as the effect

size increases, the coefficient estimates move in the wegiitection, capturing the increasing treatment effeeilsio

shows that there exists parameter regimes where the estiroagfficient is negative = 20% anda = 3), suggesting

that our proposed adjustments are not so large as to alwaysletely mask a treatment effect when it exists.
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Table A.1 Simulation Results: 30-Day Mortality

In-hospital death bias presefit Decreasing mortality hazard bias present

P 5% 5% 5% 10% 10% 10% 20% 20% 20%

«@ 1 2 3 1 2 3 1 2 3

los -0.024** -0.028* -0.032** | -0.026** -0.033** -0.040**|-0.032** -0.043** -0.053**
(0.001) (0.001) (0.001)] (0.001) (0.001) (0.001)| (0.001) (0.001) (0.000)

Constant -0.834** -0.773** -0.716** | -0.814** -0.70I** -0.596* |-0.764** -0.565** -0.383**
(0.004) (0.004) (0.004)] (0.004) (0.004) (0.004)| (0.004) (0.004) (0.004)

Num. of obs,| 866284 866284 866284 865871 865871 865871 864990 864990 864990

PseudaR? 0.003 0.004 0.005| 0.003 0.005 0.007 | 0.005 0.008 0.013

In-hospital death bias addressed by coding these patignts0O & Decreasing mortality hazard bias addressed by
using an adjusted time-window

» 5% 5% 5% 10% 10% 10% 20% 20% 20%

a 1 2 3 1 2 3 1 2 3

los 0.013"* 0.010°* 0.008* | 0.012** 0.007** 0.003** | 0.009-* 0.002** -0.004"
(0.000)  (0.000)  (0.000)| (0.000) (0.000) (0.000) (0.000) (0.000)  (0.000)

Constant |-1.169** -1.123* -1.078"** |-1.163** -1.072** -0.989** |-1.14T** -0.975** -0.830™
(0.003)  (0.003) (0.003)| (0.003) (0.003) (0.003) (0.003) (0.003)  (0.003)

Num. of obs, 1000000 1000000 1000001000000 1000000 10000001000000 1000000 1000000

Pseuda?? | 0.001  0.001  0.000| 0.001  0.000  0.000| 0.000  0.000  0.000

Note. Probit model where the dependent variablé (80-day post-discharge mortaljtyStandard errors in parenthesésp < 0.1, * p < 0.05, **
p < 0.01, *** p < 0.001.

In TableA.2, we provide additional regression results where we appth @dthe two adjustments separately. We

find that both adjustments make the coefficient estimates pusitive, but the over-adjustment comes from addressing

the in-hospital death bias.

From these simulation results, we conclude that while thegestill biases in our coefficient estimates when intro-

ducing these adjustments, they are now in the directiontwimakes it more difficult to estimate the treatment effect

we are interested in. Thatis, the coefficients are biasdtipositive direction, while we hypothesize that the treatm

effect will result in a negative coefficient estimate.



39

Table A.2 Simulation Results 2: 30-Day Mortality
In-hospital death bias addressed by coding these patignts) & Decreasing mortality hazard bias present
P 5% 5% 5% 10% 10% 10% 20% 20% 20%
«@ 1 2 3 1 2 3 1 2 3
los 0.012*+ 0.009** 0.007* | 0.010** 0.005* 0.00r | 0.004** -0.00Z** -0.008**
(0.000) (0.000) (0.000)| (0.000) (0.000) (0.000)| (0.000) (0.000) (0.000)
Constant -1.165* -1.116** -1.069** |-1.145** -1.052** -0.967**|-1.096** -0.933** -0.788**
(0.003) (0.003) (0.003)] (0.003) (0.003) (0.003)] (0.003) (0.003) (0.003)
Num. of obs,| 1000000 1000000 10000001000000 1000000 10000001000000 1000000 1000000
PseudaR? 0.001 0.000 0.000| 0.001 0.000 0.000| 0.000 0.000 0.000

In-hospital death bias presefit Decreasing mortality hazard bias addressed by using ansadgutime-window

D 5% 5% 5% 10% 10% 10% 20% 20% 20%

«Q 1 2 3 1 2 3 1 2 3

los -0.023** -0.027** -0.031** | -0.024** -0.031** -0.037**|-0.026** -0.038** -0.048**

(0.001) (0.001) (0.001)| (0.001) (0.001) (0.001) (0.001) (0.001)  (0.000)
Constant |-0.838** -0.782** -0.728** | -0.835** -0.725** -0.623**|-0.818** -0.617** -0.437*
(0.004)  (0.004)  (0.004) (0.004) (0.004) (0.004)| (0.004) (0.004)  (0.004)

Num. of obs.| 866284 866284 866284 865871 865871 865871 864990 864990 864990
PseudaRr? 0.003 0.003 0.004 | 0.003 0.004 0.006 | 0.003 0.006 0.010
Note. Probit model where the dependent variablé (80-day post-discharge mortaljtyStandard errors in parenthesésp < 0.1, * p < 0.05, **
p<0.01,*** p<0.001.

B. Additional Tables and Figures

Table A3  Data Selection

Sample Observations % prior % initial
All Admissions in 2000-2011, except for Dec 2011 admitgbdarges | 186,472,400 NA 100.0%
Excluding overlapping admissions 159,674,712 85.6% 85.6%
Excluding post-acute care 133,056,603 83.3% 71.4%
Excluding stays with hospital transfers 118,681,435 89.2% 63.6%
Excluding those in facilities not paid under PPS 112,949,185 95.2% 60.6%
Excluding stays that are not FFS 111,499,586 98.7% 59.8%
Excluding non-AMI patients 2,457,542 | 2.2% 1.3%
Excluding those admitted within 30 days of prior admisssattischarge 2,365,168 | 96.2%  1.3%
Excluding hospitals with less than 25 visits 2,357,080 | 99.7% 1.3%
Excluding patients with inpatient service related disgeatestinationgy 2,272,453 | 96.4% 1.2%
Excluding non-elderly admissions 2,033,282 | 89.5% 1.1%
Excluding those that left against medical advice 2,025,086 | 99.6% 1.1%
Excluding those with unknown race or not residing in the US 2,018,185 | 99.7% 1.1%
Excluding elective patients (including unknown electivatss) 1,899,920 | 94.1% 1.0%
Excluding same day discharge 1,899,914 | 100.0% 1.0%
Excluding cost outliers 1,828,145 | 96.2% 1.0%
Excluding length of stays the 99th percentile (20 days) 1,808,889 | 98.9% 1.0%
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Figure A.2  Sensitivity Analysis for the 30-day mortality mo del using predicted Saturday discharge as an IV.
(1) White area represents regime for  § and ¢ where the estimates for 6 are negative and statisti-
cally significant at the 5% level. (2) Gray area representsre  gime for ¢ and ¢ where the estimates
for 6 are statistically not different than 0 at the 5% level. (3) BI ack area represents regime for
0 and ¢ where the estimates for 6 are positive and statistically significant at the 5% level. x 's
represent ¢ and ¢ values for observed covariates.
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Robustness of cost-effectiveness for keeping pa tients in the hospital an additional day, when
treatment effect is based on the all days of the week IV (Table 4 Col 4). Baseline benefits are
given by the value of living an additional month as estimated in Murphy and Topel (2006).
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are given by the value of living an additional month as estima ted in Murphy and Topel (2006).
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Table A.4: Full results for column 4 in Table 3

Coef. Robust Std. Err. p-value Coef. Robust Std. Err. p-value
Second stage First stage
log(los) -0.17 0.07 0.015| MonTue admit -0.05 0.00 0.000
DRG (before 2007) DRG (before 2007)
105 -0.05 0.27 0.844| 105 -0.04 0.04 0.267
106 0.09 0.08 0.252| 106 0.06 0.01 0.000
107 0.09 0.06 0.134| 107 0.03 0.01 0.005
108 0.09 0.10 0.357| 108 -0.06 0.02 0.001
109 0.10 0.12 0.412| 109 -0.07 0.01 0.000
110 0.25 0.07 0.000| 110 -0.60 0.01 0.000
111 0.04 0.14 0.772| 111 -0.58 0.02 0.000
112 0.11 0.09 0.190| 112 -0.74 0.01 0.000
113 1.16 0.12 0.000| 113 0.03 0.04 0.425
114 0.77 0.18 0.000| 114 -0.05 0.05 0.236
115 0.49 0.07 0.000| 115 -0.35 0.01 0.000
116 0.06 0.08 0.447| 116 -0.75 0.01 0.000
117 0.63 0.28 0.023| 117 -0.63 0.09 0.000
118 0.46 0.16 0.005| 118 -0.49 0.04 0.000
119 0.92 0.42 0.026| 119 -0.45 0.18 0.014
120 0.85 0.07 0.000| 120 -0.26 0.02 0.000
121 0.54 0.08 0.000| 121 -0.72 0.01 0.000
122 0.40 0.08 0.000| 122 -0.73 0.01 0.000
124 0.53 0.21 0.012| 124 -0.68 0.05 0.000
125 0.04 0.28 0.885| 125 -0.81 0.04 0.000
144 0.49 0.10 0.000| 144 -0.84 0.02 0.000
145 0.50 0.15 0.001| 145 -0.90 0.04 0.000
468 0.71 0.07 0.000| 468 -0.14 0.02 0.000
476 0.47 0.20 0.022| 476 0.05 0.04 0.285
477 0.52 0.09 0.000| 477 -0.37 0.02 0.000
478 0.63 0.08 0.000| 478 -0.31 0.02 0.000
479 0.10 0.38 0.794| 479 -0.54 0.06 0.000
483 0.84 0.12 0.000| 483 0.12 0.03 0.000
514 0.27 0.11 0.015| 514 -0.18 0.02 0.000
515 0.51 0.12 0.000| 515 -0.25 0.03 0.000
516 0.06 0.08 0.444| 516 -0.76 0.01 0.000
517 -0.11 0.38 0.778| 517 -0.79 0.04 0.000
518 0.47 0.45 0.289| 518 -0.52 0.15 0.001
525 -0.06 0.38 0.879| 525 -0.49 0.08 0.000
526 -0.05 0.08 0.502| 526 -0.80 0.01 0.000
527 0.25 0.41 0.536| 527 -0.79 0.04 0.000
535 0.13 0.08 0.101| 535 -0.18 0.01 0.000
541 0.63 0.24 0.009| 541 0.31 0.07 0.000
542 0.79 0.22 0.000| 542 0.12 0.08 0.116
547 -0.07 0.07 0.361| 547 0.09 0.01 0.000
551 0.34 0.08 0.000f 551 -0.33 0.01 0.000
553 0.67 0.08 0.000| 553 -0.29 0.02 0.000
555 0.06 0.08 0.458| 555 -0.77 0.01 0.000
557 -0.10 0.08 0.235| 557 -0.81 0.01 0.000
DRG ( after 2007) DRG ( after 2007)
3 0.41 0.20 0.045| 3 0.25 0.07 0.001
4 1.20 0.20 0.000, 4 0.28 0.09 0.002
216 0.15 0.10 0.112| 216 0.19 0.02 0.000
217 0.11 0.16 0.501| 217 0.24 0.03 0.000
219 0.04 0.38 0.919| 219 0.14 0.08 0.099
220 0.74 0.45 0.102| 220 0.12 0.12 0.326
222 0.36 0.09 0.000| 222 -0.02 0.02 0.380
223 -0.34 0.21 0.103| 223 -0.29 0.02 0.000




43

226

227

228

229

231

232

233

234

235

236

237

238

239

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256
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981

982

983

984

987

988
Elixhauser 1
Elixhauser 2
Elixhauser 3
Elixhauser 4
Elixhauser 5
Elixhauser 6
Elixhauser 7
Elixhauser 8
Elixhauser 9
Elixhauser 10
Elixhauser 11
Elixhauser 12
Elixhauser 13
Elixhauser 14

0.57
-0.05
-0.49
-0.29
0.16
-0.07
0.08
-0.04
0.37
-0.07
0.47
0.28
1.08
0.54
0.32
0.29
0.99
0.25
-0.20
0.36
-0.04
0.51
0.04
0.69
0.42
0.19
0.89
1.00
0.58
1.09
0.92
0.85
0.73
0.43
0.26
0.35
0.72
0.59
0.55
0.77
0.69
0.84
0.88
0.76
0.16
0.23
0.04
0.04
-0.01
0.05
-0.13
0.57
0.17
0.08
0.03
0.07
-0.06
0.19
0.13

0.16
0.41
0.34
0.35
0.13
0.16
0.08
0.08
0.16
0.25
0.07
0.09
0.25
0.08
0.10
0.15
0.27
0.07
0.09
0.07
0.08
0.08
0.09
0.08
0.14
0.41
0.36
0.54
0.28
0.42
0.55
0.09
0.07
0.08
0.09
0.29
0.11
0.14
0.16
0.10
0.21
0.37
0.33
0.12
0.23
0.01
0.01
0.01
0.01
0.01
0.00
0.02
0.01
0.01
0.00
0.01
0.01
0.01
0.02

0.000
0.902
0.145
0.408
0.215
0.658
0.270
0.587
0.022
0.792
0.000
0.002
0.000
0.000
0.001
0.054
0.000
0.001
0.018
0.000
0.607
0.000
0.636
0.000
0.003
0.645
0.014
0.064
0.040
0.010
0.093
0.000
0.000
0.000
0.004
0.236
0.000
0.000
0.001
0.000
0.001
0.023
0.008
0.000
0.491
0.000
0.000
0.000
0.495
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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282
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981

982
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984
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988
Elixhauser 1
Elixhauser 2
Elixhauser 3
Elixhauser 4
Elixhauser 5
Elixhauser 6
Elixhauser 7
Elixhauser 8
Elixhauser 9
Elixhauser 10
Elixhauser 11
Elixhauser 12
Elixhauser 13
Elixhauser 14

-0.12
-0.44
0.22
0.15
0.21
0.20
0.28
0.20
0.22
0.12
-0.41
-0.59
0.38
-0.18
-0.31
-0.43
-0.38
-0.54
-0.88
-0.49
-0.83
-0.46
-0.81
-0.16
-0.40
-0.67
0.24
-0.02
-0.31
-0.14
-0.27
-0.16
-0.56
-0.75
-0.90
-0.45
-0.63
-0.80
-0.87
0.06
-0.15
-0.68
0.18
-0.08
-0.26
0.22
0.07
0.05
0.02
-0.01
-0.04
0.23
-0.01
0.09
0.01
0.12
-0.02
0.05
-0.03

0.03
0.06
0.03
0.03
0.02
0.02
0.02
0.02
0.03
0.02
0.02
0.02
0.06
0.02
0.02
0.03
0.08
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.04
0.07
0.09
0.29
0.08
0.15
0.18
0.03
0.02
0.02
0.02
0.08
0.04
0.04
0.05
0.03
0.06
0.12
0.09
0.04
0.06
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.01

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.006
0.950
0.000
0.376
0.122
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.040
0.015
0.000
0.055
0.042
0.000
0.000
0.000
0.000
0.000
0.004
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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Elixhauser 15
Elixhauser 16
Elixhauser 17
Elixhauser 18
Elixhauser 19
Elixhauser 20
Elixhauser 21
Elixhauser 22
Elixhauser 23
Elixhauser 24
Elixhauser 25
Elixhauser 26
Elixhauser 27
Elixhauser 28
Elixhauser 29
Elixhauser 30
Elixhauser 31
Age spline 1
Age spline 2
Age spline 3
Age spline 4
Female
Race
Black
Hispanic
Other
Surgery
Intensive care use
No
General
Surgery
Medical
Intermediate
Adm month

O©CoO~NOUAWN

10

11

12
Adm year

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011
Hospital FE (over 3000

smallest coef

-0.05
0.23
0.25
0.57
0.32
0.03
0.08
-0.13
0.45
0.20
0.05
-0.04
0.00
0.06
0.17
0.10
-0.10
0.02
0.03
0.03
0.02
-0.01

-0.04
-0.03
-0.10
-0.12

0.02
0.02
0.03
0.02
0.02

0.00
-0.02
-0.03
-0.03
-0.03
-0.02
-0.03
-0.02
-0.01
-0.03
-0.02

0.02
0.04
0.06
0.07
0.08
0.08
0.06
0.04
0.03
0.01
-0.02

-0.99

0.02
0.13
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.03
0.02
0.01
0.01
0.00
0.00
0.00
0.00
0.01

0.01
0.02
0.01
0.01

0.02
0.02
0.03
0.02
0.02

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.03
0.03
0.03

0.35

0.047
0.073
0.000
0.000
0.000
0.036
0.000
0.000
0.000
0.000
0.028
0.013
0.999
0.066
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.064

0.000
0.082
0.000
0.000

0.379
0.428
0.177
0.372
0.416

0.807
0.050
0.001
0.001
0.000
0.024
0.001
0.030
0.188
0.014
0.092

0.071
0.000
0.000
0.000
0.000
0.000
0.000
0.100
0.183
0.635
0.533

0.005

Elixhauser 15
Elixhauser 16
Elixhauser 17
Elixhauser 18
Elixhauser 19
Elixhauser 20
Elixhauser 21
Elixhauser 22
Elixhauser 23
Elixhauser 24
Elixhauser 25
Elixhauser 26
Elixhauser 27
Elixhauser 28
Elixhauser 29
Elixhauser 30
Elixhauser 31
Age spline 1
Age spline 2
Age spline 3
Age spline 4
Female
Race
Black
Hispanic
Other
Surgery
Intensive care use
No
General
Surgery
Medical
Intermediate
Adm month

O©CoOoO~NOOUTA~,WN

10

11

12
Adm year

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011
Hospital FE (over 3000

smallest coef

0.06
0.07
0.04
0.05
0.03
0.03
0.11
0.00
0.21
0.13
0.23
0.11
0.09
0.22
0.15
0.04
0.02
0.01
0.01
0.00
-0.01
0.05

0.06
0.02
0.02
0.12

-0.16
-0.02
-0.03
-0.01
0.03

0.00
-0.01
-0.03
-0.04
-0.04
-0.04
-0.04
-0.04
-0.03
-0.03
-0.04

-0.02
-0.03
-0.04
-0.06
-0.08
-0.11
-0.15
-0.18
-0.22
-0.26
-0.33

-0.74

0.01
0.04
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.01
0.01
0.01
0.01
0.01

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.01

0.22

0.000
0.055
0.000
0.000
0.000
0.000
0.000
0.088
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.001
0.000
0.338
0.000

0.939
0.003
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.001
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largest coef 1.21 0.38 0.002| largest coef 0.52 0.06 0.000
Constant -2.28 0.19 0.000| Constant 2.04 0.02 0.000
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