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A study conducted by Vriens, Wedel, and Wilms (1996) and published
in Journal of Marketing Research found that finite mixture (FM) conjoint
models had the best overall performance of nine conjoint segmentation
methods in terms of fit, prediction, and parameter recovery. Since that
study, hierarchical Bayes (HB) conjoint analysis methods have been pro-
posed to estimate individual-level partworths and have received much
attention in the marketing research literature. However, no study has
compared the relative effectiveness of FM and HB conjoint analysis mod-
els in terms of fit, prediction, and parameter recovery. To conduct such a
comparison, the authors employ the simulation methodology proposed by
Vriens, Wedel, and Wilms with some modification. The authors estimate
traditional individual-level conjoint models as well. The authors show that
FM and HB models are equally effective in recovering individual-level
parameters and predicting ratings of holdout profiles. Two surprising find-
ings are that (1) HB performs well even when partworths come from a
mixture of distributions and (2) FM produces good parameter estimates,
even at the individual level. The authors show that both models are quite
robust to violations of underlying assumptions and that traditional

Hierarchical Bayes Versus Finite Mixture
Conjoint Analysis Models: A Comparison
of Fit, Prediction, and Partworth Recovery

individual-level models overfit the data.

Conjoint analysis is one of the most popular market
research procedures for assessing how consumers with het-
erogeneous preferences trade off the various benefits they
derive from product or service attributes (e.g., Wittink and
Cattin 1989). Analysis of trade-offs driven by heterogeneous
preferences provides critical input for many marketing deci-
sions, such as new product design, positioning, and pricing.
Prior research has developed several procedures for model-
ing heterogeneity in consumer preferences. The traditional
two-stage conjoint analysis procedure involves (1) estimat-
ing individual-level partworth utilities for attribute levels
and (2) if segmentation is of interest to the marketing man-
ager, clustering the individual-level partworths to derive
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segment-level partworths (e.g., Currim 1981; Green and
Krieger 1991).

In the past decade, many integrated conjoint analysis
methods have emerged that simultaneously segment the
market and estimate segment-level partworths. A simulation
study by Vriens, Wedel, and Wilms (1996; VWW) compared
nine metric conjoint analysis methods, some traditional two-
stage procedures and some integrated. The study by VWW,
which was conducted at the segment level and focused on
segment-level partworths, found that finite mixture (FM)
conjoint models performed best in terms of model fit, pre-
diction, and parameter and segment recovery.

Since VWW’s study, hierarchical Bayes (HB) conjoint
analysis methods (e.g., Allenby and Ginter 1995; Lenk et al.
1996) have emerged with much potential for representing
heterogeneity in consumer preferences. In HB conjoint
analysis models, instead of a semiparametric approach to
modeling heterogeneity, a continuous population distribu-
tion is assumed for modeling the variation in individual-
level partworths. Evidence exists that HB methods can
recover heterogeneity and estimate individual-level part-
worths, even when individual-level least squares estimators
do not exist because of insufficient degrees of freedom.
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Some researchers have compared FM and HB conjoint
analyses methods on real data sets (see Allenby and Ginter
1995). However, no study has comprehensively compared
the relative effectiveness of FM and HB conjoint analysis
models in terms of fit, recovery of individual-level part-
worths, and prediction in carefully controlled simulations.
Therefore, it is not known how the FM and HB models com-
pare in recovering heterogeneity under different situations.

In their JMR guest editorial, Carroll and Green (1995, p.
389) state, “New developments in conjoint analysis are
arriving so fast that even specialists find it difficult to keep
up. Hierarchical Bayes models, latent class choice model-
ing, and individualized hybrid models are only a few of the
new approaches and techniques that are arriving on the
research scene.” Furthermore, they note that the gap
between academics and practitioners has not narrowed
appreciably: “Part of the problem is the lack of critical com-
parisons among competing techniques.” They cite VWW as
an example of such a comparison study, in which model and
method comparisons are made at a synthetic data level.
Finally, Carroll and Green (1995, p. 389) suggest that com-
parisons among competing analysis techniques be made by
impartial researchers with no vested interests in the per-
formance of a model: “Perhaps the Marketing Science Insti-
tute or an AMA task force could be used to initiate proce-
dures by which researchers other than the model’s own
developers can compare the competing models.”

In this vein, we use simulated (synthetic) metric conjoint
data based largely on the design by VWW (with one non-
significant factor removed and two new factors added) to
compare the relative performance of HB and FM conjoint
analysis models. The performance measures include fit,
parameter recovery at the individual level, and predictive
accuracy on holdout profiles. An essential advantage of syn-
thetic data (e.g., over data from real-world conjoint studies)
is that the true parameter values at the individual level are
known so that the difference between actual and estimated
parameters can be computed.

In some of our experimental conditions, each true part-
worth is normally distributed across consumers, and in other
conditions, the distribution of a partworth is a mixture of
normal distributions with two or three mixture components.
The data-generation process, though likely realistic, does
not exactly match the data structure described by FM mod-
els because we allow for within-component heterogeneity
(typically, FM models do not describe within-component
heterogeneity). Similarly, the data-generation process does
not exactly match the structure described by a typical HB
continuous heterogeneity model, because some preferences
are obtained from mixtures of normal distributions. The vast
majority of HB models and applications assume unimodal
population distributions (e.g., the normal distribution) for
modeling heterogeneity; for an exception, see Allenby,
Arora, and Ginter (1998).! Therefore, an important contri-
bution of this study is that it assesses the robustness of the

IWe do not consider an HB model that incorporates mixtures of normal
distributions because of the computational and inferential difficulties of
dealing with the “label-switching” problem when the Gibbs sampler is used
for inference (for an insightful discussion of this problem, see Celeux,
Hurn, and Robert 2000). In any case, the vast majority of applications in
practice and in the literature use unimodal HB specifications, so the com-
parison of FM and unimodal HB models is relevant.

models to violations of their underlying assumptions. As
another test of robustness, preferences are distributed
according to mixtures of gamma distributions in some data
conditions, not the normal distributions assumed by the HB
model. Information on the robustness of the models to vio-
lations of their underlying assumptions about modality and
the shape of the distribution is important for marketing sci-
entists in both academic and corporate settings.

In contrast to VWW’s study, which focused on compar-
isons of segment-level partworths, our study focuses on
individual-level partworths. Comparing preferences at the
individual level is a severe test for the FM models, because
the models are known for producing segment-level prefer-
ence information, not individual-level information. The
individual-level estimates produced by the FM model are
formed using posterior segment probabilities to calculate a
weighted average of segment-level preference estimates.
These estimates have been criticized in the literature as
being restrictive because individual-level estimates are con-
strained to lie in the convex hull of the segment-level esti-
mates (see Allenby and Rossi 1999; Wedel et al. 1999). An
important contribution of this study is to assess the accuracy
of individual-level parameter estimates and predictive capa-
bilities of FM versus HB across a variety of experimental
conditions.

In their recent book on market segmentation, Wedel and
Kamakura (2000, p. 327), in comparing discrete (FM) and
continuous (HB) representations of heterogeneity, conclude
that “both discrete and continuous representations therefore
seem to have some (advantages and) disadvantages, and
under which conditions one of the two is most appropriate
remains an empirical question.” In the next section, we
describe the design of the Monte Carlo study intended to
address this question, including the data, models, and per-
formance measures. We then present the results of the study
and discuss implications and conclusions.

DESIGN OF THE MONTE CARLO STUDY
Data

The reader is referred to VWW (p. 78) for the rationale
regarding choice of factors and levels. Seven factors were
experimentally manipulated for this study:

1. the number of mixture components (one, two, or three
components),

2. the masses of the mixture components if more than one
(equal, unequal),2

3. the separation of mixture components if more than one (sim-
ilar, dissimilar),

4. the within-component distribution of heterogeneity (normal,
gamma),3

5. the within-component variances of distributions (.05, .10),

6. the number of profiles (18, 27), and

7. the error variance (5%, 35%).

Factors 2 and 3 are not meaningful if there is only one mix-
ture component, so the bulk of the analysis is based on data
sets in which there are two or three mixture components,
producing 27 = 128 experimental conditions. Five models
are estimated per experimental condition (described in the
next section), so 128 x 5 = 640 observations are statistically

2VWW assume equal masses of the mixture components.
IVWW assume all normal distributions for preferences.



Hierarchical Bayes Versus Finite Mixture Models

analyzed. To make the computational burden manageable,
there is one replication per experimental condition, as in
VWW'’s study. The power of this design to detect medium-
sized main effects (effects accounting for approximately
5.88% of the variance of the dependent variable) at a signif-
icance level of .05 is more than 99% (Cohen 1988). For an
effect accounting for as little as 2.20% of the variance in the
dependent variable, the power is still 96%. Even if the
effects are small (say, accounting for 1% of the variance of
the dependent variable), the power is still quite good (70%).

Each data set contains the evaluations of 150 consumers
on either 18 or 27 profiles (Factor 6).4 We take the conjoint
designs containing the 18 or the 27 profiles from Hahn and
Shapiro (1966). The conjoint design varies six product
attributes at three levels each. Regardless of whether 18 or
27 profiles are used for parameter estimation, we generate
consumer evaluations of 8 additional holdout profiles to
assess the predictive validity of the test models.

The range for the number of profiles enables us to assess
the empirical effect of increasing the number of observa-
tions or degrees of freedom on parameter estimates and pre-
diction. We expect better performance as degrees of freedom
increase. Regarding the expected effects of the other factors,
a greater number of components may adversely affect the
unimodal HB model, whereas the FM model is designed to
handle more than one component. Larger error variances are
expected to decrease the performance of all models. When
masses of the mixture components are unequal, perform-
ance of the FM model could decline because smaller com-
ponents are more difficult to identify, whereas greater sepa-
ration among components is likely to improve the
performance of the FM model compared with the others.
Gamma distributions for heterogeneity may penalize the HB
models (which assume normal distributions of heterogene-
ity) more than the FM models (which assume discrete dis-
tributions of heterogeneity). Larger within-component het-
erogeneity is expected to worsen the performance of the FM
model (for details, see VWW). Although such expectations
follow directly from statistical estimation theory, the extent
to which the factor levels affect the relative performance of
FM versus HB models on various performance measures is
unknown and is an empirical question.

The generation of the conjoint data closely follows that by
VWW, so we refer the reader to that study for details. Essen-
tially, the true partworths for each component were ran-
domly (uniformly) generated to be in the range of 1.7 to
1.7. We added within-component noise having either normal
or gamma distribution (factor 4) to the component part-
worths to simulate within-component heterogeneity. The
same shape parameter (1.7) was used for all the gamma dis-
tributions to keep the level of skewness constant. Smaller
values of the shape parameter produce more extreme skew-
ness, whereas larger values produce distributions that more
closely resemble normal distributions. We generated the
normal deviates to have mean zero and variance of .05 or .10
(Factor 5) before adding them to the true parameter values.
We standardized the gamma deviates to have mean zero and

4VWW vary the number of consumers between 100 and 200 but find
mostly insignificant results for this factor, so we fix the number of con-
sumers at 150.
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variance of .05 or .10 before adding them to the true param-
eter values.

Given B, the partworths for subject i, observable utilities
were computed as U; = XB,. Normally distributed error vari-
ances o2 corresponding to 5% or 35% (see Factor 7) of the
total variances (07 + 0} ) were added to U; to obtain the pro-
file ratings Y; = XB, + &;.

In most of the data sets, the partworths are generated from
mixtures of distributions (see Factor 1). When there are two
mixture components, two sets of partworths are generated as
described previously, and consumers are randomly assigned
to the two components, with either equal or unequal proba-
bilities (see Factor 2). When there are two components and
the masses of components are equal, each consumer has a
50% chance of being assigned to each component. When the
masses of components are unequal, each consumer has a
two-thirds chance of being assigned to one of the compo-
nents and a one-third chance of being assigned to the other.
When there are three components and the masses are equal,
each consumer has a one-third chance of being assigned to
each component. However, when the masses are unequal,
50% of consumers will be assigned to one component, and
25% will be assigned to each of the other two components.

Notice that in the conditions with two and three mixture
components, it is possible that some partworths will not dif-
fer greatly across components because they are all generated
randomly. Factor 3, the similarity of components, manipu-
lates the similarity of components by multiplying all com-
ponents by two in the dissimilar condition. This results in a
greater separation of components if the error levels are the
same (see VWW).

Figure 1 shows the histogram of one true coefficient cho-
sen randomly from six experimental conditions. The panels
on the left-hand side of the figure show coefficients with nor-
mal distributions, and the panels on the right-hand show
coefficients with gamma distributions. Panel A shows a coef-
ficient having a normal distribution with .05 variance. The
coefficient in Panel B has the shape of a gamma distribution,
again with variance .05. Panel C shows a coefficient with two
normal components generated to be similar to each other
(Factor 3) and to have equal masses (Factor 2). Panel D
shows a similar scenario except that the coefficient is based
on a mixture of gammas. Because the means of the three
components in Panel E are not well separated (they are gen-
erated independently), it is not apparent from the figure that
there are three components. Apparently, two of the three dis-
tributions overlap on the left-hand side of the panel. That
some components may overlap for some coefficients implies
that the tests on the number of components factor could be
conservative. However, it is extremely unlikely that two or
more components could overlap for all 13 parameters in a
given data set, so the overlap is probably not a serious prob-
lem. Panel F shows a situation that clearly indicates a mixture
of three gamma components that are roughly equal in size.
Note that the scales of the coefficients in Panels E and F are
larger than those in Panels C and D, because components in
Panels E and F are intended to be more dissimilar (Factor 3).

Models

In addition to the two focal models, FM and HB, we also
estimate individual-level conjoint models and an aggregate
conjoint model for each data set.
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FM models. The FM conjoint analysis model used in this
study is based on that discussed by DeSarbo and colleagues
(1992), Let

s ..., | consumers;
, ..., J choice alternatives;
y ..., K derived components;
, ..., L variables describing the alternatives;
Y;; = the response to choice alternative j by consumer i;
Y; = the J X | column vector of responses by consumer i;
X = the value of the [th variable for the jth alternative;
)é‘ = the | X L row vector of variables for the jth alternative;
X = [(X;)], which is ] X L;
By = the coefficient for the /th variable for the kth
component;
By = the L x 1 column vector of coefficients for the kth
component;
B = [(B!k)L which is L x K;
Zy = aJ x J covariance matrix estimated for component
k; and
): = (Z]. Zz. awsy Ek)

The density function for the response vector Y; can be mod-
eled as a mixture of distributions,

nuun

1
1
1
1

R s

=

K
) H(Y;; o, X, B, Z) = ZﬂkgiYan~ B E¢)s
k=]

where o = (o), 0, ..., o) are the mixing weights, inter-
preted as segment sizes, such that 0 < oy, < | and Zyoy = 1.
When the preferences for alternatives Y; are normally dis-
tributed ratings,

(2) g(Y,|1X,B,. Z,) = (2r) Yz, |-V2
1 fiay |
"-XP[_E(Y. ' ka) I, I(Yi - xﬁu)]'

For the sake of parsimony and computational effort, we esti-
mate models that constrain the variance of each alternative
to be the same, for example, £, = 02, 1.

For a sample of I consumers, the log-likelihood function is

| K
(3) InL = Zlnlz o 2(Y;]X, Bk’zk)]-
k=1

The parameters are estimated through maximization of
Equation 3 by means of numerical optimization. The prob-
lem of local optima plagues FM estimation but not that of
the other models included in this simulation. In cases in
which the solution is obviously not correct (e.g., the likeli-
hood is not at least as large as that of a model with fewer
components, parameters are extremely large or unstable),
we estimate the model again using a different set of starting
values. The incidence of such local optima in our study
appears to be small. In any case, diagnostic checking for
actual applications might be more extensive, so the per-
formance of FM in our simulation could be slightly conser-
vative compared with actual applications.

We used the Bayesian information criterion (BIC;
Schwarz 1978) and the consistent Akaike information crite-
rion (CAIC; Bozdogan 1994) to determine how many com-
ponents are appropriate for a given data set. The two criteria
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Table 1
RESULTS OF FM CONJOINT MODEL ESTIMATION
Number of Components Fitted

True I 2 2 4 .3 6 7 Total
| 4 5 5 1 | 0 0 16
2 0 42 14 5 2 0 I 64
3 0 0 49 11 | 2 1 64

suggested the same number of components in all data con-
ditions. The use of penalized likelihood measures for identi-
fying the number of components K differs from the study by
VWW, who assume that K is always equal to the true num-
ber of components. We estimated the FM conjoint models
by increasing the number of components until the BIC was
minimized. The results are given in Table 1. The BIC iden-
tifies the true number of components in 95 (4 + 42 + 49) of
the 144 data sets. This should not necessarily be viewed as
overfitting, because additional components might be
required to accommodate the within-component heterogene-
ity in the data optimally.

Each additional component required 12 partworths (recall
that the conjoint design varies six factors over three levels
each, so 6[3 — 1] = 12 partworths are required), an intercept,
a variance, and a mixing weight. Therefore, models with 1,
2,3,4,5, 6, and 7 components required 14, 29, 44, 59, 74,
89, and 104 parameters, respectively.

When the parameters were estimated and the number of
components was determined, we estimated individual-level
partworths using a weighted average (convex combination)
of the segment-level partworths, in which the weights are
the posterior probabilities of segment membership. The pos-
terior probability for subject i of belonging to component k
is computed as

BOYIX. By, Zy)

@  Pliek) =—
D a8V IX. By £y
k=1

o K 1L LG

The estimates of individual-level partworths are then
A K -~
(5) B, = ZP(i €k B,
k=1

We used individual-level partworths estimated in this man-
ner in the computation of all measures of model perform-
ance, which we discuss subsequently in this section.

HB models. Instead of an FM specification, a continuous
mixture model can be used to capture the heterogeneity in
individual-level partworths. An HB approach can be used to
specify such heterogeneity (see Allenby and Ginter 1995;
Lenk et al. 1996). In the HB model, the sampling density for
individual i can be written as

(6) f(Y;:B;. X,02) = (2no?)-112
o2 ;
cxn[—T(Yi - XB;)'(Y; - XB, )].

where B; is the vector of partworths for individual i, and o2 is
the error variance. A continuous, unimodal population distri-
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bution is then used to specify the heterogeneity across indi-
viduals. Typically, the multivariate normal distribution is
used as a population distribution (see Allenby and Ginter
1995). In addition to the normal, N(i, A), we also use the
multivariate Student t distribution t,(1, A) with specified
degrees of freedom v. The multivariate Student t distribution
has fatter tails than the normal and therefore provides a robust
alternative to the multivariate normal. Also, because the Stu-
dent t distribution can be written as a scale mixture of the nor-
mal distribution, it adds little complexity when sampling-
based Bayesian estimation methods are used for inference.
The normal population distribution can be written as

(7 gBiip A) = V2r|A " cxp[—%(ﬁi — WA, - u)}

whereas the density for the Student t population distribution
can be written as

) g, (B i A, v) o |A[2

1 —(v+L)/2
[I \ ;(B. - P)’A_I(Bi = ll)]

The moments of the t distribution are given as E(B;) = p if
v > 1 and Var(B;) = vA/(v - 2) if v> 2.

The mean vector |1 represents the mean partworths in the
population, whereas the covariance matrix A for the normal
distribution and the dispersion matrix A for the t distribution
capture the extent of heterogeneity and the correlation in
partworths across individuals. The lower the value of v for
the t distribution, the fatter its tails and therefore the more
distinct the distribution is from the normal. In this study, we
fitted models with v = 4 to guarantee sufficient difference
from the normal distribution.

Hierarchical Bayes models also require priors over the
hyperparameters |1 and A and over o2 for inference. We used
an inverse gamma, IG(a, b), prior for the residual variance, 62;
a Wishart prior, W[p, (pR)-1], for the precision matrix, A-1;
and, finally, a multivariate normal prior, N(n, C), for the popu-
lation mean L. Specifically, we set a = 3, b = 1 for the inverse
gamma distribution (corresponding to a mean and variance of
.5); p= 14 and R = Diag(.1) for the Wishart distribution; and 7
=0, C = 1031 for the normal to obtain noninformative but
proper priors. We performed inference using standard Gibbs
sampling methods (for details on full-conditional distributions
and choice of parameterizations, see Ansari, Essegaier, and
Kohli 2000; Gelfand and Smith 1990). In each case, we ran the
Gibbs sampler for 5000 iterations. We used a burn-in period of
2500 iterations, and therefore inferences are based on the last
2500 draws. We monitored the time-series plots of the Gibbs
sampling draws to ensure convergence. The Gibbs sampling
provides estimates for the hyperparameters, |1 and A; the resid-
ual variance, 02; and the individual-level parameters, f;. We
used these individual-level coefficients in the computation of
all performance measures that are discussed in the next section.

Individual-level models. Standard ordinary least squares
regression analysis was used to estimate individual-level
conjoint models. For each data set, 150 independent regres-
sions were run, The partworths and fit measures were used
in the computation of all measures of model performance.

Aggregate models. For each data set, we also ran a single
regression analysis for all 150 subjects so that we could
gauge the benefit of estimating individual-level parameters.

In computing the model performance measures, all con-
sumers have the same partworths.

Measures of Performance

To assess the performance of the models, we used four
measures: one for fit, one for parameter recovery, and two
for forecasting accuracy. Note that we could not compute
other performance measures used by VWW because the
analysis is performed at the individual level, not the segment
level. We used point estimates of the individual-level param-
eters in the computation of all performance measures. For
the HB models, we used the means of the posterior distribu-
tions as point estimates for individual-level parameters.
Likewise, for the FM models, we used posterior probabili-
ties as weights to form individual-level estimates from the
segment-level estimates. The aggregate models assume the
same responses for all individuals, and the individual-level
models provide individual-level estimates directly. The per-
formance measures are as follows
1. The percentage of variance explained by the conjoint models,
R2, is used as a measure of fit.

2. The measure of parameter recovery is the root mean square
error between the true and estimated values of the partworths.
The true partworths were saved in the process of data gener-
ation; they differ across consumers even within a component
or segment because of the within-component variance (.05 or
.10). The measure is computed as

Py 2
©) RMSE(B) = i i w

LI

i=ll=1

where there are L = 13 predictors and | = 150 individuals.

3. As a measure of predictive accuracy, the root mean square

error between the observed (Y;;) and predicted (‘?’ij) prefer-
ences for the holdout sample is used:

L3 (e v )
(10) RMSE(Y) = Zz(l’—ﬁzi
i=1j=1

where there are J = 8 holdout profiles.

4. Following VWW, we used an alternative measure of forecast-
ing accuracy, the percentage of first choice hits in the holdout
sample (%1stCH). This represents the percentage of subjects
for whom the highest preference among the holdout stimuli is
predicted correctly. This measure is important because it is
the choice rule most frequently applied in conjoint market
simulations.

RESULTS OF THE MONTE CARLO STUDY

Table 2 shows the results of ANOVAs testing differences
in the four response measures due to model type and the
seven experimental factors. Because we estimated five mod-
els for each of 128 experimental conditions, the ANOVAs
are based on 640 observations and 600 degrees of freedom
for error. Similar to VWW, we include all main effects and
all interactions involving model type. Model type is statisti-
cally significant at beyond .0001 for all four performance
measures. Similarly, the error variance makes a significant
difference for all four measures of performance, as does the
model X error variance interaction.

The number of components in the data affects parameter
recovery, fit, and prediction accuracy (RMSE[Y] but not
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Table 2
F-TESTS OF MAIN AND INTERACTION EFFECTS ON PERFORMANCE MEASURES (n = 640; p-VALUES IN PARENTHESES)a
F-Ratio F-Ratio F-Ratio F-Ratio

Source (Degrees of Freedom) RMSE(B) R? RMSE(Y) GolstCh
Model (M) 1226.43 2884.77 169.42 66.01

(4) (.0001) (.0001) (.0001) (.0001)
Number of components 68.18 31.63 23.69 42
n (.0001) (.0001) (.0001) (.5148)
Masses of components 8.99 4.46 1.02 18.12
(n (.0028) (.0351) (.3123) (.0001)
Separation of components 853.21 13.31 605.49 63
(n (.0001) (.0003) (.0001) (.4293)
Within-components distribution 1.34 37 02 1.20
(1) (.2478) (.5427) (.8979) (.2735)
Within-components variance 7.41 00 3.38 1.44
(n (.0067) (.9493) (.0665) (.2302)
Number of profiles 12.09 14.06 1.22 344
(n (.0005) (.0002) (.2706) (.0641)
Error variance 585.98 2507.61 91592 49298
(n (.0001) (.0001) (.0001) (.0001)
Model x components 8.20 41.25 343 30
4) (.0001) (.0001) (.0088) (.8800)
Model x masses 5.01 567 07 1.75
4) (.0006) (.0002) (.9904) (.1381)
Model x separation 176.34 494 17.05 65
4) (.0001) (.0006) (.0001) (.6247)
Model x within-components distribution 66 06 07 i
(4) (.6222) (.9942) (.9909) (.8681)
Model x within-components variance 5.20 1.51 .y 06
(4) (.0004) (.1988) (.8997) (.9926)
Model x profiles 5.20 898 25 21
“4) (.0004) (.0001) (.9096) (.9348)
Model x error variance 22129 92.33 2392 10.50
(4) (.0001) (.0001) (.0001) (.0001)
R2 93 96 .80 58

aThe ANOVAs are based only on data sets with two or three preference components, because some of the factors (e.g.. separation of components) are not

meaningful when there is only one component.

% 1stCH). The masses of components factor affects parame-
ter recovery, fit, and predictive accuracy (%1stCH only).
The separation of components factor affects parameter
recovery, fit, and prediction (RMSE[Y] only). Surprisingly,
the within-components distributions of partworths do not
affect any of the performance measures. The within-
components variance of partworths affects parameter recov-
ery and marginally affects prediction (RMSE[Y] only). The
number of profiles used in estimation affects parameter
recovery and fit but only marginally affects prediction
(%1stCH only). Overall, the parameter recovery measure
RMSE() is affected by the largest number of experimental
factors, and the predictive measure % IstCH is least affected.
It is perhaps not surprising that % 1stCH is the least affected
by the factors and has the lowest R2 (58%), because it is a
cruder measure than the others.

Table 3 shows the means for the parameter recovery
measure RMSE(P), and Table 4 shows the means for fit (R2)
and predictive validity (RMSE[Y] and % 1stCH) by model
type and experimental condition. Examining the overall
model means at the bottom of Tables 3 and 4, we find that
the FM and HBS models have the most accurate parameter
estimates (RMSE[P]) and the best predictive accuracy
(according to RMSE[Y] and %]I1stCH), whereas the
individual-level conjoint models fit the best according to R2,

5The usage of “HB" in the following paragraphs refers generally to HB
and HB-t, because the models have similar performance.

There are no significant differences between FM and HB in
terms of parameter recovery or prediction accuracy—only in
fit.

When a multivariate analysis of variance is estimated,
none of the results reported in the article (the F-tests and p-
values in Table 2 or the post hoc comparisons of means in
Tables 3 and 4) is affected, because standard statistical
packages conduct these tests for each dependent variable
separately.

Parameter Recovery

We first examine parameter recovery for the conjoint
models in Table 3. We also report the standard deviations of
the true P coefficients to facilitate the evaluation of the prac-
tical significance of differences between methods. For
RMSE(B), FM and HB are significantly (statistically and
substantively) better than the individual and aggregate mod-
els (see the overall means at the bottom of Table 3).
Surprisingly, there are no significant differences between
FM and HB when there are two preference components,5 but
FM recovers parameters significantly better than HB when
there are three components (a difference of at least .0418 is
required for the RMSE[B] means by experimental condition;

6Recall that the results for one-component data sets are not included in
the ANOVAs and therefore the post hoc comparisons, because Factors 2
and 3 (masses and separation) do not apply in the case of one-component
data.
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Table 3
PARAMETER RECOVERY RMSE(B) MEANS, BY MODEL TYPE AND EXPERIMENTAL CONDITION

Factor FMb HB HB-t Agg Ind S.D. of True e
Components®

1 .2676 2172 2138 2736 4626 2693

2 .2833 .2951° .2930* 1.0418% .7558* 1.0396

3 3101 3562 3571 1.2267 8129 1.2245
Masses

Equal 3014 3276 3277 1.1913 7896 1.1891

Unequal 2920 3237 3224 1.0773* J791 1.0750
Separation

Similar 2874 .2684* 2671* .7892* .5570* 7877

Dissimilar 3061 .3829 .3830 1.4794 1.0117 1.4764
Within-components distribution

Normal 2952 3276 3274 1.1548 7886 1.1525

Gamma 2982 3237 3227 1.1138 7801 L1116
Within-components variance

.05 2597 .2992° 3016° 1.1321 8086 1.1297

10 3337 3521 3485 1.1365 .7601* 1.1344
Profiles

18 .2964 3392 3394 11317 .8422 1.1292

27 2970 3121 3106 1.1369 .7265* 1.1350
Error Variance

5% 2790 .2368° 23r 1.1434 .3960° 1.1430

35% 3144 4145 4170 1.1252 1.1727 1.1211
Overall Meansd 29671 .3256! .3250! 1.13433 78442 1.1321

#The means for one-component preferences were not analyzed in the ANOVAs in Table 2 and therefore are not tested for significance in this table.

bFor FM models, the number of components is determined by BIC; HB models have normal heterogeneity; HB-t models have t-heterogeneity. Agg = aggre-
gate conjoint analysis models; Ind = individual-level conjoint analysis models.

¢8.D. of True [} is the standard deviation of the true P values from the actual data sets, which is provided to facilitate the evaluation of the practical signif-

icance of differences among models.

dSuperscripts on overall means by model type indicate significant differences (according to the least significant difference rule) at the p < .05 level, with
the superior mean having a value of 1. The root mean square error value used in this analysis, from the RMSE(}) ANOVA in Table 2, is .1207.

*Indicates that the difference between the two means, generated under the corresponding method and the levels of the corresponding design attribute, is
significant at the p < .05 level (as indicated by the least significant difference rule).

a difference of at least .0296 is required for the overall
RMSE[B] means at the bottom of Table 3). The model x
components interaction effect we observed for RMSE(B) in
Table 2 is significant, because the models respond in differ-
ent ways to increases in the number of components. The FM
models handle two components as well as three compo-
nents, but the aggregate models produce much less accurate
parameter estimates when there are three components.

It is interesting that both FM and HB models recover
parameters well regardless of the number of components,
despite being handicapped: The HB models tested here are
not designed for multiple components, and the FM models
are not designed for continuous distributions of heterogene-
ity within components. It is also surprising that the individ-
ual models have poor parameter estimates, given their
impressive fit statistics (see Table 4). Taken together, the fit
and parameter recovery measures indicate that the
individual-level models are overfitting the data.

Only the aggregate model produces significantly better
parameter estimates when the components are of unequal
sizes (probably because less of a compromise in parameter
estimates is needed to accommodate the smaller component
with different preferences). For the other models, the masses
of the components do not affect parameter recovery. Most
models have significantly better parameter recovery when
components are less separated (more similar). The one
exception is the FM model, which produces equally good

parameter estimates whether components are similar or dis-
similar. The FM models are designed to handle components
with dissimilar preferences. Indeed, the FM model parame-
ter estimates are significantly more accurate than those of
HB when the components are dissimilar.

The distribution of within-components preferences (nor-
mal or gamma) does not affect parameter recovery, even
though HB and HB-t models explicitly assume normal and t
distributions, respectively, for preferences. Regarding the
variance of within-components preferences, the FM and HB
models produce significantly better parameter estimates
when within-component heterogeneity is .05 rather than .10.
Within-component variance is irrelevant to individual-level
models because a separate model is fit to each individual’s
ratings. Overall, there is a significant difference as to how
the various models respond to the within-component hetero-
geneity, according to the model x within-component vari-
ance interaction we observed in Table 2 (p = .0004).

Only the individual-level models produce better parame-
ter estimates with larger numbers of profiles (27 versus 18).
Statistical theory might suggest that all the models would
produce better parameter estimates with more observations,
but apparently the sample size issue is more critical with
individual-level models, because there are only 4 degrees of
freedom in the 18-profile condition but 13 in the 27-profile
condition. As we observed in Table 2, this effect results in a
significant interaction (p = .0004).
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Parameter recovery is usually better when error variance
is smaller, as would be expected. The FM models are an
exception—parameter recovery is not significantly affected
by the amount of error variance. The HB models are slightly
(but significantly) better than the FM model when error vari-
ance is 5%, but the FM model is substantially and signifi-
cantly better than the HB models when error variance is
35%. It is not clear why HB models do not perform as well
when the error variance is 35%, as this factor has nothing to
do with multiple components in the data. Spurious overfit-
ting of the additional error variance by HB models does not
seem to be indicated, because the R2 measure for the HB
models is .6769 in this condition (see Table 4), near the
expected value of .65.

Overall, there are no significant differences among the
FM, HB, and HB-t models in terms of parameter recovery.
The FM models produce good individual-level parameter
estimates, though the estimates are constrained to lie in the
convex hull of segment-level estimates and consequently
have restricted variance. We verified this restricted range
empirically—averaged across data conditions, the
individual-level FM estimates have a range of 2.0024, com-
pared with 2.9106 for the HB models and 3.2382 for the true
parameters. Individual-level models have over 2.5 times
more error in parameter recovery than the best models, on
average, and the aggregate-level models have almost 4 times
more error in parameter recovery than the best models. The
advantages of modeling individual heterogeneity are quite
palpable.

Fit

The R2 results in Table 4 show that the various models
respond differently to multiple components in the data. The
FM, HB, and individual-level models are not significantly
affected by an increase in the number of components,’
whereas the aggregate models fit much worse as the number
of components increases. (For statistical significance at the
.05 level, a difference of at least .0188 is required for the R2
means by experimental condition; a difference of at least
{0134 is required for the overall R2 means at the bottom of
Table 4.) The striking differences across models produce a
significant model x component interaction for the R2 meas-
ure (p <.0001).

The masses and separation of components appear to make
little difference in fit for most models, though the FM model
fits significantly better with dissimilar components than
with similar components, and the aggregate model tends to
fit better with unequal-sized and dissimilar components.
Both the model X masses and model x separation interac-
tions are significant in Table 2. The distribution of within-
component heterogeneity does not affect the models in dif-
ferent ways—none of the models fits normally distributed
preferences differently than gamma distributed preferences.

Within-components variance does not significantly affect
RZ, nor does the model X within-components variance inter-
action (see Table 2). The fit of most models is not affected
by whether there are 18 or 27 profiles. However, the
individual-level models appear to fit much better (more than
6% better) with smaller sample sizes, which possibly indi-

7See n. 6.

cates some overfitting because there are only four degrees of
freedom for error for these models with 18 profiles.

As mentioned, the effect of error variance is large. Note
that with 5% error variance, we would expect R2 to be
approximately 95%; likewise, we would expect R2 to be
approximately 65% for the 35% error variance condition.
Both FM and especially HB are quite close to these figures.
The individual-level models appear to overfit significantly
when error variance is 35%, because the average R2 is 81%.
All models fit significantly better when error variance is 5%
rather than 35%.

Overall, there are significant differences in fit among the
model types, and the best to worst models are individual-
level, HB and HB-t, FM, and aggregate. However, the
individual-level models did not perform nearly as well in
terms of parameter recovery, as we showed in the previous
section.

Prediction Accuracy

In our discussion of prediction accuracy, we focus prima-
rily on the RMSE(Y) measure because it is a more exact
measure than %1stCH. Note that we have also provided in
Table 4 the standard deviations of the actual Y values from
the validation samples to facilitate evaluation of the practi-
cal significance of the differences between methods.

Overall, the HB (and HB-t) and FM models have the best
prediction accuracy, significantly better than the individual-
level and aggregate models. Likewise, for %1stCH, HB,
HB-t, and FM are not significantly different.

It appears that the error variance and the separation of
components are the most powerful determinants of predic-
tion accuracy. All models predict much better when error
variance is 5% rather than 35%. Although HB appears to
forecast better than FM when error variance is 5%, and FM
appears to forecast better than HB when error variance is
35%, these differences are not statistically significant (a dif-
ference of at least .1898 is required for the RMSE[Y] means
by experimental condition; a difference of at least .1345 is
required for the overall RMSE[Y] means at the bottom of
Table 4).

The prediction accuracy of the aggregate model falters
significantly as the number of components increases, but
this is not so for any of the other models. This is probably
the primary explanation for the significant model x compo-
nent interaction (p = .0088). The HB and FM models have
equally good prediction accuracy even when there are two
or three components.

Although the masses of components do not significantly
affect prediction accuracy, the separation of components has
a large effect on prediction accuracy (RMSE[Y]). All mod-
els predict considerably better when the components are
similar (i.e., close together) rather than dissimilar (i.e., well
separated). However, this finding could be partially an arti-
fact of the way dissimilarity was created—in dissimilar con-
ditions, the initial partworths (which were generated ran-
domly) are multiplied by two. Larger partworths produce
more variance in utilities 67 across consumers, which
results in more error variance being added to the data (recall
that error variance 67 is set at either 5% or 35% of the total
variance [67 + 67 ), which could make parameter recovery
and prediction more difficult. Similar findings with respect
to the separation factor were reported by VWW. Therefore,
we are cautious in interpreting this finding.
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One interesting finding is that FM has better predictive
validity than individual-level models, whereas VWW found
no difference. An important difference between this study
and VWW'’s is that VWW assume that the number of com-
ponents for the FM model is fixed at the true number,
whereas we use BIC to determine the number of components
for each data set. As shown previously, the presence of
within-component heterogeneity often results in fitting more
than the true number of components. It is not unlikely that
the larger number of components (compared with the true
number) used in this study better accommodates the within-
component heterogeneity and therefore leads to better pre-
dictive validity.

As with the parameter recovery measure RMSE(f), we
observe that with regard to overall prediction accuracy
(RMSE[Y]), there are no significant differences between the
FM and HB models. For %1stCH, the same findings hold,
except that individual-level models predict as well as FM
models, in a statistical sense.

DISCUSSION AND CONCLUSIONS

This study compares HB conjoint models with uni-
modal population distributions to established methods
such as FM conjoint models and individual-level models
in a simulation experiment. Whereas VWW conducted the
analysis at the segment level, our study is conducted at the
level of the individual, which is a more demanding test of
the FM models. Conducting the analysis at the segment
level would probably be a more difficult test for HB mod-
els, because some clustering algorithm or an FM formula-
tion would be needed to form the segments from the
individual-level estimates. Segment-level partworths are
useful for market segmentation, market summarization,
and generation of new product or service ideas.
Individual-level partworths are useful for mass customiza-
tion and simulation of market outcomes for alternative
offerings.

Despite receiving much attention in the recent market-
ing research literature, the performance of HB models has
not been compared with that of established methodologies
such as FM models in simulated settings. A key advantage
of a simulated setting over a real-world conjoint data set
is that in the simulated setting, the true parameter values
are known, and in the real-world setting, these are
unknown.

We summarize the major findings from the simulation
experiment as follows:

1. Individual-level conjoint models fit the data well but produce
poor parameter estimates and forecasts, which is indicative of
overfitting.

2. Aggregate models are not the answer, because they perform
significantly worse than all other models on all four perform-
ance measures.

3. The HB (both normal and t-heterogeneity) and FM models
perform significantly better than individual-level and aggre-
gate models in terms of partworth recovery and predictive
accuracy, and they also fit better than the aggregate models.
For three of the four performance measures, there are no sig-
nificant differences overall between HB and FM—only in
terms of fit (R2) does HB perform significantly better than
FM. Unlike individual-level models, both FM and HB use a
combination of individual- and aggregate-level information to
form individual-level partworth estimates.
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4. The HB models produce partworths as accurate as those from
FM models when there are only two components in the data,
but the FM partworths are significantly more accurate when
there are three components in the data. The surprising finding
is that HB performs as well as it does when partworths come
from a mixture of normal distributions with two or three
components. This is impressive given that the model, as
implemented in this study, is intended to fit unimodal distri-
butions. Given the difficulties associated with the “label-
switching” problem with multimodal HB models, the need
for such elaborate models could be questioned.

5. Another surprising finding is that the FM models produce
good individual-level parameter estimates. Given the discus-
sion in the literature about how the individual-level estimates
produced by an FM model are constrained to lie in the convex
hull of segment-level estimates and therefore have restricted
variance, we expected parameter recovery to be FM’s weak-
est feature. Instead, parameter recovery was one of FM’s
strongest features.

6. The HB models do not recover partworths as well as FM
models when error variances are large. The HB partworth
estimates have significantly higher estimation error than
those from FM when error variance is 35%. In contrast, the
parameter recovery of the FM models is not significantly
affected by the amount of error variance in the data. It is not
clear why the performance of the HB models suffers when
error variances are large. It does not appear that HB overfits
the additional error variance as heterogeneity.

7. The FM parameter estimates are significantly more accurate
than those of HB when components are dissimilar. The HB
model probably becomes a less reasonable approximation to
a mixture of normal components as the mixture components
become farther apart. Alternatively, as explained previously,
dissimilar components indirectly produce an increase in error
variance, which seems to penalize the HB models (see the
preceding point).

8. Overall, the FM and HB models are quite robust to violations
of underlying assumptions, including the existence of within-
component heterogeneity (FM), the distribution of within-
component heterogeneity (HB), and multimodality (HB).

These findings have significant implications for
researchers seeking to model heterogeneous preferences in
conjoint analysis experiments. In their study of the commer-
cial use of conjoint analysis, Wittink and Cattin (1989) find
that the majority of commercial applications (54% of 1062
projects identified) used least squares to estimate partworth
utilities. They report a median of 16 judgments per respon-
dent for the typical application. In discussing these results,
Wittink and Cattin (1989, p. 94) express concern: “Indeed,
16 judgments seem inadequate for the estimation of all
parameters in a study using eight attributes and three levels
per attribute in a partworth model.” Our study validates their
concern in that traditional individual-level conjoint models
employing least squares as the estimation technique are
shown to produce poor parameter estimates for partworth
utilities and forecasts on a validation sample, though they fit
the data well. These numbers indicate that there is substan-
tial potential for improvement by using FM or HB models.

Improved parameter estimates and forecasts from FM and
HB methods could also improve identification of the “opti-
mal” product for market share or profit maximization (e.g.,
Green, Carroll, and Goldberg 1981) and optimized design
for product line selection (e.g., Green and Krieger 1985).
They could also improve the performance of models in
which self-explicated attribute-level importances are
obtained, in addition to the traditional evaluations of full
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profiles (e.g., Green 1984). The likely extent of such
improvements is an empirical question that needs to be
addressed in further research. Other topics for further
research are the performance of the models when there are
even fewer observations per respondent (producing insuffi-
cient degrees of freedom for individual least squares esti-
mates) and the performance of an HB specification that is
capable of handling mixtures of normal distributions.

Likewise, the substantive implications of a wider range of
parameter estimates produced by HB models compared with
FM models need to be studied more extensively. The range
of the estimates becomes important under a loss function
that is nominal (0/1) rather than squared error. The nominal
loss function is encountered when the number of consumers
with parameters in a particular range (e.g., B > 1) is an
important construct, such as in assessments of the fraction of
the population with inelastic price elasticity. The range of
heterogeneity also affects issues such as the optimal breadth
of the product line.8

Finally, Wittink and Cattin (1989, p. 92) report that con-
joint analysis is used by managers for a variety of purposes,
such as new product/concept identification, competitive
analysis, pricing, market segmentation, repositioning,
advertising, and distribution. Therefore, improvements in
parameter estimates and forecasts from FM and HB meth-
ods could have a relatively widespread impact on marketing
practice.
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