A hierarchical Bayesian methodology for treating heter ogeneity in structural ...
Asim Ansari; Kamel Jedidi; Sharan Jagpal

Marketing Science; Fall 2000; 19, 4; ABI/INFORM Globa

pg. 328

A Hierarchical Bayesian Methodology for
Treating Heterogeneity in Structural
Equation Models

Asim Ansari ® Kamel Jedidi e Sharan Jagpal
Graduate School of Business, Columbia University, Uris Hall, 3022 Broadway,
New York, New York 10027-6902
maad8@columbia.edu  kj7@columbia.edu
Faculty of Management, Rutgers University, Newark, NJ, jagpal007@gateway.net

Abstract

Structural equation models are widely used in marketing
and psychometric literature to model relationships between
unobserved constructs and manifest variables and to control
for measurement error. Most applications of structural equa-
tion models assume that data come from a homogeneous
population. This assumption may be unrealistic, as individ-
uals are likely to be heterogeneous in their perceptions and
evaluations of unobserved constructs. In addition, individ-
uals may exhibit different mecasurcment reliabilities. It is
well-known in statistical literature that failure to account for
unobserved sources of individual differences can result in
misleading inferences and incorrect conclusions.

We develop a hierarchical Bayesian framework for mod-
eling general forms of heterogeneity in partially recursive
structural equation models. Our framework elucidates the
motivations for accommodating heterogeneity and illustrates
theoretically the types of misleading inferences that can re-
sult when unobserved heterogeneity is ignored. We describe
in detail the choices that researchers can make in incorpo-
rating different forms of measurement and structural hetero-
geneity. Current random-coefficient models in psychometric
literature can accommodate heterogeneity solely in mean
structures. We extend these models by allowing for hetero-
geneity both in mean and covariance structures. Specifically,
in addition to heterogeneity in measurement intercepts and
factor means, we account for heterogeneity in factor covari-
ance structure, measurement error, and structural parame-
ters. Models such as random-cocfficient factor analysis,
random-coefficient second-order factor analysis, and
random-coefficient, partially recursive simultaneous equa-
tion models are special cases of our proposed framework.
We also develop Markov Chain Monte Carlo (MCMC) pro-
cedures to perform Bayesian inference in partially recursive,
random-coefficient structural equation models. These pro-
cedures provide individual-specific estimates of the factor
scores, structural coefficients, and other model parameters.

We illustrate our approach using two applications. The
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first application illustrates our methods on synthetic data,
whereas the second application uses consumer satisfaction
data involving measurements on satisfaction, expectation
disconfirmation, and performance variables obtained from a
panel of subjects. Our results from the synthetic data appli-
cation show that our Bayesian procedures perform well in
recovering the true parameters. More importantly, we find
that models that ignore heterogeneity can yield a severely
distorted picture of the nature of associations among vari-
ables and can therefore generate misleading inferences. Spe-
cifically, we find that ignoring heterogeneity can result in
inflated estimates of measurement reliability, wrong signs of
factor covariances, and can yicld attenuated model fit and
standard errors. The results from the consumer satisfaction
study show that individuals vary both in means and covar-
iances and indicate that conventional psychometric methods
are not appropriate for our data. In addition, we find that
heterogeneous models outperform the standard structural
equation model in predictive ability. Managerially, we show
how one can use the individual-level factor scores and struc-
tural parameter estimates from the Bayesian approach to per-
form quadrant analysis and refine marketing policy (e.g., de-
velop a one-on-one marketing policy).

The framework introduced in this paper and the inference
procedures we describe should be of interest to researchers
in a wide range of disciplines in which measurement error
and unobserved heterogeneity are problematic. In particular,
our approach is suitable for studies in which panel data or
multiple observations are available for a given set of respon-
dents or objects (e.g., firms, organizations, markets). At a
practical level, our procedures can be used by managers and
other policymakers to customize marketing activities or
policies.

Future research should extend our procedures to deal with
the general nonrecursive structural equation model and to
handle binary and ordinal data situations.

(Structural Equation Models; Heterogeneity; Hierarchical Bayes;
MCMC Procedures; Metropolis-Hastings Algorithm; Gibbs Sam-
pling; Customer Satisfaction)
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A HIERARCHICAL BAYESIAN METHODOLOGY FOR TREATING
HETEROGENEITY IN STRUCTURAL EQUATION MODELS

1. Introduction
Structural equation models are widely used in mar-
keting and psychometric literature to model relation-
ships among unobserved constructs and manifest vari-
ables, and to control for measurement error. Most
applications of structural equation models assume that
the data come from a homogeneous population, and
hence implicitly ignore the influence of unobserved
sources of heterogeneity. This approach is problematic:
As the vast literature on heterogeneity in regression
and discrete choice models clearly shows, a failure to
adequately account for unobserved sources of hetero-
geneity is likely to result in misleading inferences.
Many different sources of unobserved heterogeneity
are possible in structural equation models. To illustrate
these sources, consider a product positioning study
that uses a structural equation approach to model the
structure of consumer preferences for automobiles.
Suppose theory suggests that the salient unobserved
perceived benefits that affect preference are safety, re-
liability, and economy, and assume that a set of scales
are available to operationalize these unobservable con-
structs. The measurement model that captures con-
sumer perceptions of the unobserved benefits can be
atfected by many types of unobserved heterogeneity.
For example, the mean perceptual scores (i.e., factor
means for safety, reliability, and economy) may vary
in the population. The correlational structure of bene-
fits can also vary across consumers. Thus, some con-
sumers may exhibit a halo effect; for example, safety
and reliability may be positively correlated for one
type of consumers (e.g., novices) but may be orthogo-
nal for another type (e.g., experts). Finally, consumers
may provide information with different degrees of ac-
curacy (e.g., variability in measurement error for any
given scale item could differ across individuals). The
structural model may also be affected by unobserved
heterogeneity. For example, consumers may differ in
their importance weights (i.e., the structural parame-
ters) for perceived benefits. As we show in this paper,
when such general types of measurement and struc-
tural heterogeneity are present, analyzing the pooled
data using a conventional structural equation model
that ignores the sources of individual differences can
result in misleading inferences and incorrect conclu-
sions. See also Muthén (1989), Jedidi et al. (1997), and
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Jagpal (1999, Chapter 4) for more theoretical discussion
and examples.

In marketing literature, researchers have used either
a finite-mixture (Kamakura and Russell 1989) or a
random-coefficient approach (Allenby and Rossi 1999,
Chintagunta et al. 1991) for modeling heterogeneity.
Jedidi et al. (1997) recently developed a finite-mixture
approach for response-based segmentation in struc-
tural equation models. In psychometric literature on
structural equations models, heterogeneity is typically
handled using random-coefficient procedures (also
called multilevel models; see Muthén 1989, 1994;
Longford and Muthén 1992) that allow variation only
in mean structures (i.e., in factor means or measure-
ment intercepts). In many marketing applications (as
in the product positioning example above), the data
may exhibit heterogeneity not only in mean structures
but also in structural parameters and covariance struc-
tures. Existing random-coefficient models cannot be
used in such contexts. In fact, the classical procedures
that are used for estimating these models cannot be
adapted to accommodate general forms of heteroge-
neity. A random-coefficient approach that allows the
specification and estimation of heterogeneity in both
mean and covariance structures (i.e., in structural pa-
rameters, measurement error variances, and factor co-
variances) is clearly needed. In this paper we describe
such an approach.

We develop a hierarchical Bayesian framework for
modeling general forms of heterogeneity in partially
recursive structural equation models. Our framework
elucidates the motivations for accommodating hetero-
geneity and illustrates theoretically the types of mis-
leading inferences that can result when unobserved
heterogeneity is ignored. We describe in detail the
choices that researchers can make in incorporating dif-
ferent forms of measurement and structural heteroge-
neity. We also develop Markov Chain Monte Carlo
(MCMC) procedures to perform Bayesian inference in
partially recursive, random-coefficient structural equa-
tion models.

The hierarchical Bayesian approach is eminently
suitable for studies in which panel data or multiple
observations are available for a given set of respon-
dents or objects (e.g., firms). This approach allows for
appropriate pooling of information while taking into
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account heterogeneity. We illustrate our approach us-
ing two applications. The first application illustrates
our methods on synthetic data, whereas the second ap-
plication uses consumer satisfaction data involving
measurements on satisfaction, expectation disconfir-
mation, and performance variables obtained from a
panel of subjects. We find that models that ignore het-
erogeneity can yield a severely distorted picture of the
nature of associations among variables and can there-
fore generate misleading inferences. Specifically, we
show that ignoring heterogeneity leads to inflated es-
timates of measurement reliability, can generate wrong
signs of factor covariances, and can result in attenuated
model fit and standard errors. In addition, we find that
heterogeneous models outperform the standard struc-
tural equation model in predictive ability.

The hierarchical Bayesian approach provides several
theoretical and practical advantages over classical
methods in treating heterogeneity in structural equa-
tion models. (See Allenby and Rossi 1999 for a lucid
discussion of the advantages of the Bayesian method-
ology in the context of choice models.) From a practical
viewpoint, Bayesian methods allow the flexible incor-
poration of prior information, whenever available,
about model parameters. In addition, Bayesian meth-
ods allow the estimation of individual-specific esti-
mates while accounting for the uncertainty in such es-
timates. Specifically, in our modeling context, the
hierarchical Bayesian structural equation methodology
provides individual-specific estimates of the factor
scores, structural coefficients, and other model param-
eters. Thus, managers can use our approach to target
selected individuals or groups in a highly focused
manner using customized marketing strategies.

From a statistical viewpoint, sampling-based Bayes-
ian methods are appealing because they do not rely on
asymptotic theory, a practice that is known to be mis-
leading when the sample size is small (see Scheines et
al. 1999). The Bayesian approach is well-suited for
dealing with unbalanced designs, a common problem
in marketing studies. As discussed later, by using
MCMC procedures one can obtain simulation-based
estimates of the parameters of a structural equation
model. This circumvents the evaluation of complex
multidimensional integrals that are required to imple-
ment maximum likelihood methods on panel data.
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The rest of the paper is organized as follows. Section
2 presents the hierarchical Bayesian approach for es-
timating structural equation models. Section 3 dis-
cusses the specification of the priors and briefly de-
scribes the MCMC method for inference. Section 4
describes the results from a synthetic data set. Section
5 illustrates our approach on customer satisfaction
study, and § 6 provides a summary and discusses di-
rections for future research.

2. The Hierarchical Structural
Equation Model

A hierarchical structural equation model can be spec-
ified in two stages. In the first stage, structural and
measurement models are specified for each individual.
In the second stage, a population distribution is spec-
ified to model variation in individual-level parameters
across all individuals.

Leti = 1 to I represent individuals and letj = 1 to
N;index the observations belonging to the ith individ-
ual. Suppose each individual provides multivariate ob-
servations on g endogenous and p exogenous indicator
(manifest) variables, y; and x;;, respectively. The asso-
ciations among these manifest variables can be de-
scribed in terms of latent constructs using a structural
equation model. Let the (m X 1) vector ¢; and the (n
X 1) vector g;;, respectively, contain the exogenous and
endogenous latent variables. As is well-known, the
complete model for individual 7 consists of a measure-
ment model that describes the relationship between
observed and latent variables and a structural model
that relates the exogenous and endogenous latent vari-
ables. Specifically, the measurement model for individ

ual i can be written as follows:

X;

i = iy + AG T 0y,

Yi = oy A o€ 1)

for j = 1to N; where a;, and «;, are p X 1 and g X
1 measurement intercept vectors, respectively, for the
exogenous and endogenous indicator variables. The (p
X m) matrix A;, and the (g X n) matrix A;, contain
the factor loadings. The terms é; ~ N(0, ©,,) and €; ~
N(@, ©;,), respectively, represent the vectors of mea-
surement errors. The p X p matrix @;, and the g X g

matrix @, , are diagonal and contain the measurement
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error variances. The m latent factors in &;; are assumed
to be normally distributed N(v, ®;), where 3; is a
(m X 1) vector of factor means and ®; is a m X m
covariance matrix of factor scores.

The structural model that relates the latent con-
structs &; and #;; for each individual i is

By = yoi + IS + & 2)

where B; is a (n X 1) matrix of structural parameters
specifying the links among the endogenous latent vari-
ables, yy; is a (n X 1) vector of structural intercept
terms, I'; is a (n X m) coefficient matrix denoting the
effects of &; on #y, and {j;is a n X 1 vector of distur-
bances. The disturbances {;; are assumed to be uncor-
related with &;; and are distributed N(0, ¥;), where ¥,
is a (n X n) covariance matrix that captures the resid-
ual variation in the structural model. In our model, B;
is restricted to being triangular.

When each individual provides enough observa-
tions (i.e., when N; is large for all i), separate models
can be estimated for each individual. In most situa-
tions, however, only a limited number of observations
are available for at least some individuals, thus pre-
cluding individual-level analyses. Moreover, in most
substantive enquiries, researchers are primarily inter-
ested in summarizing the relationships among con-
structs at the population level while controlling for in-
dividual differences. A hierarchical approach is,
therefore, eminently suitable in such situations, be-
cause this method appropriately pools information
across all individuals to estimate the desired relation-
ships. A hierarchical model accounts for observed and
unobserved sources of heterogeneity by specifying a
second-stage population distribution that describes
how individual-specific parameters in Equations (1)
and (2) vary in the population. Specifically, in the sec-
ond stage of the hierarchical model, the individual-
level parameters ¢; = {a;,, a;, Aj v Ay, v, @), 0,4, 0;
B, v, I';, W) are specified as random variables drawn
from a general population distribution i(gp),).

It is important to note that a very general hierarchi-
cal model that allows all parameters to vary freely
across individuals is not identifiable. We need to re-
strict certain parameters at both the individual and
population levels for identification purposes. As in
conventional structural equation models, we can also
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include additional restrictions based on prior theory to
obtain parsimonious models. Figure 1 provides a
graphical summary of the potential sources of hetero-
geneity in structural equation models. We discuss be-
low how different types of heterogeneity can be spec-
ified in the measurement and structural models. We
also discuss the types of restrictions that are needed
for the identification of parameters.

2.1. Measurement Heterogeneity

Previous attempts to capture heterogeneity using ran-
dom parameter formulations have focused solely on
capturing individual differences in mean structures. In
the psychometric literature on multilevel models (see
Muthén 1989, 1994; Goldstein and McDonald 1988), re-
searchers have either allowed measurement intercepts
to vary across individuals or have assumed that factor
means differ across individuals (see Figure 1). In many
studies, researchers are primarily interested in mod-
eling individual differences in underlying constructs.
We follow this approach and allow factor means to
differ across individuals. Specifically, we set o;, = a,
and a;,, = @, for all i and assume that individual-level
factor means v; are distributed multivariate normal
N(O, A) in the population. We assume a zero mean for
this population distribution to fix the location of the
grand mean and ensure identification. This is analo-
gous to setting the factor means of the first group to

Figure 1 Sources of Heterogeneity
Heterogeneity
Measurement Structural
%el \ Model
Mean i \
) Cf)vanance Regression Structural
Structyres Structures N e s .
Coefficients Covariance
Y. b y
Factor  Measurement
Means Intercepts
v Measurement Factor
Variances Covariances
o ¢
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zero in multigroup  structural models
(Joreskog 1971, Sérbom 1981).

Allowing solely for differences in mean structures
results in a model that assumes that individuals have
identical covariance structures. As is clear from the
product positioning example in §1, the assumption im-
plicit in multilevel models that factor covariances and
measurement error variances are invariant may not
hold in empirical applications. For example, experts
may provide more precise measures, i.e., they may

equation

have lower measurement error variances. Moreover,
experts often possess more refined knowledge struc-
tures than novices; hence experts are able to discrimi-
nate finely among latent constructs. Thus, factor co-
variance matrices, ®;, may be nearly diagonal for
experts; in contrast, factor covariance matrices for nov-
ices may exhibit high correlations because of halo
effects.

The literature on multigroup structural equation
models (Joreskog 1971, Sorbom 1981) allows for dif-
ferences in covariance structures across a small num-
ber of a priori (exogenously) specified groups. The
multigroup model assumes a fixed-effects approach to
heterogeneity and typically requires a Jarge number of
observations per group. Recent research on finite
mixtures of structural equation models (Jedidi et. al.
1997) and confirmatory factor models (Yung 1997) has
also considered differences in covariance structures
across endogenously determined groups of individ-
uals in which the number of groups is small. In this
paper, we are interested in a random-effects formula-
tion of heterogeneity. Consequently, we allow the fac-
tor covariances ®; and the measurement error vari-
ances ©; to vary across individuals by specifying
continuous population distributions. Specifically, we
assume that the precision matrices ®; ' come from a
common Wishart population distribution W(p, R),
where p is the degrees of freedom and Risam X m
positive definite scale matrix. To make the factor scores
comparable across individuals (see Yung 1997) and to
preserve the definition and interpretability of the con-
structs, we assume that the factor loading matrices are
Acand A, =
A, fori =1to I Because the scales of the latent factors
are arbitrary, we can proceed by setting the appropri-
ate elements in the loading matrices to unity. As in

invariant across individuals, i.e., A;, =
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other structural equation models, additional con-
straints must be imposed on a case-by-case basis to
ensure identification. Finally, we allow the measure-
ment error variances ©;,, and ®;, to vary across in-
dividuals. Specifically, we assume that each measure-
ment error variance comes from an independent
inverse gamma population distribution IG(0; 4, b).

To understand the implications of ignoring mea-
surement heterogeneity, we need to examine the un-
conditional implied covariance matrix X of the struc-
tural equation model. Using the identity Var[w] =
E{Varlw!.]] + VarlE[w!.]], we can show that the im-
plied aggregate covariance matrix

=
(A,/lr {OE[D,] + AT+ WIB "A) + E[@,] AB 'TEID]+ AA, >
AJ(EI®] + AL'BVA, ALE[D] + M)A+ ElO, ]

3

Typically, researchers are interested in understand-
ing the within-individual factor covariance structure
represented in E[®]. It is clear from the above equation
that E[®@,] and A are not separately identifiable based
on the aggregate covariance matrix. Hence, an aggre-
gate model would generate @ = E[®;] + A. Thus,
a conventional structural equation analysis on data
containing measurement heterogeneity can generate
two types of misleading inferences about the factor
structure. First, as the elements of ®"¢ are necessarily
larger than the corresponding elements in the popu-
lation matrix E[®,], factor reliability estimates based on
@€ will be inflated (Lord and Novick 1968, Muthén
1989). Secondly, the magnitude and the signs of the
covariances in ®*$$ will be distorted. For example, if
the elements E[®, ;| and A; are of the same sign, then
the magnitude of d),(/}\"" will be amplified. If, on the
other hand, E[®;;] and A; are of the opposite sign,
then (I>QN*’ may get attenuated or may have the wrong
sign. Such a situation can clearly have unfortunate con-
sequences for theory development. Other types of dis-
tortions are also possible. We report these in the ap-
plications to follow.

2.2, Structural Heterogeneity
The structural model is crucially important to decision
makers, because it includes structural parameters that
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measure the impact of key antecedent variables on out-
comes. In many research studies, this relationship is of
primary interest, and researchers often focus on study-
ing individual differences in structural parameters.
Previous research on multilevel models has not al-
lowed for such forms of heterogeneity. In contrast, we
allow structural coefficients to vary across individuals.
Specifically, let vector &; contain the terms in B;, y;,
and T';. Then =; is assumed to be distributed multivar-
iate normal N(Z;9, Y), where Z; is a matrix that con-
tains individual specific covariates (e.g., gender or
age). Such a specification allows for both observed and
unobserved sources of heterogeneity. Specifically, the
inclusion of covariates through Z; allows a researcher
to test for specific moderating effects. If individual-
level covariates are not available, then Z, reduces to an
identity matrix. The parameters in ¥ explain the indi-
vidual differences in the structural parameters in terms
of the individual-level covariates. The Y matrix cap-
tures the covariation in the structural parameters re-
sulting from unobserved individual-level variables
and, for parsimony, is assumed to be invariant across
individuals. Because of the scale indeterminacy of the
endogenous factors, we impose E(y;,) = 0 for identi-
fication. Although the population mean of the struc-
tural intercepts is fixed to zero, note that the
individual-level intercepts are estimable subject to this
constraint. This is analogous to fixing the intercept of
one group to zero in a multigroup analysis (see
Joreskog 1971, S6rbom 1981).

Taking into account the individual-level models and
the heterogeneity specifications, the complete two-
stage model can be written as:

Stage 1:

xl'j = O + Axéij + (5,]

Vi = o T Aty o€

By, = yo + Iy + &

(5[}‘ -~ N(O, G)i/x)

Eij -~ N(Or ®i,y)

éij -~ N(Vi, (D,')

& ~ N, ¥) (4)
Stage 2:
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. ~ N, A)
(Di'iil -~ W(/), R)
P

0, ~ Il G, b

k=1

X
{

q
0, ~ Il 6@, b)
v 1 v U
n ~ N(Z9, Y) (5)

Recall that, following the tradition in multigroup
structural equation models, we assume that E(»;) = 0
and E(y;o) = 0 to fix the origin of the factors. As is
standard in structural equation models, we also restrict
the loading of one indicator variable per factor to one
to fix the scale of the factors. Note, however, that the
identification of the structural equation model in Equa-
tion (4) requires that both the measurement and struc-
tural models are identified. Bollen (1989, pp. 88-104
and pp. 238-254) discusses the identification issues in
structural equation models and provides general rules
for identification that can be followed on a case-by-case
basis.

The hierarchical structural equation model defined
by Equations (4) and (5) subsumes a variety of models
as special cases. These include hierarchical confirma-
tory (first-order and second-order) factor analysis, hi-
erarchical multivariate regression, and hierarchical si-
multaneous equation models.

3. Inference

While the foregoing discussion on the different types
of heterogeneity and its impact on inference is relevant
for the general structural equation model, we now con-
sider inference procedures for the case in which B; is
triangular but ¥; is unrestricted. Let w;; = {y;;, x;} be
the joint vector of manifest variables for an arbitrary
observation j for individual i. According to the model
represented in Equations (4) and (5), this observation
comes from a multivariate normal distribution f;(w;;
4, ;) with conditional mean vector

-1
4 = (ay + AB (i + riy,.)> ©
a, + Ay,
and conditional covariance matrix
333
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2,‘:

(AJ/B,”' (NI + VB " A, + 0O

w ABTT®AL )
ADTB A,

AQRA + O
@)

The likelihood for individual i is

3]

=1/2

N;
L =[] en o
j=1

1 -
exp(— > (w; — mw)' > (wy; — ﬂ)) ®)

and the unconditional likelihood for a random sample
of I individuals is given by the continuous mixture

!
=11 [ [ ] Lo, zvmtods O
s
where h(g) is the continuous population distribution
that captures the heterogeneity in the parameters for
the individuals. The unconditional likelihood L given
in Equation (9) is a function of the parameters ¢ = {a,,
a, Ay, Ay, p, R A a,, by, a,b, 3,Y, W} and cannot be
written in closed form, making maximum likelihood
estimation extremely difficult. We therefore use a
simulation-based Bayesian approach that uses MCMC
methods to estimate the parameters.

Bayesian inference requires the specification of pri-
ors for the model parameters. Let A = (& 2 ), a =
(ﬁ;l‘/‘), 0, = (8 81.}/), a = (3}‘/‘), and b = (fﬁ;‘/‘). The un-
known parameters for the model are then given by ¢
={a, A, p,R,A a,b,3,Y, ¥} Lee (1981) and Arminger
and Muthén (1998) discuss different forms of prior dis-
tributions for factor analysis and covariance structure
models. Appendix 1 describes the prior distributions
over the parameters in our model.

Inference in the Bayesian framework is based on the
joint posterior of all unknowns. Because this posterior
density is very complex, we use simulation-based
methods to obtain random draws from the posterior
density (see Appendices 1 and 2 for details). Inference
can then be based on the empirical distribution of the
draws. The complexity of the posterior density pre-
cludes the use of direct methods for obtaining these
draws. We therefore use Markov Chain Monte Carlo
(MCMCQ) methods to obtain these draws. Specifically,
our MCMC procedure involves Gibbs sampling

334

(Geman and Geman 1984, Gelfand and Smith 1990)
and Metropolis-Hastings (Metropolis et al. 1953,
Hastings 1970, Chib and Greenberg 1995) steps in tan-
dem with data augmentation (Tanner and Wong 1987)
to obtain the requisite draws. The MCMC methods re-
quire sampling parameter estimates from the full con-
ditional distribution of each block of parameters. In the
context of our model, we need to generate random
draws for the blocks {«, A, {é,-]-}, i:],»,}, (v}, ®, p, R, A9,
{ag), (b}, 7, 0, Y, W} Each iteration of the MCMC pro-
cedure involves sequentially sampling from the full
conditional distributions associated with each block of
parameters. The MCMC procedure also provides sam-
ples of the factor scores f;; = {&;, n;} and v, thus en-
abling posterior inference about these quantities. Ap-
pendix 2 describes the full conditional distributions
and the simulation steps involved in each iteration of
the MCMC procedure.

4. Synthetic Data Application

In this section we demonstrate our estimation proce-
dures on artificial data. The aim is to illustrate the
types of misleading inferences that are possible when
models that ignore heterogeneity are applied to het-
erogeneous data. We generated a data set with 200 in-
dividuals and 30 observations per individual accord-
ing to the model described in Equations (4) and (5).
The data set includes four exogenous variables (x;, . . .,
x4) and four endogenous variables (v, . . ., y,). The as-
sociation among the manifest variables is modeled in
terms of two exogenous factors (¢; and &,) and two
endogenous factors (7; and #,). Figure 2 shows the
model structure. We set

, ., _ (1 08 0 0O ,
A=Ay = (0 0 08 1.0)’ (10)
(1 —03) ., _ (06 04
El®;] = (_0.3 1 ), A= <0.4 046>’ (11)
and E[0,,] = E[®, | = diag(1.0) for the measurement

model. For the structural model, we used a population
distribution, z; ~ N(9, Y) for the individual level struc-
tural coefficients in

m o= bim + ya + yaé& + 4,

N = Vo + 7o + o (12)
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Figure 2 Model Structure for Synthetic Data

Cl\ Y1+ €

rgg
.

o

where ¢ = {Elb;] = —0.5, Ely1] = 0, Ely;n] = 0, Ely;5l
= =2, Elyyl = 2} and Y = diag(0.1). The structural
errors { come from a normal distribution N(0, ¥)
where

04 02
¥ = (0.2 o.4>' (13)

We used SAS and our MCMC procedures to esti-
mate two models on the data. The first model (NH) is
a nonhierarchical model that ignores the nature of the
clustering of the observations and assumes that each
individual has the same set of parameters. We esti-
mated this model using Proc Calis in the SAS software.
The second model is the true model represented by
Equations (4) and (5). In estimating the second model
we used priors that are similar to those outlined in
Appendix 1. The estimates for the second model are
based on 3,000 draws from the joint posterior distri-
bution obtained after discarding 1,000 draws from the
initial transient portion of the chain. Convergence was
assessed using a variety of diagnostics detailed in the
CODA package (Best et al. 1995) and by using time
series plots to graphically assess the quality of the mix-
ing of the chain.

Table 1 reports the within-factor covariance matrix
® for the first model and the population expectation
of the ®; matrices, E(®;) for the fully heterogenous
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model (FH). It also reports the across-individual co-
variance matrix A of the mean factor scores v; for
Model FI. In §2.1, we showed that ignoring hetero-
geneity in factor means and measurement error leads
to an aggregate factor covariance matrix ®"¢ that con-

founds the within-individual ® and between-
individual A factor covariance matrices. We also
showed that this confound can lead to sign reversal of
the factor covariances under some conditions. A com-
parison of the factor covariance estimates from the
nonhierarchical model (NH) with the sum of the esti-
mated within- and between-factor covariance matrices
from the fully heterogeneous model (FH) clearly con-
firms this theoretical relationship. For example, ®y,
from NH is 1.61. This value is approximately equal to
the sum of ®;; = 1.0 and A;; = 0.58 obtained from
FH. Most importantly, we see that the covariance es-
timate ®,, from NH has the wrong sign because of this
confounding. Finally, note that the estimates from the
correct model (FH) are close to the true values as ex-
pected. Similarly, the estimates of A obtained from
Model (FH) are close to the true values.

Table 2 reports the structural model parameters. The
top portion of the table reports the structural coeffi-
cients for the nonhierarchical model and the popula-

tion expectation of the individual-level coefficients for
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Table 1 Factor Covariance Matrices
Parameter True NH FH
o, 1.0 1.61 1.0
(1.51,1.70) (0.92, 1.08)
b, -03 0.13 -0.28
(0.07, 0.18) (—0.33, —0.23)
o, 1.0 1.60 0.95
(1.51,1.70) (0.87, 1.04)
Ay 0.6 — 0.58
(0.46, 0.72)
Ay 0.4 — 0.42
(0.32, 0.54)
Agy 0.6 — 0.63
(0.51, 0.78)
Table 2 Structural Model Parameters
Population Regression Coefficients
Parameter Actual NH FH
b -05 —0.55 -0.53
(—0.57, --0.52) (—0.59, —047)
;?] O 0 0
i 0 0 0
s -2 —1.96 —2.02
(—2.02, —1.89) (—2.11, —1.92)
7 2 1.99 2.0
(1.92, 2.05) (1.91, 2.09)
Error Variances
v, 0.4 1.62 0.38
(1.43,1.81) (0.28, 0.5)
¥, 0.2 0.21 0.21
(0.10, 0.32) (0.13, 0.26)
v,, 0.4 0.62 0.42
(0.44, 0.78) (0.32, 0.53)

the hierarchical model. Whereas the magnitudes of the
coefficients are approximately the same for the two
models, the confidence interval for b for Model NH
does not cover the true value. A comparison of the
error variances across the two models reveals that the

aggregate model provides inflated estimates of the er-
ror variances. This result is not surprising because the
aggregate model (NH) forces the error terms to absorb
the unobserved heterogeneity in the parameters. Jedidi
et al. (1997) found the same results, based on an exten-
sive simulation. Specifically, they found that the ag-
gregate model captures the population means of the
structural parameters very well but confounds the var-
iance due to heterogeneity with the error variance.
Table 3 reports the estimated factor loadings and the
measurement error variances for the two models. The
table also shows the 95% posterior intervals associated
with the parameters. It is clear from the table that both
models yield almost identical estimates of the factor
loadings. This is not surprising, as the data-generating
mechanism assumed identical A for all individuals.
Comparing the estimated measurement error vari-
ances O for the NH mode] and the population expec-
tation of ©; for the FH model, we see that the magni-
tude of the estimates are similar. A closer look at the
variance estimates associated with x; and x, reveals
that the confidence intervals for the first model do not

Table 3 Measurement Model Parameters
Factor Loadings Measurement Error Variances
Parameter True NH FH True NH FH E®)
W 1 1 1 1 1.0 1.02
(0.89, 1.10) (0.91, 1.12)
Vs 0.8 0.79 0.79 1 1.0 1.0
(0.78, 0.81) (0.78, 0.81) (0.93, 1.07) (0.92, 1.08)
Vs 0.8 0.81 0.80 1 1.02 1.02
(0.79, 0.82) (0.79, 0.82) (0.96, 1.08) (0.93, 1.1)
Vs 1 1 1 1 0.97 0.97
(0.88, 1.05) (0.88, 1.07)
X 1 1 1 1 0.94 0.96
(0.89, 0.99) (0.88, 1.03)
X, 0.8 0.80 0.80 1 0.93 0.95
(0.76, 0.82) (0.77,0.83) (0.89, 0.97) (0.89, 1.01)
Xy 0.8 0.79 0.80 1 1.05 1.04
(0.76, 0.82) (0.77,0.83) (1.00, 1.09) (0.98, 1.12)
X, 1 1 1 1 1.03 1.04

(0.97,1.08) (0.97, 1.12)

Note: All loadings equal to 1 are fixed for identification.
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cover the true value of 1.0. The posterior intervals for
the full model (FH) are wider, as they properly reflect
the uncertainty arising from heterogeneity and cover
the true value for all parameters.

In summary, it is clear from the above example that
ignoring heterogeneity can yield misleading infer-
ences. In fact, we see that aggregate models may have
wrong signs for covariance parameters, thus providing
a distorted picture of the association structure of vari-
ables. In addition, aggregate models may report in-
flated estimates of factor variances, thus overstating
the reliability of factors. Finally, models that pool data
across individuals and thus ignore heterogeneity may
underappreciate uncertainty in parameter estimates
and provide a false sense of precision.

5. A Customer Satisfaction
Application

Many researchers have analyzed the antecedents of
customer satisfaction (see Oliver 1997 for a review).
Typically, researchers have postulated that overall cus-
tomer satisfaction with a product or service is affected
by its perceived performance and by the extent to
which a customer’s expectations are met or disconfir-
med (e.g., Oliver 1993 and Johnson et al. 1995).

We used the hierarchical Bayesian approach to es-
timate a structural equation model of satisfaction, us-
ing panel data from a study on campus dining services
conducted at a large northeastern university. The data
were collected using the following procedure. The
population of interest consisted of students who had
purchased all-inclusive meal plans for the fall semes-
ter. At the beginning of the semester during registra-
tion week, subjects from the population were re-
cruited, using sign-up sheets circulated by
experimenters in booths set up in dining outlets and
dormitories at the university. Sixty individuals signed
up to attend an information session; of these, 55 agreed
to participate in the panel. Each subject who partici-
pated in the study was paid $50 and was required to
complete a daily diary for 39 consecutive days, using
the following procedure. As soon as possible after din-
ner every day, subjects were required to record their
degree of satisfaction with the dining service and their
perception of the service provider’s performance along
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key dimensions, including food, service, and the din-
ing environment. Subjects also recorded their expec-
tancy disconfirmation, i.e., the degree to which their
expectations of performance were met or disconfir-
med. All the observable variables (items) were mea-
sured using seven-point scales. We excluded two sub-
jects from the analysis because of limited data for those
individuals. Because of missing data for some subjects,
our final data set contains 1,542 observations from the
remaining 53 subjects. We have therefore, an average
of 29 observations per subject.

We specified a model in which customers’ satisfac-
tion (1) with the dining service depends on perception
of the dining service’s performance on food (&), ser-
vice (&), and the dining environment (&;). In addition,
satisfaction depends on disconfirmation (&,). Satisfac-
tion for each service episode was measured using the
following three items: very dissatisfied to very satis-
fied (y,); felt terrible to delighted (y,); liked very little
to liked very much (y3). Food performance was mea-
sured using the following three observable indicators:
unpalatable to palatable (x;), bad taste to good taste
(x,), and not nutritious to nutritious (x;). Service per-
formance was measured on four items: indifferent to
responsive (x,), unfriendly to friendly (xs), inefficient
to efficient (x¢), and uncaring to caring (x,). Dining en-
vironment was measured using three items: unpleas-
ant to pleasant (xy), dirty to clean (xy), and stressful to
relaxing (x;y). Finally, disconfirmation was measured
using two items: much better than expected to much
worse than expected (x;, and x;,). Figure 3 presents a
graphical summary of the structure of the satisfaction
model. Note that to avoid clutter, Figure 3 does not
show the covariances among the factors.

As discussed in §2, the data can contain several
forms of heterogeneity. For example, in the measure-
ment model, the factor means v, the factor covariances,
®,, and the measurement error variances 0; can differ
across individuals. In the structural model, the struc-
tural coefficients (i.e., importance weights of the ante-
cedents of satisfaction) y; can differ across respondents.

To understand the nature of heterogeneity in the
customer satisfaction process, we specified and esti-
mated six models. These model specifications are de-
scribed in the table below.
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Figure 3 The Structural Model for Satisfaction

Ny ™
K14

Model Specifications

Parameter Description

Model NH No Heterogeneity
Model ML HHetetogeneous Factor Means — Multilevel Model
Model HS ML + Heterogeneous Structural Coefficients

Model HSHC HS + Heterogeneous Factor Covariances
Model HSHV HS + Hetetogeneous Measurement Variances

Model FH HSHV + Heterogeneous Factor Covariances

The base model, Model NH, is the conventional struc-
tural equation model that assumes that the data do not
contain any measurement or structural heterogeneity.
The other models add increasing levels of heteroge-
neity. Model FH, for instance, allows heterogeneity in
factor means, factor covariances, measurement error
variances, and structural coefficients and, therefore, is
the most general model.

In estimating the models, we imposed appropriate
restrictions on parameters to accommodate the inde-
terminacy in the scales and origins of the factors. For
example, in all the models, for each factor we set the
loading of one indicator variable to unity. In addition,
following the usual practice in structural equation
modeling, we set the mean of each factor to zero for
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Model NH. In contrast, for the other models, we as-
sume that the factor means »; vary across individuals
with a grand mean E(v;) = 0. As discussed earlier, we
also set the population mean of the structural intercept
to zero, i.e., E(y;o) = 0. Note that the measurement pa-
rameters in the models are identified because each fac-
tor has at least two indicators and the factors are al-
lowed to covary (see Bollen 1989, pp. 238-251). The
structural parameters are also identified, because the
structural model is a multiple regression equation.

We used the MCMC procedure described in § 3 and
in Appendix 2 to estimate the models. The MCMC al-
gorithm was coded using the C language. Further-
more, we estimated Model NH, using Proc Calis in
SAS to compare our Bayesian estimates with those ob-
tained from the maximum likelihood estimator (MLE).
Appendix 1 reports the prior distributions we used.
The parameter estimates for all models are based on
20,000 draws obtained after discarding the first 10,000
iterations. Convergence was assessed using a variety
of diagnostics detailed in the CODA package (Best et
al. 1995) and by using time series plots to graphically
assess the quality of the mixing of the chain.

5.1. Model Assessment

In this section we compare model performance using
marginal likelihood values computed from the simu-
lation output. We also compute the out-of-sample per-
formance on a holdout data set to assess whether ac-
counting for unobserved heterogeneity leads to
improvements in predictive ability.

5.1.1. Model Comparison. We computed the log-
marginal likelihood using the importance sampling
method illustrated in Newton and Raftery (1994) to
compare the six models. A model with a higher mar-
ginal likelihood is the preferred model. The differences
in the marginal likelihood values from those of a base
model (Model NH) can be used to assess model im-
provements. The differences in log-marginal likeli-
hood for the models are (a) Model ML: 103.51, (b)
Model HS: 146.6, (c) Model HSHC: 248.69, (d) Model
HSHV: 1603.15, and (e) Model FH: 1741.2. These values
clearly suggest that accounting for unobserved hetero-
geneity is important in this application. Among all the
models that account for some form of heterogeneity,
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the full model (Model FH) shows the greatest improve-
ment in log-marginal likelihood and, hence, is the most
preferred model. As the models incorporate increasing
levels of heterogeneity, the magnitudes of the im-
provements can be used to assess the importance of
particular types of heterogeneity. A comparison across
the different heterogeneity specifications reveals that
adding covariance heterogeneity (Model HSHC and
Model HSHV) results in considerable improvement in
marginal likelihoods. Of the two forms of covariance
heterogeneity that are possible within the measure-
ment model, adding heterogeneity in measurement
variances (Model HSHV) results in much greater
model improvement for our data. Improvements aris-
ing from heterogeneous factor covariances (Model
HSHC) are modest in comparison. These results clearly
show that multilevel models do not fully capture the
heterogeneity in our data. Specifically, multilevel mod-
els allow heterogeneity only in mean structures. Our
model selection results, however, suggest that individ-
uals vary both in means and covariances.

5.1.2. Predictive Ability. To further assess the
benefits of accounting for unobserved heterogeneity,
we compared the predictive ability of the conventional
structural equation model (Model NH) with that of the
full model (Model FH). To compute the out-of-sample
performance, we created a holdout data set consisting
of 427 observations from our original calibration sam-
ple. This data set was created by randomly selecting
approximately 8 observations from each of the 53 sub-
jects in the sample. We estimated the NH and FH mod-
els, using the remaining 1,115 observations and used
these estimates to compute measures of predictive per-
formance from the holdout data set. We assessed how
well the models perform in recovering the mean and
covariance structure of the data set. Table 4 reports the
Mean Absolute Deviations (MAD) in predicting the
means of the exogenous and endogenous manifest
variables. It is clear from the table that the model that
incorporates heterogeneity outperforms the aggregate
model in predicting the means across all of the mani-
fest variables.

As structural equation models capture the covari-
ance structure of the variables, we also investigated
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Table 4 Predictive Ability: MAD for Variahle Means
Factor Indicator Model NH Model FH
Food X 1.134 0.955
X, 1.207 1.095
X3 1.087 0.986
Service X4 0.959 0.912
X5 0.968 0.910
X5 1.033 0.953
X 1.063 0.952
Envir. X 1.096 1.018
X 1.127 0.964
X0 1.121 0.968
Disc. Xy 1.193 1.114
Xig 1.317 1.248
Satis. % 1.176 1.097
Vs 1.147 1.044
Vs 1.146 1.036

how well the two models did in recovering the within-
individual covariance matrix X, the between-
individual £y covariance matrix, and the total X co-
variance matrix of the data. Table 5 reports two
measures of fit (MAD and RMR) for these covariance
matrices. The MAD represents the mean absolute de-
viation between the elements of the actual and the pre-
dicted matrices. The RMR (Bollen 1989) represents the
square root of the mean squared deviation between the
elements of actual and predicted matrices. In comput-
ing these measures, only the nonredundant elements
of the covariance matrices are used. Table 5 shows that
the hierarchical model clearly outperforms the simple
model in recovering both the within- and between-
covariance matrices. It is also interesting to note that
the two models do not differ in their ability to recover
the total covariance matrix. This result is consistent
with the insight that aggregate models do well in re-
covering the aggregate aspects of a data set but do

Table 5 Predictive Ability: Covariance Matrices

Mode! NH Model FH
Measure Ty P pas p p2 X,
RMR 0.379 0.367 0.138 0.153 0.135 0.138
MAD 0.361 0.356 0.107 0.135 0.118 0.107
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poorly in representing the association structure at the
microlevel. This result is also consistent with the simu-
lation results of Jedidi et al. (1997), who found that fit
measures that are based on the aggregate covariance
matrix (e.g., GFI and RMR) are not useful for detecting
heterogeneity.

In summary, the marginal likelihood values and the
predictive comparisons unambiguously suggest the
importance of accounting for both mean and covari-
ance heterogeneity in the satisfaction data.

5.2. Parameter Estimates

We now examine the parameter estimates from our
models. These estimates are based on the entire cali-
bration sample consisting of 1,542 observations from
53 individuals. To avoid clutter, we report the esti-
mates for only three models. These models include the
simple nonhierarchical model (Model NH), the multi-
level model (Model ML), and the full model (Model
FH). For the NH model, we report both the Bayesian
and the maximum likelihood (MLE) estimates that we
obtained using SAS Proc Calis. We first discuss the re-
sults from the measurement model and then analyze
the structural mode] estimates. Table 6 shows the fac-
tor loadings from the measurement model. The MLE
factor loadings for Model NH, reported in Column 3,
are virtually identical to those obtained from the
Bayesian analysis of the model (see Column 4). The
similarity of the estimates is expected, because we used
diffuse priors and our sample size is large (1,542 ob-
servations). It is also clear from Table 6 that the loading
estimates differ only slightly across all three models.
This finding is not surprising, because we assumed
common factor loadings for all individuals. Overall, all
factor loadings are significant, suggesting that the in-
dicators are reliable measures for the underlying
factors.

Table 7 reports the measurement error variances.
First, as in Table 6, the maximum likelihood estimates
(MLE) of Model NH are almost identical to those ob-
tained from the Bayesian analysis. Second, the esti-
mates from Model NH and Model ML are essentially
similar, as both of these models assume identical mea-
surement error variances across individuals. The
population mean estimates from Model FH, however,
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Table 6 Measurement Model Resulis: Factor Loadings

Factor Indicator Model NH (MLE) Model NH (Bayes) Model ML Model FH

Food X 1 1 1 1
X 1.106 1.109 1.067 1.053
(0.023) (0.023) (0.023)  (0.018)
X3 0.717 0.719 0.723 0.711
(0.026) (0.026) (0.026)  (0.024)
Service  x, 1 1 1 1
X5 1.028 1.028 1.031 1.021
(0.025) (0.024) (0.025)  (0.019)
X5 0.994 0.996 1.009 0.953
(0.028) (0.029) (0.030)  (0.025)
X; 1.015 1.016 1.027 0.995
(0.027) (0.028) (0.028)  (0.023)
Envir. X 1 1 1 1
Xq 1.220 1.216 1.234 1.120
(0.029) (0.030) (0.029)  (0.027)
X1 1.016 1.018 1.027 1.040
(0.029) (0.029) (0.029)  (0.027)
Disc. Xy 1 1 1 1
Xi 0.984 0.984 0.987 0.982
(0.024) (0.024) (0.024)  (0.023)
Satis. ¥ 1 1 1 1
A 1.038 1.040 1.042 1.020
(0.019) (0.019) (0.019)  (0.016)
Vs 1.080 1.082 1.083 1.046
(0.019) (0.019) (0.019)  (0.016)

Note: Posterior standard deviations are shown in parentheses.

show considerable differences from the estimates ob-
tained for Models NH and ML. In addition, it is im-
portant to note that the standard deviation of the
population means are much higher for Model FH, as
should be expected in a model that incorporates het-
erogeneity. Thus, conventional models can provide
distortions in inference when applied to heterogeneous
data. Finally, the last column of Table 7 reports the
across-individual variation, Std(#), in the measure-
ment error variances.' Clearly, there is considerable
heterogeneity in the measurement error variances in
our sample. That is, subjects respond to questions with
different degrees of accuracy.

'"As Oy ~ IG@, b)), EWp = 1/a — 1) and Sty =
/W — 1D (@ — 2).
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Tabhle 7 Measurement Model Resulfs: Measurement Error Variances
Model FH
Model NH  Model NH ~ Model E(0) Std(0)
Factor  Indicator (MLE) (Bayes) ML
Food X, 0.458 0.460 0.403 0.332 0.293
(0.021) (0.025)  (0.026) (0.037) (0.047)
X, 0.345 0.348 0.420 0.385 0.339
(0.027) (0.026)  (0.029) (0.042) (0.054)
X, 1.217 1.213 1.173 1.186 1.048
(0.0486) (0.045)  (0.047) (0.110) (0.166)
Service Xy 0.469 0.471 0.478 0.424 0.374
(0.023) (0.025)  (0.025) (0.044) (0.059)
Xs 0.428 0.429 0.437 0.351 0.310
(0.023) (0.024)  (0.023) (0.039) (0.049)
X5 0.697 0.697 0.681 0.751 0.663
(0.030) (0.032)  (0.032) (0.074) (0.108)
X, 0.609 0.609 0.597 0.629 0.556
(0.028) (0.030)  (0.027) (0.063) (0.089)
Envir. Xg 0.703 0.696 0.720 0.727 0.643
(0.032) (0.032)  (0.032) (0.071) (0.106)
Xo 0.217 0.235 0.203 0.232 0.204
(0.028) (0.029)  (0.027) (0.032) (0.037)
X0 0.838 0.836 0.828 0.882 0.779
(0.036) (0.034)  (0.037) (0.084) (0.123)
Disc. X4 0.568 0.570 0.594 0.748 0.662
(0.034) (0.036)  (0.034) (0.08) (0.113)
Xio 0.561 0.562 0.584 0.761 0.672
(0.033) (0.034)  (0.032) (0.078) (0.110)
Satis. 2 0.487 0.486 0.487 0.629 2.19
(0.021) (0.021)  (0.021) (0.081) (3.7)
Vs 0.294 0.294 0.293 0.267 0.92
(0.016) (0.016)  (0.015) (0.035) (1.315)
Vs 0.258 0.256 0.258 0.275 0.951
(0.015) (0.015)  (0.015) (0.036) (1.568)

Notes: Posterior standard deviations are shown in parentheses. E(¢) and
Std(0) denote the population and standard deviation of the measurement
variances.

Table 8 reports the estimated covariance matrix @ of
the exogenous factors, S for Models NH and ML and
the population expectation of the ®; matrices, (D)),
for Model FH. For Models ML and FH, the table also
reports the covariance matrix A of mean factor scores
v; across individuals. As in the previous tables, the
MLE estimates are very similar to those obtained from
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the Bayesian analysis of Model NH. Recall that the
multilevel model (Model ML) only captures hetero-
geneity in the factor means, v;. As we saw in the pre-
vious synthetic data application, ignoring heteroge-
neity in means results in a confounding of the within-
and between-covariance matrices of the factors, i.e.,
D@ poieintt = Putodemr. + Mstodeins- The results for Model
NH and Model ML confirm this theoretical relation-
ship. For example, the first row of Table 8 reveals that
D ooi-roos for Model NH is 1.569. This value is approx-
imately equal to the sum of the estimates @y, ooy =
1.165 and Arppg-rod = 0.426 obtained from Model ML.
Thus, if the factor means are heterogeneous (Model
ML), the results from a conventional model that ig-
nores heterogeneity will always underestimate the fac-
tor variances and therefore inflate the measurement
reliability.

Recall that Model FH allows for heterogeneous @,
matrices across individuals by assuming that ®;' ~
W(p, R). Column 5 of Table 8 reports the population
means of the @/s. The last column of the table reports
the estimated A, which captures the heterogeneity in
mean factor scores (v;) across individuals. When
Model NH is used to analyze data originating from a
process that involves general forms of measurement
and structural heterogeneity (e.g., as in Model FH), the
estimation bias manifests itself in a complex manner
across different sets of parameters. The results show
that the parameter estimates are indeed different
across the three models.

Focusing on the estimates for ® for Model FH, we
see that all the exogenous factors are positively corre-
lated. The estimates of A show that the mean factor
scores are also positively correlated across individuals.
In addition, the large magnitudes of the diagonal ele-
ments of A show that there is considerable heteroge-
neity in factor means across individuals.

Table 9 reports the regression coefficients from the
structural model. In interpreting the table, recall that
Model FH captures heterogeneity in the impact of the
antecedent constructs on satisfaction by assuming that
the individual-specific coefficients come from a mul-
tivariate normal population distribution N(+J, Y). The
population mean, ¥, for the structural coefficients and
the standard deviation of the individual specific coef-

ficients /Y, are reported in Columns 5 and 6, respec-
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Table 8 Estimated Covariance Structure of Antecedent Factors

Table 9 Structural Model: Regression Coefficients

[ A

Model NH Model NH Model Model Model Model
Parameter (MLE) (Bayes) ML FH ML FH

Food-Food 1569 1562  1.165 1.388 0426 0433
(0.074)  (0.074) (0.055) (0.155) (0.093) (0.095)

Food-Service ~ 0.617 0618  0.399 0416 0216 0224
(0.043)  (0.043) (0.032) (0.083) (0.063) (0.067)

Food-Envir. 0.764 0765 0414 0457 0331 0.343
(0.048)  (0.047) (0.032) (0.079) (0.080) (0.085)
Food-Disc. 1232 1230 0997 1296 0229 0230

(0.061)  (0.061) (0.050) (0.159) (0.062) (0.063)

Service-Service  1.170 1.170 0.881 1131 0.285 0.305
(0.059) (0.060) (0.046) (0.131) (0.064) (0.070)

Service-Envir.  0.691  0.694 0409 0417 0266 0.289
(0.042)  (0.044) (0.029) (0.073) (0.066) (0.072)

Service-Disc.  0.602 0603 0428 0457 0.161 0.173
(0.046)  (0.046) (0.037) (0.099) (0.049) (0.051)

Envir.-Envir. 1297 1297 0852 00963 0426 0453
(0.070)  (0.070) (0.046) (0.113) (0.093) (0.100)
Envir.-Disc. 0704 0707 0462 0596 0218 0.234
(0.050)  (0.050) (0.038) (0.101) (0.059) (0.063)
Disc.-Disc. 1801 1799 1534 2143 0231 0222

(0.087)  (0.087) (0.079) (0.252) (0.056) (0.054)

Notes: Posterior standard deviations are in parentheses. @ = Undupli-
cated elements in covariance matrix of exogenous factors. A = Unduplicated
elements in covariance matrix of mean factor scores for exogenous factors.

tively, of the table. The mean estimates for Model FH
show that satisfaction is significantly affected by per-
ceived performance on food, service, and the environ-
ment. In addition, the positive coefficient for discon-
firmation confirms the previous findings in the
literature that better-than-expected performance in-
creases satisfaction. The magnitudes of the across-
individual standard deviations (see the last column),
are large and confirm that the importance weights of
the antecedent dimensions on satisfaction vary signifi-
cantly across subjects.

The differences in the magnitudes of the coefficients
across the models show that ignoring heterogeneity
can yield misleading inferences about the structural
parameters. Furthermore, it appears that Model NH
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Model FH
Exogenous Model NH Model NH Model
Factor (MLE) (Bayes) ML 9 Y
Food 0.311 0.311 0.258 0.366 0.236
(0.027) (0.028) (0.028)  (0.052)  (0.031)
Service 0.108 0.108 0.110 0.079 0.260
(0.022) (0.023) (0.022)  (0.039)  (0.040)
Envir. 0.058 0.057 0.053 0.094 0.206
(0.022) (0.023) (0.021)  (0.041)  (0.028)
Disc. 0.536 0.536 0.588 0.503 0.246
(0.027) (0.027) (0.028)  (0.048)  (0.036)
¥ 0.285 0.285 0.266 0.168

(0.019) (0.019)  (0.019)  (0.015)

Notes: Posterior standard deviations are shown in parentheses. < denotes
the population mean of the structural coefficients. JYZ denotes the popu-
lation standard deviation of the structural coefficients.

and Model ML seriously overstate statistical signifi-
cance, because they understate the posterior standard
deviations of all structural parameter estimates. In ad-
dition, the last row of Table 9 shows that by failing to
allow for structural heterogeneity, Models NH and ML
understate the goodness-of-fit of the structural model.
This result is not surprising, because the unaccounted
heterogeneity is absorbed by the structural error term.

To illustrate how the model can be used for mana-
gerial purposes, we performed a “quadrant analysis”
(see Figure 4). For each antecedent of satisfaction, we
plotted for each individual the mean factor scores
(which are automatically produced by the Bayesian ap-
proach) and structural parameter estimates; in addi-
tion, we partitioned the appropriate space into four
quadrants, based on the corresponding mean factor
scores and mean importance weights in the sample.
(Recall that the grand mean for each antecedent factor
was set to zero.) Thus, in Figure 4, individuals corre-
sponding to points in the upper-right quadrant have
above-average scores on the food factor; in addition,
for these individuals, food has an above-average effect
on overall satisfaction.

Using this partitioning into quadrants, managers se-
lectively target consumers and develop marketing pol-

MARKETING SCIENCE/Vol. 19, No. 4, Fall 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANSAR]I, JEDIDI, AND JAGPAL
A Hierarchical Bayesian Methodology

Service
2
0.3 | s
0.2 §9 1 %ég 4‘[‘3 49 3 237
8 01 1P N 5 'y}
g 4 ¥ 5, 1
£ 0 lé‘7 9
o) 3
2. 28 50 8
E o 9 a1
02 20
' 21
-03
-1 -0.5 0 0.5 1
Factor Score
Disconfirmation
;g 28
5 48
b 22
0.4 41 4 52 5
# 5 %)‘ 13 40 55"
02
38
-1 -0.5 0 0.5 1

Figure 4 Quadrant Analysis: Perceived Performance (Factor Scores) vs. Importance
Food
0.6 26 4314 7203537
24 §%§22 235 2
1 s 17
o 04 18
§ 2447 o 4640
5 02 AP pd 34 32
E 9 16 5! 52
0
46
-0.2
-15 -1 -05 0 0.5 1 1.5
Factor Score
Environment
0.6
© 9
g 04
£ )
g 4 3?., 7138
g 02 \_/ 2 152?
0 47 23 é‘z 4,
11
1
-1.5 -1 -0.5 0 0.5 1
Factor Score

icies, including one-on-one marketing. Managers can
target consumers based on both the importance
weights of key dimensions and the levels of those di-
mensions (factor scores). For example, in Figure 4 con-
sider the set of points in the upper-left quadrant for
the panel associated with food. These points corre-
spond to those consumers for whom food is important
and, in addition, the food performance of the dining
facility is below the average for the population. Con-
sider Subject 9. This subject has below-average impor-
tance weights for food and service but has above-
average importance weights for environment and

MARKETING ScIENCE/Vol. 19, No. 4, Fall 2000

Factor Score

disconfirmation. Moreover, this customer has a below-
average factor score on all factors. These results clearly
show that Subject 9 is relatively unsatisfied with all
components of the service. Depending on costs, the op-
timal policy for the dining facility for Subject 9 may be
to improve his or her perception of environment. An
alternative strategy that may be effective for the dining
facility is to manage this customer’s expectations to re-
duce the likelihood of these expectations being
disconfirmed.

It is important to note that managers need to exercise
caution in using individual-level point estimates for
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targeting. The extent of uncertainty associated with an
individual’s estimates depends intricately on the num-
ber of observations available from that individual and
also on the extent of shrinkage induced by the choice
of priors. In fact, Bayesian methods allow a proper as-
sessment of uncertainty. For example, the figure shows
the 95% confidence ellipsoids associated with Individ-
ual 9. The figure shows that there is considerable un-
certainty about the individual-level parameters. This is
not surprising, as a highly parametrized model is be-
ing fitted to relatively few observations from a person.
The confidence ellipsoids also show that the uncer-
tainty is higher for the importance weights when com-
pared to the uncertainty in the perceptual scores. This
is possible because the importance weights link two
sets of latent variables (i.e., factor scores) and are there-
fore farther removed from the observed data. Such as-
sessments need to be used for sensitivity analysis in
decision making.

6. Summary and Conclusions

This paper develops and tests a hierarchical Bayesian
framework for handling general forms of unobserved
heterogeneity in structural equation models. Our
methodology is appropriate when the heterogeneity in
the population can be measured on a continuum and
multiple observations are available for each individ-
ual. An important feature of our method is that it au-
tomatically provides individual-specific estimates of
model parameters and factor scores.

We tested the Bayesian methodology, using both
synthetic data and data from a satisfaction study. The
results from the synthetic data application show that
the nonheterogeneous (aggregate) model confounds
random variability (i.e., measurement and structural
errors) with variability because of heterogeneity. In the
measurement model, this confounding led to inflated
indicator reliabilities and resulted in sign reversal of
the factor covariances. In the structural model, the con-
founding led to lower model fit. In addition, the non-
heterogeneous model understated the standard errors
of the parameter
estimates.

The results from the satisfaction study show that the
structural parameters vary significantly in the popu-
lation (i.e., it is incorrect to analyze the pooled data set

measurement and structural
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using a conventional structural equation model). As in
the case of the synthetic data example, the estimates
obtained from a conventional structural equation
model (i.e., a model that does not allow for unobserv-
able heterogeneity) were misleading, even though the
model was comparable to the other models on predic-
tion of aggregate quantities such as the total covariance
matrix X;. In particular, the nonhierarchical model un-
derstated the goodness-of-fit for the structural equa-
tion and provided biased estimates of the structural
parameters. Perhaps most importantly, the nonhier-
archical model seriously understated the standard er-
rors of the structural parameters; that is, models that
ignore heterogeneity overstate statistical significance.
Finally, we showed that the traditional psychometric
methods (e.g., multilevel models) do not fully capture
the heterogeneity in our data. Thus, accounting for het-
erogeneity in both mean and covariance structures is
important for obtaining proper inferences.

From a managerial viewpoint, we showed how one
can use the individual-level factor scores and struc-
tural parameter estimates from the Bayesian approach
to perform quadrant analysis and refine marketing
policy (e.g., develop a one-on-one marketing policy).
From a substantive viewpoint, our Bayesian procedure
should be applied to a broad range of marketing prob-
lems in which the data contain unobservable hetero-
geneity and structural equation modeling is appropri-
ate (e.g., instances involving measurement error and
latent constructs). From a methodological viewpoint,
we designed our MCMC procedures to deal with the
partially recursive structural model and assumed
interval-scaled data. Future research should extend
our procedures to deal with the general nonrecursive
structural equation model and to accommodate ordi-
nal data (Rossi et al. 1999) and binary data situations
(Ansari and Jedidi 2000).>

Appendix 1: Prior Distributions

In this paper, we specify the prior distribution over ¢ as a product
of independent priors. We use proper but diffuse priors over all
model parameters. The priors for the measurement intercepts « are

Please address all correspondence to Asim Ansari, 517 Uris Hall,
Columbia University, 3022 Broadway, NY, NY 10027. The authors
thank Laurette Dube for kindly providing the data for the empirical
study and Don Lehmann for his constructive comments.
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assumed to be multivariate normal N(x, A). The covariance matrix
A can be specified to be diagonal with the elements (variances) set
to large values to represent vague knowledge. The exact location of
this distribution is no longer critical once, a large variance has been
assumed; therefore, without a loss of gencrality x can be set to zero.
For the application we used N(0, 100I), where I is an identity matrix
with appropriate dimensionality.

The combined factor loading matrix A has a patterned structure
owing to the identifiability restrictions that require setting some of
the elements of A to zero or to one. We therefore specified indepen-
dent multivariate normal priors over the free elements within each
row of the matrix. We have for row k a prior N(gj, Hy). The covariance
matrix H; is specified to be diagonal with large variances to ensure
a diffuse prior. Thus, the prior over the loading matrix is the product
of the independent priors associated with the rows of A. In the ap-
plication, we specified the prior distribution for each row to be N(0,
1001).

The m X m matrix R™" associated with the Wishart population
distribution, W(p, R), is assumed to come from conjugate Wishart
prior Wipg, (pxS) ). Smaller values of py correspond to more vague
prior distributions. For the application, we used a prior of W(5, 51).
We assumed a univariate truncated normal N(0, ¢,) prior over log(p).
For the population Wishart distribution W(p, R) to be proper, the
truncation must be such that p is greater than p. The prior variance,
7,, can be sct to a large value to ensure a diffuse prior. For the ap-
plication we set 7, = 100. Alternatively, a truncated gamma prior
can be used, and its parameters can be chosen appropriately to en-
sure minimal influence.

The precision matrix A™ ' associated with the population distri-
bution »; ~ N(0, A) is a p X p positive definite matrix. In keeping
with standard Bayesian analysis of linear models, we assumed a
Wishart prior W(S, (6€2) 1, where 2 ' can be considered the ex-
pected prior precision of the »;5. Smaller ¢ values correspond to
vaguer prior distributions. For the application we set & = 5 and Q
= I to ensurc a proper prior.

There are r = (p + gq) different population distributions IG(ay, 0),
k = 1 to r, for the measurement error variances contained in ;. We
therefore need to specify priors over the set of unknowns {{a}, {b}}.
We chose independent conjugate inverse gamma priors, b ~ 1G(g;,
hy), for k = 1 to r, to quantify prior uncertainty about the scale pa-
rameters. In the application we assumed g, = a and g = 2 and b,
= 2 for all k. Finally, we assumed independent univariate normal
N(O, 7;) priors over log(ay) for k = 1 to r. The prior variance, 7,, must
be set to a large value to ensure a diffuse prior. In the application
we set 7, = 100.

The prior for the vector ¥ is specified to be multivariate normal
N(e, O). The covariance matrix C can be assumed to be diagonal and
its entries chosen to represent vague knowledge. The exact location
vector ¢ is no longer critical once a large variance has been assumed;
hence, without loss of generality we sct ¢ to zero. In the application
we therefore set ¢ = 0 and C = 100!

We assumed a Wishart prior W(p,, (p,R,)"") over the precision
matrix Y ! associated with the structural parameters #;. Smaller p,
values correspond to vaguer prior distributions. We therefore set p,

MARKETING ScieNcE/Vol. 19, No. 4, Fall 2000

= 5 and R, = 0.1I. Finally, we assumed a Wishart prior W(p,,
(p,R,) ") over the precision matrix ¥ ' of the structural model. If
the structural model consists of a single equation, then an inverse
gamma prior over the single structural error variance parameter can
be assumed instead. In the application we chose [G(3, 1000) for the
prior over the univariate y.

Appendix 2:  Full Conditional Distributions

The (m + Tith iteration of the MCMC algorithm requires us to gen-
erate random draws from the
distributions:

following full conditional

(a) The measurement intercepts « are generated from the multi-
variate normal full conditional distribution given by

plal A, {f;), 10), fw,)) = NG, V,) (AD)

where V! = A" + 2| NO;/' and & = V, [A" & +
Mo, 07 SN Gy — Af)L

(b) The loading matrix A is a patterned matrix containing both
fixed and free elements. Of the fixed elements, some are fixed to zero,
whereas others are fixed at one to impose identifiability constraints.
The full conditional distribution for the free elements in a row of the
matrix A is multivariate normal. Given the choice of the prior dis-
tributions, the full conditionals pertaining to the different rows are
independent. Therefore, the rows can be handled sequentially. Let
;. be the vector of free elements in row k. The prior for 4, is given
by p(2,) = N(g, Hp. Let fijk be the vector of factor scores correspond-
ing to the clements in row k of A that are set to onc and let f
contain the remaining factor scores from f;. Form the adjusted vari-
able Wy = wy — 1 ~,-,-k — «, where 1 is a vector of ones. Given the
prior, the vector 4, can be sampled from the full conditional distri-
bution given by

P M Wied, A i, 034

1N
= N (Dk E. 2 05" fo oy + H ' g ’ DA) (A2)
i1
where Dy ' = 2L 20 05 f af g + Hy L

(¢) The full conditional distribution for the factor scores &; is a
multivariate normal distribution. The mean and variance of this dis-
tribution can be obtained by considering the prior §; ~ N(»;, @) and
the two data sources for &;. The first “data” we consider are y;.
Consider the structural equation Model, Byy; = v;0 + 1§y + &
Define 7i; = By — pip- An intermediate posterior distribution for
&; can be written as N(&, 5, V,, ), where V[, = @'+ 17 % 'I;
and g:,l,',» =
acts as a prior for the other data source x;. Taking into account the
a, 4 Ay + dy, the full conditional

Vi@ 'y 4+ T ). This intermediate posterior

measurement equation, x; =
for & can be written as N(qz,',-/ V,), where V' = Vi)l +
AL O A and & = V, [V )&+ AL O x, — )l

(d) The full conditional distribution for the individual-level factor
means »; is a multivariate normal distribution that can be written as

py gyl @, A) = N, V,), (A.3)
where V' = A" + N®; 'and # = V, ;' 2} &,
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(e) The full conditional distribution for the precision matrix ®; "'
of the individual-level factor scores is Wishart and is given by

PO HEN, ) = WP Rood (A4)

where p,, = p + Njand R, = [EN (& — w)(& — ») + R T

(f) The full conditional for the precision matrix A~ of the factor
means is a Wishart distribution. Given the prior W(J, )", the
full conditional can be written as

! 71
p(A ) = w(o‘ + 1 ’ > v+ o‘sz} ) (A.5)
d=1

(g) The full conditional distributions for the diagonal elements of
the measurement error variances @; for each individual, i.e., 0y, k
= 1 to r, are independent inverse gamma distributions. These dis-
tributions follow from standard Bayesian theory and can be written
as

}7(0,',1\-“/\—/ Oy, [f, }) =

N; -1
2 (wi/k N /ﬂ»ff,‘)z

j=1

2

+ bt (A.6)

where 4; is a vector containing the elements of row k of A.

(h) The full conditional for the hyperparameter b, of the inverse
gamma population distribution over the kth measurement error var-
iance, 0, is also an inverse gamma distribution. Given the conjugate
inverse gamma prior, IG(g,, /1), the full conditional can be written
as

1 -1
pb 0, a) = IG (Ink g it + D) 0,.;,'} ) (A7)
=1

Parameter draws can be sequentially made from the full conditional
distributions of each b, k = 1 to r.

(i) The full conditional for the hyperparameter la, = log(a;) of the
inverse gamma population distribution for the kth measurement er-
ror variance, ();, cannot be written in closed form. The likelihood of
the “data” can be written as

! < Tyexplla) +1 -1 -1
L0 ey by = [T exp(— b ! 0)

i=1 f(exp(]ak»bﬁxp(lnk) (A.8)

The prior density of la, is univariate normal p(la,) = N(0, 7). The
full conditional is proportional to the product of the likelihood and
the prior. We use a random-walk Metropolis-Hastings step to gen-
erate random draws of Ia;. To generate a candidate /aj, we use a

¢ ), that is centered on

univariate normal proposal density, N(la
the old value of /a{™ from iteration m. The tuning constant f, in the
proposal density is chosen to allow rapid mixing and to avoid ex-
cessively frequent rejections of the candidates. The generated can-

didate laf is accepted with the following acceptance probability

. { LUag 10,4, bp(ial) ]
L(Iﬂ;(\,"') | {(},,k}, bk)p([[l,((m))’

(A9)

If the candidate is accepted, then Ia{" "V = Iag, otherwise, laf" ! =
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la{". Parameter draws can be sequentially made for each la;, k = 1
tor.

(j) The full conditional for the factor scores #; is a multivariate
normal distribution. Consider the reduced form for the structural
model i = B (yio + Ii&; + ). Let Q = B;" ¥B; V. Then the
full conditional is given by N(j; V,), where V,' = Q"' +
A®;'A, and iy = VIQTUB yy + BiTE) + A0y, -
).

(k) The full conditional for the structural parameters z; = {B;, y;o,
I';} associated with individual 7 is a multivariate normal distribution.
For a recursive system of simultaneous equations, the structural
model Bay; = yjo + [ + & is a general triangular system (see
Zellner 1971, p. 252). This system can be recast as n; = Egm; +
where Ej; is an appropriately dimensioned matrix containing both
the exogenous and endogenous factor scores. The key featurc of a
triangular system is that the determinant of the matrix of the coef-
ficients of the endogenous variables # vanishes. Thus we can treat
the system n;; = E;m; + (;; as a scemingly unrelated regression (SUR)
system. Given the prior p(r) = N(Z;9, Y), the full conditional is
given by N(&;, V,), where V! = Y~} + 3N, 5!
Vo YT Z9 + 2N B g

(1) The full conditional distribution for the precision matrix ¥

lEi]- and 7; =

1

of the structural model is Wishart and is given by
p(\l' 1 {éij]/ {77,'/'}/ {}’i,()r ri: B/}) = W(/)poy R;ms) (A.10)

where p,,, = p, + Nand R, = >, E}",jl ity + /)wal’] and
iy = Bapy — yip — TSy

(m) The full conditional for the population structural parameters
4 is a multivariate normal distribution and can be written as

(1 (m), Y) = N, Vy) (A1)
where V' = C' + 3, ZY7'Z, and 9 = V4(C' ¢ +

Sy ZIY 'm).

(n) The full conditional for the precision matrix Y of the
individual-level structural parameters x; is a Wishart distribution.
Given the prior W(p,, (p,R,) 1), the full conditional can be written
as

pY " Hm)) =

I -1
W (/@, + 1, {E(n, - ZD, — Z9) + ;)“R“’ ) (A.12)
i=1

(0) The full conditional distribution for the hyperparameter R™!
is a Wishart distribution. The likelihood associated with this full con-
ditional distribution is a product of Wishart distributions. As the
population distribution for the factor precisions ®; is given by ®;'
~ W(exp(p'), R), the likelihood can be written as

L{®; ' p', R

I 1
exp<f; tr(R"l E (Di 1)) H |d)i~] I(L‘X})(/}')*P*])/Z
i=1

- ! (A.13)
| R | €xpeD/2 gpexp(py/2 f[ F(exp(’) ',) M f,,f )
2

i1

MARKETING ScIENCE/Vol. 19, No. 4, Fall 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ANSARI, JEDIDI, AND JAGPAL
A Hierarchical Bayesian Methodology

The above likelihood when combined with the conjugate Wishart
prior, R ~ W(y, (S) ") yields a full conditional distribution that
can be written as

pRHD Y, p, 9, 8) = W + Ip, S + 2,07 )7, (A14)

(p) The full conditional for the hyperparameter p’ = log(p) of the
Wishart distribution over ®; ! cannot be written in closed form. This
full conditional is proportional to the product of the likelihood ex-
pression specified above, and the prior density of p', which is a uni-
variate normal p(p') = N(O, 1,,). We therefore use a random-walk
Metropolis-Hastings step to generate random draws of p’. To gen-
erate a candidate p', we use a univariate normal proposal density
N(p'™, 1) that is centered on the old value of /)’(’”) . The tuning con-
stant ¢ in the proposal density is chosen to allow rapid mixing and
to avoid excessively frequent rejections of the candidates. The gen-
erated candidate p’® is accepted with the following acceptance
probability:

(A.15)

min[ LGy 1@, 1), Rip(p’) }
LG/™ @, 1, Rplp ™

If the candidate is accepted, then p'™ "D = p'; otherwise, p'™ "V =

p'(m).
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