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Multilevel covariance structure models have become increasingly popular in the psychometric liter- 
ature in the past few years to account for population heterogeneity and complex study designs. We develop 
practical simulation based procedures for Bayesian inference of multilevel binary factor analysis mod- 
els. We illustrate how Markov Chain Monte Carlo procedures such as Gibbs sampling and Metropolis- 
Hastings methods can be used to perform Bayesian inference, model checking and model comparison 
without the need for multidimensional numerical integration. We illustrate the proposed estimation meth- 
ods using three simulation studies and an application involving student's achievement results in different 
areas of mathematics. 
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1. Introduction 

Multilevel covariance structure models have become increasingly popular in the psycho- 
metric literature in the past few years (Goldstein & McDonald, 1988; Longford & Muthdn, 1992; 
McDonald & Goldstein, 1989; Muthdn, 1989, 1994; Muthdn & Satorra, 1989). The rapid growth 
of multilevel modeling reflects the realization that it is crucial to account for population hetero- 
geneity in order to make valid inferences from data that have a nested or hierarchical structure. 
Such nested data structures are common in studies of student achievements in classrooms and 
schools. Here students can be considered nested within classrooms and classrooms can be con- 
sidered nested within schools thus forming a three-level nesting structure. The existing literature 
on multilevel latent variable models mostly deals with continuous observed variables. In this pa- 
per we develop hierarchical Bayesian methods for performing factor analysis of multilevel binary 
data. We extend previous work on multilevel factor analysis (Longford & Muthdn) by focusing 
on data containing dichotomous observed variables. Although we concentrate on data involving 
only binary variables, our procedures can also handle metric data and mixed (i.e., metric and 
binary) data situations with minor modifications. 

There is a rich tradition on covariance structure modeling of binary data. Primary contri- 
butions in this area have come from Christofferson (1975), Bartholomew (1980, 1981, 1984), 
Muthdn and Christofferson (1981), Muthdn (1978, 1984, 1987), Bock and Aitken (1981) and 
Bock and Gibbons (1996). Muthdn (1984, 1987) presented a general computer program LIS- 
COMP for performing latent variable modeling of binary data. Bock and Gibbons developed 
a maximum likelihood approach for exploratory factor analysis and used a combination of the 
EM algorithm and scoring methods to estimate the model parameters. Maximum likelihood ap- 
proaches to factor analysis of binary data pose difficulty in the estimation of model parameters 
as they requires multidimensional numerical integration. This difficulty is further compounded 
with multilevel data structures. In this paper we describe the use of Markov Chain Monte Carlo 
(MCMC) procedures for simulation based estimation of factor analysis models. These proce- 
dures circumvent the need for evaluating multidimensional integrals and are therefore eminently 
suitable for binary multilevel data situations. We also discuss how considerations of model corn- 
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parison and model adequacy of binary factor analysis models can be handled using the simulation 
output from MCMC procedures. 

Previous research in the psychometric literature has used Bayesian methods in factor analy- 
sis models for two distinct purposes. The early work of Martin and McDonald (1975) illustrated 
the use of Bayesian techniques for factor analysis of continuous variables to circumvent the prob- 
lem of Heywood cases. Lee (1981) illustrated the use of Bayesian confirmatory factor analysis 
under different forms of prior distributions. The second stream of research has focused on pro- 
cedures illustrating how point estimates of model parameters can be used for making Bayesian 
posterior analysis of factor scores (see Bartholomew, 1981; and Shi & Lee, 1997). These proce- 
dures, however, ignore the uncertainty pertaining to the other model parameters. In contrast, our 
analysis procedures permit the direct estimation of factor scores along with the other model pa- 
rameters and therefore allow a proper accounting of uncertainty in making inferences regarding 
all unknown quantities in the model. In addition, Bayesian procedures do not rely on asymptotic 
inference and can be especially useful in nonlinear models (Arminger & Muthdn, 1998) and bi- 
nary data situations as these may require very large sample sizes for asymptotic properties to 
hold. 

The rest of the paper is organized as follows. Section 2 presents a two-level factor analysis 
model and discusses identification and the specification of priors. Section 3 outlines the MCMC 
algorithm for estimation and provides a description of the full conditional distributions. Sec- 
tion 4 discusses procedures for model comparison and adequacy. Section 5 presents the results 
of three simulation studies. Section 6 illustrates the model using mathematics achievement data 
and Section 7 concludes with a discussion of limitations and opportunities for future research. 

2. Model  

Multilevel covariance structure modeling assumes that data are obtained by cluster sam- 
pling, that is, by randomly sampling the units at each level of the hierarchy. For example, re- 
searchers in education first randomly sample a subset of classrooms and then select a random 
sample of students within each selected class to obtain a two-level data structure. This sampling 
scheme therefore requires a two-level model specification. The first level captures the within 
group (i.e, student variation within a classroom) while the second level models the between 
group (i.e, across classes) variation. 

In this section we describe a two-level binary factor analysis model. Suppose data come 
from I distinct groups (e.g., classrooms) indexed i = 1 to I .  Each group i, provides j = 1 
to ni observations (e.g., student responses) on a p dimensional vector Yij of binary random 
variables. The total number of observations in the two-level data is then given by N = ~7,i ni. 
The observed binary variables can be modeled in terms of p underlying continuous variables 
wij  that have an interpretation which depends on the context of the application. In psychometric 
studies dealing with achievement data, the latent variables refer to underlying ability variables. 
In biometric applications these describe tolerances while in consumer psychology studies they 
refer to unobserved utility for products. The link between the observed binary variables and the 
underlying latent variables for observation j of group i can be represented in terms of a threshold 
specification as follows: 

{: Yijk = otherwise, for k = 1 to p.  

At  the first level, we assume that conditional on the group mean r i ,  the latent variables 
within a group i have a common factor structure: 

wij  ~ N p ( r i ,  Vl) ,  (iid) 
! 

V 1 = ~ ~ i x i r i ~ ~  1 -~- A1 (2) 
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where 1~1 is a p x rl matrix of factor loadings (rl < p), aI~l is a rl x rl positive definite variance 
matrix and A1 is a diagonal matrix of variances. At the second level, the group means vi can be 
assumed to be normally distributed, that is, 

ri ~ Np (v, V2), (rid) 
! 

V 2 = , ,~2 '~2, .~  2 -1- A 2. (3) 

Here ~ 2  is a loading matrix of dimension p x r2, ~It2 is a covariance matrix of dimensions r2 x r2 
and A2 is a diagonal covariance matrix. The two-level model can alternatively be described in 
terms of  factor scores as follows: 

W i j  = ~'i -l- ~]~l~l , / j  -t- IEl,ij 

"ri = l,' + ~c'~2~2, i + E2,i (4)  

w h e r e  ~ l , i j  ~ N(0q ,  '~Ittl) , (~2,i ~ N(Or:, aI*2), El , i j  "" N(Op, A1), a n d  E2,i ~ N(Op, A2) a re  

mutually independent normal random vectors. The vectors ~l,ij and ~2,i represent the first level 
and second level factor scores, respectively. Notice that if Wij are observed then we obtain the 
special case of  a multilevel continuous factor analysis model. 

2.1. Identification 

We begin discussing identification of the two-level model by focusing on the scale restric- 
tions imposed by the binary nature of the observed variables. Muth6n (1979) discusses identifi- 
cation in general covariance structure models for binary data while Chib and Greenberg (1998) 
discuss identification for multivariate probit regression models. The model for group i is given 
by W i j  = "Ci -}- e l , i  j ,  where el,ij ~ N (0, V1) .  The binary nature of the observed variables implies 
that Vl cannot be estimated as an unrestricted covariance matrix. It is clear that the observed 
binary outcomes do not change if each of the p latent variables in W i j  is multiplied by a positive 
constant. Collecting these constants in a diagonal transformation matrix T = d i ag ( t l , . . . ,  tp), we 
see that the above system of equations is indistinguishable from the system Twi = T'ri + Tel,ij. 
In other words, the data cannot distinguish between the variances Vl and TV1T. However, as 

• - 1 / 2  .-1/2, where Vl,kk iS well known, this problem can be fixed by choosing T = &ag(vl, l l  , . . . ,  Vl,pp ), 

is the k-th diagonal element of Vl. Then TV1T reduces to a correlation matrix 1£1. This scaling 
transforms the vector W i j  to  Uij = T w i j  and the group means ri to mi = Tri .  We therefore have 
a scaled level-one model given by 

Uij ~ Np(mi, ]£1), (lid) 
! 

~1 = AI~ItlA1 + O1 (5) 

where A1 = T['~I and O1 = TAIT.  As the diagonal elements of N1 are fixed to unity, the 
elements of  O1 are given by the identity 

! 

O1 = I -- diag(Al~IClA1). (6) 

At the second level of  the hierarchy, the scaled group means mi can be now represented as 

mi ~ Np(Iz, £2), (rid) 
! 

£ 2  = A 2 a l t 2 A 2  + 0 2 ,  (7) 

where A2 = T O e , / x  = T v  and 02  = TA2T. It is important to note that the rescaled variance 
matrix 1i;2 is not a correlation matrix. The diagonal elements of £2 give the ratio of the between 
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group and within group variances. Further analysis in this paper will be based on the identified 
set of parameters. 

In addition to the scaling restrictions discussed above, further restrictions are required that 
depend upon whether we have a confirmatory or an exploratory model. In confirmatory models, 
the loadings matrices, A1 and A2, have certain elements restricted to zero. Furthermore, in order 
to fix the scale of the latent factors, one can either impose restrictions via the loadings matrices 
(e.g., set the scale of the factor to the scale of  an a priori chosen variable), or can assume that 
R*I and ~I~2 are correlation matrices. In this paper, we adopt the latter restriction. In exploratory 
factor analysis, R~ and ~I*2 are typically assumed to be identity matrices. In addition, we need 
to impose ,-~(r1-1)2 restrictions on A1 and ~ restrictions on Ag_ to account for rotational 
indeterminacies. Bock and Gibbons (1996) suggest one form in which these restrictions can 
be applied. In the rest of  the paper we will focus on the confirmatory factor analysis model. 
Extensions to the exploratory case are straightforward ~ . 

2.2. Priors 

Bayesian procedures require the specification of  priors for y = {~, A2, 02 ,  ~I~2, A1, ~I~1}. 
Lee (1981) discusses different forms of  prior distributions for continuous factor analysis models. 
In this paper we specify the prior distribution as follows: 

p ( g )  = p ( l x ) p ( O 2 ) p ( A 2 ) p ( R t 2 ) p ( A l ) p ( R f l ) I  (X(Ab  R~I)). (8) 

We use proper but diffuse priors over model parameters. The prior for the overall mean ~ can 
be chosen as a multivariate normal distribution N(~I, C). The covariance matrix C in this prior 
can be assumed to be diagonal. The diagonal elements (variances) can be set to large values to 
represent vague knowledge. The exact location ~1 is no longer critical when C is large and ~l can, 
therefore, be set to a zero. 

The matrix 0 2  is a p x p diagonal matrix containing the measurement error variances. In 
keeping with standard Bayesian analysis, we can assume independent inverse gamma priors over 
the variances. We therefore have IG(ak,  bk) for the k-th variance O2,kk. The constants ak and bk 
can be chosen to ensure a vague but proper prior. 

The correlation matrix ~It2 has r f2 = r2(r2 - 1)/2 nonredundant correlations which are the 
only free parameters of the matrix. Let vec (~2 )  be a vector of these free correlations. Following 
Chib and Greenberg (1998), we assume a multivariate normal prior over vec(R~2). Formal ly  we 
have 

E1 / 1 p(vec(R~2)) <x exp - 2  (vec (~2)  - vec(~2,0))  G2,o(vec(R*2) - vec(R~2,o)) , (9) 

where vec 01'2) belongs to a subset of the hypercube [ - 1 ,  1 ]r~2 that leads to a proper correlation 
matrix. I f  we do not have strong prior information about the likely magnitude of the correlations, 
we can choose vec(R~2,0) to be a null vector of  dimension r f2 and the precision matrix G2,0 can 
be conveniently specified as a r f2 x r f2 identity matrix. 

The matrix A2 has a patterned structure. We therefore specify independent multivariate 
normal priors over the nonzero elements within each row of  the matrix. We have for row k a 
prior N(g2k, It2k). The covariance matrix It2k can be assumed diagonal with large variances to 
ensure a diffuse prior. The prior over A2 then is a product of  the independent priors associated 
with the p rows. 

The prior for the loadings in the level-one matrix A1 can be specified in an analogous 
manner. We need to specify priors only on the unrestricted elements of  this matrix. We therefore 

1As suggested by  an anonymous  reviewer, it is possible to impose  crossqevel  constrahnts such as A 1 = A 2 when the 
factor  structure is c o m m o n  across levels. Here  we consider  the more  generM situation that allows the number  of  factors 
to be  different across levels. 



A S I M  A N S A R I  A N D  K A M E L  J E D I D I  479 

use independent multivariate normal priors N(glk, Hlk) over the unrestricted elements of each 
! 

vector Alk, k = 1 to p, where Alk is row k of A1. The prior over A1 then is a product of the 
independent priors associated with the p rows. 

The correlation matrix, xIrl has r f l  = rl (rl - 1)/2 nonredundant correlations. Let vec(XItl) 
be a vector of  these free correlations. Analogous to the prior for W2, we specify a multivariate 
normal prior over vec(W1). We have 

[1 , 1 p(vec(W1)) (x exp - ~ ( v e c ( W 1 )  - vec(Wl,o)) Gl,o(vecOIrl) - vec(Wl,o)) , (10) 

where vec(XItl) belongs to a subset of  the hypercube [ - 1 ,  1] r f l  that leads to a proper correla- 
tion matrix. Once again we can choose v e c ( ~ , o )  to be a null vector of dimension rfl and the 
precision matrix Gl,o can be specified as a rfl × r f l  identity matrix. 

The last term in the joint prior, I (S(A1, tIrl)), accounts for the identification restrictions 
! 

imposed by the fact that 2£1 is a correlation matrix. As ~£1 = A I ~ I A  1 + O1, we need to ensure 
! 

that I - diag(AlXlrlA1) > 0 for O1 to be positive definite. Let S be the set of parameters 
{A1, tit1} that satisfy the above inequality. Then I(S(A1,  ~ 1 ) )  is an indicator function for the 
set S(A1, xlrl) and is required to restrict the support of the joint prior density to values that satisfy 
the inequality. 

3. Inference Procedure 

The conditional probability of observing a binary vector Yij for observation j of group i 
given the group mean mi can be written as 

g(YiJ l mi)= fl f~2"" f,jf(u) du, (11) 

where f (u) is a multivariate normal density specified in (5). The limits of integration are defined 
as follows: 

(--c/d, 0), ifYijk = 0 
Sk = (0, oc), ifYijk = 1. (12) 

Given a sample of  ni independent observations Yil, Yi2, . . . ,  Yini, the conditional likelihood for 
group i is given by the product of  the ni multiple integrals of  the type given in (11), i.e., 

hi 

Li(AI,~Ir l  Imi ,  {Yij}) = Hg(y i j  Imi) .  
j = l  

(13) 

The likelihood for the entire sample can be constructed as the product of  the unconditional like- 
lihoods for the I groups, that is, 

I 

L ( A i , A 2 , # , ' l ~ l , ~ I ] 2 , 0 2 ; { { y i j } } ) : I - I f j . . . f  Li(Al,~I~lln, i,{yij})h(n,i)dmi, (14) 
i=I 

where h (m) is a multivariate normal density given in (7). 
The above likelihood expression involves computation of high order multidimensional in- 

tegrals and this makes classical inference based on maximum likelihood methods extremely dif- 
ficult. In the Bayesian framework, inference about the unknown parameters is based on their 
joint posterior distribution. As the posterior density of all unknowns is very complex we use 
simulation based methods for summarizing the posterior density. This involves generating many 
random draws of the unknowns from the joint posterior density and then basing inference on 
the empirical distribution of this sample of draws. In our model, the complexity of the posterior 
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density precludes the use of direct methods for obtaining parameter draws from the posterior. We 
therefore use Markov Chain Monte Carlo (MCMC) methods to simulate the draws. Specifically, 
we use substitution sampling (a combination of the Gibbs sampler and the Metropolis Hastings 
algorithm) in tandem with data augmentation (Albert & Chib, 1993; Tanner & Wong, 1987) to 
obtain the requisite sample of parameter draws from the joint posterior distribution. 

Substitution sampling involves replacing one complicated draw from the joint posterior 
with a sequence of relatively simple draws from easy to sample distributions. Sampling from 
the posterior is usually achieved by sampling from the full conditional distributions of blocks 
of parameters. If  all the full conditional distributions are known, then substitution sampling 
reduces to a procedure known as Gibbs Sampling (Gelfand & Smith 1990; Geman & Geman, 
1984). When the full conditional distribution for some parameter is not completely known 
(i.e., known only upto a normalizing constant) the Gibbs sampling step cannot be used and is 
therefore replaced by a Metropolis-Hastings step (Chib & Greenberg, 1995). In the context 
of the model developed in this paper we need to generate random draws for the unknowns, 
{A1, A2, ~,  {Ill/}, ~I/'l, ~I/'2, 1~2, {~l,ij}, {~2,i}, {{W/j}}}. Each iteration of the substitution sam- 
pler involves sequentially sampling from the full conditional distributions associated with each 
block of parameters. It is important to point out that the MCMC procedures described in this 
paper produces samples for the unknown { { U i j  }}, via data augmentation (Albert & Chib, 1993; 
Tanner & Wong, 1987) and therefore circumvents the need for integration procedures. In ad- 
dition, the MCMC procedures provide samples of the factor scores {{~l,ij}}, and {~2,i}, thus 
enabling posterior inference about the factor scores. Treating the factor scores as part of the 
unknowns in the model facilitates proper accounting of uncertainty regarding these quantities. 

The substitution sampler is run for a large number of iterations. This iterative scheme of 
sequential draws generates a Markov chain that converges in distribution to the joint posterior 
under fairly general conditions (Tierney, 1994). After passing through an initial transient phase 
the chain converges to the posterior distribution of parameters and therefore the subsequent draws 
from the chain can be regarded as a sample from the posterior distribution. Geyer (1992) recom- 
mends a single long run to obtain a sample from the posterior, whereas Gelman and Rubin (1992) 
propose multiple chains from different starting values to help diagnose convergence. While con- 
vergence cannot be proved, a number of convergence diagnostics which use the statistical prop- 
erties of the chain have been proposed in the literature. Cowles and Carlin (1996) and Brooks and 
Roberts (in press) provide detailed reviews of many of the methods proposed in the literature. 
After the chains have converged, a large sample of draws can be obtained to approximate the pos- 
terior distribution to any desired degree of accuracy. The Appendix describes the full conditional 
distributions and the simulation steps involved in each iteration of the Markov chain. 

4. Model Assessment 

4.1 .  M o d e l  A d e q u a c y  

The adequacy of a Bayesian model can be assessed using posterior predictive model check- 
ing (Gelman et al., 1996). Let yObS be the observed data and g be the vector of all unknowns. The 
sample of parameter draws '/1, '/2, • • • '/d available from the MCMC algorithm can be used along 
with the appropriate sampling distribution p (y I ' /) to generate hypothetical replicated multilevel 

rep  rep  . r ep  
data sets Yl  , Y2 , • • • ,  Yd • T h e  actual data set can be compared with the replicated data sets 
using test quantities T ( y ,  "/) involving either the data alone or both data and parameters. These 
test quantities are chosen to measure departures of the observed data from the assumed model. 
They can be omnibus goodness of fit measures or could be chosen specifically to highlight sub- 
stantive aspects of the application of interest. If  the replicated data sets differ systematically from 
the actual data on some test quantities, then we can ascertain that the model does not adequately 
capture the data generation process on those aspects that are captured by the test quantities. 
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A posterior predictive p value given by 

P(Y) = P[T(Y rep, Y) >- T(Y °as, Y) I yOaS] (15) 

can be used to detect model inadequacies. This p-value  can be approximated easily from the 
MCMC sequence of draws using 

1 d 
P(Y) = ~ ~ I(T(Yri ep, Yi) R T(y  °bs, Yi)), (16) 

where I is an indicator function. The expression in (16) estimates the p-value as the proportion 
of the d replications in which the simulated discrepancy variable exceeds the realized value. A 
p-value close to zero or one, (i.e., I P - 0.5 I close to 0.5) indicates that the model  is inadequate 
for the aspects measured by the discrepancy variable T. 

In binary factor analysis, we suggest test statistics based on coefficients of correlations for 
2 x 2 contingency tables of manifest variables. Tetrachoric correlations can be used for these 
purposes. Bartholomew (1987, pp. 115-120) discusses other alternatives to the tetrachoric cor- 

a d  relation that are easier to compute. If  the cross product ratio is given by 0 = 57 where a and 
d are the diagonal frequencies and b and c are the off-diagonal frequencies in the contingency 
table, then Chambers (1982) shows that a correlation coefficient based on C-type distributions 
(Mardia, 1970) can be approximated by 

0 V _ l  
T(yi) = r --  0 v + 1' (17) 

where v = 0.74, leads to a good approximation. If  a model  consistently overpredicts or under- 
predicts a correlation then we can conclude that the correlation structure implied by the model  
fails in replicating that correlation in the actual data. In the simulations to follow, we illustrate 
the diagnostic potential of such correlation coefficients. 

In situations where the binary variables p are limited in number, the frequency distributions 
of the 2 p different response profiles 2 can be compared across the actual and the replicated data 
sets. Such a comparison can yield comprehensive information about the adequacy of the model  in 
capturing marginal probabilit ies of various orders. In addition to the above test statistics, we can 
also use discrepancy variables based on Bayesian residuals described in Albert  and Chib (1995). 
The model  llij = m i -}-Alc$1,ij -}-~?ij suggests the Bayesian latent residuals ~?ijk (mik, A1, ~l,ij ) = 
Uijk - -  (mik + ~11, k ~l,ij ) ,  for k = 1 to p.  These latent residuals are available easily as a by-product  
of the MCMC simulation. Various summary measures of these residuals can be utilized to assess 
model adequacy. For example, Q - Q plots can be utilized to test the normality assumptions of 
the measurement errors. 

4.2. Model Comparison 

Bayes factors (Kass & Raftery, 1995) have traditionally been used in Bayesian analysis to 
compare two models. Chib and Greenberg (1998) discuss the computation of the Bayes factor 
for multivariate probit models. Their computational approach is difficult to use in our multilevel 
factor analysis setting owing to the identifiability constraints that are necessary at the first level 
of our model. We therefore use the pseudo-Bayes factor (PsBF) (Gelfand, 1996; Sahu, 1998) as 
a surrogate for the Bayes factor. The PsBF is based on the cross-validation predictive density of 
the data instead of the prior predictive density used in the calculation of Bayes factors. It can 
therefore be used even with improper priors. Moreover, it can be very conveniently computed 
using the MCMC draws for our model. 

2A response profile is given b y  a sequence of  ones and zeros on the p b inary  variables.  
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Let y be the observed data and let Y(ijk) represent the data with the kth variable of observa- 
tion j from group i deleted. The cross-validation predictive density can then be written as 

7c(Yijk I Y(i jk))  = f 7c(Yijk I T,  Y ( i j k ) ) r r ( T  I Y ( i j k ) ) d T  (18) 

where V is the vector of all parameters in the model. The PsBF for comparing two models (M1 
and M2) is expressed in terms of the product of cross-validation predictive densities and can be 
written as 

I ni P 7c(Yijk I Y(ijk),  M1) 
PsBF = I - I  I - I  I - I  rr(Yijk ] Y(ijk), M2)" 

i = l j = l k = l  
(19) 

The PsBF summarizes the evidence provided by the data for M1 against M2 and its value can be 
interpreted as the number of times model M1 is more (or less) probable than model M2. 

The PsBF for our model can be calculated easily from a sample of d MCMC draws 
{ ' /1 , . . . ,  Vd}. As ,/ is the vector of all parameters, including the factor scores, the binary re- 
sponses Yijk, i = 1 to I ,  j = 1 to ni and k = 1 to p, are conditionally independent given y. In 
such a situation, a Monte Carlo esimate of rr(Yijk I Y(ijk)) can be obtained as 

Sc (Yijk I Y(i jk))  = :~ ( t )  5Yijk (1 -- ,~(t) ~ 1-yijk 
= tldijkJ Fi jkJ  

(20) 

/ .(t) ~. (t) ~.(t)£~(t) \ 
_(t) [ uijk --Htijk --tttl,k) Ulij 

In (20), Pijk  is the probability Pr(Yij  k = 1 I Yt) = 1 - • \ ~ ) ,  where the 

superscript t denotes the t-th draw. Gelfand (1996) provides the derivation for Equation (20). 
In practice, we can calculate the logarithms of the numerator and denominator of the PsBF and 
these can be used for comparing different models. 

5. Simulations 

We investigate the MCMC procedures described above using three simulation studies. The 
first simulation examines the performance of the algorithms in recovering the true parameters. 
The second simulation examines the performance of the different criteria for model assessment. 
The third simulation examines the sensitivity of the parameter estimates to different hyperparam- 
eter specifications. 

5.1. First Simulation: Parameter Recovery 

To assess how well the MCMC procedures recover the true simulated parameters, we used 
a balanced 8 variate data set with 125 groups and 30 observations within each group according 
to the model in (5) and (7). We set ~ = 0, 

, , ( 0 ; 9  0.96 0;9 0;9 0!9 0 0 0  ) 
A1 = A 2 =  0 0.92 0.96 9 ' 

~ l  = ~ 2  = 0 5 

(21) 

, ( 2 2 )  

O1 = I - d i a g ( A l ~ l A 1 )  and 0 2  = 0.1I, to generate the simulated data. 
We used priors that are similar to those outlined in section 2.2. The prior for ~ is assumed to 

be p ( ~ )  = N(0, 100I). The second level variances have independent inverse gamma priors each 
given by p(Okk) = IG(0.001,  1000), k = 1 . . . .  p. The priors for the two correlation matrices 
are as described in Section 2.2 with vec(~l ,o )  = vec(~2,o) = 0 and Gl,o = G2,o = I.  Finally 
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we assume independent univariate normal N(0,  100) priors over the individual elements in A1 
and A2. 

We used a total of 50 Monte Carlo replications to study the variation across the generated 
samples. For each of the 50 data sets we estimated the model parameters based on 3500 draws 
from the joint  posterior distribution, after an initial transient phase of 1500 draws. We used a 
single chain for each estimation to make the computations manageable.  We checked convergence 
using the Geweke 's  spectral density diagnostic (Geweke, 1992) which is part of the CODA pack- 
age (Best, Cowles & Vines, 1995) and by using time series plots to graphically assess the quality 
of the mixing in the chain. In this simulation, the Geweke convergence diagnostic for most pa- 
rameters was within the -t-1.96 range indicating that convergence is plausible. Computations 
were performed on a Sun Enterprise 4000 machine using programs written in the C language by 
the authors. The time for each run of 5000 iterations is approximately 50 minutes. 

Table 1 reports the true parameters, the average of the mean and the average of standard 
deviation of the posterior distributions of the parameters over the 50 Monte Carlo samples. The 
Table also includes the 95% coverage for each parameter. The coverage is the proportion of the 
50 Monte Carlo samples in which the 95% posterior interval spanning the 2.5th to the 97.5th per- 
centile of the MCMC draws covers the true parameters. Table 1 shows close agreement between 
the true parameter and the average estimated mean across the samples. The coverage properties 
are also good considering that these are based on as little as 50 Monte Carlo samples. 

5.2. Second Simulation: Model  Assessment Criteria 

In order to assess the performance of the model adequacy test quantity described in Sec- 
tion 4.1 and to investigate the performance of the pseudo Bayes factor for model comparison, 
we estimated two alternative models with factor structures that are different from that of the true 
model. We then computed the posterior predictive p-values for the correlations in (17) and the 
PsBE The first alternative model (Model 2) assumes a single factor while the second alternative 
model (Model 3) assumes two factors as in the true model (Model 1) but with a factor structure 
given by the loading's  matrices 

A1 = A2 = 1 )v21 )v31 0 0 0 0 1 (23) 
0 0 )v42 ) v 5 2  ) v 6 2  )v72 " 

Note that Model 3 is misspecified as indicator Y4 incorrectly loads on factor 2, whereas indicator 
Y8 incorrectly loads on factor 1. 

Table 2 reports the results of the posterior predictive checks associated with the p ( p  - 1)/2 
nonredundant correlations between the manifest variables for the three models. The models were 
estimated for each of the 50 samples generated using the true parameters in Section 5.1. The 
p-values for model adequacy were computed based on 1500 replicated data sets for each original 
sample. The first set of results in Table 2 gives the mean across the 50 samples of the mean 
absolute deviations ] tact - rrep  I for each model and each correlation, where tact is the correlation 
based on the actual data and rrep is the correlation from a replicated data set. The fourth column of 
Table 2, (Model 3) shows that the absolute deviations associated with variables 4 and 8 (e.g., r14, 
r24, r58) are of larger magnitude than those corresponding to the other variables. This indicates 
that the factors associated with these variables may have been misspecified. The second set of 
results in Table 2 report the average across the 50 samples of the absolute deviation of the p -  
values from 0.5, I P - 0.5 l, for each model and each correlation. It is clear from Table 2 that the 
p-values for Model  1 are all near 0.5 resulting in I P - 0.5 I being small for all correlations. This 
is expected as Model  1 has the true factor structure. The p-values for Model  2, the single factor 
model, are all extreme, clearly indicating that a single factor does not adequately capture the 
association structure in the manifest variables. The last column of Table 2 indicates that Model  
3 also does not adequately capture the nature of associations in the data. The average pseudo- 
Bayes factor across the fifty samples for Model  1 versus Model  2 is given by exp ( -8645 .27  + 
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TABLE 1. 
Simulation 1 : Parameter Recovery 

Level One Estimates 

Parameter True Mean Std. Dev. Coverage 

)~11 0.9 0.895 0.01 0.96 
,k21 0.96 0.959 0.007 0.88 
,k31 0.9 0.893 0.01 0.96 
,k41 0.9 0.898 0.01 0.88 
,L52 0.9 0.902 0.009 0.92 
,L62 0.92 0.918 0.009 0.98 
,L72 0.96 0.959 0.006 0.88 
,L82 0.9 0.898 0.01 0.96 
tPl2 0.5 0.495 0.02 0.96 

Level Two Estimates 

/~ 1 0 -0.021 0.09 0.98 
/~2 0 -0 .02  0.095 1 
/~3 0 -0 .013 0.09 1 
/~4 0 -0 .029 0.092 0.96 
/~ 5 0 0.012 0.09 1 
/~6 0 0.022 0.091 0.92 
/~7 0 0.023 0.094 0.96 
/~ 8 0 0.015 0.089 0.96 
)~ 11 0.9 0.904 0.077 0.92 
,k21 0.96 0.97 0.081 0.92 
"k31 0.9 0.896 0.076 1 
,k41 0.9 0.925 0.078 0.92 
,L52 0.9 0.932 0.077 0.88 
,L62 0.92 0.939 0.077 0.88 
,L72 0.96 0.981 0.079 0.92 
,L82 0.9 0.912 0.074 0.88 
tPl2 0.5 0.481 0.078 0.96 
011 0.1 0.108 0.025 0.96 
022 0.1 0.102 0.025 0.96 
033 0.1 0.108 0.025 1 
044 0.1 0.104 0.025 0.96 
055 0.1 0.1 0.024 0.88 
066 0.1 0.102 0.024 0.92 
077 0.1 0.097 0.024 0.92 
088 0.1 0.094 0.023 0.96 

10963.05) = exp(2317.78)  and the average PsBF  for Mode l  1 against Mode l  3 is given by 

e x p ( - 8 6 4 5 . 2 7  + 10444.19) = exp(1798.92)  clearly indicating strong support for the true mode l  

over  the two misspecif ied  models .  

5.3. Third Simulation: Hyperparameter Sensitivity 

In this s imulat ion we  focussed on further studying the accuracy of  the results and the sen- 

sitivity of  parameter  est imates to different specifications of  hyperparameter  values. We used a 

balanced 8 variate data set with 200 groups and 20 observat ions within each group according to 

the mode l  in (5) and (7). We s e t / x  = O, 



A S I M  A N S A R I  A N D  K A M E L  J E D I D I  

TABLE 2. 
Simulat ion 2: Posterior Predictive Checking 

485 

Correlation 

Mean I ract - rrep I Mean I P - 0.5 I 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

r12 0.009 0.154 0.025 0.106 0.5 0.47 
r13 0.011 0.146 0.023 0.137 0.5 0.429 
r14 0.01 0.147 0.205 0.132 0.5 0.5 
r15 0.018 0.108 0.076 0.177 0.5 0.5 
r16 0.017 0.112 0.08 0.167 0.5 0.5 
r17 0.016 0.112 0.078 0.163 0.5 0.5 
r18 0.018 0.111 0.092 0.185 0.5 0.49 
r23 0.009 0.155 0.026 0.099 0.5 0.47 
r24 0.009 0.153 0.216 0.125 0.5 0.5 
r25 0.016 0.112 0.078 0.18 0.5 0.5 
r26 0.014 0.114 0.08 0.106 0.5 0.5 
r27 0.014 0.116 0.078 0.132 0.5 0.5 
r28 0.015 0.113 0.096 0.135 0.5 0.5 
r34 0.01 0.149 0.207 0.123 0.5 0.5 
r35 0.016 0.11 0.079 0.142 0.5 0.5 
r36 0.016 0.113 0.081 0.142 0.5 0.5 
r37 0.017 0.117 0.083 0.189 0.5 0.5 
r38 0.017 0.108 0.09 0.143 0.5 0.5 
r45 0.017 0.109 0.087 0.192 0.5 0.5 
r46 0.016 0.113 0.092 0.144 0.5 0.5 
r47 0.016 0.116 0.095 0.178 0.5 0.5 
r48 0.017 0.11 0.03 0.168 0.5 0.34 
r56 0.009 0.07 0.018 0.121 0.5 0.42 
r57 0.008 0.073 0.021 0.084 0.5 0.45 
r58 0.01 0.068 0.203 0.122 0.5 0.5 
r67 0.008 0.076 0.021 0.122 0.5 0.46 
r68 0.01 0.07 0.206 0.109 0.5 0.5 
r78 0.009 0.075 0.216 0.138 0.5 0.5 

(Oo  o o o o ) 
A1 = 0.75 0.8 0.8 0.75 ' 

A/2 = ( 0 . ~ 5  0 0 8 0 0 8  0 " 7 5 0 ! 8 0 0 ! 8 0 ! 8 0 ! 8 )  

(10  1 
~ 1  = ~ 2  = 0 5  i ' 

(24) 

(25) 

(26) 

O 1  = I - d i a g ( A l ~ l A 1 )  and 0 2  = 0.2I,  to generate  the s imulated data. 

We used a total of  50 Mon te  Carlo samples f rom the above model .  For  each of  these 50 

samples we  est imated the mode l  using two sets of  priors. In the first set, the prior for ~ is as- 

sumed to be  p ( ~ )  = N(0 ,  100I) .  The  second level variances have independent  inverse g a m m a  

priors each given by p ( O k k )  = I G ( 0 . 0 0 1 ,  1000), k = 1 . . . .  p .  The  priors for the two correlat ion 

matr ices  are as descr ibed in Sect ion 2.2 with v e c ( ~ l , o )  = v e c ( ~ 2 , o )  = 0 and Gl ,o  = G2,o = I .  

Final ly  we  assume independent  univariate normal  N (0, 100) priors over  the individual  e lements  

in A1 and A2. In the second set, the prior for ~ is assumed to be  p ( ~ )  = N(0 ,  1000I) .  The  

second level  variances are assumed to be  independent  inverse g a m m a  priors each given by 

p ( O k k )  = I G ( 3 ,  1000), k = 1 . . . .  p .  The  priors for the two correlat ion matr ices  are as descr ibed 
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in Sect ion 2.2 with v e c ( ~ l , O )  = v e c ( ~ 2 , o )  = 0 and Gl ,o  = G2,o = 0.5•. Final ly  we  assume 

independent  univariate  normal  N(0 ,  1000) priors over  the individual  e lements  in A1 and A2. 

Table 3 reports the average results f rom the fifty s imulated data sets for the two sets of  priors. 

These  results are again based on 3500 iterations after an initial burn in per iod of  1500 iterations. 

The  Geweke  Convergence  diagnost ic  for most  parameters  was within the -4-1.96 range indicat ing 

that convergence  is plausible.  The  t ime series plots of  major  parameters  also indicated good  

mixing  of  the chain. As is clear f rom the table, the parameter  est imates are vir tual ly identical  in 

value  and appear insensi t ive to the specification of  hyperparameter  values as these are sufficiently 

diffuse in nature in both sets of  specifications. 

TABLE 3. 
Simulation 3: Hyper-Parameter Sensitivity 

Level One Estimates 

Prior 1 Prior 2 

Parameter True Mean Std. Dev Coverage Mean Std. Dev Coverage 

)~11 0.8 0.797 0.017 1 0.797 0.017 1 
,k21 0.8 0.796 0.017 0.9 0.796 0.017 0.9 
,k31 0.8 0.797 0.017 0.98 0.796 0.017 0.94 
,k41 0.8 0.8 0.017 0.98 0.8 0.017 0.98 
,L52 0.75 0.746 0.019 0.96 0.746 0.019 0.94 
,L62 0.8 0.802 0.018 0.88 0.802 0.018 0.88 
X72 0.8 0.802 0.017 0.98 0.801 0.018 0.94 
,L82 0.75 0.75 0.018 0.88 0.75 0.018 0.9 
qJl2 0.5 0.499 0.022 0.92 0.499 0.022 0.94 

Level two estimates 

#1 0 -0 .006 0.066 0.98 -0 .005 0.066 0.98 
/J2 0 -0.001 0.068 0.94 0.001 0.069 0.96 
/~3 0 0.007 0.069 0.96 0.008 0.069 0.96 
/~4 0 0.009 0.066 0.96 0.01 0.067 0.96 
/~ 5 0 0.001 0.069 0.94 0.002 0.069 0.98 
/~6 0 0.013 0.068 0.94 0.014 0.069 0.94 
/~7 0 0.021 0.068 0.94 0.022 0.07 0.94 
#8 0 0.02 0.068 0.9 0.022 0.069 0.94 
)~11 0.75 0.768 0.062 0.88 0.767 0.061 0.88 
,k21 0.8 0.823 0.064 0.84 0.818 0.063 0.86 
,k31 0.8 0.817 0.064 0.92 0.815 0.063 0.92 
X41 0.75 0.767 0.062 0.92 0.767 0.061 0.94 
,L52 0.8 0.815 0.063 0.94 0.816 0.063 0.96 
X62 0.8 0.798 0.063 0.92 0.801 0.062 0.88 
X72 0.8 0.81 0.063 0.92 0.812 0.063 0.94 
,L82 0.8 0.811 0.063 0.88 0.811 0.063 0.92 
qJl2 0.5 0.498 0.063 0.96 0.497 0.064 0.96 
011 0.2 0.188 0.035 0.98 0.186 0.035 0.96 
022 0.2 0.179 0.037 0.94 0.182 0.036 0.96 
033 0.2 0.187 0.037 0.86 0.186 0.037 0.88 
044 0.2 0.196 0.036 0.94 0.195 0.036 0.92 
055 0.2 0.187 0.037 0.9 0.188 0.038 0.9 
066 0.2 0.193 0.036 0.86 0.195 0.037 0.86 
077 0.2 0.187 0.036 0.94 0.186 0.037 0.96 
088 0.2 0.185 0.038 0.9 0.186 0.037 0.92 
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In summary, our simulation results indicate that our MCMC algorithm does well in recov- 
ering the true parameters. In addition, our model  adequacy test function and the pseudo Bayes 
factor measure are effective in model diagnosis and selection. Finally, our procedure is robust to 
different hyper-parameter values. 

6. Application: Second International Mathematics Study 

We illustrate our procedures using the mathematics achievement data on U.S. eighth-grade 
students from the Second International Mathematics Study (Crosswhite, Dossey, Swaftbrd, 
Mcknight,  & Cooney, 1985). Longford and Muth6n (1992) and Muthdn (1994) analyzed the data 
to estimate a two-level model involving continuous variables. In our application, we assume a 
two-level structure with 274 classes as the second level units and 5601 students nested within 
these classes as the first level units. The average number of students in a classroom is 20. The 
objective of  our illustration is to model the covariation in student achievement on questions 
belonging to different areas of  mathematics.  The data set we use has students test results on 12 
items, 3 items each from the areas of  arithmetic, algebra, measurement and geometry from the 
post-test questionnaire. 

The covariation in the student responses across the items can be modeled in terms of  un- 
derlying ability factors. Previous research using the SIMS data has investigated the possibil i ty 
of  a single underlying factor pertaining to general mathematics ability. Muthdn (1994) estimates 
a model with a single factor at both levels. As Longford and Muthdn (1992) point out, there is 
considerable heterogeneity in the mathematics curriculum across classrooms due to tracking into 
enriched, remedial,  typical and algebra classes. The opportunity to develop abilities in the four 
areas of mathematics differs across the classes as the composition of the topics that are covered 
and the emphasis that is placed on different topics varies across the tracks. For example, typical 
classes emphasize arithmetic whereas more advanced classes teach algebra and geometry earlier 
than in typical classes. Such heterogeneity needs to be explicit ly modeled in order to draw proper 
inferences from the data. 

Considering the composition of the items involved in our study, the covariation in test results 
could also be explained in terms of four underlying thctors pertaining to abilities in the four areas 
of arithmetic, algebra, measurement and geometry. We therefore estimate two models on the data. 
The first model  is a single factor model  at both levels, whereas the second model assumes a four- 
factor structure at both levels of the hierarchy. Student 's abilities in the four areas are l ikely to 
covary, therefore, we allow the four factors to be correlated. As we expect the covariation in the 
mean achievement at the classroom level to reflect the covariation in responses at the student 
level, we choose the same factor structure at both levels. The loadings matrices at both levels, 
therefore, have the same structure but the magnitudes of  the free elements are allowed to vary. 

We apply the MCMC procedures developed in section 3 on the data to estimate both models. 
The prior for /x  is assumed to be p(ix) = N(0,  100I).  The second level variances have indepen- 
dent inverse gamma priors each given by p(Okk) = IG(0 .001 ,  1000), k = 1 . . . .  p.  The priors 
for the two correlation matrices for our four factor model are as described in Section 2.2 with 
vec(~l ,O)  = vec(~2,o)  = 0 and Gl,o = G2,o = I .  Finally we assume independent univariate 
normal N(0,  100) priors over the individual elements in A1 and Aa. We ran two chains from very 
different starting values for 10,000 iterations and monitored convergence using the interval based 
potential scale reduction factor (PsBF) suggested in Brooks and Gelman (1998). The PsBF was 
close to one for all parameters and the results reported for the application are based on 15,000 
draws from the combined output of  both chains after discarding the initial 2500 draws from each 
chain. 

We first compare the adequacy of the two models by locusing on the diagnostics. Table 4 
reports the posterior predictive checks associated with the 66 correlations between the 12 items. 
Recall that a model  fails in capturing a particular correlation if the p-value is extreme, that is, 
I P - 0 . 5  I is close to 0.5. The p-values were estimated l?om 1000 replicated data sets generated as 
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TABLE 4. 
Application: SIMS Achievement Study 

Posterior Predictive p-values for Correlations I P - 0.5 I 

Correlation Model 1 Model 2 Correlation Model 1 Model 2 

rl, 2 0.49 0.061 r4, 8 0.221 0.028 
rl, 3 0.481 0.049 r4, 9 0.242 0.362 
rl, 4 0.279 0.189 r4, lO 0.405 0.062 
rl, 5 0.183 0.101 r4,11 0.135 0.048 
rl, 6 0.195 0.222 r4,12 0.156 0.335 
rl,7 0.175 0.393 r5,6 0.463 0.139 
rl, 8 0.288 0.074 r5, 7 0.197 0.025 
rl,9 0.063 0.252 r5,8 0.076 0.125 
rl, lo 0.133 0.461 r5, 9 0.322 0.394 
rl, 11 0.424 0.208 r5, lO 0.301 0.128 
rl, 12 0.447 0.243 r5,11 0.103 0.271 
r2,3 0.475 0.069 r5,12 0.046 0.161 
r2, 4 0.213 0.264 r6, 7 0.455 0.437 
r2,5 0.255 0.206 r6,8 0.345 0.401 
r2, 6 0.127 0.112 r6, 9 0.388 0.367 
r2, 7 0.307 0.010 r6,10 0.161 0.238 
r2, 8 0.012 0.310 r6,11 0.248 0.150 
r2,9 0.164 0.135 r6,12 0.163 0.013 
r2,10 0.203 0.307 r7, 8 0.491 0.102 
r2,11 0.443 0.229 r7, 9 0.5 0.099 
r2,12 0.396 0.112 r7,10 0.435 0.492 
r3,4 0.409 0.438 r7,11 0.113 0.013 
r3, 5 0.205 0.246 r7,12 0.243 0.119 
r3,6 0.409 0.445 r8,9 0.489 0.057 
r3, 7 0.152 0.226 r8,10 0.038 0.341 
r3, 8 0.281 0.146 r8,11 0.011 0.177 
r3,9 0.499 0.484 r8,12 0.211 0.023 
r3,10 0.147 0.472 r9,10 0.473 0.339 
r3,11 0.401 0.162 r9,11 0.089 0.139 
r3,12 0.159 0.234 r9,12 0.113 0.012 
r4, 5 0.4 0.242 rl0,11 0.392 0.294 
r4, 6 0.315 0.074 rl0,12 0.407 0.288 
r4, 7 0.063 0.141 rl  1,12 0.5 0.295 

part of  the overall  M C M C  simulation.  It is clear f rom Table 4 that the four-factor mode l  (Model  

2) does a better job  at recover ing  the correlat ions be tween  the variables. The  repl icated data 

generated f rom the four-factor mode l  appears to be  in synchrony with the actual data for most  

correlations.  The  pseudo Bayes  factor (PsBF) for compar ing  the four-factor mode l  against the 

one-factor  mode l  is e x p ( - 3 6 5 5 0 . 4 1 2  + 36633.497) = exp(83.085)  and provides  clear support  

for the four factor model .  

The  level -one  poster ior  means  and the standard deviat ions for the entries in A1 an W1 are 

given in Table 5 for the four factor model .  Table 6 reports the level- two parameter  estimates.  The  

level- two factor loadings are posi t ive  indicat ing that it is important  to account  for across class- 

r o o m  heterogeneity.  In addition, the level- two factors are posi t ively correlated.  This indicates 

that there may  be unobserved  factors that are c o m m o n  to the four factors that we  have specificed. 

Similarly,  the factors are strongly correlated at the student level,  suggest ing a second order factor 

that may  further explain the covariat ion in the factor scores. F igure  1 shows the level- two factor 

scores for c lassrooms,  whereas  Table 7 shows point  est imates and standard deviat ions of  the fac- 
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TABLE 5. 
Application: SIMS Achievement Study 

Level-One Parameter Estimates 

Parameter Estimates Std. Dev. 

)'1,1 0.508 0.031 
)v2,1 0.476 0.031 
)'3,1 0.529 0.034 
,k4, 2 0.364 0.031 
)v5, 2 0.420 0.034 
,k6, 2 0.237 0.033 
L7, 3 0.511 0.041 
)v8, 3 0.357 0.041 
,g9, 3 0.560 0.057 
LlO,4 0.367 0.031 
,kll,4 0.507 0.036 
,k 12,4 0.554 0.039 
412 0.816 0.057 
413 0.648 0.040 
414 0.653 0.043 
423 0.684 0.073 
424 0.738 0.056 
434 0.623 0.047 

tor scores for selected students and classrooms. These factor scores can be used to separate out 
worse performing students and classrooms for remedial  action. 

7. Conclusions 

We develop procedures for performing simulation based Bayesian inference and model as- 
sessment for multilevel binary factor analysis. The procedures developed in the paper circumvent 
the need for complex multidimensional integration which is necessary for maximum likelihood 
solutions. Our analysis of simulated data indicates that the MCMC procedure does a good job 
in recovering the true parameters of the model. The posterior predictive checking procedures are 
diagnostic in revealing a lack of fit of the wrong models. Although our procedures were pre- 
sented in the context of binary data, they can accommodate metric and mixed (metric or binary) 
data situations as special cases. We concentrated on confirmatory factor analysis in the paper, but 
the procedures can also be used for exploratory factor analysis models. The MCMC approach 
developed in the paper uses data augmentation and therefore enables the simultaneous estima- 
tion of factor scores at all levels of a multilevel hierarchy. Our algorithms can also be naturally 
extended to data structures with multiple levels of nesting and can also be modified easily to 
include regressors at all levels of the hierarchy. The hierarchical Bayesian approach allows a 
seamless transition to higher level models and the MCMC simulation procedures require a few 
additional steps from the relevant full conditional distributions. The Bayesian approach also has 
promise for estimating more complex data structures and for handling more general multilevel 
covariance structure models. Further work is required to develop MCMC algorithms for such 
general models. 
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TABLE 6. 
Application: SIMS Achievement Study 

Level-Two Parameter Estimates 

Parameter Estimates Std. Dev. 

)v 1,1 0.508 0.029 
)v2,1 0.569 0.031 
)'3,1 0.607 0.034 
,g4, 2 0.608 0.033 
)'5,2 0.596 0.000 
,g6, 2 0.553 0.043 
)'7,3 0.575 0.031 
)~8,3 0.397 0.027 
;-9,3 0.625 0.039 
,g 10, 4 0.342 0.028 
,gll,4 0.651 0.041 
,k 12,4 0.792 0.045 

412 0.888 0.020 
413 0.883 0.023 
414 0.817 0.030 
423 0.895 0.021 
424 0.773 0.032 
434 0.850 0.030 

#1 0.100 0.019 
/~2 0.048 0.019 
#3 --0.153 0.020 
/~4 0.006 0.019 
/~5 0.211 0.019 
/~6 --0.928 0.025 
/~7 --0.059 0.019 
/~ 8 0.126 0.017 
/~9 1.378 0.027 
#1o -0 .436  0.018 
/~11 0.172 0.021 
/~12 0.196 0.022 

01,1 0.029 0.010 
02, 2 0.019 0.011 
03, 3 0.063 0.016 
04, 4 0.067 0.016 
05,5 0.001 0.003 
06, 6 0.234 0.037 
07, 7 0.026 0.013 
08,8 0.028 0.009 
09, 9 0.033 0.016 

01o, lo 0.042 0.012 
011,11 0.107 0.023 
012,12 0.074 0.027 
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TABLE 7. 
Application: SIMS Achievement Study 

Student Factor Scores: Mean and Standard Deviation 

Obs. Factor 1 Factor 2 Factor 3 Factor 4 

1 -0.612 (0.714) -0.655 (0.732) -0.950 (0.732) -0.76499 (0.733) 
2 0.596 (0.729) 0.449 (0.747) 0.782 (0.788) 0.692 (0.777) 

5600 -0.498 (0.717) -0.764 (0.735) -0.550 (0.763) -0.692 (0.749) 
5601 -0.213 (0.719) -0.143 (0.746) 0.226 (0.786) 0.071 (0.769) 

Classroom Factor Scores: Mean and Standard Deviation 

Obs. Factor 1 Factor 2 Factor 3 Factor 4 

1 -0.361 (0.292) -0.382 (0.292) -0.151 (0.301) 0.558 (0.342) 
2 2.021 (0.349) 2.069 (0.357) 2.062 (0.362) 1.826 (0.387) 

273 1.538 (0.316) 1.297 (0.308) 1.146 (0.319) 1.045 (0.336) 
274 0.312 (0.349) 0.415 (0.348) 0.485 (0.360) 0.500 (0.378) 

A. Appendix: Full Conditional Distributions 

The (m + 1)-th iteration of the substitution sampling algorithm involves generating random 
draws from the following full conditional distributions: 

1. The lower level correlation matrix W1 can be drawn using a Metropolis Hit and Run al- 
gorithm (Chen& Schmeiser 1993; Dey &Chen ,  1998). An alternative procedure for sam- 
pling correlation matrices is described in Chib & Greenberg (1998). Their method can be 
more efficient for large correlation matrices, however, it requires optimization steps and 
adjustable parameters for adaptive tuning of the proposal density. We use the hit and run 
algorithm for its simplicity. Further research is needed to compare the efficiency of Chib 
and Greenberg procedure with that of the hit and run algorithm. If  the prior distribution for 
the nonredundant and free elements of ~ 1  that are contained in the vector v e c ( ~ l )  is given 
by rc(vec(W1) I 01,o, Gl,o), as shown in equation (10), then the full conditional of ~Itl is 
proportional to the product of the likelihood L(~Itl ] {{Uij}}, A1, {mi}, {{~l,ij}}, O1) and 
the prior rc (vecOIt 1)). Here L (.) is the conditional likelihood of observing the "data" {{llij }} 

given the matrix ~ 1  and the other parameters, and is proportional to 

N I I ni 
1 0 1 1 - 7  exp -½ ~ - ~ - ~ ( u i j -  / i=1 j = l  

m i  - A I ~ I , i j )  O 1 (uij - m i  - A I ~ I , i j )  • (A1) 

Direct methods for sampling from this full conditional distribution are not available so we 

generate W1 using a Metropolis Hit-and-Run algorithm. If  ~It~ m) is the current value of 

the correlation matrix, then in the (m + 1) th step, a candidate matrix ~ is generated by 

specifying a random walk chain W~ = Wire) + H, where H = (hi j)  is an increment matrix 

with E (hij) = 0 and It i i = 0, for all i and j .  Let ~ be the smallest eigenvalue of ~It] m). Then 
the elements of the increment matrix H can be generated using the Hit-and-Run algorithm 
which involves the following steps: 
(a) generate a sequence of iid standard normal deviates z12, z13, . . . ,  g ( r l - 1 ) , r  1 , of length 

r l ( r l  - 1)/2 
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(b) generate a deviate d fr°m N(0 '  crd2)which is truncated t° the interval ( -~,/-y' ~22) 

(c) formulate the elements 

dzij 
hij = J-1 J Z~l) (1/2) ( ~ j = l  ~ l = j + l  

for i < j ,  hii = 0, and hij = hji  for i > j.  
Here crd2 is a tuning constant that needs to be chosen such that candidates are not rejected 

disproportionately. If ~c is the smallest eigenvalue of the candidate matrix, then once a 
candidate is generated, it is accepted or rejected based on the following Metropolis-Hastings 
acceptance probability 

~ _~ } L(aIt~ ] . ) p ( v e c ( ~ ) ) ( ~ ( ~ ) -  • (~-2]~d)) ,1 

min L(R~m)I .)p(vec(R~m)----~))(--7 (--~2@d3-- qb ( ~ ~ d ) )  
(A2) 

where • (.) is the standard normal cumulative distribution function. If the candidate is ac- 
= 'Ill'(re+l) = ~I/'~ ''~) . c ~  cepted then ~I¢~ re+l) ~I¢~ c), otherwise i 1 

2. The full conditional distribution for the underlying variables Uij on  any observation is a 
product of p truncated univariate normal distributions. In forming the full conditional, we 
can utilize the conditional independence property of latent variable models. The variables 
Uijk, k = 1 to p, on each observation are conditionally independent of each other given the 
lower level factor s c o r e s  ~l,ij for that observation. For every observation in the sample, we 
can therefore sample each of the k variables in sequence from truncated univariate normal 
distributions. Thus 

P 
(re+l) i 01,kk) P~.Uij ] Yij, mi,  31,ij, A 1 )  = I - I  I (S i jk )N(mik  ÷ ),.lk~l,ij, 

k = l  
(A3) 

w h e r e  Sijk = (--OO, 0)  i f  Yijk = O, Sijk = (0, Oo), i f  Yijk = 1, and I( . )  is an  i n d i c a t o r  

function that determines the support of the truncated normal distribution. In the above distri- 
bution, the variance 01,kk is the k-th diagonal element of O1 obtained from the deterministic 

relationship in (6), and A/lk is the k-th row of A1. 
3. The full conditional for the level one factor scores ~l,ij for observation j belonging to group 

i is a multivariate normal distribution. This posterior distribution can be derived easily using 
standard Bayesian theory pertaining to linear models. The prior for ~l,ij is N(0,  1II'1). When 
this is combined with the likelihood of observing uij given ~l,ij, we obtain a multivariate 
normal posterior full conditional distribution 

P(~l, i j  ] Uij, mi,  A1, ~ 1 ,  O1) = N(~l , i j ,  V31) (A4) 

/ -1  where V~ll = R~71 +A/1OT1A1 and ~l,ij = V~IA101 (uij - mi). The factor scores, 6l,i j  
are independently sampled for each observation in the sample, i.e., for i = 1 to I,  j = 1 
to hi. 

4. The full conditional for the level two factor scores 62,i for each group i = 1 to I,  is given 
by conditional 

P(~2,i ] m i ,  / ~, A2 ,  ~I*2, 0 2 )  = N ( ~ 2 , i ,  V~2) (A5) 

-1  ~ - 1  where v ~ l  = R~21 + A 2 0 2  A 2  and ~2,i = V a 2 A 2 0 2  (mi  - ]re). 
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5. The mean vector mi for each group, i = 1 to I ,  can be generated from the full conditional 
distribution 

p(mi I { U i j } ,  ]~1 ,  ]~2,  I " t )  = N(lili, Vmi), (A6) 

where V ~  = 1~-1 + niZ~l and lni = Vm~ (1~-1~ + ~j=l~ Z~luij). 
6. The overall mean ~ can be generated from the multivariate normal full conditional distribu- 

tion given by 

p(/x [ {mi}, ]~e) = N(/~, V#), (A7) 

where V~ 1 = C -1  q- 1]~21 and/2 = V#(C- I ' I c l  q- ~ i 2 1  ]~21mi )  

7. The full conditional distributions for the diagonal elements of the matrix 0% that is, 0e,kk, 
k = 1 to p, are independent inverse gamma distributions. These follow from standard 
Bayesian theory pertaining to linear models. Thus we have 

p(Oe,kk I~ ,{m/} ,{ae , /} ,Ae)  = I G  +a, ~i=l(mik--Pk--Lk~$e'i) 
2 + b - 1  " 

(A8) 

8. The full conditional distribution for the nonzero elements within a row of the level-two 
loadings Ae is multivariate normal. The full conditionals pertaining to the different rows are 
independent and therefore the rows can be handled sequentially. The prior for the nonzero 
elements pertaining to the k-th row is given by p(~tek) = N(gek, He). Define the I x rz~ 
matrix Zek containing the level-two factor scores pertaining to the rek nonzero loadings in 
the k th row of A2. Let vmk be the I vector containing the group means for the k-th variable. 
Define a I vector vink whose i-th element is given by vmki --/Xk. Given the prior, the vector 
Aek can be sampled from the full conditional distribution given by 

P(~k I vink, Zek, 0e,kk) -1 ! - = N(Dk(0e, kkZekVmk + H21gek), Dk) (A9) 

--1 ! 
where  D k  1 = 02 ,kkZ2kZ2k  q- I t 2 1  . 

9. The factor loadings associated with A1 can be generated one by one from truncated uni- 
variate normal distributions, let )~l,kl be the element in row k and column l of A1. Given 
the prior P()~l,kl) = N(gl,kl, hl,kl) and taking into account the constraint that 01,kk = 

! 
1 - )~lkaItl)~lk > 0, the posterior full conditional is given by the truncated normal 

P()~l,kl  I {btij}, O1,  ~1, ~Ifl) = tlq'(f~l,kl, U)~l,kl), (A10) 

where U)~llkl --1 / --1 --1 / - h l , k l  ~- ~l , l~l ,101,kk and  ~l ,k l  - 1  = = U,Ll,kl(hl,kl ~- Ol ,kk~l , l l l k ) .  T h e  vector ~l,l 
contains the level-one factor scores for factor l and ~k contains the the adjusted threshold 
values ~t i jk  = U i j k  - -  nTijk - -  ~tl,k(_l)~l,ij(_l)~ where Al,k(-l) is a vector containing the ele- 
ments from row k of A1 excluding the kl-th element. The truncation points of the normal ! 
distribution can easily be obtained from the constraint 01,kk = 1 -- )~lkaltl)~lk > 0. Alterna- 
tively, a Metropolis step can be used to obtain the different rows of A1 and the entire matrix 
A1 can be constructed by independently sampling each row in sequence. 

10. The level-two correlation matrix W2 can be drawn using a Metropolis Hit and Run algo- 
rithm analogous to that in Step 1. If the prior distribution for the nonredundant and free ele- 
ments of ~ 1  that are contained in the vector vec(~2)  is given by rc(vec(~2) I 02,o, G2,o), 
then the full conditional of air2 is proportional to the product L(W2 I {m/}, A2, ~ ,  02 ,  
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{~2,i })Jr (vec0F2)). Here L (.) is the conditional likelihood of observing {in/} given the ma- 
trix W2 and other parameters, and is proportional to 

{' } 1 1 / 1 --  A 2 a 2 , i )  102 I - :  exp ~ ( m i  --  ~ --  A 2 ~ 2 , i )  0 2 (Ill/ --  ~ 
i=1 

(Al l )  

As direct methods for sampling from the full conditional are not available, we use the 
Metropolis Hit and Run algorithm. The acceptance probability can be constructed easily 
by substituting the appropriate prior and likelihood in the expression for the acceptance 
probability in (A2). 
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