COLUMBIA BUSINESS SCHOOL 1

Using fuzzy set theoretic techniques to identify preference rules
from interactions in the linear model: an empirical study
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Abstract

This paper seeks to establish a parametric linkage between fuzzy set theoretic techniques and commonly used
preference formation rules in psychology and marketing. Such a linkage helps to benefit both fields. We accomplish this
objective by using a linear model with interaction term which nests many common preference protocols; conjunction
(fuzzy and), disjunction (fuzzy or), counterbalance (fuzzy xor) and linear compensatory. The resulting linear model with
interactions can be employed when one has no a priori hypothesis about the individual’s preference formation rule
involved to determine the most likely preference rule or to test more formally the adequacy of a given rule. One
illustrative application studies two-attribute decisions in six product categories and demonstrates differences in prefer-
ence formation processes by product category. A second application demonstrates how fuzzy logical operators can be
applied to situations involving more than two attributes.
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The hegemony of the linear model in marketing
is one of the most enduring constants in applied
social research. Linear models are especially

1. Introduction

There has been a call for research employing fuzzy

set theoretic techniques in the social science [38]. We
report one such application in the field of marketing.
As Smithson [39] states, “many of the connections
between fuzzy set concepts and mainstream re-
search concerns in these areas (social sciences) have
not been clearly drawn”. The fundamental under-
pinning of many behavioral sciences is the linear
model: we intend to draw that connection between
fuzzy set theory and the mainstream linear model.
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prevalent in the analysis of attitude and choice 19,
24, 30, 35, 26]. Yet simple introspection suggests we
rarely use the linear model as a process for coming
to conclusions about the nature of choice. By em-
ploying fuzzy set theoretic operators, we intend to
examine the link between preference structure and
the parameters of the linear model with interac-
tions. Applications of fuzzy set theory have found
their way into finance [9], but are unknown to
mainstream marketing. Finally, the axiomatic base
of fuzzy operators used in set theory align well with
much of the research to date in decision making.
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One of the reasons commonly cited for the use of
the simple linear model is its predictive power [14,
16] and parsimony. This power may be due to
positive correlation among attributes [ 13, 297. Pos-
itive correlations are especially likely when at-
tribute values are measured subjectively due to
a halo effect [5] which makes even the weights of
the linear model unimportant [4]. In addition,
given the positive correlation among attributes, the
inclusion of interactions becomes redundant. Con-
sequently, many of these linear models omit first-
order interactions terms. As an example, the use of
the linear models without interaction terms has
been especially prevalent in conjoint analysis [23].

Here, we extend the work of several researchers
who have suggested the importance of interaction
terms in modeling non-compensatory choice situ-
ations [26]. Furthermore, we show that given ag-
gregation across heterogeneous (with respect to
preference structure) consumers, the linear model
will tend to increase in its predictive power due to
the obscurement of individual level differences in
preference formation strategies employed.

At one time, interest in the various types of
non-compensatory choice models was high. Vari-
ous models such as lexicographic, conjunctive and
disjunctive were discussed in detail [6, 32, 44].
Farquhar and Rao [ 18] proposed an additional set
of models, the balance and counter-balance. How-
ever, researchers suggest that such models as cur-
rently defined in marketing are rare in practice as
they assume a very sharp non-fuzzy cutoff for ac-
ceptance of an attribute [32]. Recently, work on
non-compensatory models has again emerged. For
example. Gensch and Svestka [20] and Srinivasan
[40] have proposed choice rules consisting of two
phases, an elimination phase and a compensatory
phase. Various choice and preference models such
as EBA [42], and tree-based models such as EBT
and HEM [43] have received considerable atten-
tion [31]. Similarly, nested-logit models [33] have
been developed to explain non-linear choice. How-
ever, these models are relatively cumbersome to
estimate and require a priori specification of the
model form/choice rule [34]. The concept learning
system [ 127 has been used as well to estimate logi-
cal choice rules. The model is difficult to estimate,
however, and requires discrete attribute levels and

is not based upon standard error theory. In this

paper we suggest how estimating a linear model

augmented with interaction terms can lead,
through examination of its parameters, to the iden-
tification of preference rule used.

There is evidence that interaction terms have
significance in non-compensatory choice. In one of
the earliest works on the importance of interaction
terms in non-compensatory choice, Bettman et al.
[7], building on the work of Anderson [1], sugges-
ted a link exists between two-way interactions and
the choice process. Anderson and Zalinski [3] fur-
ther outlines two processes, adding and averaging,
the combination of which produces a versatile
model of preference formation. Anderson also sug-
gests the model may have a cognitive interpreta-
tion. Further, he suggests fuzzy logic concepts may
have an important application in understanding
cognitive algebra. We shall presently formalize this
conjecture. This paper extends this work and shows
how the interaction term can be used to identify the
choice process at the individual level and to
segment consumers according to preference rule
followed.

More specifically, we present a methodology that
e separates “and” (conjunctive) effects from “xor”

{(balance) and “or” (disjunctive) effects,

e measures degrees of “andness”, “xorness”, “or-
ness”, and linearity,

e uses the simple linear model augmented with
interaction terms to estimate complex non-linear
preference formation processes.

This paper is organized as follows: we first review
the basic choice/preference models. Then, basic
“and”, “or”, “xor”, and negation functions will be
introduced. Next a brief discussion of cognitive
logic and its implications for the linear model is
presented, followed by a discussion of estimation
issues. We then present two illustrative applications
of the approach. Finally, we suggest limitations and
directions for future research.

2. Background
Several preference formation models, each

representing multiple choice processes, have been
proposed in the literature including both non-com-
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pensatory models and linear compensatory models.
The degree to which a choice model is compensa-
tory refers to the extent to which a deficiency in one
attribute can be compensated for by another. The
standard linear model is “partially” compensatory
as a low rating in one attribute can be partially
compensated for by higher ratings on other
attributes. Several non-compensatory models have
been suggested, the motivation for which are both the
simplification of consumer choice strategy [32, 37].

A fully compensatory model as discussed in mar-
keting and psychology (e.g. disjunctive) predicts
that any attribute above a certain level will yield
a fully favourable evaluation, regardless of the
other attributes. The disjunctive model suggests
that one selects an alternative by looking at its best
attribute. For example, Einhorn [16] states, “In
selecting players for a football team we might want
someone who can kick or run or pass with a great
deal of skill”. In the simple linear model, this cannot
be accounted for by a main effect alone. This is
analogous to the fuzzy “or”.

Non-compensatory models include the conjunc-
tive and the lexicographic models [14, 16, 37]. In
the conjunctive rule all attributes must exceed
a certain level for the alternative to be evaluated
favorably. For example, a computer may be more
desirable only if it has both speed and memory, one
or the other alone will not do. The lexicographic
choice rule implies that an individual orders at-
tributes by importance, selects the highest level on
the best attribute and then moves down to the next
attribute in the event of a tie. Although this process
cannot be modeled exactly by a linear model [ 15] it
should result in a strong main effect. The conjunctive
model in psychology is analogous to the fuzzy “and”.

A third class of choice processes, based upon the
relative levels of the attributes also exists. For
example, the balance model of Farquhar and Rao
[18] suggests alternatives which have minimum
dispersion across attributes are preferred. This
model seems to apply to aesthetic judgements of
beauty (i.e. a person’s height and weight). The ex-
clusive or (xor) strategy is the negation (opposite) of
the balance (i.e. counterbalance) model of Farquhar
and Rao [18], where maximum dispersion of
attributes is most preferred. An example of this
choice strategy is as follows: I may dislike loud,

slow music, like soft, slow or loud, fast music, but
dislike slow, loud music. Thus, as volume softens,
and tempo increases, there is a crossover effect in
preferences. This process is analogous to an exclus-
ive or (xor) rule in fuzzy logic.

As we will show, these various rules can be cap-
tured via the addition of an interaction to the linear
model and the use of product operators to interpret
rules. It is not clear a priori whether the significance
of the interactive effect in the linear model is due to
(1) both attributes exceeding some level (conjunc-
tion), (2) an either/or effect, where if either attribute
is present the product is rated highly (fully compen-
satory disjunctive vs. non-compensatory) or (3) any
attribute exceeding some level (disjunctive model).
We propose an empirical method to disentangle
these effects.

3. Interpreting preference rules
3.1. A framework for the preference rules

In this section we show how a linear model with
interactions can represent many of the choice rules
discussed in the previous section. For ease of ex-
planation on how the interactions capture prefer-
ence formation, we first focus on examples using
two binary attributes. In such situations, there are
four distinct products possible. If we further con-
sider preference to be binary, then there are 16
possible choice combinations of the four products
(corresponding to choosing or not preferring the
products). One can then enumerate (Table 1) all
possible preference formation rules for the four
products (conjunction is defined as “and” and dis-
junction is defined as “or”):

If these functions are defined in terms of the
standard linear model with interactions, it is pos-
sible to capture all 16 possible preference strategies.
The implication of this statement is that all possible
preference formation rules can be represented para-
morphically by the linear model. In addition, the
continuous nature of the linear model with interac-
tions enables us to cover convex combinations of
basic preference strategies.

Often preference rules are not based on discrete
attributes. In this section we examine the implica-
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Table |
List of dichotomous choice strategies

Choice Strategy
X,y X, Independence Conjunctive Conjunctive X; main Conjunctive X, main Xor Disjunctive
X, X, X,, Not X, Not X, X,
0o 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1
Choice Strategy
X, X, Conjunctive Balance Not X, Disjunctive Not X, Disjunctive Disjunctive Independence

Not X, not X, not xor X, X, main

Xi.not X,

main not X, X, notX,, notX,
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tions of using the concepts of fuzzy sets to describe
non-discrete attribute preference rules. To capture
the syntactic meaning of “and” and “or”, the “and”
function should be high when all attributes are high
and the “or” function should be high when one of
the attributes is high (we use the terminology “and”
and conjunction as well as “or” and disjunction
interchangeably).

3.2. Fuzzy set theoretic techniques

Rarely is a preference rule followed exactly. In this
section we examine the implications of this using the
concepts of fuzzy sets. To capture the syntactic mean-
ing of “and” and “or”, the “and” function should be
high when all attributes are high and the “or” function
should be high when one of the attributes is high (we
use the terminology “and” and conjunction as well as
“or” and disjunction interchangeably). To capture
the syntactics of the “or” and “and” we use the
following operationalizations of fuzzy conjunction
and fuzzy disjunction (after [45, 47]):

Conjunction = x, X5,

(D

Disjunction = x, + x, — X X»,

where x;x; represent attribute levels. Attribute
levels must be scaled or transformed to the interval
between zero (minimum) and one (maximum or
ideal) to maintain the idempotency property and
interpretability of these operators (see Appendix A).
The conjunction and disjunction surfaces based
upon the linear model with interactions approxim-
ates the concave and convex surfaces suggested by
Einhorn [16] for the conjunctive and disjunctive
rules, respectively, suggesting a psychologically
based precedent for the definitions in Eq. (1). Sim-
ilar operators are defined for exclusive or and they
are discussed in Appendix A (for example, we ap-
proximate the xor by x; + x5 — 2x;x,). Negation
is defined as { — x.

Mathematically, the logical functions should rep-
resent cognitive logic, and the functions should
reduce to Boolean logic for dichotomous variables
(see Appendix A). Along these lines, Zimmermann
and Zysno [48] and Smithson [39] report en-
couraging experimental results regarding the ex-
planatory power of the logical functions. Further,
the functions have a strong axiomatic base. More-
over, the definitions of operators in fuzzy set theory
are consistent with the traditional linear model
with an interaction term.
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3.3. Identifying the preference rules

To identify the various preference rules we need
a flexible function such as Eq. (1) that allows us to
use the product operators. This model is similar to
the generalized adding model of Anderson and
Zalinski [3] which nests many choice surfaces and
is easily estimable. The model is also similar to
Smithson [38] and is based upon the product oper-
ators determined earlier. The function is

J=Bo + BiX1 + B2Xs + B3X;X;, (2)

where £ and § are rescaled into x and y by some
conversion such as

X = (X - xmin)/(xmax - xmin); Xe [05 1]

For example, approximating the min—max oper-
ators defining conjunction disjunction and xor with
product operators the conjunction of x; and x, can
be modeled by fi; =1 and all other parameter
equal to zero. This reproduces the preference rule
for conjunction in Table 1. The conjunction of x;
and not x, (or 1 — x,)is given by x,;(1 — x,), imply-
ing B, =1, B3 = — 1, and all other parameters
equal to zero. One can verify this set of parameters
is also consistent with Table 1. Based upon the
previous discussion of logic functions we know that
parameter estimates map to the preference rules in
Table 2 (with all points in between representing
mixtures of these strategies).

The structure of the parameter table in Table 2
coincides with preference rules outlined in the pre-
ference table in Table 1. One interesting insight is
that various preference strategies occur on a con-
tinuum captured by this model. Therefore, models
such as a pure conjunction can be viewed as an
extreme model, with actual processes representing
various degrees of conjunction. Such an idea is not
novel (cf. [16]), but many modelers have viewed the
choice process as discrete, that is, individuals use
pure and not mixed strategies. The model in Eq. (3)
nests these various preference processes. It also
reduces to the linear compensatory model when
f, =0, a variant of the Einhorn [16] conjunctive
1 when B =, =0, B3 =1 and a variant of the
Einhorn [16] disjunctive when B, =p§,=1,
B3 = — 1. When parameters fall in between pure
rules, it suggests a mixed strategy is being followed.

5

Table 2
Parameter table
Rule Parameter

/}0 ﬂl ﬂZ ﬁ}
And(X 4, X,) 0 0 0 1
And(X |, not X,) 0 1 0 -1
And(not X, X,) 0 0 T —1
And(not X, not X,) 1 -1 =1 1
Or (X, X>) 0 1 1 -1
Or(not Xy, X,) 1 -1 0 1
Or(X,, not X3,) 1 0 —1 1
Or(not X, not X,) 1 0 0 -1
Xor (X4, X,), Xor (not X, not X;) 0 1 1 -2
Xor(not X, X,), (Xor (X, not X,) | -1 -1 2
Main effect (X,) 0 1 0 0
Main effect (not X,) 1 -1 0 0
Main effect (X 5) 0 0 1 0
Main effect (not X ,) 1 0 —1 0
Independence (ideal) 1 0 0 0
Independence (substandard) 0 0 0 0

The critical difference between a fuzzy conjunc-
tion and disjunction and a standard conjunction
and disjunction is that the “cutoff” levels for the
conjunction and disjunction are fuzzy rather than
discrete. More formally, consider Fig. 1, a graph of
conjunction for two attributes. Standard conjunc-
tion (Fig. 1(a)) specifies cutoff levels for attributes,
x¥ and x¥. The acceptance region for the product is
(x; > x¥ (e.g. 0.5), x, > x¥ (e.g. 0.5)). Any alterna-
tive that meets this criteria is completely accept-
able. A fuzzy conjunction (Fig. 1(b) and (b)) relaxes
this assumption; rather than a fixed cutoff, there
exists a gradual cutoff for which the alternative is
somewhere between completely acceptable and
completely unacceptable. The fuzzy conjunction re-
duces to standard conjunction when the range of
the cutoff reduces to zero.

Mixed choice strategies can be captured via
a convex mixture set of a logical “and”, a logical
“or”, and a logical “xor”, including the linear model
without interactions. The definitions suggest that
“and” and “or” represent equal and opposite depar-
tures from linearity as the interpretation of an
equal amount of cognitive “and” and cognitive “or”
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Fig. 1(a). Fixed conjunction.

(neither “and” or “or” dominate) is simple linearity
[38]. The linear model is partly compensatory
and partly non-compensatory to the extent it
lies between disjunctive (completely compensatory)
and conjunctive (completely non-compensatory).
It is possible to disentangle “or” and “and”
effects via the coefficient on the interaction
term. A positive coefficient is more “and” than
“or” and a negative coefficient is more “or” than
“and”.

To identify the rule used, one can compare the
parameter vector listed in Table 2 to the parameter
vector estimated from running the regression in Eq.
(1). Further, one can run statistical tests to test
hypothesis about whether or not a specific rule is
being followed. There exists a statistic to test a set
of specific hypothesis about parameter vectors,
p = r. The statistic is a standard distance metric,
distributed F, , 4, which allows for testing of speci-

fic rules.'! The numerator of the F statistic can be
written Q = (b — r)((X'X)) (b — r)/q¢ and the
denominator is the mean squared error, e'e/n [25].
In this instance, r i1s simply the vector representing
a given choice rule. If one has a prior theory con-
cerning the rule followed, this statistic provides
a test of the theory. We can also use this statistic as
our distance metric and classify subjects according
to the decision rule they most closely follow, includ-
ing priors if they are available.

! Assume one wishes to test a set of specific hypothesis about
parameter vectors, R = r. The numerator of the F statistic can
be written Q = (Rb — rY(R(X'X)R’) ' (Rb — r}/q (where R is
dimensioned g x k, in our case, a 3 x 3 identity matrix for the
three parameters) and the denominator is the mean squared
error, € e/n) [25]. In this instance, R = 1 the matrix of diagonals
as we are only testing for one particular rule, and r is simply the
vector representing a given choice rule. Thus, the R’s drop out of
this expression, yielding the test Q = (b — r} (X’ X)" '(b — r).
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Fig. 1(b). Fuzzy conjunction.

3.4. Attribute valuations

We have assumed preference is linear in at-
tributes over the range X;n, Xmax- We may relax the
assumption at the cost of several parameters. The
preference model now becomes, similar to Elrod
[17] with an interaction added:

y = Brf(xq) + B2f(x2) + Baf(x1)f(x2), (3)

where x €[Xuyin, Xmax] 1 Teplaced by a mapping
of the original attribute space to a revised attri-
bute preference space. Note that a constant term
is not included in this model, as there are four
cells and four parameters and the model would
be fully saturated. The intercept allowed for ne-
gation in the linear model; here negation is incor-
porated directly into f(x). For example, not
and(xy,x;) = 1 — and(xy, x;) = or(not x,,not x,) =

or (f(xy), f(x2)).

Anderson et al. [2] suggest standardizing at-
tributes in order to facilitate parameter interpreta-
tion by scaling the attributes between zero and one.
Anderson and Zalinski [3] note that such a conver-
sion may confound attribute ranges and weights,
however. The proposed alternative is said to be
difficult to estimate in practice. We therefore em-
ploy the Anderson [2] standardization given in Eq.
(2). Specifically, if one believes the attribute func-
tion is linear on the closed interval [0, 1] one can
simply convert the raw attributes to a linear scale
((x — Xmin)/(Xmax — Xmin))- Thus, the acceptance re-
gion for the conjunction or disjunction is allowed
to become fuzzy rather than crisp relaxing the se-
vere assumption to crisp cutoff values for attribute
acceptance. Other transformations, f(x), include the
logistic (for estimating the cutoff regions) and mean
squared deviations for ideal point models (at-
tributes such as saltiness). For example, the logistic
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transformation is given by

exp (Bx,; — k)
1 + exp(fx,; — k)

flx) =

where k approximates the beginning of the con-
sumer’s fuzzy cutoff point (below which the alterna-
tive 1s unacceptable), and § approximates (1 — end
of fuzzy cutoff)/(end of fuzzy cutoff — beginning of
fuzzy cutoff). As B approaches infinity, the model
reduces to a standard non-fuzzy conjunctive or
disjunctive model. Whether the linear or logistic
model provides a better fit is an empirical issue.
However, the cost of additional parameters and
non-linear estimation (e.g. non-linear least
squares or maximum likelihood) makes adding
the attribute transformation step somewhat un-
wieldy.

In sum, the parameters of (1) can be estimated
via at least three transformations of attributes to

the [0, 1] scale — linear. logistic, and ideal point.
Alternatively, 0-1 attribute level ratings can be
obtained directly from subjects (attribute percep-
tions). The choice of the best approach undoubt-
edly depends on both individual and situational
characteristics and is not the focus of this paper.

3.5. Segment level estimation

Interpreting individual results can be cumber-
some. In addition, aggregate level estimation can
result in aggregation bias. To simplify interpreta-
tion and increase robustness of the estimates (at the
possible cost of aggregation bias), we can cluster
respondents into segments by their choice pro-
cesses. This can be accomplished by estimating
individual models and clustering individuals by
standard clustering routines. Alternatively, if the
number of observations per individual is too lim-
ited for stable estimates, at the cost of more
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complex estimation one can perform latent class
analysis by estimating mixtures of regressions.

One can also relate memberships to individual
characteristics (e.g. demographics) in order to assist
in targeting particular choice rule segments. To do
this, one must regress membership values on a set
of characteristics [ 10].

3.6. Extensions to more than two attributes

To extend the methodology to more than two
variables is conceptually straightforward although
the “accounting” is difficult. Two-way interactions
have already been considered. Three- and higher-
way interactions can be products of interactions
between two way interactions, such as ((x; and x,)
and x;) =(x,x;) and x3 = x;x,x3. One way to
proceed is by first hypothesizing the various choice
rules, and then applying the operators. For
example, assume a choice of soda is a function of
[(promotion or display) and (diet)]. The parametric
form of this model is [(promotion + display — pro-
motion * display)  diet] = promotion * diet + dis-
play = diet — promotion * display * diet. A serious
limitation in extending this approach to multiple
attributes is the number of profiles that must be
given to an individual for a given product in order
to test for all or some of the potential interactions
at the individual level.

Therefore, estimation of higher-order models fol-
lows a different procedure. Due to the higher num-
ber of parameters associated with the higher-order
interaction terms, parameter estimates based upon
individual level estimation becomes increasingly
unstable. For example, two attributes require esti-
mating four parameters. With three attributes, one
must estimate eight parameters. Four attributes
result in fifteen parameters and five attributes result
in twenty-six parameters, and so on. With twenty
or so profiles (observations/subject), degrees of free-
dom and consequently the reliability of estimates at
the individual level are adversely impacted. On the
other hand, estimation at the aggregate level suffers
from aggregation bias, which, as we suggest, may
obscure conjunction and disjunction to some de-
gree.

A similar problem is faced in the logit choice
modeling literature and was resolved by Kamakura

and Russell [27]. Essentially, they employ a latent
clustering methodology that assigns individuals to
segments based on parameter vectors. They esti-
mate a mixture of logits, in our case we estimate
a mixture of normals. The result of the procedure,
then, is several segments, each with its own para-
meter vector (or equivalently, choice rule), with
individuals having certain probabilities of member-
ship in each segment.

We start by assuming a segment, j, has the fuzzy
choice rule of n attributes given by the higher-order
extension of (2),

vi=Bio+ Y Buxe+ )
k=1,...,n

ILbm=1,. .. .n

ﬁjkl Xk X1

+ ot BitmaXiXy - Xy & ()

and ¢; ~ Normal(0, o;). The likelihood function
for this segment across time periods ¢ can be written
as

Lj=H[[¢<y—‘a’”+x>. 5)

i

The aggregate level likelihood is a weighted sum of
the segment level likelihoods with the weights, w,
representing the segment sizes:

w,e[0,1].  (6)

The number of segments is determined by the Be-
ysian information criterion (BIC) for testing com-
peting models, where BIC = LL — (K/2)log(n)
where LL is the log likelihood value, k is the
number of parameters and n is the number of obser-
vations. Essentially the BIC trade-off fit and in-
creasing complexity which results from increased
parameters. Finally, two minor points need to be
raised regarding estimation. The segment standard
deviations need to be constrained to be positive,
and the segment weights must be positive and sum
to one. Both constraints may be met during estima-
tion by first setting the segment standard deviations
to be a squared function of a parameter to be es-
timated, o; = \/&7 and second setting w; = exp(y;)/
Sexp(y;) and estimating the y. Finally, the posterior
probability of an individual belonging to a given
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segment is given by

o owily;

=t
Yi=1w; Ly

In sum, higher-order interactions and more com-

plex choice rules can be estimated at the segment
level via maximum likelihood.

Dij (7)

4. Tlustrative examples

We present two illustrative examples of the
methodology. The first example uses two attributes
and is presented in order to (1) ascertain the face
validity of the model and (ii) demonstrate
application of this technology to inferring choice
protocol, studying intra-subject consistency in
choice.

The second example is presented to illustrate
estimation of the model with more attributes (three)
to show how latent class models can be used to
uncover segment of model users when data does
not permit individual level estimation.

4.1. Study 1

A convenience sample of 30 MBA students
evaluated twenty alternatives in each of six catego-
ries. The categories (and attributes) were stereos
(speaker size, receiver size), television shows (laugh-
ter, horror), apartments (size, commute), computers
(memory, speed), gymnasiums (number of weight
machines, number of aerobic machines), and col-
lege applicants (GMAT, GPA). These categories
were chosen because of their relevance to the sub-
ject population (based upon pretest results) and
because the rule followed might be expected to
differ by category. Given the task employed, we
expected the linear model (the model with low
weights on the interaction term) to perform well.
However, we do expect variation across the
categories. Specifically, we expect stereos to pro-
duce more balance rules (matching speaker and
receiver sizes), and television shows to produce
more disjunctive rules (since humor and horror
may interfere with each other). The overall task
took 45 minutes.

10

The twenty product profiles in each category
were developed by choosing ranges of the attributes
that approximately corresponded to the minimum
and maximum levels beyond which stated prefer-
ence levels for a given attribute did not vary sub-
stantially in a pre-test. The attributes were pres-
ented in a random order to the subjects such that
the inter-attribute correlation was zero.

Subjects first provided evaluation of the twenty
alternatives for each of the six categories on
a 0-100 scale. We then asked subjects for retrospec-
tive verbal protocols of their choice process.

4.2. Individual level results

Following Farquhar and Rao [18], we first re-
port the results of typical individuals and then
present general results of the model. For example,
subject 2’s self-explicated preference for stereos is as
follows (parenthesis added): “It’s (the stereo system)
either portable (small) or solid (large) — any exag-
gerated mix (non-match between speaker size and
stereo size) doesn’t work”. This seems to suggest
a balance model. The parameter estimates for this
person are (1.11, — 0.81, — 1.30, 2.18), quite sim-
ilar to the pure balance model which is given by
(1, — 1, — 1, 2). Thus, the model seems to recover
the choice rule the subject believed he was using.

Subject 11’s self-explicated preference for laugh-
ter and horror in television shows 1s as follows, “I
like both horror and comedy movies, but would
not seriously like to see both in the same movie”.
Thus, we have an xor. The parameter vector is
(—0.26, 0.69, 093, — 1.56) which is close to the
pure xor, given by (0, 1, 1, — 2). This subject is
apparently pursuing a strategy that is more xor
than “or”.

Subject 19’s self-explicated preference for com-
puters is as follows, “If either attribute was below
a certain level, the product was unacceptable, if
both were above the level 1 wanted the most of
each”. Thus, we have an “and”. The parameter
estimates are (0.07, 0.04, 0.02, 1.00), close to the
pure conjunction which is given by (0,0, 0, 1).

Subject 9’s self-explicated preference for appli-
cants to MBA programs is “did not like low (test
scores)-low(GPA)”. This subject thinks they are
pursuing an “or” strategy. The subject’s parameter
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Table 3
Category choice rules
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Category Parameter Rule

Bo B B2 Bs
Computers 0.08 0.24 0.15 0.63  Mostly conjunctive
Stereos 0.41 017 —-029 046 Mixed conjunction/independence
Apartments 028 —025 077 - 0.38 Linear, time negatively scaled
Gymnasiums 0.13 0.25 0.21 0.53  Mixed conjunction/linear
TV shows 0.09 0.15 0.89 —0.57 Conjunction of X, not X,

MBA applicants —-0.12 0.53 0.46 0.18

vector is ( — 0.01, 1.12, 0.96, — 0.97), compared
with the pure conjunction given by (0, 1, 1, — 1).
Last, as an example of a linear compensatory
strategy, subject 16 said “I gave more importance
to time to school rather than size, but looked for
a reasonable size as well”. Assuming that distance is
twice as important as size, and that greater distance
is negatively scaled, the subject’s self explicated rule
suggests the parameter estimates would be (0.67,
— 0.67,0.33, 0.00). The estimated parameter vector
is given by (0.73, — 0.68, 0.37, — 0.05). Thus, the
method seems to recover choice rules which match
subject’s perceptions of their choice process. We
next ascertained how well the inferred choice rule
correlated with self-explicated choice rules. Since
many rules fall on a logical continuum, we coded
the self-explicated rules on a 1-4 scale with 1 rep-
resenting conjunction, 2 representing linear, 3 rep-
resenting disjunction and 4 representing xor. We
used as the inferred choice rule measure, f in (1),
which runs from ( — 2, 1] along the rule continuum
from xor to “and”, respectively, and is therefore
a-measure of the disjunctiveness of the rule used.
The inferred scale should correlate negatively
with coding of the self-explicated rules (as self-ex-
plicated conjunction is scaled 1 - high conjunc-
tion/low disjunction 4 — low conjunction/high dis-
junction. The two scales correlate negatively
{ — 0.26, p = 0.0006) providing both face validity to
the results and some more formal evidence that
subjects were aware of the rule they were following.
One way of looking at the markets in aggregate
is through the average parameters of the model.

For each category we average parameters across
individuals, producing Table 3. Interestingly, the
aggregate results suggest that hybrid, and not pure,
choice rules are being followed. With the exception
of apparently linear choice for computers and
MBA applicants, the choice patterns tend to be
mixed. However, given the possibility of aggrega-
tion obscuring heterogeneity in choice patterns, we
attempted to segment subjects by the choice rules
followed for each product category.

4.3. Segmentation results

Individuals were clustered on the basis of Euclid-
ean distance between their parameter vectors. The
number of segments was determined by the
pseudo-F statistic which is an overall measure of
between/within variance that is adjusted for the
number of parameters [ 11]. The statistic is given by
(R%/(c — 1))/(1 — R?*/(n — c)) where c is the number
of clusters and n is the number of observations.
A second criteria for selecting the number of clus-
ters was also applied, which consisted of reasonable
segment sizes and interpretability. If additional in-
sight into the market was obtained by adding or
subtracting a segment and the pseudo-F statistic
was within 1 of the optimal and an added segment
had only one or two individuals, we chose the more
parsimonious or interpretable solution. This occur-
red once, for stereos, where the F statistic changed
only marginally (1.0) and the added cluster only
had two persons. Table 4 presents the overall
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Table 4

Cluster analysis of rules followed by category
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Category R?  Pscudo-F Segment-Persons i, (S.D.) B, (S.D) £, (S.D.) f5 (8.D) Rule
Computers
Linear in attributes 0.38 3587 113 0.14(0.18y —0.03¢0.17) - 0.06(0.17) 1.09 (0.19) Conjunction
217 0.04 (0.21) 0.44 (0.28) 0.31 (0.31H) 0.27 (0.25) Mostly linear
Attribute perception 041 2695 1 14 0.08 (0.12) 0.09 (0.28) 0.89 (0.28) Conjunction
2-15 0.61 (0.30) 0.25 (0.30) 0.17 (0.29) Mostly lincar®
Stereos
Linear in attributes  0.37 2292 110 0.73(0.33) —0.35(0.32) —0.73(048) 1.29 (0.57) Mostly balance®
219 0.24 (0.30) 0.31 (0.38) — 0.04 (0.39) 0.20 (0.49) Mixed main, conjunction®
Attribute perception  0.53 32.14 16 0.92 (0.46) 095 (0.59) ~— 1.56(0.63) Mixed disjunction, Xor
223 0.40 (0.30) 0.36 (0.33) 0.14 (0.47) Mostly linear
Apartments
Linear in attributes 034 41.60 1 14 0.61 (0.22) —0.53(0.26) 042 (0.24) 001 (0.34) Linear?
216 0.01 (0.19y —0.01(0.19) 1.09 (0.20) —0.71 (042) Conjunction®
Attribute perception 043 27.30 114 0.39 (0.39) 0.56 (0.23) — 0.02 (0.28) Linear
216 0.10 (0.16) 0.18 (0.25) 0.73 (0.28) Mostly conjunction
Health clubs
Linear in attributes ~ 0.38 30.99 1-15 0.04 (0.20) 0.42 (0.31) 0.45 (0.32) 0.13 (0.22) Linear
2-15 0.21 (0.09) 0.09 (0.26) — 0.04 (0.16) 0.93 (0.28) Conjunction
Attribute perception  0.69 36.38 1-13 0.58 (0.26) 043 (0.34) —0.08 (0.27) Linear
215 0.23 (0.11) 0.19 (0.17) 0.64 (0.27) Mostly conjunction
31 1.09 1.16 —239 Xor
Television shows
Linear in attributes 0.56 29.98 1-6 048 (0.21) — 0.36 (0.29) 0.45(0.24) —0.02(0.23) Linear’
25 — 0.20 (0.05) 0.95 (0.26) 1.18 (0.11) — 1.23(0.21) Mostly disjunction
319 0.06 {0.13) 0.10 (0.22) 094 (0.t6) —0.57 (0.32) Mostly conjunction®
Attribute perception (.64 29.24 - 11 0.22 (0.25) 0.64 (0.28) 0.12 (0.16) Linear
29 0.07 (0.19) 0.34 (0.22) 0.59 (0.28) Mostly conjunction
39 0.56 (0.21) 0.86 (0.86) — 0.61 (0.24) Mostly disjunction
MBA admissions
Linear in attributes  0.58 45.42 110 0.02 (0.16) 0.18 (0.18) 0.18 (0.12) 0.81 (0.24) Conjunction
26 —0.33(0.17) 1.01 {0.17) 0.90 (0.28) —0.66 (0.31) Disjunction
314 0.00 (0.17) 0.47 (0.16) 0.51 (0.24) 0.06 (0.20) Linear
Attribute perception  0.54 69.57 1--17 0.51 (0.19) 049 (0.18) —0.05(0.25) Linear
213 0.19 (0.18) 0.07 (0.13) 0.87 (0.24) Conjunction

* Speed is weighted greater than memory.

* Speaker size weighted more than stereo size.
¢ Smaller stereo size is preferred.

4 Commute time is negatively scaled.

¢ Large size, not distant.

" Horror is weighted negatively, i.e. not(horror).
® Conjunction of laughter and not horror.

results for the linear in attributes model (Eq. (2))
and the attribute perception model (Section 3.4).
The most striking result one notices from
Table 4 is how the markets segment. Interestingly,
mixed strategy segments rarely appear. The seg-
ments generally represent pure, rather than mixed,
strategies suggesting segmentation by choice rule
may be a very effective way to divide the market.
Also, aggregation tends to drive the overall result

to linear, and that most categories have a conjunc-
tive and a linear segment. In the MBA admissions
category, we notice conjunctive and disjunctive
segments canceling each other out such that the
interaction parameter tends toward zero at the
aggregate level.

A question of interest centers about the consist-
ency of choice strategy across categories. Earlier
findings [28] suggest that innovators differ across
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categories. The parallel here is that conjunctive or
other rule users may differ across category. To
examine this issue, we noted the aggregate percent-
age, p, of those using conjunctive choice strategies.
Assuming that consumers randomly use the con-
junctive strategy with probability, p, a certain num-
ber of persons will use a conjunctive rule across all
categories and a certain percentage use conjunc-
tions in all but one category and so on. Since five
out of the six categories contained a conjunctive
segment, we calculated the aggregate probability of
a conjunction across the five categories, which was
48%. Based upon this, we would expect to observe
the number of persons using (5 conjunctions, 4 con-
junctions, ..., 0 conjunctions) to be (0.8, 4.1, 9.0,
9.7, 5.2, 1.1). If individuals do differ in their propen-
sity to use conjunction, we would expect a more
extreme distribution, with a large number of indi-
viduals using conjunction in all five categories and
a large number using not using conjunction in any
category. We observed (2,2,12,7,4,3) for the
frequencies which produces a chi-square of 4
degrees of freedom, y = 8.53 (p > 0.10). As this
does not differ significantly from chance results,
we conclude that choice strategy tends to be cat-
egory and individual specific rather than individual
based.

4.4. Study 2

Study two was undertaken to illustrate the ap-
plication of the preference formation model to
higher numbers of attributes. The data from study
2 was taken from a conjoint task of car tires re-
ported in Green [22]. In this study 250 respondents
were required to evaluate 25 profiles in a Graeco-
Lattin design involving five levels of tread mileage
(30000, 40000, 50000, 60000, and 70000), five
price level ($40, $55, $70, $85 and $100), and five
distances to tire outlet (10 min, 20 min, 30 min,
40 min, and 50 min). In addition, there were five
brands, 4-E. The profiles were rated on a scale of
0-5. We concentrated on three attributes, mileage,
price and distance, as these were easily convertible
to a 0—1 scale and because the brand was insignific-
ant at the aggregate level in a main effects conjoint
analysis. We focus on estimating latent segments in
this study.

13
Table §
BIC table
Segments Log likelihood Parameters BIC
1 —4739.6 9 —4778.8
2 — 4602.9 19 — 4685.7
3 — 4526.7 29 — 4653.1
4 — 4496.7 39 — 4666.4
5 — 4496.4 49 —4710.0
4.5. Results

The parameters once again all are in the expected
ranges. The optimal number of segments is three
(see Table 5). We again employed the latent class
segmentation approach using (4) and (5). Based on
the BIC criteria, the three-segment solution is best.
The results for the three-segment solution are pres-
ented in Table 6.

The three segments can be characterized by look-
ing at the significant terms in each segment. Seg-
ment 1, 41% of the market is a mixed segment,
price is a linear attribute but there is also a con-
junction of miles and price. A mixed strategy like
this with price negatively scaled would be given by
1(1 — price) + ¥(miles * (1 — price)) = 3 — price

+ imiles — imiles * price, or in vector form,
(0.5, — 0.5, 0.5, — 0.5). The actual parameters are
(0.5,04, — 0.5, —0.3).

Segment 2 is similar to segment 1 in choice rule
but not attributes. It is a mixed segment, price is
a linear attribute but there is also a conjunction
of miles and time to store. The parameter vector
of such a strategy is 3(1 — price) + 3(miles * (1 —
time)), or (0.5, — 0.5, 0.5, — 0.5). The actual vector
is (0.3, — 0.6, 0.4, — 0.8). Interestingly, the three-
way interaction term is nearly significant, offering
evidence of a slight tendency toward a conjunction
of high miles, low price, and low time to store. Were
this the strategy, the choice rule would be
0.5(1 — price) + 0.5(1 — price) (1 —
time) * miles = 0.5 — 0.5 x price + 0.5 * miles — 0.5
+« miles x price — 0.5 * miles * time -+ 0.5 x miles *
price x time, or (0.5, — 0.5, 0.5, — 0.5, — 0.5, 0.5).
The actual vector is (0.3, — 0.6,04, — 0.1, — 0.6,
0.5). The miles x price term is not significant
(parameter = 0.13, t = — 0.9), preventing us from
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Table 6

Three segment solution

Parameter Value T statistic
Segment 1

Intercept 0.53 15.0
Mile 0.37 5.6
Time —0.03 —0.5
Price —0.47 - 53
Price * Mile —0.32 —32
Price * Time 0.02 0.2
Mile x Time 0.08 0.4
Price * Mile * Time —0.23 — 1.1
Standard deviation? 0.59 66.2
Size (y) - 0.07 —-03
Segment 2

Intercept 0.32 6.2
Mile 0.41 42
Time 0.13 1.3
Price —0.61 —4.5
Price * Mile —-0.13 - 09
Price * Time 0.20 1.4
Mile* Time —0.82 - 31
Price * Mile x Time 0.52 1.8
Standard deviation? 0.56 96.6
Size (y) —0.t1 —42
Segment 3

Intercept 0.53 11.9
Mile 0.22 24
Time —0.08 - 0.8
Price —0.07 - 0.6
Price » Mile - 025 - 18
Price * Time —-0.14 — 1.1
Mile * Time —-0.01 —03
Price » Mile * Time 0.22 0.7
Standard deviation? 0.69

Note: Significant attributes are listed in italics (p < 0.05 one
tail test).

categorizing this as a highly conjunctive segment,
although the term is correctly signed. This segment
is small, representing about 14% of the market.
Segment 3 respondents are fairly indifferent be-
tween brands with a tendency towards preferring
brands with high mileage. The third segment is
45% of the market. The evidence, then, for use of
conjunction as a simplifying strategy is somewhat
limited in this category as the evidence suggests the
use of two-way configural evaluations but not the
complete three-way conjunctions. The three-way
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conjunction was only nearly significant and only
for 14% of the market.

We can also briefly touch upon the one—four-
segment solutions to see which segments appear
first. The one-segment solution is largely similar to
the segment 1 described in the three-segment solu-
tion. The two-segment solution is similar to seg-
ments 1 and 3 in the three-segment solution, and
this is not surprising as these are the two largest
segments. The three-segment solution adds the
more conjunctive segment, and the four-segment
solution splits the largest segment in the three-seg-
ment solution, the main effect for miles segment,
into two. The new segments become main effect for
miles, and an “indifferent” segment (no terms ex-
cept intercept significant). The above analysis can
be very helpful for targeting specific market seg-
ments with products or media campaigns based
upon how individuals make decisions.

5. Summary

Fuzzy set theory provides insight into the linear
preference formation model by clarifying the mean-
ing behind the interaction term in the standard
linear model. We also hope that the axiomatic base
of the linear model provides insight into fuzzy set
theoretic operators. We find strong empirical sup-
port for the use of fuzzy operators in the field of
human behavior. Essentially, we estimated the
standard linear model with interactions (after
transforming the attributes to a 0-1 scale) in order
to infer the consumer choice rule used. We show
that this model can describe both compensatory
and non-compensatory choice rules. As this form of
choice rule inferencing uncovers choice strategies, it
can be a useful form of decompositional analysis.

We estimated the model on 30 individuals in six
product categories. The model’s inferred choice
protocol seemed to reflect the subject’s stated
choice rules fairly well. However, we also demon-
strate that heterogeneity in terms of some indi-
viduals using conjunction with other individuals
using disjunction or xor will drive the results toward
linear compensatory in the aggregate. We therefore
clustered individuals by their choice rules, and
found that segments of fairly distinct choice



COLUMBIA BUSINESS SCHOOL

strategies tend to emerge. In addition, we analyzed
individuals to see if they tended to use the same
choice rules across categories, and found no evid-
ence of this. We also outlined an approach to esti-
mate the model for higher numbers of attributes. In
the second study again we find evidence that ag-
gregation can cover up conjunctive processing
strategies.

Of course, the model, although very flexible, has
a number of limitations. First, the attributes must
be ratio scaled and scaled between one and zero for
the product operators to satisfy the basic logical
axioms and be ratio scaled. In addition, in OLS it is
possible to obtain estimates that yield values for the
dependent variable slightly out of the [0, 1] inter-
val. Further, the normality assumption is violated if
one applies the constraint that main effect para-
meters should lie in [1, — 1] and the interaction
term is also bounded in the interval [1, — 2]. Also,
the linear attribute and logistic attribute models are
not nested, making comparison somewhat difficult.

Here, choice rule inferencing was done on prefer-
ence data, and like conjoint analysis, predicts value,
not choice. In this sense, the analysis is very similar
to most conjoint analysis. In that sense it adds an
extra dimension to decompositional analysis of
preference. The model may also be applied to
choice, with the dependent variable being
dichotomous in [0, 1] rather than continuous. The
model can also be extended to the logit choice
model; for example, an interaction going to positive
infinity with no main effects would be indicative of
a pure conjunction.

Third, the interpretation of conjunction is largely
a mathematical definition, although we argue there
is a cognitive interpretation as well. One might also
view the process of conjunction as complements
and disjunction as substitutes, or perhaps offer ad-
ditional interpretations. In our view, all interpreta-
tions are consistent as they are paramorphically
identical.

Substantive extensions regarding choice rule in-
ferencing may be related to factors that affect the
choice strategy (e.g. comparability of alternatives,
involvement, decision complexity, familiarity,
group process, etc.) which can add valuable mar-
keting insight and offer a promising next step. By
using this method, research could examine which
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factors affect the compensatoriness of choice. Alter-
natively, one could also use this model to study
choice dynamics. One can also see how the choice
rules change when new attributes or alternatives
are introduced. The method can also be incorpor-
ated into choice models for determining optimal
product design as it uncovers specific sets of combi-
nations of attributes consumers prefer. Method-
ologically, we would like to see the model extended
to discrete choice applications.

In this paper we have attempted to unify various
choice and preference rules into a single, straight-
forward framework, the linear model with interac-
tions, thereby enhancing the insights gained from
the linear model. Furthermore, all the choice rules
are nested within this single framework, making the
tool a flexible model for research into consumer
preferences. We also believe the model has clarified
the interpretation of the interactions in linear mod-
els. Finally, we have attempted to tie together the
mathematical and cognitive interpretations by dis-
cussing how parameters and model forms relate
directly to the nature of preference formation.

In closing, we believe that fuzzy set theory shows
some promise as a useful tool in market research.
Choice rule inferencing highlights the explanatory
power of the linear model. We believe that the
robustness of the linear model not only lies in its
predictive ability, but in its explanatory power as
well.

Appendix A. Logic definitions

We define multiplicative “and” here as and =
x;Xx,. The corresponding “or” = x; + X, — Xy X».
The limitations of the product rule are that it must
be a ratio scale bound between zero and one {21].
An intuitive explanation suggests that the and (in-
tersection) of two membership values cannot ex-
ceed the value (size) of either of the memberships.
Since multiplication and division can only be per-
formed on ratio scales, we are thus limited in the
use of ratio numbers for multiplicative fuzzy set
logic functions.

The xor function is defined by DeMorgan’s
theorem as xor = (not and) and or. We simplify
this as follows, (not and) and or = (1 — and) and
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or =or — (and and or) which is approximately
(or —and) or x; + x; — 2x,x,. To simplify, we
need to approximate that and and or = and. We
assume this since “and” is more restrictive than

“ £33

or’, and we approximate (and) and (or) by
min(and, or) instead of and times or. Recall, “and”
is an intersection, and since and is a subset of or, the
intersection of a set is its subset. This is not quite
true for the product operator (due to lack of idem-
potency) unless we modify the operator definition
to state that x and x = x instead of x and x = x°.
Although this is an approximation of DeMorgan’s
theorem, it provides for more intuitive results.
Therefore, an xor= —and = x; + x; — X; X, —
XXy =X+ X3 —2XX,.

Acknowledgements

The authors thank Rajeev Kohli, Bari Harlam,
and William Moore for their helpful comments.

References

[1] N. Anderson, Functional measurement and psychosocial
judgement, Psychol. Rev. 77 (May 1970).

[2] B.F. Anderson, D.H. Dean, K.R. Hammond, G.H. McClel-
land and J.C. Shanteau, Concept in Judgment and Decision
Research (Prager, New York, 1981).

[3] N. Anderson and J. Zalinski, A functional measurement
approach to self-estimation in multiattribute environ-
ments, in: N.H. Anderson, Ed., Information Integration
Theory, Vol. I: Cognition (L. Erlbaum, 1991) 153-170.

[4] N. Beckwith and D. Lehmann, The importance of differen-
tial weights in multiple attribute models of consumer atti-
tude, J. Mark. Res. 10 (1973) 262-269.

[5] N. Beckwith and D. Lehmann, The importance of halo
effects of multi-attribute models. J. Mark. Res. 12 (1975)
265-275.

[6] J. Bettman, An Information Processing Theory of Consumer
Choice (Addison-Wesley, Reading, MA, 1979).

[77 J. Bettman, N. Capon, and R.L. Lutz, Multiattribute
measurement models and multiattribute attitude theory:
A test of construct validity, J. Consumer Res. 1 (1975) 1-15.

[8] R.S. Billings and S.A. Marcus, Measures of compensatory
and non-compensatory models of decision behavior: Pro-
cess tracing versus process capturing, Organiz. Behav.
Human Perform. 31 (1983) 331-352.

[91 J.J. Buckley, Solving fuzzy equations in economics and
finance, J. Fuzzy Sets and Systems 48 (1992) 289-296.

16

[10] R. Bucklin and S. Gupta, Brand choice, purchase inci-
dence, and segmentation: An integrated approach,
J. Mark. Res. 24 (1992) 201-215.

[11] T. Calinski and J. Harbasz, A dendrite method for cluster
analysis, Commun. Statist. 3 (1974) 1-27.

[12] LS. Currim and L.G. Schneider, A taxonomy of consumer
purchase strategies in a promotion intensive environment,
Mark. Sci. 10 (1991) 91-110.

{13] DJ. Curry and DJ. Faulds, Indexing product quality:
Issues, theories, and results, J. Consumer Res. 13 (1986)
134-145.

[14] R.M. Dawes and B. Corrigan, Social selection based on
multi-dimensional criteria, J. Abnorm. Soc. Psychol. 68
(1974) 104-109.

[15] G. Debreu, Representation of a preference ordering by
a numerical function, in : R.M. Thrall, C.H. Coombs and
R.L. Davis, Eds., Decision Processes (Wiley, New York,
1954).

[16] H.J. Einhorn, The use of non-linear, noncompensatory
models in decision making, Psychol. Bull. 73 (3) (1970)
221-230.

[17] T. Elrod, Paper Presented at the 1993 Marketing Science
Conference, St. Louis, 1993.

[18] P.H. Farquhar and V.R. Rao, A balance model for evaluat-
ing subsets of multiattributed items, Management Sci. 22
(1976) 528-539.

[19] M. Fishbein, A behavior theory approach to the relations
between beliefs about an object and the attitude toward
the object, in: M. Fishbein, ed., Readings in Attitude
Theory and Measurement (John Wiley and Sons, New
York, 1967).

[20] D.H. Gensch and J. Svestka, A maximum likelthood
disaggregate hierarchical model for predicting choices
of individuals, J. Math. Psychol. 28 (1984)
160-178.

[21] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967)
145-174.

[22] P.E. Green, Analyzing Multivariate Data (Dryden Press,
Hinsdale, 1L, 1978).

[23] P.E. Green and V. Srinivasan, Conjoint analysis in mar-
keting: New developments with implications for research
and marketing, J. Mark. 54 (1990) 3-19.

[24] Guadagni and J.D.C. Little, A logit model of brand
choice calibrated on scanner data, Mark. Sci. 3 (1983)
203-238.

[25] J. Johnston Econometric Methods (McGraw-Hill, New
York, 1984) 182--185.

[26] E.J. Johnson, R.J. Meyer and S. Ghose, When choice
models fail: Compensatory models in negatively correlated
environments, J. Mark. Res. 26 (1989) 255-270.

[27] W.Kamakura and B. Russell, A probabilistic choice model
for segmentation and elasticity structure, J. Mark. Res. 26
(1989) 379-390.

[28] C. King and J. Summers, Overlap of opinion leadership
across consumer product categories, J. Mark. Res. 7 (1970)
43--50.



COLUMBIA BUSINESS SCHOOL

[29] P. Kopalle and D. Hoffman, Generalizing the sensitivity
conditions in an overall index of product quality, J. Con-
sumer Res. 18 (1992) 530-535.

[30] K. Lancaster, Consumer Demand: A New Approach,
(Columbia University Press, New York, 1971).

[31] D.R. Lehmann and W. Moore, A combined simply scala-
ble and tree based preference model, J. Bus. Res. 22 (1991)
311-326.

[32] J.G. Lynch, Looking for confirming evidence: The case of
the elusive conjunctive consumer decision process, Work-
ing Paper, University of Florida (1981).

[33] D. McFadden, Econometric models of probabilistic
choice, in: C. Manski and D. McFadden, Eds., Structural
Analysis of Discrete data (MIT Press, Cambridge, 1981)
198-272.

[34] W. Moore and D.R. Lehmann, A paired comparison nes-
ted logit model of individual preference structures,
J. Mark. Res. 26 (1989) 420-428.

[35] B. Ratchford, The new economic theory of consumer be-
havior, J. Consumer Res. 2 (1975) 66-75.

[36] M.J. Rosenberg, Cognitive structure and attitudinal
affect, J. Abnorm. Soc. Psychol. 53 (1956) 367-372.

[37] S.M. Shugan, The cost of thinking, J. Consumer Res.
7 (1981) 99-111.

[38] M. Smithson, Fuzzy Set Analysis For the Social Sciences,
(Springer, New York, 1986)

17

[39] M. Smithson, Fuzzy set theory and the social sciences: The
scope for applications, Fuzzy Sets and Systems 26 (1988)
1-21.

[40] V. Srinivasan, A conjunctive—compensatory approach to
the self explication of multiattributed preferences, Decision
Sci. 19 (1988) 295-305.

[41] V.Thole, H.J. Zimmermann and P. Zysno, On the suitabil-
ity of minimum and product operators for the intersection
of fuzzy sets, Fuzzy Sets and Systems 2 (1979) 167-180.

[42] A. Tversky, Elimination by aspects, Psychol. Rev. 79
(1972) 281-299.

[43] A. Tversky and S. Sattath, Preference trees, 86 (1979)
542-393.

[44] P.K. Wright, Consumer choice strategies: Simplifying vs.
optimizing, J Mark. Res. 12 (1975) 60-67.

[45] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965)
338-333.

[46] J.L. Zaichkowsky, Measuring the involvement construct,
J. Consumer Res. 12 (1985) 341-353.

[47] H.J. Zimmermann, Fuzzy Set Theory and Its Applications
(Klewer, Leiden, 1985)

[48] H.J. Zimmermann and P. Zysno, Latent connectives in
human decision making, Fuzzy Sets and Systems 4 (1980)
37-51.



