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Maximum Impact

JOHN U. FARLEY, DONALD R. LEHMANN, and LANE H. MANN*

Generalized knowledge comes from cumulating results across studies,
a process known as meta-analysis. Efficiently increasing generalized
knowledge in a defined area—estimates of price or advertising, for exam-
ple—is one important goal for research. Because (1) most meta-analyses
are based on highly inefficient and unbalanced natural experiments or
designs and (2) additional studies are costly, carefully selecting the next
study is important. The authors demonstrate that, rather than simply
selecting a study that uses currently underrepresented design variables,
a procedure that reduces collinearity among design variables will produce
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far superior improvements in knowledge.

There are two fundamentally different ways to enhance
knowledge. One approach relies heavily on creativity: gen-
erating new paradigms, models, methods, variables, and ap-
plications. This approach has the potential to produce major
breakthroughs, albeit along with the nontrivial possibility of
total failure. The other approach is less grand in scope and
focuses more on refining knowledge within an existing par-
adigm. This approach involves replication and systematic
changing of variables in an attempt to increase certainty in
the estimates of the impact of (predetermined) variables. Al-
though work of the first type is desirable, this article focus-
es on the more modest goal of providing guidance for de-
signing a study that increases the precision of knowledge in
an established field of inquiry. Specifically, this article sug-
gests an approach for designing the next study in a defined
field that is likely, a priori, to be the most useful. An implicit
assumption behind our approach is that data are dear and/or
expensive. The factorial design mentality, which is relevant
when dealing with individual subjects in a limited within-
study design (e.g., 2 X 2 x 2), simply does not apply when
each data point comes from a complex design and represents
a study that costs $100,000 or more and requires years to
complete. Therefore, we concentrate on designing the next
study in a field to optimize improvement in knowledge.

*John U. Farley is C.U. Starr Senior Research Fellow, Amos Tuck
School, Dartmouth University, and China Europe International Business
School (e-mail: jfarley @ Dartmouth.edu). Donald R. Lehmann is George E.
Warren Professor, Graduate School of Business, Columbia University (e-
mail: DLehmann@Research.GSB.Columbia.edu). Lane H. Mann is Direc-
tor of Market Research, Fidelity Management Trust Company (e-mail:
Lane.Mann@FMR.com). The authors thank Hooman Estelami for his
assistance with the analysis.
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THE “NATURAL” EXPERIMENTAL DESIGN IN
META-ANALYSIS

Meta-analysis in marketing usually involves summariz-
ing parameters drawn from a fairly large number of studies,
which means focusing on relatively well-studied areas that
usually develop with limited attention to how later studies
contribute to existing knowledge. The basic approach in-
volves three stages:

Step 1. A model is selected as the basis for study, such as Y =B,
+ XB + e,. For example, X might be advertising and Y
sales, so B represents the impact of advertising on sales.
A meta-analyst gathers n estimates of B from different
models that may contain other explanatory variables and
involve different products or estimation technologies.
Substantive (type of product or service, study setting/sit-
uation) and methodological (measurement method, esti-
mation method) characteristics that might be related to
systematic variation of B are identified and recorded in a
design matrix, Z. This matrix may include both main ef-
fects and appropriate interactions. Each row of the ma-
trix represents the m characteristics of the parameter val-
ue in question.

The impact of situational characteristics on the parame-
ter are estimated, so that B = Cy + ZC + e,. The estimates
of C represent information about the impact of the de-
sign variables on B (i.e., C; = O implies the parameter
generalizes—is equal—across condition i; the variance
of Cj indicates how certain we are of a systematic, gen-
eralizable difference across conditions).

Step 2.

Step 3.

In general, the design matrix Z is configured as a series of
dummy (1 — 0) variables that represents the presence or ab-
sence of the various situational characteristics. This matrix,
dimensioned by n results (estimated B values) and m fac-
tors, represents the “natural experimental design” that char-
acterizes the body of knowledge. Because the contributing
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studies generally fall into no orderly pattern, most meta-
analysis designs are nonorthogonal, and it may be impossi-
ble to estimate some main effects, much less a complete set
of complex interactions. Rather than regarding such devia-
tions from orthogonality as nuisances in estimating C, we
use the content of Z to decide how best to add rows to im-
prove estimates of C.

Empty Cells and Sparse Data

Two problems in the configuration of Z are of obvious
importance in estimating C. By their nature, most meta-
analyses have a large number of empty cells. The first in-
stinct is to fill these or simplify/scale back the meta-design
to reduce the number of cells. However, scaling back the de-
sign limits the eventual scope of the generalizations, and as
we will see, simply filling empty cells may be nonoptimal.
We also could try to pick studies to fill cells with large with-
in-cell variance. However, because of the sparse nature of
the natural experimental design (and the large number of
empty cells), reliable within-cell variances are not available.

Small column sums of Z indicate sparse data, levels of
factors that will be either difficult or impossible to assess.
(Because coding of dummy variables is arbitrary, a large
sum also indicates sparse data for the 0-coded level of a
variable.) In the extreme, a column sum of 1 indicates that
the particular level of a factor occurs in a specific study, in
which it is perfectly confounded with other idiosyncratic
characteristics of that study.

Collinearity

Another problem with a typical meta-analysis design ma-
trix Z is collinearity. Some collinearity is due to simple vari-
able redundancy (i.e., U.S. studies on retail promotions all
use scanner data). However, more complex and subtle pat-
terns often are encountered in practice that affect the invert-
ibility of (Z'Z). For example, two near-identical columns
might be, for all practical purposes, confounded or collinear.

Collinearity among characteristics generally has been
treated as a nuisance, and steps have been developed to
eliminate it (Farley and Lehmann 1986). However, the reli-
ability of the estimates of C is, in large part, determined by
Z, so to improve knowledge we must add observations to Z
that reduce uncertainty about C. The key to this is reducing
collinearity in Z (Belsley 1980).

SELECTING THE NEXT STUDY

Because meta-analyses reflect the generally unplanned
nature of research in a particular field, one option is to en-
courage researchers to conduct the next study in a “best”
way by providing some guidance a priori. Encouraging such
behavior is not necessarily easy or consistent with what
some perceive as academic freedom. However, organiza-
tions such as the Marketing Science Institute have found
that publishing priorities for research in a particular area has
provided useful guidance without stifling initiative. Editori-
als in journals and calls for papers also have some impact.

If our goal is to increase knowledge in a defined field, se-
lecting the next study should follow a logical progression, as
follows:

Ensure there is variance on design variables. To ensure
that the variance in the estimate of the impact of a variable
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is finite, the design variables must be represented in one or,
preferably, more studies.

Deal with perfect collinearity. Select the n + 1 study so
that perfect empirical collinearity/confounding of design
variables is eliminated. A standard regression program
(such as SAS) identifies the confounded variables in equa-
tion form. The next observation should be one that fails to
satisfy as many of these empirical redundancies as possible.

Minimize variance in estimates of the design dummy vari-
able effects. When perfect redundancy is eliminated, one ob-
vious approach is to fill underrepresented cells (e.g., by
picking a design profile that maximizes the number of 1s in
columns of the matrix for which the totals of the first n stud-
ies are relatively small). This method makes intuitive sense
and is easy to implement, and we have recommended it in
the past. Unfortunately, it is not optimal. We recommend in-
stead picking the next observation such that the sum of the
variances of the parameters of the meta-analysis model (Var
C) is reduced. We operationalize this by minimizing
collinearity.!

A trade-off exists between reducing the variance of the
coefficient (G;) with the largest variance (which a criterion
such as minimizing the product of the variances would sug-
gest) and improving several variances at the “expense” of
others (e.g., improve knowledge of the impact of product
category and leave the uncertainty about the effect of mea-
surement method unresolved). In the absence of theoretical
or practical considerations, we suggest minimizing the sum
of the variances of the effects of the design variables, which
is equivalent to minimizing the trace of the (Z'Z)-! matrix.
Such minimization is not necessarily accomplished by sim-
ply increasing the observations in underrepresented condi-
tions. In essence, our method identifies which observation
would most reduce collinearity in the meta-analysis design
matrix Z.2

TWO SIMPLE EXAMPLES

In both examples in Table 1, four binary (1,0) design vari-
ables are used. In Example A, for the 16 observations, each
variable is at each level 8 times, which makes the low fre-

I'Variance minimization and collinearity reduction may not be identical
if the design variables are negatively correlated (Mela and Kopalle 1998).

2An alternative criterion is to minimize the condition index, the ratio of
the largest to the smallest eigenvalue. Because the smallest eigenvector is
orthogonal to the largest, picking an observation to match it simultaneously
reduces the maximum and increases the minimum eigenvalue. A different
approach/objective is to focus on (minimize) the variance of the predicted
value of the dependent variable in the meta-analysis. This variance is equal
to Sy2 |R|/[Ryz |, where R is the correlation matrix of B plus all the Z
variables. Note that, because Rz is a subset of R, it is not clear what rule
follows from this objective. However, if the within-cell variances are equal,
then there is no advantage in picking any particular design for the next
study. Conversely, if the true cell variances are unequal (heteroscedastic)
because of, for example, unequal measurement error, then minimizing the
calculated standard error of prediction Sz is accomplished by adding
more observations to the smallest variance cell. This will increase
collinearity among the Zs and, thus, obscure the impact of the design vari-
ables. Thus, though (1) we want to reduce observed variance within cells if
possible, and (2) for some purposes (e.g., policy decisions), minimizing
error of prediction from the meta-analyses is an appropriate goal, we con-
centrate on minimizing variances in the effects of the design variables to
increase confidence in the contingent generalizations that emerge from
meta-analysis. Alternatively, one could try to minimize the variance in the
prediction for a particular combination (c) of design variables. In this case,
Silvey (1969) shows that the optimal next obeservation is (It[x"x}-Dc. We
thank Wilfried Vanhonacker for this reference.
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Table 1
TWO EXAMPLES OF SIMPLE DESIGN MATRICES

Table 2
CORRELATION MATRICES OF ORIGINAL 16 OBSERVATIONS

EXAMPLE A EXAMPLE A
VARIABLE 2 3 4
Observation 1 2 3 4 1 5 5 5
1 1 1 1 1 2 5 s
2 1 1 0 0 3 5
3 1 1 1 1
" " | ) | EXAMPLE B
5 1 1 1 1 2 3 4
6 1 1 0 1 1 65 .56 -22
7 1 0 1 1 2 23 00
8 1 0 1 0 3 08
9 0 1 1 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0 Table 3
13 0 0 ) 0 IMPACT OF ADDITIONAL OBSERVATIONS: EXAMPLE B
14 0 0 0 0
15 0 0 0 1 Variance
16 0 0 0 0 Sum of by Variable
Column Sum 8 3 8 38 Determinant Variances 1 2 3 4
Original 16 162 244 98 65 48 33
EXAMPLE B Possible
Configuration
1 1 1 1 1 for an
2 | 1 1 1 Additional
3 1 1 1 1 Observation
4 1 1 1 0
1111 204 240 98 65 48 29
5 1 1 1 0 1110 (1) 186 238 9% 63 46 32
6 1 1 1 0 1101 (3) 270 213 86 64 36 27
7 1 1 1 0 1100 216 228 90 65 40 33
8 1 1 1 0
0 | | | 0 1011 297 197 78 44 47 27
0 | | 0 0 1010 243 211 81 48 48 33
0 | | o 0 1001 (4) 411 153 S1 42 34 26
12 | 0 | 0 1000 321 162 S0 44 36 33
o111 375 167 53 45 37 33
:i : (1) (') g 0110 393 147 46 39 32 31
s 0 0 0 | 0101 265 209 82 48 48 31
2 0 o 0 0 0100 267 191 73 39 47 33
0011 (2) 258 224 90 65 40 30
Column Sum 14 12 11 4 0010 240 211 83 63 33 33
0001 216 233 97 64 41 25
0000 162 244 98 65 48 33

quencies for some levels not an issue. Furthermore, all vari-
ables overlap and are correlated equally, as we show in
Table 2, in that each variable has 1s in 6 of the 8 cases in
which each other variable is 1.

Example B is more interesting and typical. First, the four
design variables occur with different frequency. Second, the
pattern of confounding is different: Variables 1 and 2 and 1
and 3 are quite correlated, and variable 4 is fairly indepen-
dent of the others (see Table 2). Notice also that, in an in-
formation sense, variable 1 is actually the least informative;
whereas there are 14 cases in which it is a 1, there are only
2 in which it is a 0. By that same logic, variables 2 and 4 are
equally well accounted for, with 12 cases of one value and
4 of the other.

We compute the value of alternative additional observa-
tions for Examples A and B. We assess improvement in the
variance of C, which is proportional to the sum of the diag-
onal elements in the inverse of Z'Z and, thus, related to the
increase in the determinant of Z'Z.

Note: (i) corresponds to the ith eigenvector.

In Example A, as expected, none of the possible 16 con-
figurations of observations results in a dramatic improve-
ment. By contrast, in Example B, the choice of the next ob-
servation makes a significant difference (see Table 3). Sev-
eral interesting results appear. First, whereas an observation
that contains the variable with the smallest frequency (0001)
has a small benefit (the sum of variance decreases from 244
to 233), that which contains only the most common variable
(1000) makes a large improvement (162 versus 244). Sec-
ond, an exact replicate of a prior study (1010) is more help-
ful than a previously unexplored combination (0011). Here,
the optimal next observation is either (1001) or its comple-
ment (0110), which reduces the variance in C by almost
half. They do so not by filling sparse cells but by reducing
the collinearity between variable 1 and variables 2 and 3.
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A METHOD FOR SELECTING THE BEST NEXT STUDY

A combinatorial search to find the optimal next observa-
tion becomes cumbersome for the large number of design
variables that usually characterize meta-analyses. Using a
foldover design may reduce the set to be considered to the
same size as the number of observations in the original
meta-analysis.3 The set, however, is not simply the comple-
ment of the existing studies, because some combinations of
factors are mutually exclusive. For example, a single obser-
vation cannot be for both a consumer durable and industrial
product simultaneously.

Our recommendation is simple: Pick the next observation
to match the smallest eigenvector of (Z'Z). Because the first
eigenvector represents the most common observation (i.e.,
frequently purchased U.S. study), in Example B, (1110) is
essentially another study/replication that is similar to previ-
ous ones. Because we already have information about it, we
need something to break the confounding among the vari-
ables it represents. The solution is to choose an observation
orthogonal to it.

The math behind picking an observation to match the
smallest eigenvalue is straightforward. The variance of the
estimates of the effects of the design variables is

) Var C = Sy, (Z'Z)!,

where Sgy is the standard error of estimate from the meta-
analysis regression. One way to compute (Z'Z)-! is as a co-
factor matrix multiplied by the inverse of the determinant
(Z'Z), so that a large determinant leads to a small variance
of C. Because the determinant equals the product of the
eigenvalues and because eigenvalues that occur later in prin-
cipal components analysis typically are small fractions, the
product is influenced heavily by the smallest eigenvalue. By
making the smallest eigenvalue proportionally bigger (by
choosing an observation to match it), the product is likely to
be increased the most (for a proof, see Silvey 1969).

Converting eigenvectors (which are, in practice, usually
vectors of fractions of all variables) into discrete observa-
tions also requires some effort. We adopt the simple rule
that any variable that has a positive weight is coded 1, and
any with a negative value is coded 0. If the result is an in-
feasible solution—for example, it suggests that the next
study be of both a durable and a nondurable product—we
recommend choosing the variable from the group with the
largest weight on that component. (In the unlikely case that
all weights for a factor group are negative, the one with the
least negative weight is chosen.)

EVALUATING AN EXISTING META-ANALYSIS DESIGN:
ECONOMETRIC ADVERTISING MODELS

As an illustrative example, we use a meta-analysis of pa-
rameters of the effect of advertising on sales from 90 mod-
els in 50 books and articles, drawn from Assmus, Farley,
and Lehmann’s (1984) work, as our starting point. These
models focus on sales, not share, and therefore differ from
the logit models that recently have become more popular.
The design (described in detail by Assmus, Farley, and
Lehmann 1984) involves 43 design variables that describe

3Rajeev Kohli and James Wiley both independently made this observa-
tion, and we thank them for it.
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the research environment, model specification, measure-
ment, and estimation.

There is a heavy representation of mature or maturing
markets (80%, on which advertising can be expected to have
little impact) in the United States (72%, in which advertis-
ing to sales ratios tend to be higher; Leff and Farley 1980).
By contrast, almost no studies exist in the nonindustrial
world for products in the early growth (3%) or decline phas-
es of the life cycle or for weekly (1%) or retail (3%) adver-
tising data. Elimination of definitional singularities in the
design variables—for example, all models are fit at either
the brand or product level, and all models are either additive
or multiplicative—involves dropping some levels.

However, even with this step completed, the reduced de-
sign matrix is empirically singular. SAS diagnostics indicate
that the classic studies of Lydia Pinkham (research environ-
ment) and pooled data (measurement) contribute to singu-
larity, so they also must be eliminated, which produces a de-
sign matrix containing 35 study features that are not ab-
solutely singular. Only 23 of the 35 eigenvalues in the re-
duced, nonsingular design matrix pass the conventional test
of a ratio of 50 or less between smallest and largest, so
collinearity is still an empirical problem in estimation.

The Best Next Study

To assess our method, we constructed a 91st observation
to match each of the 35 eigenvalues of Z'Z. We evaluated
each in terms of their impact on the determinant of Z’Z and
the sum of the variances of the coefficients of the 35 design
variables (measured as the trace of Z'Z-1). The results are
both encouraging and mildly surprising. The encouraging
result is that adding the observation on the basis of the last
(35th) eigenvector produced the biggest improvement, with
a trace of 135.

The surprising nonmonotonic relation between the eigen-
vector and the improvement in efficiency (variance) associ-
ated with an observation related to it (possibly due to insta-
bility in the inversion of a nearly perfectly collinear matrix)
raised the question of whether the smallest eigenvalue ap-
proach was effective. We therefore generated 500 random
new observations and assessed the variances, assuming each
was added separately to Z. (Complete enumeration was
computationally burdensome, given 35 variables.) The
range of variances was between 134 and 358, which means
the smallest eigenvalue-based observation did as well as the
best of 500 random next observations. Put differently, one
well-chosen observation reduces the variance in the esti-
mates of the effects of the design variables by almost two-
thirds, whereas a poorly chosen one has little impact. Fur-
thermore, the smallest eigenvalue produced variances of
135/228, or 59% the size of a random observation. Thus, not
only is the smallest eigenvalue a good clue as to what the
next observation should be, but the choice also makes a dra-
matic difference in knowledge improvement.

To highlight this, we constructed characteristics of the
best next study on the basis of both the best of the 500 ran-
dom observations and the smallest eigenvalue and then
compared it with the typical study of the original 90 (see
Table 4). Both the best of 500 random and the smallest
eigenvalue method recommend more extensive models
(price and/or product included), more sophisticated methods
(multiequation, multistep estimation), and work on durables
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Table 4

BEST NEXT ADVERTISING STUDY

Design of Typical Design of Design of
Study in Assmus, Farley, Best of 500 Optimal Next Study
and Lehmann (1984) Random Next Studies (Study 91)
Market share Market share Total sales
Mature Growth Introduction
Food Cars, other durables Cars, other durables
United States United States United States
Single equation Multiequation Multiequation
Carryover included Carryover not included Carryover included
Price not included Price included Price included
Product not included Product included Product included
Other exogenous Other exogenous Other exogenous
variables not included variables variables
Brand level Product level Product level
Ordinary least squares Multistep estimation Multistep estimation
Time series Time series Time series
Bimonth/quarter Bimonth/quarter Bimonth/quarter
Multiplicative Additive Additive
Aggregate advertising Aggregate advertising Joumal advertising
early in the life cycle while maintaining the use of bimonth- Table 5
ly time series data and, somewhat surprisingly, U.S. data. As SUBSEQUENT STUDIES

Table 4 shows, best does not mean opposite; approximately
half the design variables are the same as the typical study
and half differ, exactly as the concept of orthogonality sug-
gests. Therefore, contrarian studies that alter all aspects of
the design, close replications, and simply choosing studies
that include less-represented characteristics are not optimal
approaches.

Where Has the Field Taken Itself?

A computer search of econometric work on advertising
since 1984 (the publication date of the original meta-analy-
sis) produced 27 listings, indicating a decline in the rate of
publication in the field during the post-1985 period. Nine of
the articles included either explicit estimates of advertising
elasticities or the elements necessary to compute them (see
Table 5).

The average short-term elasticity reported was .24, near-
ly identical to those reported by Assmus, Farley, and
Lehmann (1984). Models without a carryover coefficient
produced elasticities .32 larger than those models with car-
ryover, which again are nearly equal to those reported in the
1984 meta-analysis.

The published studies tend to move the field in the direc-
tion we have identified as the next best study. The addition of
the new categories of services and fresh foods expanded the
research environment in new directions (e.g., perishable
goods). Model specifications incorporated other marketing
variables, though additive and other variable elasticity mod-
els were not used. Progress was not made in assessing the im-
pact of disaggregate advertising. There is limited overlap in
the journals represented by the original set of 90 articles and
those containing the 9 new articles, however, and there is no
indication that these developments were part of an orderly
strategy. To apply our method effectively, we would need to
update the calculations as each observation is added to the
database, so the optimal new study would not be the same as
the optimal first one. Because such a stepwise approach

Bjorndal, Trond, Fjell G. Salvanes, and Jorun H. Andreassen (1992), “De-
mand for Salmon in France: The Effects of Marketing and Structural
Change,” Applied Economics, 24 (September), 1027-34.

Helmuth, John A. (1987), “Dealership Automobile Demand: Advertising
Elasticity and Optimality,” Adron Business and Economic Review, 18
(Spring), 37-44.

Johnson, L.W. (1985), “Alternative Econometric Estimates of the Effect of
Adpvertising on the Demand for Alcoholic Beverages in the United King-
dom,” International Journal of Advertising, 4, 19-25.

Jones, Eugene and Ronald W. Ward (1989), “Effectiveness of Generic and
Brand Advertising on Fresh and Processed Potato Products,” Agribusi-
ness, 5 (5), 523-36.

Popodopolis, Socrates (1987), “Strategic Marketing Techniques in Interna-
tional Tourism,” International Marketing Review, (Summer), 71-84.
Radfar, Mehran (1985), “Effect of Advertising on Total Consumption of
Cigarettes in the UK,” European Economic Review, 29 (November),

225-31.

Tellis, Gerard J. and Doyle L. Weiss (1995), “Does Advertising Really Af-
fect Sales? The Role of Measures, Models, and Data Aggregation,”
Journal of Advertising, 24 (Fall), 1-12.

Wagner, Joachim and J. Matthius Graf von der Schulenburg (1992), “Un-
observable Industry Characteristics and the Innovator—Advertising—
Maze Evidence from an Econometric Study Using Panel Data for Man-
ufacturing Industries in the FRG 1979-1986," Small Business Econom-
ics, 10 (December), 315-26.

Zidack, Walter, Henry Kennucan, and Upton Hatch (1992), “Wholesale
and Farm-Level Impacts of Generic Advertising: The Case of Catfish,”
Applied Economics, 24 (September), 959-68.

Note: These are the nine identified studies published after the 1984 meta-
analysis that included advertising elasticities in their elements.

might not produce the best three next observations, we could
extend the procedure to consider groups of observations.

DOMAIN EXPANSION

The method presented here focuses on refining knowl-
edge within a domain defined by factors for which variance
has been observed. Because many insights can result from
extending the domain to new variables, we offer two sug-
gestions for their choice:
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1. When designing the meta-analysis, researchers should try to
conceptualize and report other variables that might matter and
that they would like to have. For example, if all available stud-
ies involve packaged goods, researchers should include cate-
gories for theoretically or practically interesting alternative
types of markets (durables, services, business-to-business).

2. When selecting a variable to add to the analysis, researchers
should consider its likely explanatory power. Variables corre-
lated with included variables offer little room for improvement,
whereas variables nearer to orthogonal have greater potential.

CONCLUSION

We have presented a procedure to assess the potential val-
ue of a next study for improving knowledge of the impact of
various technical and environmental conditions on a key
model parameter (such as advertising elasticity). The ap-
proach can help provide both authors and editors some ob-
jective criteria of “contribution to knowledge” for new work
in a relatively mature field. Our results suggest three key
conclusions:

1. The choice of the characteristics of the next observation can
make a dramatic difference in the reliability of the estimate of
the parameters of the design variables in meta-analysis and,
thus, on knowledge development.

2. Simply filling empty/sparse cells or including design vari-
ables that have been measured infrequently is not necessarily
optimal.

3. Reducing collinearity among design variables is the key to
improving knowledge.

Notice that, though the field’s general resistance to exact or
close replications is supported a priori, a posteriori they still
add knowledge, albeit less than the optimal study does.

These results assume that all studies are equally costly
and all variables are equally important or weighted. There
is probably a cost hierarchy from least to most expensive,
such as

1. Reanalyzing technical issues using data from existing studies
(a much underutilized option),

2. Expanding the scope within studies in terms of (a) design and
(b) analysis. Studies that examine multiple products and mul-
tiple settings help, and

3. Creating a new study. Although a new study is typically the
most useful because it has more design freedom, it is also ex-
pensive and, therefore, not necessarily the most cost effective.

Note that one could incorporate formally the weights that re-
flect either cost or variable interest/importance by multiply-
ing them by the Z matrix and then applying our method to
the revised Z matrix.

This article has limitations. First, researchers must be-
lieve that meta-analysis has value. Problems such as unrep-
resentative samples (which can be caused by publication
bias; Rust, Farley, and Lehmann 1990) render meta-analy-
ses less useful. Still, there is presently no better way to cu-
mulate knowledge formally, as is evidenced by its use in
life-or-death situations involving medical treatments.
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Second, the method focuses on expanding a body of knowl-
edge rather than on creating new theories or fields of study.
The boundaries of the field studied are determined by the phe-
nomenon studied (which leads to the dependent variable in the
meta-analysis design) and the space spanned by the design
(independent) variables in the design matrix. Still, construct-
ing the design matrix may suggest levels on which there are
no observations (e.g., advertising studies in undeveloped or
centrally planned economies, Internet advertisements).

Third, the method will not explicitly suggest exploring a
field in really new ways. It may be that, for example, study-
ing customer relations or value chains is more useful for un-
derstanding markets than examining the impact of advertis-
ing. Although philosophically the thrust of the method
would encourage ventures into uncharted waters, it does not
provide direct guidance as to which ventures to investigate.

Limitations aside, the approach suggests that authors, re-
viewers, and editors should assess how much a study adds to
a body of knowledge about model parameters. An author
benefits from having an objective way to position the con-
tribution of an article in a relatively well-developed field.
Articles then could be judged primarily on a priori design
factors, such as contribution to knowledge, rather than on a
posteriori factors, such as the strength, or worse, the statisti-
cal significance, of their results.

The method involves extending and making more precise
a particular (quantitative) relation. The procedure neither
robs the researcher of freedom of inquiry nor limits experi-
mentation with really new models or methods. Rather, it
helps guide attention to one means toward efficient knowl-
edge production.
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