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This research focuses on the diffusion patterns of the adja-
cent generations of technology and its relation to the time
that elapses between them (intergeneration time). The au-
thors analyze 45 new technologies in 15 industries and
find that the adoption curves systematically vary across
generations from 2 years for dynamic random-access
memory (DRAM) chips to more than 30 years for
steelmaking. The longer the intergeneration time, the
slower the adoption of the subsequent technology. Even
though once the adoption begins imitation is greater for
subsequent technologies, the slow initial innovation rate,
driven by resistance to upgrading, retards adoption. The
authors also demonstrate that predictions based on
intergeneration time plus average patterns are more ac-
curate than data-based predictions early in life cycles
when such predictions are most crucial. Improved early
predictions can provide advantages in terms of both mak-
ing go versus no-go decisions and planning marketing
and production.

Advancing technology seems an inevitable force.
Regardless of the pace of change, the result almost always
allows people to perform an existing function or satisfy an
ongoing need differently and better than before. For peo-
ple who forecast technological change and substitution in
general and managers in industries in which technologies

are periodically upgraded in particular, there is a continu-
ing need for simple and accurate forecasting models.

While the advent of newer technology provides cus-
tomers an opportunity to switch from earlier generations
to the later one, most customers do not adopt new technol-
ogy immediately. Moreover, some customers who would
otherwise have adopted the earlier product instead adopt
the later one, and still others who would not adopt the old
product may adopt the new one, raising total market poten-
tial. In addition, the sales of the earlier technology may
continue to grow for some time after the newer one is intro-
duced. In this article, we are interested in the relative speed
of diffusion of a new technology compared with the old
one and the impact of the time that elapses between the
introduction of two adjacent technologies (hereafter
“intergeneration time”) on the subsequent diffusion.

The speed of adoption of new products has been the
focus of numerous studies (e.g., Kumar, Ganesh, and
Echambadi 1998). This article thus focuses on a particular
aspect of diffusion, the time before product sales begin to
rise. Golder and Tellis (1997) described the time to take off
for new products (i.e., the time from when sales begin until
sales begin to increase rapidly) and found it to be substan-
tial. Kohli, Lehmann, and Pae (1999) examined the time
delay between product invention and substantial sales and
found it helped predict the shape of the diffusion patterns.
In a related article, Datar, Jordan, Kekre, Rajiv, and
Srinivasan (1996) demonstrated that extensive customer
input post–concept development can slow time to market.
Of course, speed to market and the related concept of first
to market are no guarantee of success (Bayus 1997). This
article differs from previous studies by concentrating on
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successive technologies in general and the time between
them in particular, with a focus on early prediction of prod-
uct diffusion. Given the cost of launching a new-genera-
tion technology, predicting subsequent adoption is an
important task for managers. We demonstrate a way to
improve the accuracy of such predictions even after sales
data become unavailable.

We initially focus on describing intergeneration time
per se: how long it tends to be. We then examine whether
intergeneration time has any effect on the adoption curve
of the new technology. Assuming some relationship exists,
the length of the intergeneration period that is both known
to and potentially a decision variable of managers may
help predict the shape of the adoption curves of next-
generation technologies. In the extreme, using inter-
generation time makes it feasible to help forecast the diffu-
sion curve of new-generation technology before actual
sales occur.

This article proceeds as follows. First, it discusses tech-
nological substitution and diffusion models and their
applications. Next, the procedure for measuring
intergeneration time is explained. Then, the intergenera-
tion times for 30 subsequent technologies are reported and
related to the diffusion curves after the new technology is
introduced. Finally, intergeneration time is used to fore-
cast the diffusion curves of next-generation technologies.

TECHNOLOGICAL SUBSTITUTION
AND DIFFUSION MODELS

Forecasting diffusion patterns is crucial for planning
operations and marketing programs. Many cumulative
adoption curves follow the general S-shaped pattern, and
first-time purchase is well modeled by the Bass (1969)
model. It assumes the adoption curve follows the model:

S(t) = [p + q (F(t) / m)] [m – F(t)], (1)

where

S(t) = sales in the period t,
F(t) = cumulative adoption up to time t, and
m = saturation level (market potential).

The coefficient p is called the coefficient of innovation and
represents the fraction of unmet potential customers that
adopt in each period. Similarly, q is called the coefficient
of imitation since its effect increases as more people adopt,
thus representing effects such as word of mouth.

Unfortunately, the ability to fit such curves based on
sparse data (e.g., 3-4 periods) is limited. This has led to
efforts to forecast adoption patterns early in the life cycle
based on past patterns (Sultan, Farley, and Lehmann 1990)
and the lag between product development and the begin-
ning of substantial sales (Golder and Tellis 1997; Kohli

et al. 1999). While promising, these methods do not take
into account the essential fact that most new technologies
represent upgrades of previous ones and hence are tech-
nology generations rather than stand-alone innovations.

Most technological changes can be described as a sub-
stitution of one material, process, or product for another.
Each subsequent technology, if successful, tends to follow
an S-shaped curve: it starts slowly due to initial resistance;
then proceeds more rapidly as the competition between the
new and the old technology grows keener and the new
technology gains an upper hand over the old one; and
finally, as the new technology becomes widespread, the
pace of growth slows down.

That substitution tends to take the form of an S-shaped
curve and is generally supported empirically (Bewley and
Fiebig 1988; Blackman 1971, 1972; Dixon 1980; Fisher
and Pry 1971; Mansfield 1961; Stern, Ayres, and
Shapanka 1975). Several reviews of research in
multigeneration technological forecasting exist (Machnic
1980; Sharif and Kabir 1976; Sharif and Ramanathan
1982; Silverman 1981).

One simple forecasting method is based on product
substitution analysis. It relies on the fact that most new
technologies are replacements of old technologies. One
useful approach to forecasting product substitution was
proposed by Fisher and Pry (1971). In marketing, Norton
and Bass (1987) were among the first to develop a
multigeneration diffusion and substitution model for high-
technology industries. Recently, Islam and Meade (1997)
and Mahajan and Muller (1996) focused respectively on a
single company’s product in a single industry and succes-
sive generations of IBM computers, and Kim, Chang, and
Shocker (1999) modeled intercategory multigeneration
diffusion in information technology.

In Norton and Bass’s (1987) model, sales of three suc-
cessive generations of product have the following form.
Sales of Generation 1 product at time t are a function of its
potential before the Generation 2 product arrives. After the
Generation 2 product is introduced, the potential of the
Generation 1 product is reduced by the sales of the second-
generation product. Similarly, sales of the Generation 2
product are a function of both its potential and sales of
the first-generation product before the Generation 3 prod-
uct arrives. Once the third-generation product is intro-
duced, sales of the second-generation product face a
reduced potential due to that captured by the third-genera-
tion product.

In general, a new generation appears before its prede-
cessor has been fully diffused to its potential customers.
Each successive generation’s sales consist of customers
switching from the earlier generation; customers who
would have adopted the earlier product but, instead, adopt
the later one; and customers who would only adopt the
new (and presumably superior) technology. A key
assumption of the Norton and Bass model is that the
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coefficients of innovation and imitation, p and q, are con-
stant as successive generations are introduced. In this
article, we show that p and q change systematically across
generations.

MULTIGENERATION DIFFUSION
AND INTERGENERATION TIME:
RESEARCH HYPOTHESES

Old technology seldom vanishes quietly, and competi-
tion between old and new generations of technology is
often fierce (Foster 1986). New technologies are typically
disparaged when introduced since they frequently lack the
design finesse of established products, are expensive, and
are often based on assumptions yet to be proved in the mar-
ket. Resistance by users of the old technology is also
severe because of switching costs, the learning required,
and general incompatibility (Norton and Bass 1992).

The substitution process normally follows an S-shaped
curve. Sales initially grow slowly, reflecting the fact that
during the first few years, a new technology must over-
come the resistance of customers loyal to old technologies,
performance bugs in early models, production disecono-
mies due to smaller scale of production, training the
workforce to adopt new processing equipment and meth-
ods, and so on (Dixon 1980; Shanklin and Ryans 1987).
These factors slow acceptance of a new technology and,
combined with the fact that subsequent generations typi-
cally do not solve new problems, result in a smaller coeffi-
cient of innovation for the new technology (pnew),
compared with the coefficient of innovation for the older
(prior generation) technology (pold).

Hypothesis 1: The coefficient of innovation for a new-
generation technology (pnew) will be lower than for
the old-generation technology (pold).

The rate of new-technology adoption increases sharply
as the fruits of new technology become accepted, pro-
cesses improve, economies of scale are achieved, and the
“learning period” for customers comes to an end. Learning
should generally be faster for subsequent generations of
technology. After overcoming initial resistance, the adop-
tion curve of new technology is likely to proceed more rap-
idly, consistent with research suggesting the coefficient of
imitation may be increasing over time (Jeuland 1994) and
that the coefficients of innovation and imitation are nega-
tively correlated (Bayus 1992). Therefore, it is expected
that the coefficient of imitation for new technology (qnew)
will be larger.

Hypothesis 2: The coefficient of imitation for new-
generation technology (qnew) will be larger than for
the old-generation technology (qold).

Intergeneration time may vary for a number of reasons
related to both producers and consumers. On the producer
side, a number of factors are relevant. Generally, the larger
the improvement, the more time and effort are required for
development. A radical (or discontinuous) innovation gen-
erally needs a longer lead time for feasibility assessment
and market acceptance (Moore 1994; Sharif and Kabir
1976). This is particularly true when the basic technology
changes between product generations. Major changes in
technology require substantial educational and marketing
efforts, so really new products will tend to be introduced
infrequently, that is, with longer intergeneration times.
Since really new products often take years to become pop-
ular, this suggests longer intergeneration time will be cor-
related with slower initial adoption (i.e., lower pnew

values). Furthermore, as intergeneration time grows lon-
ger, the older technology and the pool of the old technol-
ogy users will become larger and more entrenched and at
least initial resistance to adopting the new technology
stronger.

On the other hand, products with longer intergeneration
times may both have greater advantages over the previous
generation and be more sensitive to the presence of other
users (i.e., have larger qnew values) since the benefits often
depend on the number of other users, that is, network
externalities (Katz and Shapiro 1985, 1994), and the risks
are reduced by observing other users.

On the basis of a study of successive generations of
IBM products, Mahajan and Muller (1996) found that
early introduction of new technology speeds up the adop-
tion by capturing old-technology demand, but delayed
introduction of new technology slows adoption. This is
consistent with results in the incubation time (i.e., time
delay between product invention and product introduc-
tion) study of Kohli et al. (1999), in which as incubation
time becomes longer, market adoption becomes slower.

Finally, intergeneration (release) time is a managerial
decision that may be related to replacement cycle (a con-
sumer decision), which determines adoption. Hence,
managers may delay introduction when they expect slow
replacement. Taken together, these factors suggest the
following:

Hypothesis 3a: The longer the intergeneration time, the
smaller the coefficient of innovation for new-gener-
ation technology (pnew).

Hypothesis 3b: The longer the intergeneration time, the
larger the coefficient of imitation for new-genera-
tion technology (qnew).

Of course, each technology generation has a number of
unique factors such as its relative advantage, compatibil-
ity, and risk with respect to the previous generation, the
number and efforts of competitors, and economic condi-
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tions. For reasons of parsimony and limited sample size as
well as lack of such data, we do not explicitly consider
these variables. As a consequence, the noise (error) in our
data is greater, which makes it more difficult to find a sig-
nificant impact of intergeneration time.

DATA

Data were collected on 45 technologies in 15 industries,
which produced 30 subsequent technologies (Table 1). All
these technologies have previously been studied in the
context of the technological substitution. The 30 pairs of
old and new technologies can be categorized as consumer
and industrial technologies. Consumer product technolo-
gies (products sold direct to consumers) include deter-
gents, televisions, recording instruments, recording soft-
ware, and personal computers. Tire cord material,
steelmaking technology, oil-cracking technology, aircraft
engines, semiconductor products (DRAM, or dynamic
random-access memory), floppy drives, hard disk drives,
mainframe computers, and beer and soft drink cans are
classified here as industrial (business-to-business) tech-
nologies since they are sold primarily to business that then
incorporate them in products for their customers. Previous
work (Sultan et al. 1990) found that industrial products
were adopted more rapidly than consumer products so we
include this factor in our analysis. However, this classifica-
tion is somewhat imperfect. Computers are dual products
(i.e., have both consumer and industrial applications), and
cans require direct consumer acceptance. So we merely
report the results for interest’s sake.

RESULTS

Basic Analysis

Diffusion parameters were estimated separately for
each of the 30 technology pairs using nonlinear least
squares (Mahajan, Mason, and Srinivasan 1986;
Srinivasan and Mason 1986). Table 2 shows the means of
intergeneration time and the diffusion parameters. Across
adjacent competing technologies, the coefficient of inno-
vation for the new technology is smaller. The difference in
p and q values between generations is related to their abso-
lute values. As an example, steelmaking technology has
much smaller values (average p and q values across gener-
ations are .0003 and .0906, respectively) than DRAM
chips (average p and q values across generations are .0034
and .9418, respectively) that are related to industry-
specific effects. We assess changes across generations by
taking the ratio between new and old generations in order
to remove industry-specific effects and have a measure
that is interpretable in terms of percentage changes.

The average values for the coefficient of innovation
for new and old technology are .0045 and .0063, respec-
tively, and the ratio is significantly different from 1 (t =
3.31, p < 0.01), and a paired t-test is also significant (t =
–2.70, p < .01), supporting Hypothesis 1. Furthermore, the
average coefficient of imitation for new technology
becomes larger (.4618 vs. .4282). This pattern clearly is
evident for seven industries (airplane, beer can, soft drink
can, detergent, TV, recorder hardware, and recorder soft-
ware) and generally true for three others (tire cord, steel,
and PC). However, there is no real pattern for two indus-
tries (mainframe and hard drive) and for three, opposite
patterns emerge (floppy drivers, oil cracking, and some
generations in the DRAM case). The average ratio is sig-
nificantly different from 1 (t = 2.77, p < 0.01), supporting
Hypothesis 2, but a paired t-test is not (t = 1.13, p > .10),
which is largely due to the impact of DRAM results.1 As a
consequence, this revealed only mixed support.

Intergeneration time has a mean of 11.4 and a median of
10 years, with 8.7 years of standard deviation. DRAM
chips (4K vs. 16K) and mainframe computers (Generation
3 vs. Generation 4) had the shortest intergeneration time (2
years), and steelmaking technology (open-hearth vs. elec-
tric furnace) had the longest intergeneration time (more
than 30 years). The distribution of intergeneration time is
given below.

Intergeneration Time Number of Technology Pairs

Up to 5 years 12 (40%)
6-10 years 4 (13%)
11-15 years 6 (20%)
16-20 years 3 (10%)
21+ years 5 (17%)

Overall, intergeneration time is related with p and q in
an opposite direction; as intergeneration time becomes
longer, p decreases, while q increases between genera-
tions. While the average time to peak sales increases
between old and new generations (from 19.3 to 21.4
years), the net increase is not significant (t = .43).

The coefficient of innovation is significantly smaller
(p < .05) for new versus old technologies for both
industrial (.0042 vs. .0057) and consumer technologies
(.0057 vs. .0078). In addition, for consumer technologies,
the coefficient of imitation is significantly larger for new
versus old technologies (.4749 vs. .3746).

The Relation of Intergeneration
Time to Diffusion

Several significant correlations exist. Not surprisingly,
p and q are highly correlated across subsequent genera-
tions (.8 and .9, respectively). Furthermore, there is more
variance across industries than within. Thus, the assump-
tion of constant p and q (from Norton and Bass 1987) may
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not be far off from our correlation results. However, there
are significant and systematic differences; as is obvious
from Table 2, p decreases by 32% on average, and q
increases by 18 percent in subsequent technologies. This
suggests that initial demand may be reduced due to the
existence of a substitute product but that once the newer
technology begins to take over, it does so more rapidly.
However, the ratio of the new to old coefficients of

imitation is smaller when the coefficient of imitation of the
old technology is higher.

As intergeneration time becomes longer, the coefficient
of innovation for new technology becomes smaller com-
pared with that of old technology. According to correlation
analysis, the ratio of the coefficients of innovation
between new and old technologies (pnew / pold) is negatively
correlated to intergeneration time (r = –.32, p < .10). By
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TABLE 1
Description of Technology and Diffusion Parameters

Market Coefficient Coefficient Data Data
Year Innovate Imitate Year Source

DRAM 4K 1974 0.0059 1.1200 1974-1985 Dataquest
16K 1976 0.0027 0.8698 1976-1985
64K 1979 0.0027 1.2760 1979-1994
256K 1982 0.0039 0.7985 1982-1994
1M 1985 0.0039 0.7384 1985-1994
4M 1988 0.0014 0.8483 1988-1994

Mainframe G1 1970 0.0230 0.5494 1974-1988 Computer Industry Forecast
G2 1978 0.0138 0.6411 1978-1988
G3 1982 0.0102 0.6495 1982-1990
G4 1984 0.0089 0.6094 1984-1990

Floppy drive 5.25 inch 1979 0.0057 0.4724 1979-1991 Computer Industry Forecast
3.5 inch 1983 0.0038 0.4111 1983-1993

Hard drive 5.25 inch 1983 0.0092 0.7263 1983-1991 Computer Industry Forecast
3.5 inch 1986 0.0112 0.7262 1986-1991

Oil cracking Thermal 1913 0.0053 0.1083 1913-1966 Oil & Gas Journal
Catalytic 1938 0.0025 0.0864 1938-1992
Hydro 1960 0.0012 0.0774 1961-1992

Tire cord Cotton 1910 0.0053 0.1134 1910-1955 Merino (1990)
Rayon 1938 0.0052 0.2039 1938-1970
Nylon 1947 0.0024 0.1658 1947-1980
Polyester 1962 0.0063 0.1728 1962-1990
Steel 1972 0.0047 0.2038 1972-1992

Steel Bessemer 1856 0.0006 0.0857 1856-1960 Statistical Abstract
Open hearth 1868 0.0002 0.0700 1868-1970
Electric 1900 0.00001 0.1160 1900-1970

Airplane Piston 1936 0.0072 0.1721 1941-1977 International Air Transport Association
Turbine 1953 0.0017 0.1857 1956-1985

Beer can Metal 1936 0.0024 0.1880 1941-1978 Demler (1980)
Aluminum 1961 0.0007 0.3043 1961-1978

Soft drink can Metal 1953 0.0010 0.3046 1953-1978 Demler (1980)
Aluminum 1966 0.0004 0.4040 1967-1978

Personal computer 8080/86 1979 0.0150 0.5543 1979-1991 Computer Industry Forecast
80286 1983 0.0126 0.6441 1984-1992 Computer Industry Almanac
80386 1988 0.0192 1.0100 1988-1994
80486 1991 0.0160 0.9996 1991-1994

Detergent Natural 1915 0.0017 0.1505 1915-1970 Chemical Economy Handbook
Synthetic 1927 0.0002 0.1721 1927-1970

Television Black-and-white 1939 0.0069 0.1125 1940-1975 Statistical Abstract
Color 1954 0.0012 0.1476 1954-1987

Recorder (hardware) Turntable 1950 0.0133 0.0991 1950-1978 Statistical Abstract
Tape deck 1964 0.0016 0.2256 1964-1988
CD player 1983 0.0007 0.3190 1983-1994

Recorder (software) LP 1954 0.0004 0.2685 1954-1992 Universal Almanac
Tape 1964 0.0002 0.3069 1964-1994
CD 1983 0.0001 0.4500 1983-1994

NOTE: All the diffusion parameters are estimated by the sales or productions data starting from the introduction of that technology. If the early sales data
are not available, they are treated as missing data. DRAM = dynamic random-access memory.



contrast, as intergeneration time becomes longer, the coef-
ficient of imitation for new technology becomes larger
compared with that of old technology (r = .44, p < .01),
consistent with Hypothesis 3b.

Using Intergeneration
Time to Predict the Adoption
of Next-Generation Technology

Intergeneration time is significantly related to the diffu-
sion parameters. To demonstrate this further, we estimated
the impact of intergeneration time on the ratio of the diffu-
sion parameters:

pnew / pold = α0 + α1 LN(IT) + α2 IND + α3 MUL, (2)

qnew / qold = β0 + β1 LN(IT) + β2 IND + β3 MUL, (3)

mnew / mold = γ0 + γ1 LN(IT) + γ2 IND + γ3 MUL, (4)

where

Pold = coefficient of innovation for old technology
pnew = coefficient of innovation for new technology
qold = coefficient of imitation for old technology
qnew = coefficient of imitation for new technology
mold = market potential for old technology
mnew = market potential for new technology
LN(IT) = log of intergeneration time
IND = dummy variable = 1 for industrial

technologies
MUL = dummy variable = 1 for technologies that

consist of three or more generations

We used the logarithm of intergeneration time to reduce
the impact of large outliers (e.g., steel technology) and be-
cause we expect decreasing marginal impact (i.e., the im-
pact of going from 1 to 100 years should not be 10 times
the impact of going from 1 to 10 years).

The regression results (Table 3) show that inter-
generation time is negatively related to the coefficient of
innovation of new technology and positively related to the
coefficient of imitation of new technology. Thus, despite
the imperfect nature of the measure of intergeneration
time, it may aid prediction of the eventual adoption pat-
tern. Furthermore, intergeneration time is negatively
related to market size (m). Market size for new technology
decreases as intergeneration time becomes longer for
multigeneration technologies.

To see whether intergeneration time helps predict sales,
we estimated sales 1, 2, and 3 years in the future for all 30
technology pairs. We did this using 5 years of data to fore-
cast years 6, 7, and 8 and 6 years of data to forecast years 7,
8, and 9, then average the results. We compared these
results to six alternatives that use combinations of the aver-
age p and q values from previous generations (.0045 and
.4618), intergeneration time, and the p and q values from
the previous generation with the data. Note that both the
average p and q values were from previous generations,
and p and q values predicted using intergeneration time
forecasted as well as the data, reinforcing the unreliability
of early data-based forecasts. Six forecasting methods
shown in Table 4 are the following: (1) data-only forecast
using the Bass model, (2) a forecast using average p and q
values and the Bass model, (3) a forecast that combines
data and average p and q, (4) intergeneration time pre-
dicted p and q based on Table 3, (5) data and p and q pre-
dicted by intergeneration time, and (6) forecast based on
the p and q values for the previous generation. To forecast
errors for Methods (3) and (5), we used the Goldberger-
Theil mixed-estimation method. This method (Johnston
1972) produces a weighted combination of the prior (here
the average or predicted p and q) and Bass model estimates
based on the given data (here the first 5 years, then the first
6 years). The weights are proportional to the inverse of the
variances of the two estimates. The percentage forecast
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TABLE 2
Mean Intergeneration Time and Diffusion Parameters

IT pOld pNew pRatio qOld qNew qRatio

Industrial
technologies (n = 21) 11.6 (9.7)a 0.0057 (0.0052) 0.0042 (0.0039) 0.7349b (0.5553) 0.4530 (0.3674) 0.4553 (0.3391) 1.0931 (0.3179)

Consumer
technologies (n = 9) 11.3 (6.2) 0.0078 (0.0072) 0.0057 (0.0078) 0.5607b (0.4530) 0.3746 (0.3044) 0.4749 (0.3362) 1.3861b (0.3814)

Total (N = 30) 11.4 (8.7) 0.0063 (0.0058) 0.0045 (0.0052) 0.6827b (0.5252) 0.4282 (0.3464) 0.4618 (0.3329) 1.1810b (0.3584)

IT = intergeneration time.
pOld = coefficient of innovation for old-generation technology.
pNew = coefficient of innovation for new-generation technology.
pRatio = ratio of coefficients of innovation (pNew / pOld).
qOld = coefficient of imitation for old-generation technology.
qNew = coefficient of imitation for new-generation technology.
qRatio = ratio of coefficients of imitation (qNew / qOld).
a. Standard deviation.
b. From the t-test, the ratio is significantly different from 1 at p < .05.



errors are 31.2, 29.8, 26.8, 24.4, 23.4, and 25.5, respec-
tively. Including intergeneration time as prior improves
prediction over data alone as the mean absolute percentage
error dropping indicates from 31.2 to 23.4, a 25 percent
reduction. Thus, not only does knowledge of intergenera-
tion time improve forecasts when no data exist but
intergeneration time improves predictions even when con-
siderable sales data for a new technology are available.
Interestingly, actual data add relatively little to a forecast
based on average ps and qs adjusted for intergeneration
time, reducing error only from 24.4 to 23.4 percent, a mod-
est 4.1 percent reduction. Furthermore, both forecasts
using intergeneration time are slightly better than ones
based on the previous generation’s parameters.

As an example, consider 16-megabyte DRAM. Spe-
cifically, we estimated the diffusion curve based on
intergeneration time without sales data. Figure 1 demon-
strates the predictive potential of intergeneration time.

DISCUSSION AND
CONCLUSIONS

This article has focused on a specific time-dependent
aspect of multigeneration innovation diffusion. The
results suggest that intergeneration time contains system-
atic variance that is related to the coefficients of innovation
and imitation of the Bass (1969) model. The longer the
intergeneration time, the smaller the coefficient of innova-
tion and the larger the coefficient of imitation for new
technology. This suggests that shortening intergeneration
cycle time may not produce an equivalent decrease in time
to substantial sales due to the negative relationship
between intergeneration time and adoption by innovators.

Intergeneration time, as well as data for previous gener-
ations of this technology, therefore can help compensate

for the lack of data points for new-generation technology.
That is, intergeneration time can be used to refine predic-
tions of new generations based on the pattern of past gen-
erations before there is actual sales data history. In addi-
tion, it improves predictions even after sales data become
available. This is especially beneficial in short-cycle
industries (e.g., 2-4 years) where the past generation’s
parameters are not yet able to be estimated accurately.

Of course, this study has limitations. Although a market
economy relies on dynamic technical advancement of
products, the role of the competitive environment and mar-
keting strategy are largely ignored by the dominant diffu-
sion of innovation paradigm (Gatignon and Robertson
1991). Therefore, it would be beneficial to also consider
competition and strategy in technology advancement (i.e.,
the decision about when to introduce a new generation)
and their relation to subsequent product diffusion. For
example, it seems feasible and desirable to use intergen-
eration time to estimate and predict other aspects such as
relative pricing of generations of technology (e.g., Speece
and MacLachlan 1992).

More generally, our results are correlational. It may not
be clear, for example, whether longer intergenerational
time (a managerial decision) leads to lower coefficients of
innovation (i.e., by allowing an existing technology to
become more firmly established) or the knowledge that
resistance to change is greater (a consumer characteristics)
leads to delayed introduction of subsequent technologies
by managers. Furthermore, the pace of technological
development (and the impact of the level and nature of
R&D spending) are not part of this analysis. Subsequent
work should explore the process by which the results we
demonstrate come about.

It is also worth noting that the products collected and
analyzed were basically “successful” in each market and
became widely adopted. According to Product Develop-
ment and Management Association (PDMA) research on
new-product development practices (Griffin 1997),
around 40 percent of new-product development efforts
failed. Furthermore, between one third (Booz, Allen &
Hamilton, Inc. 1982) and as high as three fifths (Silk and
Urban 1978) of product introductions are rated as failures.
Whether our results apply to failed products is unknown.

Future work in this area has many other possible direc-
tions to pursue. One issue is the role of intergeneration
time in the context of the international market introduc-
tions. Another fairly obvious direction for research is the
development of explanations for the variance in
intergeneration time. Further research should try to under-
stand what goes on in the time between generations and to
examine what, if anything, can be done to manipulate the
length of intergeneration time (i.e., shrinking cycle time).

The main conceptual contribution of this article is the
introduction of intergeneration time as a useful construct
in understanding new product development and diffusion.
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TABLE 3
Regression Results Predicting Parameter
Ratios Between New and Old Technology

P Q M

Constant 1.08** (2.16)a 1.06*** (4.42) 1.99*** (5.68)
LN(IT) –0.19* (–1.73) 0.16** (2.50) –.24** (–2.25)
IND 0.14 (0.73) –0.27* (–1.98) 0.43** (2.17)
MUL 0.26 (1.20) 0.03 (0.21) –0.29* (–1.78)
R2 .12 .33 .35

P = ratio of the coefficient of innovation between new and old technologies.
Q = ratio of the coefficient of imitation between new and old technologies.
M = market potential ratio between new and old technologies.
LN(IT) = Log of intergeneration time.
IND = industrial technologies dummy variable.
MUL = dummy variable for technologies that consist of three or more
generations (e.g., dynamic random-access memory or DRAM, PCs).
a. t-statistics.
*p < .10. **p < .05. ***p < .01.



Specifically, intergeneration time is both an interesting
dependent variable (i.e., how long it is and which other
variables are systematically related to do it) and a useful
independent variable for predicting the diffusion patterns
that follow. Managers should examine what factors lead to
slow initial adoption of subsequent generations. This
would be of use to both incumbents who desire to slow
adoption and outsiders who wish to accelerate it.

This line of research is clearly related to the question of
optimal entry timing for a product line extension. Analytic
findings of Wilson and Norton (1989) suggest that, for a
monopolist operating under a long-term planning horizon,
“now or never” is the optimal timing strategy: a monopolist
should either introduce a successive generation of a product
as soon as it is available or else delay its introduction indef-
initely. Bayus (1997) suggested it is advantageous to be

Pae, Lehmann / MULTIGENERATION INNOVATION DIFFUSION 43

TABLE 4
Percentage Error by Forecast Method

Data Year A B C D E F

16K DRAM 1976-1985 21.5 a 23.3 21.1 18.1 17.6 19.1
64K DRAM 1979-1985 22.6 22.6 19.8 17.8 17.1 18.7
256K DRAM 1982-1994 25.5 23.4 19.4 18.5 16.6 18.9
1 mega DRAM 1985-1994 23.0 22.0 18.8 17.4 16.4 16.8
4 mega DRAM 1988-1994 24.2 23.5 20.9 17.7 16.6 20.0
PC-80286 1984-1992 31.7 30.7 25.4 22.8 21.2 22.4
PC-80386 1988-1994 30.0 28.1 23.8 21.9 21.4 22.3
PC-80486 1991-1997 31.1 30.3 26.7 24.8 23.0 24.2
Mainframe (G2) 1978-1988 31.5 29.9 27.2 25.0 24.0 26.1
Mainframe (G3) 1982-1990 29.2 29.2 25.1 22.8 22.6 24.2
Mainframe (G4) 1984-1990 29.9 28.8 24.9 23.3 23.5 23.6
Floppy drive (3.5 inch) 1983-1993 30.5 28.6 25.1 21.9 21.2 23.4
Hard drive (3.5 inch) 1986-1991 29.8 30.6 27.1 23.2 23.8 24.9
Oil cracking (catalytic) 1938-1992 38.9 39.2 32.9 30.5 30.9 32.8
Oil cracking (hydro) 1961-1992 33.5 31.0 26.8 24.1 22.0 27.1
Tire cord (rayon) 1938-1970 38.7 37.3 37.8 34.2 34.9 37.7
Tire cord (nylon) 1947-1980 36.5 33.6 31.8 27.1 25.6 29.9
Tire cord (polyester) 1962-1972 36.2 33.9 30.5 29.0 27.6 30.0
Tire cord (steel) 1972-1982 39.8 36.2 32.7 31.7 30.0 31.8
Steel (open hearth) 1868-1970 49.0 43.6 40.1 37.8 38.1 39.3
Steel (electric) 1900-1970 42.6 38.6 38.9 36.8 36.2 38.2
Airplane (turbine) 1956-1985 32.4 30.3 28.6 26.0 22.9 26.9
Beer can (aluminum) 1961-1978 32.2 31.4 26.0 23.9 24.1 24.8
Soft can (aluminum) 1967-1978 30.1 30.6 27.5 23.8 22.5 26.5
Detergent (synthetic) 1927-1970 35.5 33.6 31.7 30.5 28.1 30.2
Color television 1954-1987 32.0 30.3 28.3 24.8 22.0 27.2
Recorder (tape deck) 1964-1988 26.5 24.5 22.9 20.9 20.6 20.8
Recorder (CD player) 1983-1994 23.1 22.1 21.2 16.0 16.3 19.0
Recorder (tape) 1964-1994 24.8 25.3 22.0 20.8 20.0 20.6
Recorder (CD) 1983-1994 22.9 23.0 19.9 18.3 16.1 18.6
Average forecast error 31.2 29.8 26.8 24.4 23.4 25.5

A = data-only forecast.
B = average p and q.
C = data (A) + average p and q (B).
D = p and q prediction using intergeneration time.
E = data and intergeneration time.
F = p and q values for the previous generation.
a. The number is average of 3-year predicted sales level.

0

500

1000

1500

2000

2500

91 93 95 97

Year

A
nn

ua
l S

al
es

 (
M

il
li

on
 U

ni
ts

)

Actual Sales
Our Projection

FIGURE 1
Sales Forecast of 16-Megabyte

DRAM Based on Intergeneration Time

NOTE: DRAM = dynamic random-access memory.



first to market if product generations are long and have sta-
ble margins and high sales as long as the product is high in
performance. As intergeneration time becomes shorter,
the adoption rate of the new product increases, but the can-
nibalization of the old product is likely to be larger. Thus,
to make a sensible decision regarding introduction timing,
the impact of intergeneration time on sales and profits of
competing technologies needs to be considered. Based on
our results, it seems that an optimal time other than imme-
diately may exist.

NOTE

1. Paired t-tests are more powerful than independent tests. However,
they still suffer from a certain problem, in that larger changes tend to oc-
cur for larger values (and produce larger absolute differences, but not ra-
tios, which reduces the power of the test). Regarding the fact that the p
and q values are estimates across industries, this makes the error (noise)
larger and works against finding significant results.
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