Abstract

We consider the one-armed bandit problem of Woodroofe [J. Amer. Statist. Assoc. 74 (1979) 799–806], which involves sequential sampling from two populations: one whose characteristics are known, and one which depends on an unknown parameter and incorporates a covariate. The goal is to maximize cumulative expected reward. We study this problem in a minimax setting, and develop rate-optimal polices that involve suitable modifications of the myopic rule. It is shown that the regret, as well as the rate of sampling from the inferior population, can be finite or grow at various rates with the time horizon of the problem, depending on "local" properties of the covariate distribution. Proofs rely on martingale methods and information theoretic arguments.

Visit the Annals of Applied Probability.

Authors
Alexander Goldenshluger and Assaf Zeevi
Format
Journal Article
Publication Date
Journal
Annals of Applied Probability

Full Citation

Goldenshluger, Alexander and Assaf Zeevi
. “Woodroofe's one-armed bandit problem revisited.”
Annals of Applied Probability
vol.
19
, (January 01, 2009):
1603
-
1633
.